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16 Pt/Fe and Pt/Ag/Fe layered films were deposited by DC magnetron sputtering on MgO(001),
17 SrTiO3(001), and Al2O3(0001) single crystalline substrates at room temperature. The films were
18 post-annealed between 623 K and 1173 K for 30 s in flowing N2 atmosphere. The onset of the
19 L10-FePt phase formation in films deposited on MgO(001) and SrTiO3(001) substrates was
20 observed after annealing between 773 and 873 K, while chemical L10 ordering sets in for Pt/Fe
21 bilayers on Al2O3(0001) at lower temperatures accompanied by strong (001)-texture. It is
22 concluded that elastic stress, arising from the difference in thermal expansion coefficients between
23 film and substrate, promotes ordering and texture formation. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4891477]

24 I. INTRODUCTIONAQ2

25 FePt thin films have attracted considerable attention as
26 potential ultra-high density magnetic recording material
27 because of the high magneto-crystalline anisotropy of the
28 chemically ordered L10-FePt phase.1–5 These films also show
29 high saturation magnetization and excellent corrosion resist-
30 ance.6 Typically, the L10-FePt phase forms from the disor-
31 dered A1-FePt phase after post-annealing or after deposition
32 onto heated substrates. However, industrial application of
33 FePt thin films requires chemical ordering at low temperatures
34 and the control of grain size and orientation.2,6–8 The ordering
35 temperature can be reduced by Fe/Pt multilayer deposition
36 followed by post-annealing9,10 or by introducing third ele-
37 ments such as Ag, Au, and Cu.11–16 A pronounced (001)-tex-
38 ture in L10-FePt films can be achieved by epitaxial growth at
39 elevated temperatures on single crystalline substrates such as
40 MgO(001)17–19 or SrTiO3(001).20 Furthermore, elastic stress
41 during rapid thermal annealing of FePt films on suitable sub-
42 strates is the origin of strain favoring the growth of (001)-ori-
43 ented grains in L10 ordered films.8,21,22

44 In this study, the influence of various single crystalline
45 substrates (MgO(001), SrTiO3(001), and Al2O3(0001)) on the
46 structural properties of post-annealed Pt/Fe and Pt/Ag/Fe thin
47 films was investigated using various techniques, including
48 secondary neutral mass spectrometry (SNMS). It is expected
49 that differences in the structural properties of the films after
50 post-annealing arise from the stress created by the difference

51in thermal expansion coefficients of the metallic film and the
52substrates (Al2O3(0001): 10 � 10�6 K�1, SrTiO3(001): 9.4 �
5310�6 K�1, and MgO(001): 5 � 10�6 K�1 (Ref. 8)).

54II. EXPERIMENTAL

55Layered films of Pt(15 nm)/Ag(0; 10 nm)/Fe(15 nm) were
56deposited at room temperature on MgO(001), SrTiO3(001), and
57Al2O3(0001) single crystalline substrates by DC magnetron sput-
58tering using individual Pt, Ag, and Fe targets. The Ar pressure in
59the sputtering chamber was adjusted to 0.48 Pa for all deposi-
60tions. The nominal thicknesses of the layers were evaluated
61from the sputtering time (determined from the calibrated deposi-
62tion rate of each target) and verified by profiler measurements.
63Post-annealing of the films up to 1173 K was carried out in flow-
64ing N2 atmosphere (with 0.2 l/min flowing speed) for 30 s, using
65a constant heating rate of 10 K/s. The structure of the films was
66analyzed with an x-ray diffractometer (XRD) equipped with 2-
67dimensional (2D) and scintillation detectors using Cu Ka radia-
68tion. Composition-time (depth) profiles of post-annealed sam-
69ples were determined by SNMS, using a low-pressure radio-
70frequency Ar plasma both as source for ion bombardment and as
71post-ionization medium.23,24 Furthermore, the magnetic proper-
72ties were measured by superconductive quantum interference
73device-vibrating sample magnetometry (SQUID-VSM).

74III. RESULTS

75A. Pt/Fe and Pt/Ag/Fe films on MgO(001)

76Fig. 1 shows 2D XRD images of Pt/Fe and Pt/Ag/Fe films
77sputter-deposited on MgO(001) substrates after post-annealing
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78 at various temperatures. The appearance of the (001) super-
79 structure peak for both Pt/Fe and Pt/Ag/Fe films was weakly
80 indicated after annealing at 773 K but clearly observed after
81 annealing at 873 K, indicating the onset of the L10-FePt phase
82 formation. With increasing annealing temperature, this reflec-
83 tion increases in intensity and becomes sharper. However, the
84 intensity of the (111) peak is still much higher than the intensity
85 of (001) reflection, indicating the presence of strong (111)-tex-
86 ture. Furthermore, the intensity of the (111) Ag reflection
87 observed for the Pt/Ag/Fe films also becomes more pronounced
88 with increasing temperature. Please note that it is well known
89 that FePt films grown on MgO(001) substrates at elevated tem-
90 peratures reveal high L10 ordering with pronounced (001)

91texture.6 However, in our case, the ordering mechanism is quite
92different as bilayer Fe/Pt films were deposited at room tempera-
93ture and then post-annealed. Thus, FePt ordering is initiated in
94the Fe/Pt bilayer apart from the substrate.
95SNMS composition profiles versus sputtering time of Pt/
96Fe and Pt/Ag/Fe films after post-annealing at 773 K and
97873 K are presented in Fig. 2. Please note that the composi-
98tion profile was calculated assuming a linear dependence of
99the measured intensities on the elemental concentration.25

100Post-annealing of the Pt/Fe film at 773 K leads to an almost
101homogeneous intermixing between the Pt and Fe layers.
102Further increase of the temperature up to 873 K does not
103change significantly the concentration profile. Post-annealing
104of the Pt/Ag/Fe film at 773 K also leads to the formation of a
105homogeneous FePt layer and to a moderate penetration of
106Ag into the FePt layer with an Ag rich layer on the top sur-
107face. Please note that from the individual Fe and Pt layer
108thicknesses, a composition of Fe57Pt43 is expected.

109B. Pt/Fe and Pt/Ag/Fe films on SrTiO3(001)

110Fig. 3 shows 2D XRD images of Pt/Fe and Pt/Ag/Fe films
111sputter-deposited on SrTiO3(001) substrates after post-
112annealing at temperatures up to 1173 K. Please note that the
113(100) reflection of the SrTiO3 substrate and the (001) reflection
114of L10-FePt are superimposed and cannot be easily distin-
115guished. However, the onset of L10 chemical ordering was reg-
116istered after post-annealing between 773 K and 873 K in both
117Pt/Fe and Pt/Ag/Fe films. Intensity of superstructure reflection
118becomes stronger with higher annealing temperatures. It is
119apparent that after post-annealing at 1073 K and 1173 K, a non-
120uniform distribution of the (001) peak intensity along the dif-
121fraction ring is observed, revealing that some part of the grains
122are preferentially oriented along the [001] direction. But the
123strong (111) peak is still present in the XRD images.
124The SNMS depth profiles of post-annealed films grown
125on SrTiO3(001) substrates (Fig. 4) are very similar to the

FIG. 1. 2D-XRD images of (a) Pt/Fe and (b) Pt/Ag/Fe films on MgO(001)

substrates after post-annealing at different temperatures.

FIG. 2. Composition profiles of films

on MgO(001) substrates after post-

annealing at 773 K and 873 K: (a) Pt/

Fe (773 K); (b) Pt/Fe (873 K); (c) Pt/

Ag/Fe (773 K); and (d) Pt/Ag/Fe

(873 K).
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126 profiles obtained on MgO(001) substrates. Also in this case,
127 annealing at 773 K leads to almost full intermixing between
128 the Fe and Pt layers. Increase of the annealing temperature
129 does not lead to significant changes in the composition distri-
130 bution. Annealing of films with Ag intermediate layer causes
131 again a moderate penetration of Ag into the FePt layer and
132 segregation towards the free surface.

133 C. Pt/Fe and Pt/Ag/Fe films on Al2O3(0001)

134 Fig. 5 shows the 2D XRD images of Pt/Fe and Pt/Ag/Fe
135 films sputter-deposited on Al2O3(0001) substrates after post-
136 annealing at various temperatures. It is apparent that the

137(001) superstructure peak is present on the XRD images
138even after annealing at 773 K for both the Pt/Fe and Pt/Ag/
139Fe films. These peaks have low intensity as compared to the
140fundamental (111) reflection, but the intensity is not uni-
141formly distributed along the diffraction ring and has a well
142defined maximum on the equatorial line, indicating the onset
143of (001)-texture formation. Additional XRD measurements
144showed the appearance of the low intensity (001) reflection
145for the Pt/Fe film after post-annealing at 623 K and for the
146Pt/Ag/Fe film after post-annealing at 673 K (Fig. 6). The in-
147tensity of the (001) reflection increases drastically with
148increasing annealing temperature, confirming the pro-
149nounced (001)-texture for samples post-annealing at 1073 K,
150which is slightly less pronounced in Pt/Ag/Fe films.
151However, in Pt/Ag/Fe, a strong (111) reflection remains.
152Fig. 7 shows the corresponding SNMS concentration
153depth profiles of the Pt/Fe and Pt/Ag/Fe films after post-
154annealing at 773 K and 873 K. The results are very similar to
155those obtained for films deposited on MgO(001) and
156SrTiO3(001) substrates. Even after annealing at 773 K, there
157is an almost homogeneous distribution of Pt and Fe in the
158Fe/Pt film. Increase of the annealing temperature does not
159lead to a substantial modification of the concentration pro-
160file. For the Pt/Ag/Fe film, full intermixing of the Fe and Pt
161layers with pronounced Ag surface segregation after post-
162annealing at 773 K was obtained.
163The structural analysis of FePt films formed on
164Al2O3(0001) after post-annealing revealed L10 ordering and
165a pronounced (001)-texture, thus a strong perpendicular
166magnetic anisotropy might be expected in these films. The
167magnetic properties of the annealed films were investigated
168by SQUID-VSM. M-H hysteresis loops were measured at
169room temperature in two geometries: magnetic field is
170applied in the film plane and out of the film plane. Figure 8
171shows normalized M-H hysteresis loops obtained for Pt/Fe
172and Pt/Ag/Fe films after post-annealing at high temperatures

FIG. 3. 2D-XRD images of (a) Pt/Fe and (b) Pt/Ag/Fe films on SrTiO3(001)

substrates after post-annealing at different temperatures.

FIG. 4. Composition profiles of films

on SrTiO3(001) substrates after post-

annealing at 773 K and 873 K: (a) Pt/

Fe (773 K); (b) Pt/Fe (873 K); (c) Pt/

Ag/Fe (773 K); and (d) Pt/Ag/Fe

(873 K).
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173 (973 K–1073 K). The magnetization curves for all films are
174 quite similar and a more or less isotropic behavior in mag-
175 netization reversal for the in-plane and out-of-plane field
176 directions is observed. The coercivity of the Pt/Fe films after
177 post-annealing at 973 K and 1073 K is 14.0 kOe and 15.8
178 kOe, respectively. For films with Ag intermediate layer,
179 these values were increased up to 17.7 kOe and 24.2 kOe,
180 respectively. This behavior can be explained by Ag diffusion
181 to the grain boundaries, which results in exchange decou-
182 pling of FePt grains, which in turn enhances the coercivity.

183Furthermore, the still present (111) and (200) orientations
184are responsible for the isotropic magnetic properties due to
185the rather randomly oriented FePt grains.
186XRD results presented above indicate that the deposition
187of Pt/Fe and Pt/Ag/Fe layered films onto single crystalline
188Al2O3(0001) substrates with hexagonal structure leads to
189decrease of the L10-FePt phase formation temperature as
190compared to MgO(001) and SrTiO3(001) substrates with
191cubic lattice. Moreover, annealing of the films on
192Al2O3(0001) substrate results in pronounced (001)-texture
193formation. On the other hand, introduction of the Ag inter-
194mediate layer leads to the slight deterioration of the (001)-
195texture with the presence of a strong (111) reflection. Results
196of the SNMS depth profiling were very similar for films sput-
197tered onto the all investigated single crystalline substrates:
198even after post-annealing at 773 K almost homogeneous
199intermixing of the Pt and Fe layers was observed. This fact
200indicates that there is no noticeable effect of the substrate
201type on the diffusion processes but its influence on the chem-
202ical ordering and texture formation is more significant.
203The Ag intermediate layer increases the coercivity of
204the films after their post-annealing. This can be explained by
205decreasing the magnetic interaction between the L10-FePt
206grains due to their isolation. Isolated grains were formed
207because of the limited Ag solubility in FePt lattice and its
208grain boundary and surface segregation tendency (as was
209shown above). This conclusion is in agreement with the con-
210clusions obtained in Ref. 26. Despite the pronounced (001)-
211texture, films deposited onto Al2O3(0001) substrates are
212magnetically isotropic, indicating the presence of chemically
213disordered A1 grains and L10 ordered grains with (111) and
214(200) orientations.
215The observed differences in the texture formation in the
216films deposited onto different substrates can be explained by

FIG. 5. 2D-XRD images of (a) Pt/Fe and (b) Pt/Ag/Fe films on Al2O3(0001)

substrates after post-annealing at different temperatures.

FIG. 6. XRD (H-2H)-scans of film

samples deposited on Al2O3(0001)

substrates after post annealing at dif-

ferent temperatures: (a) Pt/Fe at 623 K;

(b) Pt/Fe at 673 K; (c) Pt/Ag/Fe at

623 K; and (d) Pt/Ag/Fe at 673 K.
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217 stresses, created by the mismatch between crystal lattices
218 and by the difference of the thermal expansion coefficients
219 of metallic layers and the substrate. These stresses are the or-
220 igin of the strain favoring the growth of [001]-oriented
221 grains.22 Stresses arising due to the difference in thermal
222 expansion coefficients can be calculated from the equation27

r ¼ DaDTE=ð1� lÞ;

223 where Da is the difference in the thermal expansion coeffi-
224 cients between the substrate and the film, DT is the tempera-
225 ture difference between room and the post-annealing
226 temperatures, E is the elastic modulus of the film, and l is

227Poisson’s ratio. As the elastic modulus is temperature de-
228pendent, and in our case the Fe layer interacts with the Pt,
229forming first A1-FePt and then L10-FePt phases, we used the
230elastic modulus (180 GPa), Poisson’s ratio (0.33), and ther-
231mal expansion coefficient (10.5 � 10�6 K�1) for bulk FePt
232for the estimation of the difference in the stresses occurring
233in the films deposited onto different substrates. Fig. 9 shows
234the calculated stresses that arise from thermal expansion mis-
235match as a function of temperature for the investigated sam-
236ples. It is clear that the level of compressive stresses in the
237films deposited onto Al2O3(0001) substrates is much higher
238as compared to MgO(001) and SrTiO3(001) substrates.

FIG. 7. Composition profiles of films

on Al2O3(0001) substrates after post-

annealing at different temperatures: (a)

Pt/Fe at 773 K; (b) Pt/Fe at 873 K; (c)

Pt/Ag/Fe at 773 K; and (d) Pt/Ag/Fe at

873 K.

FIG. 8. SQUID-VSM M-H hysteresis

loops of films annealed at different

temperatures: (a) Pt/Fe at 973 K; (b)

Pt/Fe at 1073 K; (c) Pt/Ag/Fe at 973 K;

and (d) Pt/Ag/Fe at 1073 K.
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239 These stresses promote the chemical ordering and texture
240 formation in the films.

241 IV. CONCLUSION

242 In conclusion, sputtering of the Pt/Fe and Pt/Ag/Fe films
243 onto Al2O3(0001) single crystalline substrates and following
244 post-annealing leads to the formation of pronounced (001)-
245 texture. Furthermore, the onset temperature for chemical
246 ordering in these films is lower compared to films prepared
247 on MgO(001) and SrTiO3(001) substrates. It is important to
248 note that there is no noticeable effect of the substrate choice
249 on the diffusion process but its influence on the chemical
250 ordering and texture formation is significant. Differences in
251 the structural properties of the films deposited onto different
252 substrates can be explained by the stress state that occurs
253 during post-annealing. Also it was shown that introduction
254 of the Ag intermediate layer is an effective method to
255 increase the coercivity of the film.
256
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FIG. 9. Calculated thermal stresses arising from differences in thermal

expansion coefficient between the substrate and the FePt film.
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