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The paper extends earlier results from Suhov and Kelbert [“FK-DLR states of a
quantum Bose-gas with a hardcore interaction,” arXiv:1304.0782] and Suhov et al.
[“Shift-invariance for FK-DLR states of a 2D quantum Bose-gas,” arXiv:1304.4177]
about infinite-volume quantum bosonic states (FK-DLR states) to the case of multi-
type particles with non-negative interactions. (An example is a quantum Widom—
Rowlinson model.) Following the strategy from Suhov and Kelbert and Suhov et al.,
we establish that, for the values of fugacity z € (0, 1) and inverse temperature f
> 0, finite-volume Gibbs states form a compact family in the thermodynamic limit.
Next, in dimension two we show that any limit-point state (an FK-DLR state in the
terminology adopted in Suhov and Kelbert and Suhov ef al.) is translation-invariant.
© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4886478]

I. LIMIT-POINT GIBBS STATES AND REDUCED DENSITY MATRICES

The present paper is a continuation of earlier works Refs. 19 and 20. As in Refs. 19 and 20,
we attempt at establishing a working definition of an infinite-volume quantum bosonic Gibbs state
and justify it by checking natural properties such as shift-invariance in dimension two. In addition,
the paper lays a foundation for future research into phase transitions in quantum Widom—Rowlinson
(WR) models with several types of particles (following a recent progress in classical WR models;
see Refs. 11 and 12), cf. the earlier work.* The class of states under consideration is formed by the
so-called FK-DLR states (a more general concept is an FK-DLR functional): these states satisfy a
quantum analog of the DLR equation (after Dobrushin—-Lanford—Ruelle).

In fact, introducing and studying FK-DLR states is an attempt to expose quantum problems to
established methods of classical statistical mechanics. In particular, we aim at a working definition
of an infinite-volume equilibrium state for (important) quantum systems that do not fit formal
requirements of the Kubo—Martin—Schwinger (KMS) theory. The role of a particle is played here
by a trajectory of a varying time-length; these trajectories are subject to a self-interaction and
an interaction involving several (in this paper — two) trajectories. The initial breakthrough in this
direction was achieved in Refs. 5-7; it had (and has to this day) a strong impact on the whole of
quantum statistical mechanics. However, the lack of a universal concept of an infinite-volume state
leaves a gap in the picture; viz., in Ref. 4, a non-uniqueness of an infinite-volume state was, in
essence, correctly shown, but could not be stated in a suitable form. The FK-DLR states allow to
patch this gap.

Throughout the paper, we refer to Refs. 19 and 20 by adding the Roman numerals I and 1II,
respectively: Theorem 1.2.I, formula (4.1.II), etc. The difference between the present work and
Refs. 19 and 20 is in assumptions upon the interaction potential, which implies different conditions
on the thermodynamic variables z (the fugacity) and 8 (the inverse temperature). Besides, in this
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paper we consider systems with several particle types i € {1, ..., g}. We suppose that the (two-body)
interaction potentials V;; between types i, j are non-negative (i.e., generate a repulsion of particles);
they may also include hard cores. The non-negativity assumption allows us to work in the open
domain zy, ..., z; € (0, 1), B > 0: in the border of this domain (where z; = 1 for some j), one may
expect a Bose-Einstein condensation (which occurs for V;; = 0). However, even for z; less than (but
close to) 1, one cannot exclude (at least at a rigorous level) a non-uniqueness of an infinite-volume
Gibbs state as it has been defined in Refs. 19 and 20 and in the current paper. In the quantum bosonic
WR model with z; = ... =z, = z, we expect a first-order phase transition for z € (1 — n, 1) (cf.
Ref. 4).

Remark. Historically, the assumption V > 0 was used, elegantly and to a great effect, by Ginibre
in Ref. 5 and became popular in quantum Statistical Mechanics (cf. the Refs. 2 and 18, to name a
few). Admittedly, this assumption was termed in Ref. 5 “a severe physical limitation,” and it was
declared that the “next task is to get rid of it.” To a certain extent, it was achieved in Ref. 6. Indeed,
it can be noted that in Refs. 6 and 7 (where a number of different conditions upon the potential were
introduced and intermittently used), the assumption of non-negativity was not present. However
(and perhaps, consequently), the conditions upon z and 8 guaranteeing the key result of Refs. 6 and
7 (convergence to a unique infinite-volume limit and cluster expansion of the quantum Gibbs state)
became notably less transparent than in Ref. 5.

The present paper follows the approach adopted in Refs. 19 and 20; this allows us to use
pre-requisites and technical tools from the above references. However, we attempted at making this
paper, to a degree, self-sufficient, as far as the statements of the main theorems are concerned. In
Secs. IA-IC, we introduce the models, state the main results, and discuss the principal tool of
the work: the Feynman—Kac (FK) representation. In Secs. Il A-II C, we prove the existence of an
infinite-volume FK-DLR state. Finally, in Sec. III, we focus on the 2D case and check that any
FK-DLR functional is shift-invariant.

A. The local Hamiltonian

A model of a quantum Bose-gas in RY with g types of particles is determined by a family
of local Hamiltonians. Given a vector n = (n(1), ..., n(g)) with non-negative integer entries n(j).
Consider a system with n(j) particles of type j € {1, ..., ¢} in a finite “box” (a d-dimensional cube)

A(=Ap)=[-L,+L]*.

The Hamiltonian, H, 4, is a linear operator acting on functions ¢, € H,(A) == ® Lsym(A"(/ y:
- - - 1<j=q

(Huathn) (x2) =3 Z Z Ajidn) (x")

I<j=q 1=l=n(j)

+ Z Z Z Vi (|0 = x.i’,l/’)‘f’z({ﬂ)’

I=j=j'=q l=l=n(j) 1=l'=n(j")
L= (1), ..., x(q), Xx() = (X1, s Xjn() € A (1.1)

Here function ¢, is symmetric under permutations of variables x; ; within each group x(j). The
symbol |x;; — x| stands for the Euclidean distance between points x;;, x;7,» € RY. (Sometimes
we use an alternative notation x(j, 1), x(j, I').)

Operator A;; in (1.1) acts as a Laplacian in the variable x; ;. Further, V; j : r € [0, +00)
> V; j(r) € [0, +00] is assumed to be a C*>-function at each point where V; ; < +o0 and with a
compact support. Function V; ;» describes a two-body interaction potential between type j and type
J' particles, depending upon the distance between the particles involved. The value

R:inf[r>o:vj,j,(r“)so for?zr,lfjgj’gq] (1.2)
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is called the interaction radius (or the interaction range). We also assume that V; j(r) may take
the value + oo on a closed set (e.g., when 0 < r < D(j, j), with D(j, j) = D(, j) € [0, + 00)
representing the diameter of a hard-core repulsion between particles of types j and j'). In the case
V; ;o takes the value + oo, the operator H, , acts on functions ¢, vanishing at every )_ci where
Vi i( ) = 400 for some j, j and [, I'. The set of such points x* € A™is denoted by A%o.
Next, we suppose, for definiteness, that

©)

Xjl—Xjr

V" = max [Vj,jr(r) :0<r <R,

Vi) <400, 1<j<j < q] < +00, (1.3)

and

VY =max ||V}, ] :0=r <R,

Vi) <+oo, 15 j 5 =q]<+os, (1.4)

—
v ) =max[ V]ffj/(r)| :0<r <R,

Vijir)<+oo, 1<j<j < q] < +00.

Remark. As was said above, the assumption that V; ;; > 0 means that the interaction potential
generates repulsion between particles. Such a condition was repeatedly used in the works on quantum
systems of Statistical Mechanics, see, e.g., Refs. 2,5, and 18. It covers the case of a free gas (where
V; j» = 0). Removing the non-negativity assumption (without introducing a hard-core of a positive
diameter) represents some challenges and remains an open question. On the other hand, the finite
range assumption is used in this paper for simplifying some technicalities and can be relaxed to a
controlled decay of V; (r) for large r; this will be the subject of a forthcoming research.

Operator H, , is determined by a boundary condition on dA”. Here A = x A"") and
- I<j<q

IN" = {)_c” = (x(1),...,x(q)) € A™:

max[|xﬂ|m: 1<j<gq, 1§l§n(j)]=L}. (1.5)

Here | |, stands for the maximum norm in R?. More precisely, we initially consider H, A as a
symmetric operator given by the RHS of Eq. (1.1) on the set of C-functions ¢ = ¢, vanishing in a

neighborhood of d A%, i.e., have the support within the interior of A (but outside A%). According
to the Krein theory, this operator has a (monotone) family of self-adjoint extension identified via
boundary conditions. We consider the self-adjoint extension (denoted by the same symbol H, )
which is determined by Dirichlet’s boundary condition: -

$n(x™) =0, x™ €A™ (1.6)

The domain of this extension is formed by symmetric functions ¢, which are (i) C? at every point

x% € A whichlies in the interior of A™\ A, (ii) vanishon 0 AZ U A% . For more detailed comments
on the issue of the self-adjoint extensions, cf. Refs [2, 3, and 5-7].

However, the methods of this paper allow us to consider a broad class of conditions, viz., elastic
boundary conditions (where a linear combination of the value of ¢ at the boundary and the value of
its normal derivative vanishes); periodic boundary conditions can also included. Considering various
boundary conditions endeavors towards including possible phase transitions; this question can be
left for forthcoming works.

Under the above assumptions, H, , is a self-adjoint operator, bounded from below and with a

pure point spectrum. Moreover, V B € (0, + 00), the operator Gg », n = exp [— BH,. A] (the Gibbs
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operator in H, (A) at the inverse temperature ) is a positive-definite operator in H, (A), of the trace
class. The trace

E(B.n, A) = try, (a) G, € (0, +00) (1.7)

represents the n-particle partition function in A.
Asin Refs. 19 and 20, we work with the grand canonical Gibbs ensemble. Namely, we consider,

V vector z = (21, ...,2¢) € (0, 1)7, the direct sum
Gepa= & 25Gpua- (1.8)
Here and below, we set 2 =[] zj(j ). This determines a positive-definite trace-class operator

I<sj=q
G p.a 1n the bosonic Fock space

H(A) = 630 Ha(A). (1.9)

The quantity

[x]

(A) := z=
n=0

| rEI]
=

(B.n, A) = tryy2)Gz p.a € (0, +00) (1.10)

yields the grand canonical partition function in A at fugacity z and the inverse temperature .
Further, the operator

1

=Gz (1.11)
E.p(n) =F

R pa=
is called the (grand-canonical) density matrix (DM) in A; this is a positive-definite operator in
H(A) of trace 1. Operator R, g » determines the Gibbs state (GS), i.e., a linear positive normalized
functional ®z.p.a ON the C*-algebra B(A) of bounded operators in H(A):

0. p.a(A) = ttyay (AR_p.4), A € B(A). (1.12)

Remark. The assumption that 0 < z; < 1 means that we avoid a (possible) “critical” regime.
Namely, it is the values z;,/'1 that generates a Bose-condensation in the free gas (V; ;; = 0) in
dimension d > 3. Compare, Ref. 3 and the references therein.

As in Refs. 19 and 20, the object of interest in this paper is the reduced DM (briefly, RDM), in
cube AygCA centered at a point ¢y = (c(l), o, cg):

Ao =[—Lo+ch cy+ Lol x -+ x [~Lo+ ¢, c§ + Lol. (1.13)

As in the aforementioned papers, the term RDM is used here for the operator Rj\% A defined via
partial trace -

RQ%,A = tra\ag) Rz g, (1.14)

it is based on the tensor-product representation H(A) = H(Ay) @ H(A \ Ag). (This definition the
RDM is different from (although close to) that used in Refs. 5 and 6.) Operator sz ‘23 A acts in H(Ay)
is positive-definite and has trace 1. Furthermore, the partial trace operation generates an important
compatibility property for RDMs. Suppose cubes A CAgCA, then

RQ/]B,A :trH(AO\AI)Ré\’%,A. (1.15)

Throughout this paper, we use the upper indices Ag and A to indicate the corresponding “volumes”
have been not affected by the partial trace.

To shorten the notation, the indices/arguments z and § will be omitted whenever it does not
produce a confusion. A straightforward modification of the above concepts emerges by including
an external potential field induced by an external classical multi-type configuration (CC) x(A®).
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Such a configuration is represented by a collection x(A®, 1), ..., x(A®, q)) of finite subset in an
“external” annulus encircling cube A:

A= A") = (x e R\ A : dist(x, A) <R} (1.16)

Namely, the Hamiltonian H, xa®) is given by
(Hamamon) (52) = (Huad) 62)

2 > > Vi (k=) e () (1.17)

1<j=q 1=l=n(j) 1=j'<q Xex(A®, ")

and has all properties that have been listed above for H, A (including self-adjointness). This enables
us to introduce the Gibbs operators G, ajxa®) and G 5 |xa®), the partition functions Eﬂ(A|X(A(R)))

and E(A|X(A®)), the DM R xa®), the GS @ xa®), and the RDMs RZ\‘(’X(A(R)), where AgCA, viz.,

G, ax(a®) = €XP [—ﬁHg,A\wa))], Gamam) = & 2% G axa®):
n>
E(n, AIX(A™)) := try, (4) G Awa®

EAXA™) = 3 2 B, AKA®)) = trpn) G amam,

n=0
GAlX(A(R)) A
Rawam) = giaixamy) * Raiam = rraan Raas),

Oax(a®(A) = trH(A)(ARAlx(A“U)), A e B(A). (1.18)

The previous definitions (1.1)—(1.15) correspond to the case of an empty exterior CC x(A®) = @.

Remark. External CCs could be considered as a part of a general notion of a boundary condition
for a system in A. They will allow us to consider a variety of limiting infinite-volume objects
(FK-DLR states and functionals) naturally associated with a given quantum model. However, it is
not the most general concept expected here, and the quest to find further generalizations should be
pursued in future studies. The question is to find a structure compatible with the local Hamiltonians
(1.1) and (1.17).

As in Refs. 19 and 20, the Fock spaces H(A) and H(Ap) (see (1.9)) will be represented
as Lo(C(A)) and Ly(C(Ay)), respectively. Here and below, C(A) denotes the space formed by
collections X = {xi, ..., X, } of finite (unordered) subsets x(j) C A (including the empty set) with
the Lebesgue—Poisson measure

pa— 1 1 b'e
dx = 1‘[ EET 1_[ dx, (wnh / dx = exp [g£(A)],

1<j=q xex(j) cn)
where £ is the Lebesgue measure on ]Rd). (1.19)

Here and later on, the symbol £ is used for the cardinality of a given set. In accordance with this
notation, we write that x(A®) e C(A®). Points X, X', x(A®) (and ¥ later on) are called, as before,
classical multi-type configurations (CCs). We also introduce the subset C(A, n) formed by CCs
X € C(A) with £ x(j) = n(j). Next, the external CCs x(A®) have to be controlled, up to a degree, as
A — RY; see below. The methods developed in this paper allow us to introduce several methods of
such control. Throughout the paper, we will refer to the following condition upon a family {x(A®)}:

for given (z1, ..., z4) € (0, )7 and B > 0, V constant ¢ € (0, + 00), the quantity
B(e):=sup | Y #x(AY. 1)) zfk exp LAY L>1]|<o0 (1.20)
. L i Zﬂk . = . .

1<i<q k>1
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This assumption will be used without stressing it every time again. However, we do not consider it
as a final one; in our opinion, it can be weakened.

B. The thermodynamic limit and the shift-invariance property in two dimensions

The thermodynamic limit is the key concept of rigorous Statistical Mechanics; in the context

of this work it is lilﬁz’ the family of standard cubes ordered by inclusion. In the literature, the
AR

quantities and objects identified as limiting points in the course of this limit are often referred
to as infinite-volume ones (e.g., an infinite-volume RDM or GS). Traditionally, the existence and
uniqueness of such a limiting object is treated as absence of a phase transition. On the other hand,
a multitude of such objects (viz., depending on the boundary conditions for the Hamiltonian or the
choice of external CCs) is considered as a manifestation of a phase transition.

However, since late 1960s, there is known an elegant alternative where infinite-volume objects
are identified in terms that do not explicitly invoke the thermodynamic limit. For classical systems,
this is the DLR equations and for so-called quantum spin systems—the KMS boundary condition. The
latter is not applicable to the class of quantum systems under consideration, since the Hamiltonians
H, A and H, axa®) are not bounded.

~ In this paper, we propose a construction generalizing the classical DLR equation (see
Sec. IIC). A justification of this construction is given in Sec. III where we establish the shift-
invariance property for the emerging objects (the RDMs and GSs) in dimension two (i.e., for
d=2).

The first result claimed in this work is

Theorem 1.1. Given B € (0, +00) and z € (0, 1)4, ¥ cube Ag (see Eq. (1.13)), the family

of RDMs [ R\ -

A Rd} is compact in the trace-norm operator topology in H(Ay), for any
choices of CCs x(A®) e C(A®) satisfying (1.20). Any limit-point operator R for {Rf\\‘“x(A(R))} is
a positive-definite operator in H(Ay) of trace 1. Further, let A, Ao be a pair of cubes, A;C Ay, and
RAY, RM be a pair of limit-point RDMs such that

and R™ = lim R™

INEERT Ay
R™ = lim R ko too  ABIX(ATR®)®

koo ABIXAGR®) (1.21)

Here A(k) =[ — L(I), L()]* ¢, 1=1,2, ..., are increasing cubes, with L(k) /0o and x(A(k)®) e
C(A()®) are external CCs. Then R and R satisfy the compatibility property

RAl = tI‘H(AU\Al)RAO. (122)

O

A direct consequence of Theorem 1.1 yields the construction of a limit-point infinite-volume

Gibbs state ¢. For this purpose, it is enough to consider a countable family of cubes Ag(lp)

= [ — Loly, Loly] * ¢ centered at the origin, of side-length 2Lyly, where Ly € (0, 00) is fixed and

lp=1,2,... .By virtue of a diagonal process, we can ensure that, given a family of external CCs
x(A®), one can excerpt a sequence A(l) /* R? such that (a) V natural [y 3 the trace-norm limit

Aollo) _ 13 Ao(lo)
R™ = lim R, gxaa®) (1.23)

and (b) for the limiting operators R relation (1.21) is satisfied, with A; = Ao(/;) and Ag
= Ao(lp) whenever [; < ly. This allows us to define an infinite-volume Gibbs state ¢ by setting

@(A) = zliTo Paa)(A) = raya (ARM™), A € B(Ao(lo)). (1.24)

More exactly, ¢ is a state of the quasilocal C*-algebra B(RY) defined as the norm-closure of the
inductive limit BO(R%):

B = (B'RY)", BRY) = ind lim B(A). (1.25)
A R4
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What is more, ¢ is defined by a family of finite-volume RDMs R0 acting in H(A), with Ag C R?
being an arbitrary cube of the form (1.13), and obeying the compatibility property (1.22).

As we mentioned earlier, in two dimensions we prove the property of shift-invariance of the
limit-point Gibbs states ¢. Note that ¥ cube Ag as in (1.13) and vector s = (s, ..., s?) € R?, the
Fock spaces H(A() and H(S(s)A) can be related via mutually inverse shift isomorphisms:

UA(s) : H(Ag) = H(S(5)Ag) and USWAo(—s) 1 H(S(s)Ag) — H(Ag).
Here S(s) denotes the shift isometry R — R?:
S(s): y— y+s, yeRd, (1.26)
while S(s)A stands for the image of Ag:
S()Ao =[—Lo+cy+s',s" +cj+ L]
x -+ x [~Lo+cf +s 8" +c§ + L. (1.27)
The isomorphisms U0(s) and US®)20(—s) are defined as follows:
(U ()n) 2™ = g (S(—)x™) . x™ € SAG. ¢ € Hal(Ao).
(USR(=5)gn ) (1) = Pa (S, 2™ € AG. by € Hu(Ao), (1.28)
withﬁ = (n(l),...n(g)), n(j)=0,1,....
Theorem 1.2. Let d = 2 and B € (0, + 00), z € (0, 1)?. Then any limit-point infinite-volume
Gibbs state ¢ is shift-invariant: ¥ s = (s', s?) € R?
9(A) = p(S(s)A), A € B[R?). (1.29)

Here S(s)A stands for the shift of the argument A: if A € B(Ay) where A is a square [—L
+ci,¢c1 + Lol x [—Lo + c2, ¢z + Lo] then

S(s)A = US@Ro(—s) A UL (s) € B(S(s)Ap).
In terms of the RDMs R™:
RSO0 = gho(s) R UM (—g), (1.30)

C. The FK-representation for the RDMs

Let us return to a general value of dimension d. We will assume that § € (0, + co) and
z € (0, 1)?. According to the featured realization of the Fock space H(A) as Lo(C(A)) (see (1.19)),
its elements are identified as functions ¢, : X(A) € C(A) — P (x(A)) € C, with

/ lpa(xX(A))[* dX(A) < oo. (1.31)
C(A)

The space H(Ap) is represented in a similar manner: here we will use a short-hand notation X, and
¥, instead of X(Ao), y(Ao) € C(Ap). (When it is convenient, X and ¥, are understood as ordered
arrays and identified with x and y“, points from A%.)

The first step in the proof of Theorems 1.1 is to reduce its assertions to statements about

the integral kernels le\\l(;( A®) and F2° which define the RDMs Rf\\“’x( A®) and their infinite-volume

counterpart R%; we call these kernels RDMKs for short. Indeed, R%o

AX(A®) and R%° are integral
operators:

(R[?FX(A(R))(?A) (io) = /C(A) FIA:\&(A(R))(i()v y())qu(yO)dYO

(RMn) o) = /C P TG (132)
A
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The RDMKs F [1\\“;( Amy (X0, ¥o) and F2(Xo, ¥,) are investigated through an FK representation. Prop-
erties of these kernels are listed in Theorem 1.3 where we adopt a setting from Theorem 1.1. We refer
in Theorem 1.3 to the Hilbert-Schmidt (HS) metric generated by the norm ||A||gs = [tr(AA*)]"?

expressed as
Y
JAIZs = / |AGo, Fo) dRodF. (1.33)
C(Ao)xC(Ao)

Here (X0, yy) — A(Xo, ¥p) is an integral kernel (in general, complex) representing an HS operator A
in H(Ao). (Equivalently, A € H(Ao) ® H(Aop).)

Theorem 1.3. Any pair of cubes AgC A and a family of CCs x(A®) € C(A®) obeying (1.20),

the family of RDMKs Fé\l‘;( A(m)(io, Yo) is compact in the HS metric. Any limit-point function

(X0, ¥o) € C(Ag) x C(Ag) = F™(Xo, ¥o) (1.34)

determines a positive-definite operator R™ in H(Ao) of trace 1 (a limit-point RDM). Furthermore,
given a cube A CAg, suppose F™1, F2 are limit-point RDMKSs such that the limits

Ao _ 13 Ao Ay 1; Ay
F7= lim Fygywawe: F70 = m Fygxawr (1.35)

hold in C° (C(Ag) x C(Ay)) for a sequence of cubes A(k) /1 R¢ and external CCs X (A(k)(R)). Then
the corresponding limit-point RDMs R*' and R™ obey (1.22). O

Theorem 1.1 is deduced from Theorem 1.3 with the help of Theorem 1.4 below. The latter is a
slight generalization of Lemma 1.1 from Ref. 8 (going back to Lemma 1 in Ref. 17).

Theorem 1.4. Let M be a Polish space with a finite measure p (M) < +00) and pn(x, V),
X,y €M be a sequence of kernels defining positive-definite operators R,, of trace class and with
trace 1 in a Hilbert space Ly(M, v). Suppose that as m — 00, p,(x,y) converge to a limit kernel
p(x,y) in the Hilbert—Schmidt (HS) norm:

lom — pllfs = / [om(x, ) — p(x, y)]ZV(dX)V(dy) — 0, (1.36)
MxM

and p(x, y) defines a positive-definite trace-class operator R of trace 1. Then

lim ||R, — R|lx =0 (1.37)
m— 00
where ||Allx = tr[(AA*)'2]. O

The proof Theorem 1.4 repeats that of the aforementioned lemmas, and for shortness we do not
reproduce it here.

Therefore we focus from now on upon the proof of Theorems 1.2 and 1.3. In fact, we will
establish similar facts for more general objects—FK-DLR functionals. As in Ref. 19, we use the
terms a (multi-type) path configuration (PC) and a (multi-type) loop configuration (LC). The concept
of FK-DLR functionals is based in our context on a series of definitions from Secs. Il I and IV I
related to PCs and LCs. We will not repeat here Definitions 2.1.1.1-2.1.4.1 but give the list of
the relevant notation used below. As to Definitions 2.1.1.1, 2.1.2.1, the corresponding objects are
grouped into pairs: items with the symbol W represent path spaces whereas items with the symbol
P represent path measures:

@) Wkﬂ (x, y) (the space of paths w : [0, k8] — R? with endpoints x, y) < dﬁfi(a) (the un-
normalized Wiener measure on Wkﬂ (x, y));

.. —k ——kpB = —kB —% .
i) W (x,y)= kLZJl W (x,y) < d]P’x’y(a) ) (the sum-measure Igl dIP’X’y on W (x,V));

(i) WHrx) = W*(x, x) (the space of loops with an endpoint x) < dP}(0*) = dF:’X(a)*) ;
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(iv) W*(x(j), YN = x W*(xj,,-, v;i) (the space of path configurations 5*(j)
<i=n(j)
= (@], ..., ®],) starting/finishing at CCs x(j), y(j))
> Pp@Un= _x P, @)

1<i<n(j)

) w*()_c(j), y(j)) = U W*(ﬁ(j), 7Tn(j)Y(J))(the space of PCs with permuted finishing

”n(/)e n(j)
CCs) < d]P’*(j) >(/)(T () = EZG dIP’;J-)’ ﬂu(j)X(j)(Q*(j))' Here &, ;) is the permutation
TTn(j) n(j)
group on n(j) elements, and nn(‘j)z(j) = (Yj,rrnm(l)» el yj,ﬂ”(j)(,,(_i))). Symbol T*(j) covers all
type j PCs 5*(j) € W*(x(j) Tn(j»y(J)) where x(j), y(j) are fixed and 7,y € G, varies;
(vi) W (x", Y= x W (x(j), y(j)) (the space of multi-type PCs) < dIP’* iy ('Y‘ )
I<j=q

= 1<>j(§ dPX(])}(J)(T ()3

(vi)) WHx(j)) = x W*(x) (the space of loop configurations Q*(j) = {w?, x € x(j)} start-

xex(j)

ing/finishing at a CC x(j)) <> dP, (J)(Sl*(]))
= x dP¥w});
xex(j)

(vii)) W*X) = x W*(x( J)) (the space of multi-type LCs * = (R*(1),..., 2%(g)) start-
<j<
mg/ﬁmshmg at X) & dPX(Q") = x d]P> (])(52*(]))
<js
(ix) WH*A) = U( WH(X) <> dx x ]P’ (dSZ ) =: d@7, . Here W*(A) is the space of (finite) multi-

type LCs SZ* w1th varying initial/end points in A (however, the loops constituting €7 do not
need to stay in A);

(xX)  W*R?): the set of countable multi-type LCs * = Q. such that their initial/end point CCs
X = (x(1), ..., x(q)) have no accumulation points in R4, A similar meaning is assigned to the
notation W*(A®) and L

To recapitulate, we list once again most of frequently used symbols below:

ﬁ*(j) = @*(J, D), ..., 0*(j,n(j))) atype j PC (ordered), with fixed
initial/end points,

T*(j) = (@*(J, ), ..., 0*(j,n(j))) atype j PC (ordered), with permuted
end points,

= (T*(l), ey T (g)) amulti-type PC (ordered), with permuted end

points,

Q*(j) atype j loop collection (unordered), with a fixed initial/end CC,

QF = (Q*(1),...,R2%(g)) amulti-type LC, with a fixed initial/end CC,

Q% (j) afinite type j LC with a varying initial/end CC in A,

Q) = (4 (1), ..., 2% (g)) afinite multi-type LC with a varying initial
/end CC in A

Qe = (€2 (1), ..., Q%¢(g)) acountable multi-type LC with a varying
initial/end point CC in AC.

As in Ref. 19, we also use the term a t-section (of a path/loop, and of a PC/LC) and employ the
notation

(G, ), (TG, ), (7 1®), (271G, 1), 1R 7HE), {RR)(6), (7 1o }(®),

similarly to Sec. II A of Ref. 19. Next, for a concatenation of two or more configurations (CC, PC,
and/or LC) we use the symbol V.
Furthermore, we need a host of (integral) energy functionals i( - ) and i( - | - ), viz.,

h(R), h(R5), h(RF|R% ), h(R}2%0), (), etc., (1.38)

and their versions A( - [[x(A®).
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Next, “counting” functionals are needed, e.g.,

K(To()), K50, K@), LGN, LG, 1<) <q. (1.39)
Also, indicator functionals «, and XA" will be used, e.g.,
aa(R), aa(R), aa(}). (1.40)

Recall, functionals 4, K, and L use the (aggregated) time-length multiplicities. Next, o requires that
the PC/LC in the argument does not leave A, whereas x° prevents it from entering A at ceratin
time points.

The above functionals are also used with concatenated arguments, viz.,

h (Y0 v Rian, [250) AR5V R, [2i0).

1 (X5 v @i, v sz’;c) M (R R, v R) (1.41)

where Tg € W*(Xo, ¥p) and £ = R} € W*(Ao); see (1.42)—(1.48). Compare also Egs. (2.1.1.1)-
(2.1.14.1).

For instance, let us be given:

(a) Cubes Ag, A, with AgCA.

(b) CCs Xo, ¥y € C(Ag) with £Xo =¥, and a multi-type PC Yy = (To(1), ..., To(q)) €
W*(Xo, ;) where T;(j) = (wy(j, 1), ..., w5(j, n(j))) is a configuration of type j paths wy(j, 1) :
[0, k(j,DB] — R4 for some given k(j, ) =1,2,....

(c) A (finite) multi-type LC 97\\1\0 = (Qj\AU(l), e Q*A\Ao(q)) € W*(A \ Ay) where each
Q*A\Ao(j) is a configuration of type j loops w* : [0, k(w*)B] — R for given values k(w*) = 1, 2,

(d) A (countable) LC € ¢ = (%(1), ..., Q%(g)) =€ W*(R?) where each % (/) is a con-
figuration of type j loops @* : [0, k(&*)8] — R for given values k(&*) = 1,2, .. ...

The energy functional h(?; \% SZ’,‘\\ Ao | @, o) figuring in (1.47) is determined by

h(Cy v i 4, |R50) = h(Rj 4, |R50) + h(Co |54, v R50). (1.42)

Here h(SZj‘\\ Ao | @’ o) represents the conditional energy of LC SZ*A\ A, in the potential field generated

by LC €7 ¢ and h(?; | Q) 5, V 2 ¢) the conditional energy of PC TZ in the potential field generated
by the concatenation of LCs 7, ,, V € ¢:

h(R\ 5, | X0)

=> > U_i,j(w*,w*)JF% > > Ujj(@*, )

Isj=q @*€Q}\,, () I<j=q w*,w*/eﬂﬁgmom
w*#w*
£ x/ ~ E ]
+ E E Uj (o, ™)+ E E U, 50", o), (1.43)
1<j<j'< . . )
<j<j'=q “’*,EQZ\AO({? 1<j.j=q “’:EQZ_\Ao(J)
@™ €} \5, (1) w*EQZG(I)

h(Xo| R4, V Do)

= 2 : 2 U@ @) + E , E U@, @)
1=j2q &%, €To() 1<j=q @, €To())
1<1<I'<n(j)

+ Y D> U@L B+ Y > U 5@, 3. (144)

. . _ i 2y
I<j<j'=q E;‘,E'L‘U(j) 1=/.j=q @} 1€T0(j) ~
@ €T0(j") @ €Q\0y V()
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Here U; j/(-, -) is the (integral) contribution of a pair of paths/loops; viz., in (1.43),

ok Tx
Uj’j(a),a))

p
2/0 3 vj,j(|w*((m — DB +1t)— & ((m — 1 +t)|)dt (1.45)

1<m=<k(w*)
1<m<k(*)

and in (1.44),
U @5, @}

B
- /0 > v_,-,,.(\aj,l((m —DB+t)— o, (m — 1B+ t)y)dt. (1.46)

I<m<m'<k(j,l)

We also use the (standard) representation of the partition function E[A|X(A<R>)] (see
Eq. (2.2.1.I)) and RDMK le\\&(Am))(iO’ Yo) (see Egs. (2.2.2.1)-(2.2.5.1)). Next, Lemma 2.2.1.1, Defi-
nition 2.4.1, Lemma 2.2.2.1, and Definitions 2.5.1-2.7.I introduce the concepts of the infinite-volume
FK-DLR functionals, states, and measures.

We employ the same notation § (for infinite-volume FK-DLR functionals), § (for infinite-
volume FK-DLR states) and R (for infinite-volume FK-DLR probability measures) as in Ref. 19.
Recall, i € & is a probability measure (PM) on OV(R?), M(R?)). Here M(R?) is the sigma-
algebra generated by cylinder events. In a probabilistic terminology, 1 is a random marked point
process with marks from WW*(0), the space of loops starting and ending up at the origin. Formally,
IM(RY) is the smallest sigma-algebra contained the “local” sigma-algebras (A )Y cube A. Compare
Sec. 1T 1.

For any PM p € R, the Ruelle bound (see Egs. (2.3.18.1)—(2.3.20.1)) holds true, with p = z.
Finally, the statements of Theorems 2.1.1 and 2.2.1 are carried through.

To summarize the FK-DLR representation: ¥ functional ¢ € §, the RDMK of an RDM R%0 in
Ao has the form: V AD A and Xy, ¥, € C(A) with §x0(j) = 8yo(j),

PG = [ drg (T
W*(Xo.¥o)

x du(R* )1 2%, e WHAL)
\/.W*(R") AB ( AB )

Ak
x / A\, x (0 v 254, Vv Lro)
WH(A\Ao)

K (S0, ()

KCroG) [ . ) ) ]
X Z; ————exp|—h (Y, VR Q . (1.47)
It on[-n (Fov i jer)

Here u is an FK-DLR measure (i.e., u € K). This means that the restriction i [gn(a,) is determined by
the Radon—Nikodym derivative admitting the following representation: V AD A and R € W*(Ay),

di Tona,) (829) / C
—_— = du(*H1( * *(A
T o, 00 (20 e Wah)

x f AR 4, x "RV R34, V R50)
WH(A\Ao)

K@) K@i ()

Hq L(Qé(j))L(Q*A\AO(j))eXp[ (25 v 234,|20)] (1.48)

I=j=<
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(Recall, we use the notation Yy = (Yy(1)..... Ty(q)) € W*(io ¥o) and f = (1),
., 25(g)) € W*(Ap).) Similar formulas hold true for RDMKs F Al A(R))(Xo, Yo) and the PMs

Ml/t[\)x(/\(“)); see below.
The rest of the paper is organized as follows. In Sec. II, we analyze compactness properties and
prove Theorem 1.3. Section III gives a brief sketch of the proof of Theorem 1.2. Throughout the

argument, a number of properties of Wiener trajectories are employed; cf. the guidebook Ref. 1.

Il. THE COMPACTNESS ARGUMENT: PROOF OF THEOREM 1.3
A. Uniform boundedness and HS convergence

Let us fix acube A of side length 2L centered at ¢y = (co, .. ) cf. Eq. (1.13). The first step
in the proof is to verify that, as AgCA and cube A R4, the RDMK F Alx( Am))(Xo» Yo) (see (1.32))
form a compact family in C%(C(Ao, n) x C(Ao,n)) V¥ glven n. (We want to stress that we work
with pairs (Xo, ¥o) with £ Xo(j) = # yo(j); otherwise, F Al A(R))(Xo, Yo) = 0.) Clearly, the Cartesian
product C(Ag, n) x C(Ao, n) (the range of variable (Xo, o) with given 8xo(j) = #yo(j) = n(j))
is compact. As in Refs. 8-10, it is convenient to employ the Ascoli—-Arzela theorem, i.e., ver-
ify that, for a given n, the functions F AIx( A(m)(Xo, ¥o) leag.nyxciay.ny are uniformly bounded and
equi-continuous.

Checking uniform boundedness for a fixed n proceeds as follows: V (Xo,¥) € C(Ag,n)

x C(Ao, n), the RDMK F \X(Am))(XOf ¥o) satisfies, V ACA'D A,
A — —
Fxixcam) o Yo) = /W*(xo o) dP,, yU(Yo)
0

x / dM(sz;\A,)l(sz’;\A, e WA\ A’))
WH(A)

x / a0, 0™ (T v @i, v i)
W#(A'\Ao)

K}, ()

— KT Zi
xozA(TO\/SZ*}\,\AUvSl’R\A) [T 2"

gl L35, (1)
X exp [ —h (T; VR iV x(A<R>)) ] @2.1)
When A’ = Ay, this simplifies to
_ K K(To(j
Fl‘(\l(;((A(R))(XO’ Yo) = / dPs, v, (Yo) 1_[ Zj ot
w*(i(]vyo) 1<j<q

x /W " du(ﬁ’j\\l\o)l(ﬂj‘\\,\o e WHA\ A0)> x o (Tz v sz’;\AO)

x an(Ty V R4 5,) exp [ (T |20, \/x(A<R>))] 2.2)
and leads to the bound
FY oo, Fo) < O™ (o, Fo). 2.3)

where function Q2(Xo, ¥,) is specified below. .
Namely, for %o = (x,(D, - 2,(@), Fo = (y(Ds - y (@) € AP, with  x,())
<J=q

=&, D, x(fon()) and y () = (y(j, D, ..., y(j,n(j)), the RHS in (2.3) is given
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by

Mgy = [ apy (T [T T (T0)

ﬂ*(fo,io) lsij

=11 2 I1 >

1<j=<q 7e&y; 1=i=n(j) k=1

Bk * Ao (—

X P o ndo?)x M@t ). 2.4
D,y (jil N |
/wﬁk(x(j,n,y(j,nb) DG !

Whenever £x(j) # £ y(j), the quantity Q™ (X, ¥p) is set to be 0. Recall, in (2.1), (2.2) and (2.4),
we work with path configurations

Yo = (To(D), ... To(@), To()) = (@1, @)
with permuted endpoints. Accordingly, &, denotes the symmetric group on n(j) elements;
T = T, iS a permutation of order n(j) acting on “digits” 1, ..., n(j). Compare part (v) in the

series of definitions (i)—(x) in Sec. IC. The integral / in (2.4) (more precisely, the presence
W*(Xo,¥o)

of the indicator XA"(T:;( j))) yields the Pf(l; D.( jqnn(/_)l)-probabilities that the paths w7, of a varying

time-length Sk (=Bk(j, ), issued from point x(j, /) and ending up at point y(j, ) do not enter cube
Ay at times B, 28, ..., B(k(, ) — 1). Formally,

Bk — i \Yor=vd
f—ﬁk o PGnaGander Dx (@)
I<l<n(j)? W @G.Dy(G7D)

K s
= 1 Pﬁj,lxyu,m)(‘“j,z(mﬂ) FhoVm=1 . k- 1>~

1=i=n(j)

For the future proof of the HS compactness we need to check that

Yoo [ T sstiavi[eves]

nZ0 =T Ay (agye 1274

2
- / diodyO[QAU(io,yo)] <00, (2.5)
C(Ao)xC(Ao)

where n! = 1_[ n(j)!, and

1<j=q

dr,(D=[] dxG.D. dy, (=[] dv.

1<i<n(j) 1<j<(j)
o= [ ——dx,(), dfp= [] ——dy, ()
0= . > 0= - .
| =0 | =0
1<j<q ﬁfo(l)' 1<j<q ﬁ&)(l)'

2
First, we estimate the integral in dyy, / dyo[QAo(io, yo)] , for £ x0(j) = #yo(j) = n(j).
C(Agsn)

This integral does not exceed (again with k = k(j, [)) the expression

nx mnx >

1<j<q ne6,q 1<i<n(j) k=1 IWHCUDXGAD) | g

k — —
xPA (a)_’;,l(m,B) € Ao, @ (m'B) & Ao, | <m' < k,m' # m)

- l_[ Z l_[ Z Z Pﬁ];,l),x(j,nl)(aj‘,l(mﬂ) € Ao

1<j<q JIEG,,(/) I<l<n(j) k=1

just for one value m € {1,...,k—1}). (2.6)
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The next step in the proof of (2.5) is to decompose the permutation 7, into the product of
cycles: ,;) = y 15, acycle y; having length n; where ny + ... + ny = n(j) and starting at digit
t; (say). Next, we take into account such a decomposition, and for each cycle y; merge the paths
xo(t;) = xo(yit;), xo(yit;) — x()(yl.zti), AU xo(yl.”"*lti) — Xo(t;) into a loop with the identical initial
and endpoint x((#;) lying within Ag. In addition, each among the above paths contains precisely one
intermediate time point of the form Bm, where m is a positive integer such that the path at this point
lies in Ag. It is not hard to see that for the emerging loop @*, of the time-length SM (say), the total
number of time-points Bm such that m is a positive integer, | <m < M and @*(8m) € A is always
odd. So,

2 1
d%,dy [QAU(io,y)] < =
/C(AO)XC(AO) 0 0 H ZS !

l<j=<q s=0

X [Z;,-M/ dx PﬁxM(dE*)l(E*(m,B) € Ao
M=>2

Ao WHEM (x x)

for an odd number of values m € {1, ..., M})]

1 S
< > [u(A(» > sz] < 0, @.7)

I<j<q s>0 "' M>1

where v(A() stands for the Euclidean volume of cube Ay.
A similar argument remains valid for the limiting RDMK F29(X,y,), beginning with the
representation

FAO(iO’yO)Z/. dE;o,yn(To) l‘[ Zj( o)

W’ o o) 1=/<q
x f du(ﬂid\Ao)1<9§{d\Ao e WHRY \ Ao))
WH(R4)

x x 2o (TZ v Sl]ﬁd\Ao) exp [ —h (TS | SZ]yIﬁRd\A[)) ] ) (2.8)
this again leads to the bound

FN (o, ¥o) < 0™ o, ¥o) (2.9)

similar to (2.3).
Accordingly, we can write:
Ao — — Aoj= = 2 Aore = 2
[ Flam @0 5o = FGo,50)| =4[ 0o, 50)] (2.10)
Let us outline the argument of compactness in the HS norm. After checking that the family of
the RDMKs F i\&( A(R))(i(), Yo) satisfies, for given n and Ay, the assumptions of the Ascoli-Arzela
theorem, we guaranty compactness in C°(C(Ay, n) x C(Ao, n)). Hence, V A¢ and n, we can extract

a sequence {A(s), x((A(s))®) along which we have a convergence
Foam) X0, o) = F(Xo, ¥p)

as s — oo uniform in (Xo, o) € C(Ao, n) x C(Ao, n). By invoking the diagonal process, we obtain
a sequence {A(s), X((A(s))®} along which we have convergence for a given Ag but V n. Next, by
using the Lebesgue dominated convergence theorem, we get from (2.5) and (2.10) that along our
sequence,

2
/c [F Aoy o o) = F Ao(i"’%)] -0 11
(A0)xC(A0)
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Then Theorem 1.4 implies that the RDMs Ri\“’x( Amy COnverge to RA0 in the trace norm. Finally, by
inspecting a countable family of cubes A, we get convergence for all given A, i.e., the compactness

of states.

B. Equicontinuity

To verify the equi-continuity property of RDMKs F Ao

Al A(R))(io, ¥o), we have to check uniform
bounds upon the gradients

A = = A — =
VXFAI(;(A(R))(XOa y()) and VyFA‘(;(A(R))(XOs y())

Here x = x(j, [) is one of the points in )_co(j) and y = y(j, ml) one of the points in Xo(j)’ 1 <1
< n(j), | <j < gq.Both cases are treated in a similar fashion; for definiteness, we consider gradients
A — —
VyFA‘(;((A(R))(XO’ yo)
It can be seen from representation (2.2), (2.8) that there are two contributions into the gradient.
The first contribution comes from varying the functional exp [—h (TO AU A0|X(A(R))>]. The
sk

second one emerges from varying the measure PP ¢ o

to a chosen point y.) Symbolically,

. (We are interested only in variations related

A S —
V)’FA&(A(R))(XOv YO)

N / d“A"‘(A‘R’)(Q?\Ao)XA°(97\\A0)l(9’2m0 e WA\ Ao))
WH(A)
* ~F . —%k % R
* { /w*(io,yo) oo LoV eXp[ h (To} a\a, V X(A ))]

(5 L 250 0 [ (5 1, )] |

. ZK(QA\AO(j))
Ko % Ao (AP O oF
x o I B NTE'S ozA<T Ve ) 2.12)
ﬂq T L) (Fo)ers (Yo v Zisa,
Let us analyze the parts involving the gradient. As before, write Xy = ({0(1), A {O(q)), Yo

= (,(Ds -, y,(@)) and X = (To(1), ..., T(q)). Here
Xo() = &G, Dy x(Gon(), ¥, () = G, Dy v n()

and Y(/) is a type j PC formed by paths @*

;1> of varying time-lengths k = k(j, ) and with permuted

end-points: Yo(j) = (57,1, ... ,5’;’”(}-)).
We have to focus on the following expression:

v, f o dp, (T exp [—h(ﬁm’;\AO \/X(A(R))>]
W*(Xo,¥o)

_ k Bk *
=TT Z % I1 T el
I1<j<qneG,  l=i=n() k=1 WHEGD.xGD)

X exp [—h (SZS + Z;’;|sz;\A0 \ X(A(R)))]

Ix(j, ) — y(j, w3,
X exXp §— 4B .

(2.13)
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(The indicators x*° and o, do not contribute and are omitted.) Here ZZ is a collection of straight
paths: ZZ = (z*(l), R z*(q)), with z*(j) = (g“j*’l, R ;ﬁ,l(j)) where each Cj*J is a linear function

¢f it e [0.kB] — %(y(j, rly—x(j, D), 1<j<gq, 1<I<n(). (2.14)

Observe that the argument R in (2.13) represents a collection of loops w*(j, ) = a);f_l beginning
and ending at coinciding points x(j, /).
Of course, the gradient will only affect the expression

Ix(j, ) = y(, D3,
exp | — 2B

—h(@, + ¢y | 1196+ Zo) \ @ + )] v @i, VX Am))}

where m € 6,;) and y(j, wl) = y. The subscript Eu stresses that we work with the Euclidean
norm/distance.
The first aforementioned contribution to the gradient emerges when we differentiate the term

exp [~h (@, + ¢ | (196 +Z)\ @), + ] v @i, VXAD) |
this contribution is more difficult to estimate. The second comes from differentiating the term
exp | = G, D) = ¥ TR, /KB |-
It is easier to assess, and we refer the reader to Ref. 19 for a detailed argument about it.

Thus, we concentrate on the first contribution and write the corresponding expression down: for
y = ¥(, wl), and with k = k(j, ),

yexp [ (@ + 6l[19 4 Zo) \ @+ £7] v @i, v X(AW))]
= —exp| (@, + £ l[196 + Zoh\ (@, + )] v R, v RAD))]
B
x/ S { > V(1@ + mp)
Dt g

m'#m

+ i+ mB) — T (& 4+ m'B) — ¢yt + m'B))

+ > > > Vij,j'<|5§,l(t+mﬂ)

1<j'<q 151’57174 1<m'<k(j',l')

J'#

+ L6+ mpB) — @ (& +mB) — £ (e + m’ﬁ)|)

+ Z[ > Y i@+ mp

1<)j'=q = w*€Q}\ 5, (/') 1=m'<k(w*)

+ 05+ mp) — 't + m’ﬂ)|)

+ >V Vj,j'(laj‘-,l(t +mpB) + ¢ (6 +mpB) — )‘cl)“ . (2.15)

xex(A®, j7)
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The initial observation is that the two first sums, in the RHS of Eq. (2.15), Z Z
R TR CeR)
m'#m
and Z Z Z Z , can be controlled uniformly in A in a straightforward
l<m<k(j.D) 1<j'<q 1<l'<n(j") 1=m'<k(j'.l')
J'#i

manner. Their input to (2.13) is bounded, respectively, by

—() ~ K(To(i)) —=*
2V / APz o (o) [T %™
W*(Xo0.¥o)

1<i=q

B
xfo Y 1(|6;‘»’,(t+m,3)+éjf,(t+mﬂ)

I<m<m'<k(j,l)
—@ (6 +m'B) = (6 +m B < R)
and — for n(j) > 1 -

— A~k K(To(0) _ Agmr*
\%4 / dE;quU(TO) 1_[ z; olt XA(J TO
W*(Xo.¥o)

I<i<q
B
SV D SEED SED SINED DR ()
0 1<m<k(j,l) 1<j'<q 1<l'<n(j") 1<m’<k(j',l)
J'#i

036+ mB) — @ (6 +m'B) — 5 (6 +m'B)| < R) .

(The fact that potentials V; ; may take the value + oo does not play a role in this bound.)
We only need to assess these expressions for given n and A. Indeed, we upper-bound them by
a “brute force”:

by gV(“@(zp [T n0)! 1+ 06 := Ai(n)
1<i=q
and
by B@— DV [ Y @) | o1y
l<i'<q
< [ n@)! n@) (1 + Oy = Ax(n).
1<i=q

(At this stage we did not use the fact that potentials V; ;» have a finite radius.) Here and below we
use a host of quantities ©,(z) = O,(z, B):

kra
7*k
®“(Z)=§ W, a=-1,0,1,2. (2.16)

k>1

The third sum, Y > » >, in the RHS of (2.15) involves loops w*

l<m<k(j,l) 1<j'<q a)*er\\Ao(j’) 1<m’<k(w*)
from the LC Sl’j\\ A,- (Here k(™) stands for the time-multiplicity of w*.) The contribution of this
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sum into (2.12) is bounded from above in norm by
—(1) —%
Vv / dPg 5, ()
W*(Xo.¥o)
x [ A (@01 (R, € WA A)
WH(A)

x x Ao (TZ \% SZ’,‘\\AO)QA (TZ \ SZ’/‘\\AO)

K(253)

K5 & e R
Xlngi 0 L(Q—WCXP[_}Z(TO‘QI\\AUVX(A )):I
B
> /0 de Y 1@ +mp)— '+ m'B) <R). 2.17)
w*eszj\\/\o 1<m<k(j,0)

1<m’ <k(w*)
By using the Campbell theorem, the Ruelle bound and the fact that
h (?; +Zy | R4,V x(AR)> >0

and omitting unused indicators, the quantity (2.17) does not exceed

- A K(To(i))
A I 8 s
W*(Xo.¥o)

I<i=q
hn
X dx dP; (0*) =
[ 1<i2,<q /Rd Wex) k(ew*)
B
x / Y 1(|a;,(t +mB) — (& +m'B)| < R)i|. 2.18)
0

1<m<k(j,l)
1<m’ <k(w*)

Observe, that the expression (2.18) does not depend upon ADAy.
In turn, (2.18) is less than or equal to

— k

b7Al * AT K(Ty(0) Zir

[ a1 Y Y
W*(Xo,¥o)

I<i<q 1<i'<q k>1

X Z /Rd dx Z Pf])‘c(a)* e Wr(x, x) 1 w*(t +m’'B)

1<m<k(j,l) 1<m’'<k
lies within distance < R from E";J(t + mp), for some t € [0, ,3]):|. 2.19)

Next, by moving the starting/end points of both paths, »* and @ ;, we obtain that (2.19) does
not exceed

. )
o7 [ [T Tk Y g
YV (Xo,¥o

1<i<q 1<i'<q k>1
x / dx / de’;(w*)l(w*(t) lies within distance
R? WHE(x,x) '

<R from @,(¢), for some t € [0, ,3]). (2.20)

To assess (2.20), we use the requirement that the path Ej ; and the loop @* must come close to
each other on the time interval [0, 8]. A necessary condition for this is that—when distg,(x, Ag) > R
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— at least one of them must travel at least a half of the distance distg,(x, Ag) — R over the time

interval [0, B]. For a point x € R? with a large value of distg,(x, Ag) it generates a sum of two

o . — Bk(j.I .
small probabilities: one coming from Pﬁ I;, the other from P f( jf;),i’( j.x1)- (Recall that y(j, i) =y, the

varying point from ¥,.)
Formally, we use Lemma 2.1:

Lemma 2.1. The following bounds hold true.(i)¥ x € R? and a > 0,
P2 ((sup [disteu(@"(6), A0)] - 0 <6 < > a) < e,

where co = co(B) and ¢, = c|(B) are finite positive constants.
({i)Vx,y€e Apand a > 0,

Ef,"y(sup [distEu(E*(t), Ao)] :0<t=<B> a) < coe™ 1,

where co = co(B, Ao) and c; = ¢1(B, Ao) are finite positive constants.

Proof of Lemma 2.1. The starting point is the Skorohod formula for the Brownian bridge on the
time interval [0, 8] in one dimension: given @ > 0 and |x — y| < a,

P£y<a):sup[|w(t)—x|: Oftfﬂ] >a)

1 1
= —1i-! [—— —x =2l 2] 2.21
Wlez%o( ) ~'exp 2ﬂ(y x — 2la) @21

Compare Ref. 16, Chap. 6, Sec. 27, the formulas in and below Eq. (27.1). We convert it to the
following equality:

1 1
Bk x| —

Py (sup [|a)(t) x[:0=<t= ,3] > a) BTN S (2.22)

—x)? —v)2

X /du{1(|x—u| > a) exp [_(u °_ —y) i|
2B 28k — 1)
(u—x —2la)? (u—y)y?

—1(]x —u| < a) Z exp [— 2 ~ 2B 1):| } ) (2.23)

1€Z: 11

(We agree that for k = 1, (2.22) morphs back to (2.21).)
(1) Take x = y. By the Cauchy—Schwarz inequality, the contribution of the integral / du 1(|x

—u|>a)is

1 1 (u _ X)2 ]/2
= Gn2pr — )i ( 7B /d‘l 1(|x —u| > a)exp [— 5 D
2 a \? | oo o
= @G22k — 1))1/4<D <2«/B> where ®(b) = E/h e dv. (2.24)
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Next, consider the contribution of the integral / du 1(|x —u| < a). Whena >u — x> 0, we

can write

Z 1 exp |:_(u —x —2la)? (- X)? :|
1eZ: 1#1 2p 2ptk — 1)

- e |:_ (u — x)? i|{ex |:_(u—x~|—2a)21|
=P T 2p0— 0] 1P 28

[ (u—x+4a)2:| |: (u—x+6a)2]
—exp|————> | +exp|———

28 2p
(u—x —2a)? (u—x —4a)?
e[ 5] 5]
(u—x — 6a)? (u — x)? a?
| B el B G B

A similar bound holds when u < x. Integrating in du yields a finite value, with the factor
e~%/CP) in front.
Going back to (2.23), we can write

Pxﬂ’y‘ (sup [|a)(t) —x]:0<t < ﬂ] > a) < ¢ exp(claz)
where ¢y, ¢ € (0, + 00) are constants depending upon 8. The rest of the argument completing the
proof assertion (i) is standard and omitted.

The proof of statement (ii) is similar. |

By virtue of Lemma 2.1, we can upper-bound (2.20) by

1

26V D0 @0z | ©1z) [ n6)! nG) (1 + ©zi))"®
1<i'<q 1<i<q
X {c + co / dx exp [—cldistEu(x, AO)Z]} = Asz(n, Ag). (2.26)
R4 -

Here ¢ € (0, 00), ¢ € (0, o0) and ¢; € (0, co) are constants.
Let us now focus on the forth sum, > > >, in the RHS of (2.15). This sum

I1<m<k(j.0) 1<j'<q Xex(A®, j")
J'#i
contributes into (2.12) a quantity whose norm is

AU ~F K(Y(i)) —k —
=V / dPg 5,(Yo) l_[ z " x MY aa (Yo)
W*(Xo,¥0)

1<i<q

X [ A (@ X1 (i, € WA )
WH(A)

K@)
x S gy (9;\A0> exp [ —h (YO | 50, v x(AR)> ]
1<i'< L(QA\AO)
=U'=q
EEDY
< | dt 1(|a’f (t +mp) —X| < R). 227
/0 5t + mp) — | (227)
1<m<k(l,j)

xex(A®)
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The middle integral in (2.27) is
/ dMAlx(A(R))(Szj\\AO)XAO(SZT\\AO)I(QT\\AO e WH(A\ Ao))
WH(A)

KR40, @)

i
L

* —x " R
qmaA(ﬂA\Ao)eXpl:—h (To | 2314, V X(A ))] <1

1<i’<
Indeed, paxa®y 1is a probability distribution, the values zy € (0,1), functionals
K(Q’Z\Ao(i/)), L(Q’R\Ao(i/)) >1 and h (T; | 97\\1\0 % X(AR)) > 0, and the rest are indicators.
Therefore, (2.2.7) does not exceed
— v A KT —
Y f dP, 5, (X)) [ k™)
w*(i[)»yO) 1<i<q
B
x / . 1<|Ej’l(t T mB) —F| < R). (2.28)
’ I<m<k(j,])
xex(A®)
To bound (2.28) from above, we use the following argument. The sum Z is not zero

1<m<k(j,0)
xex(A®)

only if the path @7, reaches the “internal” annulus
A(R) ={x € A : distgy(x, d0A) <R},
in this case, the sum does not exceed k(j, 1)1 x(A®). The probability that Ej’ ; reaches A, is
1 diStEu(Ao, A(R))2
=< o s SXP | T —
QrBk(j, 1))i/? 2Bk(j, 1)

In turn, for ADA( we have that

distgy (Ao, Aw)) = L — R — Lo — distg, (0, Ao),

where distg, (0, Ap) is the distance between A and the origin. Going back to the external annulus
A® = AW (see (1.16)), the quantity (2.16) is

' n(i)
v ®) . Z;
< BV T Ex(A™) n(i)! <1VE —)
l_[ =1 (V2mBk)?

I<i=q

5 Z Z’;k , [_ (L —R — Lo — distgy(0, Ao))z} ’

Qrpli 28k

k>1
which in turn does not exceed
BV TT n@rA+ 00" Ble) i= Aatn, Ao). (2.29)
1<i=zq
Here the quantity B(c) has been introduced in Eq. (1.20), and the argument c is specified as
¢ = R+ Lo + distg,(0, Ag))>. (2.30)

We see that the norm of the gradient vector represented by (2.12) is upper-bounded by

V[ A1, A0+ Aan, Ao) + As(n, M)+ Asn, Ao

which yields the equi-continuity property required. Hence, the family of RDMKs {F /I\\I(;«( A(R))} is

compact in space C®(C(Ag, n) x C(Ag, n)). This closes the argument that the set of Gibbs states
@A xA®) 1S compact.
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C. Weak compactness of FK-DLR measures

A version of the above argument is applicable for proving that, for any given cube Ay, the
probability measures (PMs) ,uj:“)x( A®y ON W*(Ao) form a compact family as A R¢. According to

the Prokhorov theorem, it is enough to verify that the family { ,uf\‘fx( A(R))} is tight.

The proof of tightness proceeds along steps (a)—(d); see below.
(a) Let € > 0 be given. Then we can find k° = k%(e, Ao) such that the value

“A|x(A<R))( = (D), ..., Q5(q)) € C(Ao) :

max [K(@)(/): 1<) =q]= k) 2.31)
can be made as small as desired. In fact,

A ) (250 max [K(Q5(): 1<) <q] =K

= / dpa @) (R4 ) LRE 5, € WHA\ Ag))
WH(A)

K(QG())

X /W*(Ag) de 1_[ L)) I(max [K(Q(): 1< j<q]=k

1<j=q
X XAU(Q;; v, SZ*A\AO) oap(R5 vV SZZ\AO)exp [ h(S2; | SZA\AO v x(A(a)))]
K(25()))
< / e
WH(Ao)

LéQ iy W (K@) 12 24] 24

1<j=q

= l—[ exp [U(A()) (14 Bo(z))) ]

1<j=q
U(Ao) ( o)
k() > k). (2.32)
<L X E ot |2

Like before, v(A() stands here for the Euclidean volume of A(. For the definition of ® (and ® _
below), see (2.16).
The sum Y in the RHS of (2.32) is divided into two: >, := Y  and > ,:= Y .The

n>0 n>ko "Sf
contribution of the former to the last line in (2.32) is

A n
=Y ¥ e (2.33)

1<i<q p> k0

which can be made arbitrarily small for large k°. Next, in the latter at least one k(/) must satisfy
k(l) > k°/n > VkO. So, the contribution from Y5 to the last line in (2.32) does not exceed

i VA
IR DY k2 kYIS B el CRIC (2.34)

1=i=q \k=k0 <V

which again is small for large £°.
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(b) The second step is the remark that the Radon-Nikodym derivative is bounded uniformly in
A and x(A®) (since z € (0, 1)):

d/'L‘/[:(‘]X(A(R))(QS)
ae

= [ (@)1, € WA A
WH(A)

K(5(7)

Ay * * J
< xM@v i) [ e
)

an (R Vv & ,,) < 1. (2.35)

(c) By virtue of property (b), it suffices to prove that, for given § > 0 and positive integer £°,
there exists a compact set J C C(Ag) such that

J c K(k°) = {sz; : max [K(Q24(/)] < ko} and f dey < 5. (2.36)
C(A\T
As before, this is achieved with the help of the Ascoli—Arzela theorem, connecting compactness
with uniform boundedness and equi-continuity. First, we guarantee the uniform boundedness by
claiming that V§ and kg there exists an £° € (0, 00) such that

/ de2g 1( max sup [la)*(t) —0*0)]:0<t < ﬂk(a)*)] > ZO) < é (2.37)
K(k()) * 2

w*€NLy

This claim holds because on the set (k°) the number of loops w* constituting the LC €, and their
time-multiplicities k(w*) do not exceed k0.

(d) Finally, we need to verify the equi-continuity property. But this fact holds true since the
reference measure d2j on the set IC(k®) is supported by LCs ; such that all loops w* € & have a
(global) continuity modulus not exceeding +/2k°B¢ In (1/¢).

This completes the proof of compactness for PMs uﬁfx( AW

As a result, the family of limit-point PMs {20 : Ay C R¢} has the compatibility property
and therefore satisfies the assumptions of the Kolmogorov theorem. This implies that there exists
a unique PM 1 on OW*(RY), W(R¥)) such that the restriction of 1 on the sigma-algebra 20(Ag)
coincides with p?°.

The fact that u is an FK-DLR PM follows from the above construction. Hence, each limit-point
state ¢ falls in class §(z, B). This completes the proof of Theorem 1.2.

Remark. In the course of the proof of compactness of measures uﬁ?x( ARr) We did not use the
condition (1.20).

lll. THE SHIFT-INVARIANCE OF AN FK-DLR PM IN A PLANE

In this section, we establish the following theorem (cf. Theorem 1.2.1I).

Theorem 3.1. In dimension two (d = 2), any FK-DLR PM u € R is translation invariant:
Vs =(s!,s?) e R? square Ag = [ — Ly, Lol 2 and event D € W*(R?) localized in A (i.e.,
belonging to a sigma-algebra 20(\y); cf. Definition 2.4.1), we have that

u(8(s)D) = w(D).

Here S(s)D stands for the shifted event localized in the shifted square
S(s)Ag =[—Lo + Sl, st + Lol x [—Lo + S2, s+ Lo]. O

Our Theorem 1.2 is a direct corollary of Theorem 3.1. As in Ref. 20, the principal step in the
proof of Theorem 3.1 is
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Theorem 3.2. Let 1 be an FK-DLR PM, A be a square [ — Lg, Ly]* % and an event D C
W*(R?) be given, localized in Ao: D € L0(Ay). Then

w(S$)D) + u(S(—s)D) — 2u(D) = 0. (3.1

O

Compare Theorem 2.1.I1. The proof of Theorem 3.2 is basically a repetition of that of Theorem

2.1.II (its main ideas go back to Refs. 13—15, particularly Ref. 14). Consequently, we will omit

various technical details referring the reader to the above publications. Let L > Ly be given,

and set A =[ — L, L] x [ — L, L]. The main ingredient of the proof is a family of maps

TLi = TlfLo(s) : WHR?)— WH(R?), s = (s', s?), featuring properties (i)—(vi) listed in Sec. II IL.

The formal definition of maps TjLE follows Sec. III IT and is given in terms of t-sections of LCs
(2 vV €7¢). As in Ref. 20, Theorem 3.2 can be deduced from Theorem 3.3:

Theorem 3.3. For any § > 0 there exists L = Li(8) > O such that for L > L there exists a
subset G C W*(R?) such that G, € I and the following properties are satisfied:

() wGo = [ o 12 e WD)
W+(R?)

x / ae; 1(2 v 0 €61 )
WH(A)
K&
X *
L(2})

exp [ — h(R}R5)] = 1-36. (32

(B) The probabilities u(S(xs)(D N Gy)) are represented in the form

HSESNDNGL)) = f u<d92c>1(920 € We (AG))

Wi (R2)
x / ae 1(52*; Ve, eGL mD) chlas
Wi(A) L(£2})

x JE (R v Qo) exp [ — h(TL ()R 1250 ], (3.3)

where functions J£ = J Lis give the Jacobians of maps T f(s).
(C)Furthermore, the following properties hold true: ¥ € € W*(A), Sl"[‘\c € W*(AG) with
Qv e,

12
[J;(sz’; VR (R v szj\c)] >1-3, (3.42)
and
(T} ()RR 0) + h(T, ()R} [R5 ) — 2h(R4|R5c) < 6. (3.4b)
Od

Remark. As in Ref. 20, the dimension 2 is crucial for properties (3.4a) and (3.4b). Theorem 3.3

is the only place where condition V(z) < 400 is used. See (1.4).

Theorem 3.2 is deduced from Theorem 3.3 in a standard fashion (see Egs. (2.10.11)—(2.12.1I)).

The proof of Theorem 3.2 goes in parallel with that of Theorem 2.2.11; a particular role is played
by a specific form of the Jacobians J Z—L(Q’;\ \Y SZ;‘\G ); cf. Eq. (3.23.1I). Here we mark the places where
the proof of Theorem 2.2.II (see Secs. III II-V II) has to be modified, because of the assumption
of non-negativity for the potentials V; ; and the condition that fugacities z; € (0, 1), 1 <j < q. (a)
Every time we use the Ruelle bound (cf. Egs. (3.27.1I), (4.12.11), (4.21.1I)), we should employ z;
instead of p (defined in Egs. (1.1.19.1) and (1.4.II). (b) The quantity r appearing in Egs. (3.13.1I),
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(4.4.10), (4.5.00), (4.8.11), (4.9.1.11), (4.9.2.11), (4.10.I) (4.13.11), (4.14.11), (4.17.11), (4.19.1.II),
(4.19.2.11). (4.20.1.11) (4.20.2.I1), (4.21.IL), (5.8.IT), and (5.9.IT) should be set to be 0.
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