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Biological barriers are the main defense systems of the homeostasis of the organism and
protected organs. The blood—brain barrier (BBB), formed by the endothelial cells of
brain capillaries, not only provides nutrients and protection to the central nervous system
but also restricts the entry of drugs, emphasizing its importance in the treatment of neuro-
logical diseases. Cyclodextrins are increasingly used in human pharmacotherapy. Due to
their favorable profile to form hydrophilic inclusion complexes with poorly soluble active
pharmaceutical ingredients, they are present as excipients in many marketed drugs.
Application of cyclodextrins is widespread in formulations for oral, parenteral, nasal, pul-
monary, and skin delivery of drugs. Experimental and clinical data suggest that cyclodex-
trins can be used not only as excipients for centrally acting marketed drugs like
antiepileptics, but also as active pharmaceutical ingredients to treat neurological diseases.
Hydroxypropyl-B-cyclodextrin received orphan drug designation for the treatment of
Niemann-Pick type C disease. In addition to this rare lysosomal storage disease with
neurological symptoms, experimental research revealed the potential therapeutic use of
cyclodextrins and cyclodextrin nanoparticles in neurodegenerative diseases, stroke, neu-
roinfections and brain tumors. In this context, the biological effects of cyclodextrins, their
interaction with plasma membranes and extraction of different lipids are highly relevant

at the level of the BBB. © 2014 IMSS. Published by Elsevier Inc.

Key Words: Cyclodextrins, Blood—brain barrier, Tight junctions, CNS diseases, Drug delivery.

Introduction

‘The blood—brain barrier (BBB) constitutes a permeability

barrier for systemic drugs and most of the newly developed
neurotherapeutic drug candidates | | ), making the treatment
of neurological diseases very difficult. Different strategies
based on BBB physiology and anatomy were developed
to enhance the penetration of molecules across the BBB,
which is a prerequisite of their central nervous system
(CNS) efficacy (1,2). Cyclodextrins (CDs), as excipients
and adsorption enhancers, have been extensively investi-
gated on different biological barriers including nasal, intes-
tinal and skin barriers ( *.-' ), but their effects on the BBB are

Address reprint requests to: Miklds Vecsernyés, Department of
Pharmaceutical Technology, University of Debrecen, Egyetem Square 1,
Debrecen 4010, Hungary; Phone/Fax: (4-36) 52-512900/22630; E-mail:

much less investigated and have not yet been reviewed.
Considering the increasing use of CD-based systems
including nanoparticles for drug delivery to brain and the
recent interest in CDs as drugs to treat CNS diseases, this
topic is essential from the viewpoint of neuropharmacology.
This review presents an overview on the basic characteris-
tics of CDs and their biological effects with an emphasis on
barriers relevant for drug delivery to the brain. The use of
CDs and CD-based formulations to treat neurological dis-
eases is discussed, whereas other therapeutic applications
are also briefly summarized.

Structure and Properties of Cyclodextrins

CDs are cyclic oligosaccharides prepared from starch by
enzymatic cleavage of the amylose helix (). The three
most studied representatives consist of 6, 7 and 8 gluco-
pyranose units called «-, B- and +y-CDs, respectively.

0188-4409/$ - see front matter. Copyright © 2014 IMSS. Published by Elsevier Inc.
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These ring-shaped molecules have numerous hydroxyl moi-
eties (18, 21 and 24, respectively) all facing outside, which
makes them highly hydrophilic. On the other hand, the in-
ner side of the cavity is less hydrophilic because of the
glucosidic oxygen bonds (I ). This structure enables
CDs to include other less hydrophilic compounds (guests)

into the cavity, forming in this way the so-called host—@

guest inclusion complexes.

The main driving force of the complex formation is the
replacement of high-energy water molecules in the cavity
with a less polar guest compound, thus creating hydropho-
bic interactions between the host and the guest. Hydrogen
bonds might contribute. These weak interactions result in
dynamic equilibrium between the complex and the free
CD and guest. This equilibrium is characterized by the as-
sociation (binding) constant showing the ratio of the com-
ponents in dissociated and complex form:

__l6/cD]

K=ie1+1c)

where [G], [CD] and [G/CD] represent the concentrations
of the free guest, free CD and of the complex, respectively.

The higher K, means more stable inclusion and less
dissociation. K, helps to understand what happens in a
mixture (e.g., in a biological system containing various
lipophilic compounds to be entrapped). There.is always a
competition and the guest molecules characterized with a
higher K, will be preferentially included.

In addition to the lipophilic character, the geometric fit
(key and hole) is a prerequisite of the complex formation.
At least a part of the guest molecule should fit into the
CD cavity. A tight fit is bettér than too large a space for
a molecule. It is often the task to find the optimal cavity
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Figure 1. Chemical formula of B-cyclodextrin.

for a guest molecule. The molecular dimensions of the
B-CD cavity (diameter 0.60—0.65 nm and height 0.78
nm) make it the best host among the three native CDs for
molecular encapsulation of most of the drugs, flavors,
cosmetic ingredients, pesticides, etc. (). The stoichiometry
of the complex depends on the size of the guest; even two
small molecules can be hosted in a cavity or the large mol-
ecules can be entrapped by two or more CDs (2:1 and 1:2,
1:3, etc. molar ratios). For instance, cholesterol forms a 2:1
complex with randomly methylated B-CD (RAMEB)
( e 2.

The properties of the included guest molecules are usu-
ally different from the free (not included) ones. They are
characterized by increased/decreased solubility, enhanced/
reduced stability against heat, light, hydrolysis or microbial
attack, changed thermal and spectral properties (thermog-
ravimetry, differential scanning calorimetry, ultraviolet-
visible, infrared, nuclear magnetic resonance, circular
dichroism, etc.) and altered mobility in the chromato-
graphic and electrophoretic systems 2). In addition
to these mostly beneficial changes, the complexation might
possess further advantages including taste masking, odor
absorption, controlled release, and enhanced bioavailability
utilized by various industries such as pharmaceutical,
cosmetic, food industry, biotechnology, agriculture and
environmental protection, to mention only the most impor-
tant fields of application (12—19), ‘

The numerous hydroxyl groups can be readily modified
into various CD derivatives via specific synthetic routes.
Some of the derivatives such as hydroxypropyl-p-CD
(HP-B-CD) and sulfobutyl ether B-CD (SBE-B-CD) have
been thoroughly studied and registered in the U.S. and Eu-
ropean Pharmacopoeias. Also, the methylated derivatives of
B-CD, the one with methyl groups on all of the C-2 and C-6
positions (DIMEB) and those with methyl groups at
random positions (CRYSMEB and RAMEB) are produced

Figure 2. The molecular model of cholesterol/randomly methylated B-
cyclodextrin (RAMEB) 1:2 inclusion complex. (courtesy of Virtua Drug).
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on industrial scale. The maltosyl B-CD (Ma-B-CD) is
preferred by Japanese manufacturers. These B-CD deriva-
tives are all well soluble compared to the unmedified
B-CD, which has low solubility in water (1.8 g/100 mL at
25 C) (5). Among the y-CD derivatives only hydroxyprop-
yl-y-CD (HP-y-CD) is produced on a large scale. It has the
advantage of low aggregation over the unmodified y-CD.
The latter cannot be used in parenteral formulations due
to the aggregative behavior (20)). The a-CD derivatives
are prepared at laboratory scale for research purposes. In
addition to the hydrophilic derivatives including all of these
industrially produced -ones, several amphiphilic derivatives
have also been described (71 ). At present these derivatives
are primarily of academic interest.

Whereas the inclusion complexes of the native (unmodi-
fied) CDs often precipitate from aqueous solution, the hydro-
philic derivatives are good solubilizers of poorly soluble
compounds - The solubilizing effect is usually char-
acterized by solubility isotherms plotting the concentration
of the guest compound as the function of the coneentration
of the host. The typical solubility isotherms for the hydro-
philic derivatives show increasing solubility at increasing
CD concentration (Type A), whereas the native CDs give
Type B solubility isotherms (/). Data show that the solubi-
lity of cholesterol can be enhanced. by various B-CD deriva-
tives, especially methylated ones (Me-B-CDs). The affinity
of Me-B-CDs toward cholesterol depends on the number of
methyl groups in a CD molecule (degree of substitution,
DS) (26). However, the various Me-B-CDs are often not
identified although their properties including the solubilizing
effect are quite different. The native (unmodified) B-CD
forms insoluble complexes with cholesterol, a phenomenon
utilized by the food industry to produce various dairy prod-
ucts with reduced cholesterol content

One of the methods of determination of the association
constant (K,) is based on the slope of the linear part of
the solubility isotherm. The K, for cholesterol/DIMEB
complexes of 1:1 and 1:2 molar ratio were calculated 109
M~ and 56800 M2, respectively These values show
that one cholesterol molecule preferentially interacts with 2
B-CD cavities.

Biological Effects of Cyclodextrins
Cellular Effects

The excellent review of Dreyfuss and Oppenheimer on
cellular interactions of cyclodextrins summarizes the ef-
fects of CDs on bacterial and viral cells as well as on
mammalian cells of the immune, nervous, endocrine and
cardiovascular systems . Most of the cellular effects
are based on the interaction of CDs with the cell membrane
rich in lipids such as cholesterol and sphingolipids (lipid
rafts). CDs also affect the cholesterol-associated mem-
brane-bound proteins and receptors.

Numerous studies have been carried out on cell toxicity
of various CDs using different cells and assays. The
simplest assay uses red blood cells and measures the color
intensity of the hemoglobin escaped from the disrupted
cells into the medium. The hemolytic activity of native
CDs increased in the order of B-CD > a-CD > v-CD

- Cytotoxic effects on human erythrocytes are explained
by the extraction of various lipid constituents from cell
membranes increasing their fluidity and permeability (21 .
The potencies of CDs for solubilizing various components
of erythrocytes were &- > B- > > y-CD for phospholipids,
and B- >> y- > «-CD for cholesterol and proteins.

Comparing the CD derivatives the hydrophilic deriva-
tives, HP-B-CD, SBE-B-CD and Ma-B-CD were less hemo-
Iytic compared to B-CD, whereas Me-B-CDs even caused
morphological changes in rabbit red blood cells
Similar results, reduced and enhanced hemolysis, were ob-
tained for HP-¢-CD and dimethyl o-CD (DIMEA), respec-
tively. The hemolytic effect of B-CD derivatives correlated
well with their affinity to cholesterol (). A strong corre-
lation was found between the cholesterol solubilizing effect
of the B-CD derivatives and their cytotoxicity in colori-
metric end-point ‘viability test on Caco-2 human intestinal
epithelial cells

The cytotoxicity of B-CD derivatives based on choles-
terol efflux was also proven on various other cell types
.25=37). On the other hand, cellular cholesterol content
was altered by incubating cells with solutions of CDs
complexed with increasing levels of cholesterol |
Recently, methylated CDs RAMEB and DIMEB became
a common tool for researchers in the field of biochemistry
and molecular biology for studying lipid rafts /. . The
cholesterol content of the cell membrane can be controlled
by treatment with Me-B-CDs. By removal of cholesterol
the lipid rafts can be disrupted and by subsequently
applying cholesterol/Me-B-CD complex the cholesterol
can be rebuilt into the cell membrane and the lipid rafts
are reorganized . With these techniques the role
of the lipid rafts in various cell processes such as signal
transduction, apoptosis, and activity of transporter pro-
teins can be clarified | J. The advantage of using
the reversible host—guest inclusion complex formation
for capturing and release of cholesterol is just this revers-
ibility. Another option for decreasing the cholesterol
content in the cell membrane is the inhibition of the
cholesterol biosynthesis by statins, but this is a unidirec-
tional process

It is well known that cholesterol forms preferentially 1:2
(guest:host) complexes with B-CDs (" ). Computer simula-
tion showed that the self-organization of B-CD into dimers
is necessary for removal of cholesterol from the cell mem-
brane (+V). B-CDs rapidly bind to the membrane surface in
a dimeric form and, provided that the CD dimers are in a
suitable orientation, cholesterol molecules are spontane-
ously extracted.
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A practical utilization of the high affinity of Me-B-CD to
membrane cholesterol is in the artificial insemination in an-
imal husbandry. The poor fertility rates of the sperm after
freezing and thawing can be remarkably improved by pre-
treating the semen with cholesterol-loaded Me-B-CD prior
to cryopreservation ( °0)). Mammalian spermatozoa are sen-
sitive to cold shock, and freezing damage is due to changes
in membrane lipid composition, particularly cholesterol
depletion in plasma membrane during cryopreservation
{71). Supplementing cholesterol with either Me-B-CD or
HP-B-CD as carrier, the vitality, motility and zona-
binding capability of sperm cells are enhanced

Effects of Cyclodextrins on Biological Barriers

Biological barriers are crucial to preserve the homeostasis
of the organism or separate organs like the CNS. The
BBB and the intestinal barrier determine the entry of drugs
to the CNS and the systemic circulation, respectively;
therefore, they are of utmost importance for the treatment
of neurological or systemic diseases. The effect of CDs
on three major elements of these endothelial and epithelial
barriers restricting drug penetration, tight intercellular junc-
tions , active efflux pumps and low level of nonspecific
endo- and transcytosis will be summarized.

Effects of Cyclodextrins on the BBB

Paracellular Permeability and Tight Intercellular
Junctions

There are several observations on the effects of various CDs
on functional and morphological integrity of the BBB using
in vitro and in vivo models. The most detailed investigations
were performed on in vitro reconstituted BBB model devel-
oped and characterized in the Cecchelli laboratory

(Tal ). This setup consists of cloned bovine brain
endothelial cells (BCECs) co-cultured with rat astrocytes.
The model shows high transendothelial electrical resistance
and low permeability values. Using this well-characterized
and tight culture model of the BBB all three types of CDs
were studied in native, methylated, and hydroxypropylated
forms (7). The cellular toxicity of CDs was determined
by the permeability of sucrose, a marker of paracellular flux
across bovine brain endothelial cell monolayers co-cultured
with rat glial cells. Native CDs (1—20 mM) increased the
permeability of endothelial cells in the following order: a-
CD > B-CD > > y-CD. Methylation, but not hydroxypro-
pylation, decreased the cell layer damaging effect for a-CD,
whereas only hydroxypropylation, but not methylation, of f3-
CD and y-CD had an attenuating effect on toxicity. In par-
allel, a decrease in the expression and localization of tight
junction protein occludin was seen at the cell borders indi-
cating that CDs in the millimolar (mM) concentration range

damage the barrier integrity of brain endothelial cells. The
potencies of CDs for solubilizing various lipids of brain
endothelial cells were B- > > y- > a-CD for cholesterol,
a- >> - > B-CD for phosphatidylcholine, and o- >
B- > > ¥-CD for sphingomyelin | '.}). Because interendo-
thelial junctions are associated with lipid rafts membrane
microdomains in brain endothelial cells 74), the effect of
CDs on barrier integrity is probably due to their lipid extrac-
tion properties. The importance of lipids in the control of
paracellular barrier integrity is underlined by recent findings
that short-chain alkylglycerols can quickly and reversibly
open the tight junctions of brain endothelial cells (/7). In
red blood cells B-CD was the most toxic, whereas ¢.-CDs
were the most toxic in bovine brain endothelial cells. The
difference between the toxicity of CDs in different cell types
can be linked to the different lipid composition of plasma
membranes. Phosphatidylcholine is enriched in the apical
membrane of cultured brain endothelial cells /), which
may explain their sensitivity for a-CDs. Two CDs, y-CD
and HP-y-CD, showing the least damaging effect on brain
endothelial cells were further studied on the same culture
model (5 /). These y-CDs do not increase the penetration
of doxorubicin across the BBB model, only in concentra-
tions that disrupt brain endothelial junctions (>15 mM
for v-CD and 35 mM for HP-y-CD), which was confirmed
by increased penetration of the paracellular marker inulin
and decreased junctional staining for occluding ( ).

Among monosubstituted  n-alkyldimethylammonium-
B-CDs (DMA-C(n)-CD with n = 2, 4 and 12), DMA-
C(12)-CD was non-toxic on cultured bovine brain endothelial
cells at concentrations <10 mM due to the self-inclusion of
the alkyl chain in the CD cavity. A high percentage of pas-
sage (30%) of DMA-C(12)-CD through brain endothelial
cells was reported /.

v

Active Drug Efflux Transporters

Several members of the ATP binding cassette transporter
and solute carrier families are present at the level of the
BBB and actively involved in the vectorial transport of
endogenous CNS metabolites and a large number of
drugs from the CNS to the circulation. The two most abun-
‘dant drug efflux transporters in humans are the ABCG2
or breast cancer resistance protein and ABCB1 or
P-glycoprotein . Their largely overlapping substrate
sets include important neuropharmaceuticals like anti-
epileptics, antineoplastic agents for brain tumor and antire-
troviral drugs for neuroAIDS treatment . RAMEB and
CRYSMERB, but not B-CD, increased the transport of doxo-

rubicin, a P-glycoprotein substrate in bovine brain endo--

thelial cells (°0). This increase was attributed to
cholesterol extraction from brain capillary endothelial cells
by CDs leading to modulation of P-glycoprotein activity.
Indeed, intact lipid rafts in brain endothelial cells are
crucial for pathological upregulation of P-glycoprotein
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Table 1. Effects of cyclodextrins on drug penetration across the blood—brain barrier

Toxic in vitro

CD (concentration) Model/BBB site of action CD dose Effects on drug permeability Reference
In virre studies
B-CD (1 mM) Bovine BCEC co-cultured 2.5 mM Doxorubicin transport = (
with rat AC
RAMEB (1 mM) Bovine BCEC co-cultured 2.5 mM 2x 1 doxorubicin transport
with rat AC
CRYSMEB (2.5 mM) Bovine BCEC co-cultured 5 mM 3.7x 1 doxorubicin transport
with rat AC
CRYSMEB (2.5 mM)- Bovine BCEC co-cultured 5 mM 2x 1 vincristine transport !
with rat AC
¥-CD (1 mM) Bovine BCEC co-cultured 20 mM Doxorubicin transport =
with rat AC
HP-v-CD (1 mM) Bovine BCEC co-cultured 50 mM Doxorubicin transport = {5
with rat AC ’
QA-B-CD nanoparticle Bovine BCEC 500 pg/mL 2.2x T doxorubicin transport
In vivo studies
0-CD—galanin-like peptide Brain uptake (intranasal in mice) N.A. 3x tTuptake
%-CD—ribavirin Measles encephalitis (1.p. in mice) N.A. Viral load |
a~-CD—ribavirin Brain uptake (i.p. in mice) N.A. Tuptake
B-CD~ribavirin Measles encephalitis in mice N.A. Viral load ] ]
DIMEB—galanin-like peptide Brain uptake (intranasal in mice) N.A. 3x tuptake
EDA-B-CD lactoferrin Brain uptake (i.v. in mice) N.A. 6.9% 1 in AUC of IR-977
EDA-B-CD transferrin Brain uptake (i.v. in mice) N.A, 3.5x 1 in AUC of IR-977
HP-B-CD—estradiol i.v. in ovariectomized rats N.A. Luteinizing hormone secretion |, weight |
HP-B-CD—testosterone i.v. in orchidectomized rats N.A. Serum luteinizing hormone
HP-B-CD—testosterone Intracerebral injection in rats N.A. Rapid efflux from brain
HP-B-CD—cholesterol Intracerebral injection in rats N.A. Slow efflux from brain
HP-B-CD—dexamethasone i.v. in rats N.A. Stress-induced ACTH & corticosterone |
HP-B-CD—cyclic opioid Intrathecal (spinal) injection N.A. Antinociception T
peptides in rats
HP-B-CD—opioids Intrathecal (spinal) injection N.A. Prolonged spinal antinociception i
in rats
HP-B-CD—chloralose i.v. in cats N.A. Anesthesia =
HP-B-CD~melarsoprol Trypanosomiasis in mice N.A. Parasitic load ], BBB integrity
Mono-6-amino-permethyl-f- i.v. in mice N.A. Prolonged antinociception
CD—-DPDPE
RAMEB—melarsoprol Trypanosomiasis in mice N.A. Parasitic load ], BBB integrity 1
SBE;-B-CD—carbamazepine Pentylenctetrazole-induced N.A. Anti-epileptic effectt

seizure (p.o. in mice)

AC, astrocytes; ACTH, adrenocorticotropic hormone; %-CD, «-cyclodextrin; AUC, area under curve; BBB, blood—brain barrier: B-CD, B-cyclodextrin; CD,
cyclodextrin; CRISMEB, crystalline methylated-B-cyclodextrin; DPDPE, 2,5-Pen-enkephalin; DIMEB, 2,6-di-0-mcthly-B-éyclodextrin: EDA-B-CD, mono-
6-deoxy-(6-aminoethylamino)-B-CD; HP-B-CD, 2-hydroxypropyl-B-cyclodextrin; HP-y-CD, 2-hydroxypropyl-y-cyclodextrin; i.p., intraperitoneal injection;
i.v., intravenous injection; N.A., not applicable; QA-B-CD, 3-trimethylammoniwn-(2-hydroxy)propyl-B-cyclodextrin; RAMEB, randomly-methylated--

cyclodextrin; SBE;-B-CD, sulfobutyl ether;-p-CD.

by HIV-1 Tat protein, which could be blocked by Me-B-CD
treatment of cells depleting membrane cholesterol and thus
disrupting lipid rafts ¢

Binding and Transmonolayer Flux of Cyclodextrins

To reveal the exact mechanism of the CNS effects of CDs it
is important to know the extent of their brain penetration.
Cultured brain endothelial cells were used to study the
transmonolayer flux of different types of CDs in non-
toxic (0.5—1 mM) concentrations . The highest passage
among CDs was observed for native B-CD, ct-CDs, and HP-
v-CD, which is still low compared to BBB penetrating

small molecules. No data are available on the uptake or
transcellular transport of these CDs in brain endothelial
cells. The flux of HP-B-CD and Me-B-CD across brain
endothelial cells was the lowest and at the same level as that
of efflux pump ligands. These data on the very low flux of
HP-B-CD across the BBB obtained on a culture model were
confirmed by in vivo experiments . No significant time-
dependent crossing of HP-B-CD into the brain parenchyma
was found in adult or neonatal mice measured by two sepa-
rate techniques, in situ brain perfusion and intraperitoneal
injection followed by multi-time-point regression analysis

- Because the volume of distribution of HP-B-CD was

nearly three times larger than that of the vascular space
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marker sucrose, this study indicates binding of HP-B-CD to
the luminal surface of cerebral endothelium

Effects of Cyclodextrins on the Intestinal Barrier

Paracellular Permeability and Tight Intercellular
Junctions

As discussed previously, CDs extract cholesterol from cell
membrane. This process has several further effects that
were studied on both epithelial cell layers and gut tissue.
Cholesterol depletion of Caco-2 human intestinal epithelial
monolayers by Me-B-CD influences the distribution of spe-
cific tight junction proteins like claudin 3, claudin 4 and oc-
cludin, and these changes affect the integrity of the
epithelial barrier. As a consequence, transepithelial electri-
cal resistance significantly decreased and the paracellular
permeability of Caco-2 cell layer increased . A similar
effect was observed on Madin-Darby canine kidney cells.
After a long (2 h) Me-B-CD incubation, resistance
decreased and paracellular permeability increased, whereas
the tight junction network was physically disrupted ).
On the other hand, 10% (w/v) 2-HP-B-CD solution was
tested on rat intestinal membrane using in vitro diffusion
chamber method and its effect on paracellular absorption
was also examined by in situ closed-loop technique in rat
Jjejunum. No significant effect on membrane integrity and
paracellular permeability was observed (77, Despite the
safety of 2-HP-B-CD, 0.08 and 0.8% (w/v) Me-B-CD
caused increased paracellular permeability in rat jejunum,
but not in ileum, using the in vitro sac method

Active Drug Efflux Transporters

Plasma membrane cholesterol depletion can also influence
important efflux pumps, which limit the bioavailability of
drugs. Inhibition of the transporter P-glycoprotein and
multidrug resistance-associated protein 2 by 2,6-di-O-Me-
B-CD can be observed on Caco-2 monolayers . Inhibi-
tion of P-glycoprotein by CD treatments arises thirough
modulation of its membrane microenvironment as observed
for DIMEB treated cells where changes in membrane
cholesterol level, alterations in the overall lipid packing
and changes in the raft association of the P-glycoprotein
were described (40). Inhibition of these efflux pumps in
the intestinal barrier can increase plasma concentration of
their substrates. Clinically important P-glycoprotein sub-
strates include anticancer agents, cardiovascular drugs,
and immunosuppressants /).

Cellular Uptake: Endocytosis

Recently a new mechanism was observed for the interaction
of CDs and cells. Fluid-phase endocytosis of CDs was de-
tected in Caco-2 intestinal cells . The role of this

mechanism in drug absorption is not revealed, but endocy-
tosis of CD complexes can contribute to overcome intesti-

- nal barrier for poorly absorbed drugs.

Cyclodextrins in Drug Delivery
Effect of Cyclodextrins on the Unstirred Water Layer

Water molecules are bound on the surfaces of biclogical
membranes and form an unstirred water layer (UWL)
- The thickness of the UWL ranges from nanometer
scale to >100 pm depending on the presence of a mucus
layer. On the other hand, the measured thickness of the
UWL also depends on the physicochemical properties of
the permeating drug molecules /(). For rapidly penetrating
drugs, UWL can act as a diffusion barrier and can be the
rate determining factor of the overall permeability
- CDs are able to enhance permeation of lipophilic
drug molecules through the UWL (1), Hydrophilic CDs
such as 2-HP-B-CD improve drug permeation only if
UWL significantly contributes to the barrier function of
the membrane. Complexation is required for this mecha-
nism, but extremely high complexation affinity reduces free
drug availability and permeation

Drug Delivery to the Brain

Data on culture models of the BBB prove the CDs can in-
crease the transendothelial permeability of lipophilic drugs
that are substrates of active efflux pumps ( ). RA-
MEB and CRYSMEB, but not B-CD, increase several fold
the fiux of doxorubicin across bovine brain endothelial cell
monolayers (5. This increase in doxorubicin transport can
be linked to their efficacy in cholesterol mobilization from
brain endothelial cells. The effect is mediated by a decrease
in P-glycoprotein activity because co-incubation of the
efflux pump ligand vincristine with CRYSMEB also leads
to increased transport. The ineffectiveness of CRYSMER
to enhance the flux of the hydrophilic paracellular marker
urea indicates that the effect is not due to opening of tight
Junctions and increase of the paracellular pathway

v-CD and HP-y-CD, which are less effective in cholesterol
release from plasma membranes, do not increase the trans-
port of doxorubicin across the in vitro BBB model in con-
centrations not modifying barrier integrity (15 and 35 mM,
respectively) (° 1. This result further supports the hypothe-
sis that CRYSMEB decreases P-glycoprotein activity in
brain endothelial cells by cholesterol extraction and distur-
bance of the lipid raft associated to transporters /. Doxo-
rubicin transport across cultured brain endothelial cells was
also increased by quaternary ammonium B-CD (QA-B-CD)
nanoparticle carriers (- ). These cationic CD nanoparticles
at a concentration of 100 pg/mL did not change barrier
integrity, cholesterol extraction or P-glycoprotein activity
in bovine brain endothelial cells. QA-B-CD nanoparticles
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are more permeable than the paracellular marker dextran,
and their penetration across the BBB model is probably
due to endocytosis ‘). A new B-CD and poly(B-amino
ester) polymeric nanoparticle was developed for doxoru-
bicin transport by the same group (V). This nanoparticle
was also described to cross brain endothelial monolayers
without affecting barrier integrity.

Results from animal models also indicate that CDs
enhance delivery of mostly lipophilic drugs or peptides to
the CNS by measurement of either brain uptake or func-
). DIMEB and «-CD increased
the brain uptake of the neuropeptide galanin-like peptide
about 3-fold after intranasal administration in mice
A difference in the regional brain distribution could be
observed. The greatest uptake was seen in the hypothala-
mus and olfactory bulb after intranasal administration with
@-CD and in the olfactory bulb after intranasal administra-
tion with DIMEB. Both «-CD and B-CD ((2) com-
plexed with ribavirin significantly decreased the viral load
in measles encephalitis in mice after intraperitoneal injec-
tion as compared to the free drug. The effect was due to
enhanced brain penetration of o-CD-ribavirin complex

. HP-B-CD is the most studied CD derivative. Com-
plexes with HP-B-CD increase the CNS effects of estradiol
(01), testosterone and dexamethasone chemical
delivery systems after intravenous injection in rats. HP-p-
CD also enhances or prolongs the antinociceptive effects
of cyclic opioid peptides or opioids morphine, lofenta-
nil, alfentanil and sufentanil | after intrathecal injection
in mice. The solubility of chloralose, an anesthetics used in
animal studies, was greatly enhanced when complexed with
HP-B-CD without side effects or loss of anesthetic potency
in cats . Inclusion complexes of HP-B-CD or RAMEB
with melarsoprol improved the solubility and reduced the
toxicity of the trivalent arsenical drug and cured CNS-
stage Trypanosoma brucei infection in mice when delivered
orally (/0).

In contrast to peripheral administration of drug-CD com-
plexes, when HP-B-CD is injected to brain a rapid clearance
from the CNS (within <24 h) and excretion to urine is
observed in rats (). Efflux from CNS via bulk flow of
interstitial and cerebrospinal fluids was supposed as a poten-
tial mechanism but was not investigated. An even more
rapid brain efflux was described for testosterone complexed
with HP-B-CD after intracerebral injection. The authors pre-
sumed that testosterone crosses the BEB, binds to specific
carrier proteins in serum and is excreted by the liver
It is tempting to speculate that multidrug resistance-
associated protein 4, which is present at the BBB, and trans-
port conjugated steroids may participate in the brain
efflux of testosterone observed in this experiment. The brain
clearance of cholesterol injected in the form of a complex
with HP-B-CD to brain is very slow. Cholesterol released
from the HP-B-CD complex is largely retained in the brain
with uneven distribution after 3 days postinjection

Intravenous injection of DPDPE, a cyclic opioid penta-
peptide conjugated to mono-6-amino-permethyl-B-CD
results in improved bioavailability and prolonged antinoci-
ceptive activity .| . A novel nano-drug delivery system for
brain-targeting was developed in which lactoferrin and
transferrin were selected as targeting ligands and conju-
gated via a polyethylene glycol linker to mono-6-deoxy-
(6-aminoethylamino)-B-CD (73}, Several-fold increase in
brain uptake of the cargo, an infrared dye (IR-977), was
obtained in mice after intravenous administration ¢
Complex formation of sulfobutyl ether | 7 )-B-CD with car-
bamazepine resulted in significantly higher anti-epileptic
activity in pentylenetetrazole-induced convulsion model
in mice as compared with the effect of orally administered
carbamazepine suspension indicating higher penetration to
CNS (72).

Intestinal Drug Delivery

The potential of CDs to be used as penetration enhancers
for drugs has been widely investigated on intestinal barrier
models as reviewed by Loftsson | ). CDs can increase the
intestinal delivery even for large biomolecules like pep-
tides. DIMEB is a potent enhancer of intestinal absorption
of insulin in vive (97,95, DIMEB was found to be more
effective to enhance bioavailability and absorption of insu-
lin than all other CDs tested: HP-B-CD, o, B- y-CDs. This
effect seems to correlate with the cholesterol depleting ef-
ficacy of CDs (). In addition to other well-characterized
effects of CDs on drug complexation and unstirred water
layer » cholesterol depletion from epithelial cell mem-
brane » especially from lipid rafts, and subsequent loss
of TJ integrity, displacement of TJ proteins (% /) can explain
the absorption enhancing effect of DIMEB for peptides.

Nasal Drug Delivery

The nasal mucosa offers a novel approach for systemic
administration of biologically active drugs (e.g., estrogen)
by avoiding first pass metabolism or degradation in the liver
and gastrointestinal tract. It is true that CDs are able to
enhance the drug bioavailability, but free CDs can also
affect the barrier function of the nasal mucosa or may have
an influence on the nasal mucociliary function. Therefore,
the concentration and application circumstances of CDs
should be considered before nasal administration. Me-B-
CDs were primarily shown to be useful excipients on nasal
drug delivery systems J. Observations of drug
bicavailabilities in humans showed that CDs can improve
the nasal absorption of lipophilic drugs (100 - and
some oligopeptides. CDs are able to increase the bioavail-
ability of peptides such as calcitonin | . The absorption
increasing effect of CDs is less effective in human subjects
in the case of polypeptides and proteins. Al Omaria et al.

demonstrated that the inclusion complex of ibuprofen
masks the irritant effect caused by ibuprofen nasal spray on
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the oral cavity, throat, and pharynx. In oophorectomized
women, &-CD containing estradiol nasal spray was found
to be well tolerated by patients applied over a 6-month
period (105). On the other hand, RAMEBs have irritative
and inflammatory effects on epithelial cells of the nasal mu-
cosa, depending on the exposure time ,107). Their
possible effects on mucociliary functions can be considered
in nasal preparations.

Pulmonary Drug Delivery

Similar to the nasal pathway, pulmonary drug delivery is a
promising way for systemic drug application. The lungs
have a large surface area, good blood supply and low degra-
dation activity of enzymes; therefore, the absorption
process from the pulmonary area is very effective. In addi-
tion, first-pass metabolism and drug degradation in the
gastrointestinal tract can be eliminated by choosing pulmo-
nary drug delivery . CDs can mostly be used in
pulmonary applications through their complexation capa-
bility with an active ingredient by mixing compatible drugs
in dry powder formulation ). CDs can reduce the bad
smell and taste and local irritation in the lungs. The effect
of CDs on drug release profile in the lungs can be another
goal of their pulmonary application . The ab-
sorption profiles of various CDs were studied in animal
pharmacokinetic experiments in order to reveal safety prop-
erties of the CDs after pulmonary administration s
Interestingly, a relatively high bioavailability of DIMEB
and HP-B-CD was found in rabbits, and it was higher than
CD absorption rate observed using other routes of adminis-
tration. Based on this observation, pulmonary CD applica-
tion can be considered as the future choice for increased
systemic absorption with acceptable safety profiles.

Cyclodextrins in Topical Skin Formulations

Bioavailability of topically administered drugs is very low
due to their poor penetration into the skin, which limits not
only the topical treatment of skin diseases but also trans-
dermal therapy. The barrier function of human skin is
mainly based on the specific attributes of the stratum cor-
neum. Lipids in the stratum cormeum form bilayer sur-
rounding the corneocytes and hinder the permeability of
active pharmaceutical ingredients , Conse-
quently, many investigations aim to develop optimal for-
mulations with high efficacy and low side effects or
irritation ). Skin penefration can be enhanced by
increasing either drug solubility in the skin or drug perme-
ability into/through the skin. Drug saturation in the topical
formulation is also a crucial point . Conventional
chemical enhancers like fatty acids, alcohol and propylene
glycol improve cutaneous drug delivery, but at the same
time lipid structure within the barrier may be damaged

. There are several attempts to avoid membrane dis-
ruptions either by developing novel and combined vehicle

_ Systems (microemulsions, -liposomes, niosomes, nanopar-

ticles) ) or by introduction of modern devices (ionto-
phoresis, sonophoresis and electroporation)

CDs are able to influence both drug solubﬂlty and
permeability into/through the skin, but some other impor-
tant factors may be considered. Aqueous medium is the
first criterion to apply them as penetration enhancers (-
It means that a cream base with hydrophilic characteristics
such as gels or oil in water ointments need to be chosen

. The optimal concentration of CDs can be calcu-
lated in the ointment base by the help of critical micelle
concentration . The stratum corneum is also the main
barrier for CDs because hydrophilic CDs cannot penetrate
intact skin. It is thought that some types of CDs (B-CD,
RAMEB, HP-B-CD) can extract skin lipids under specific
conditions. Pretreatment by CDs does not usually increase
skin permeability, and reduced permeability was observed
if CDs were used in very high concentrations (). The
cosmetic industry focuses on the smell or odor-masking
effects of CDs to improve pat1ent acceptance of skin
products

When novel drug delivery systems like nanoparticles
and liposomes , modern penetration enhancers
(non-ionic amphiphilic tensides, i.e., sucrose esters)
and CDs are combined, there is an additive or synergistic
effect on drug delivery through the skin | . The mecha-
nisms of drug delivery from aqueous CD solutions might be
both diffusion and membrane controlled. In some cases,
CDs can hinder the absorption of lipophilic drugs into or
through the skin and increase the active pharmaceutical
ingredient retention time in the stratum corneum. Hence,
they have a wide potential in the development of sunscreen
formulations {

Cyclodextrins in Marketed Drugs

The first pharmaceutical product containing CD, prosta-
glandin E2/B-CD sublingual tablets (Prostarmon E, Ono),
was marketed in Japan in 1976. Nowadays there are
numerous examples for the application of CDs in pharma-
ceutical technology. In 2008, ~600 published patents and
patent applications were found in which drug formulations
contained CDs
Dissolution and absorption enhancement are the most
frequent applications of these excipients. Dissolution
enhancement is based on their complex formation with
lipophilic guest molecules, as presented earlier, CDs can
be applied to drugs belonging to Biopharmaceutics Classi-
fication System Class II (low solubility/high permeability)
and Class IV (low solubility/low permeability) to increase
their solubility and absorption by complex formation
- Taxol, a widely used anticancer agent belonging
Class IV is a good example to demonstrate the effective-
ness of CD complexation. Several publications reports
on the efficiency of B-CDs to improve its solubility
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Table 2. Examples of intravenously applied, cyclodextrin containing products (marketed or in clinical development)

Brand names Active ingredient  Cyclodextrin Indications Company (marketing authorization)
a-Cyclodextrins

Alprostadil®, Alprostapint™, Prostaglandin E1 o-CD Erectile impotency Pfizer (EU)

Caverject®, Edex®

Prostavasin™ Prostaglandin E|l o-CD Peripheral arterial occlusive disease  Ono (Japan); Schwarz/UCB (EU)
2-Hydroxypropyl-G-cyclodextrins

Spuranox® Itraconazole HP-B-CD Fungal infections Janssen (EU, USA)

MitoExtra® Mitomycein C HP-B-CD Disseminated adenocarcinoma Novartis (EU)
Sulfobutylether-f-cyclodextrins

Carbella® Carbamazepine SBE-B-CD Epilepsy Lundbeck: NDA submission to FDA

Cerenia® Maropitant SBE-B-CD Motion sickness in dogs Pfizer Animal Health (USA, EU)

Kyprolis® Carfilzomib SBE-B-CD Multiple myeloma Onyx Pharmaceuticals (USA)

Nexterone® Amiodarone SBE-B-CD Arrhythmia Baxter International (USA)

Noxafil® Posaconazole SBE-B-CD Fungal infections Merck (EU)

Viend® Voriconazole SBE-B-CD Fungal infections Pfizer (USA, EU, Japan)

N.A. SAGE-547 SBE-B-CD Refractory status epilepticus Sage Therapeutics: Phase I-II

N.A. Melphalan SBE-B-CD Multiple myeloma Spectrum Pharmaceuticals: orphan

N.A. Topiramate SBE-B-CD Epilepsy CURx Pharmaceuticals: phase I, orphan
y-Cyclodextrins

Bridion® Sugammadex Sugammadex  Neuromuscular blocking agent Merck (EU, Japan, Australia)

CardioTec® 9MTe teboroxime HP-y-CD  Radionuclide for cardiac imaging Syuibb (USA), Bracco (USA)

a-CD, a-cyclodextrin; B-CD, B-cyclodextrin; CD, cyclodextrin; FDA, U.S. Food and Drug Administration; y-CD, y-cyclodextrin; HP-B-CD, 2-
hydroxypropyl-B-cyclodextrin; HP-y-CD, hydroxypropyl-y-CD; N.A., not available; NDA, new drug application; SBE-B-CD, sulfobutylether-B-

cyclodextrin.

§ , on the other hand methylated B-CD derivatives
are also able to improve taxol permeability through Caco-2
monolayer (1.05). Taxol CD complexes were incorporated
in poly(anhydride) nanoparticles, which resulted elevated
oral bioavailability of taxol in rats (/.10

Approximately 50 different CD-containing drug prod-
ucts are present currently on various world markets.
Selected intravenously applied, CD containing marketed
products available worldwide are listed in

Cyclodextrins as Drugs

CDs were considered as carriers of active ingredients
without any physiological effects till the first concerns on
the possible complexation of important compounds in the
gut or in the blood. Pitha suggested that HP-B-CD adminis-
tered parenterally as a solubilizer of a poorly soluble drug
may influence the redistribution of lipophilic components
such as hormones and vitamins within the organism after
releasing their cargo | . This author used intravenous
CD treatment (DIMEB and HP-B-CD in mice and in hu-
man, respectively) to capture excess vitamin A in hypervi-
taminosis . DIMEB or HP-B-CD and the complex
were excreted by urine and resulted in enhanced survival of
rats ( ). This was the first human application of an
“empty” CD (CD without cargo), that is the use of CDs
as drug and not as auxiliary excipient.

The first marketed “empty” CD with pharmaceutical ef-
fect is Sugammadezx, i.e., 6-per-deoxy-6per(2-carboxyethyl)
thio-y-CD, commercialized by Merck under the trade name
Bridion®. It is a special y-CD derivative developed for

capturing muscle relaxants rocuronium and vecuronium
used in anesthesia during surgery. The tailored modification
of the y-CD ring was so successful that extremely high
binding constants (2.5 x 107 and 1.0 x 107 for rocuronium
and vecuronjum, respectively) were obtained showing

120 -
100 e treated
— Utreated
80 4
£ BT AT A
S 60 -
&
=
@ 40 ‘—|
20 -
0 T T T 1
0 2 4 6 8

Time (day)

Figure 3. Survival rate of mice made hypervitaminous by s.c. injection of
retinoic acid (100 mg/kg) by every other day until the first deaths were
observed (day 0). Treated animals received ip. injection of dimethyl-B-
cyclodextrin (DIMEB) (480 mg/kg) on days 1, 3 and 5 (arrows). Redrawn
with permission from Pitha and Szenthe
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enormous affinity toward these molecules . The bind-
ing is so specific that no other components in the blood
are encapsulated. Sugammadex revolutionized anesthesia
because of the fast reversal of the neuromuscular block after
surgery and the absence of significant adverse effects. It has
been approved in Europe, Australia, and Japan and is now
available for clinical use in more than 40 countries except
the U.S. FDA approval is still pending because of hypersen-
sitivity toward Sugammadex observed in some patients. A
recent in vitro study indicated that Sugammadex in clini-
cally relevant concentrations (37.5—150.0 pg/mL) may
cause toxicity to cultured neurons, although it practically
cannot permeate through intact BBB due to its structure
and high molecular weight . The clinical experience
has been published in more than 100 scientific papers and
in a few reviews in the last 10 years - . Sugamma-
dex is still expensive but the reduced recovery time, lack of
side effects and enhanced patient throughput can compen-
sate for the extra cost compared to traditional treatment with
acetylcholinesterase inhibitors

The other “empty CD” having regulatory approval is
HP-B-CD, which received orphan drug designation for the
treatment of Niemann-Pick type C (NPC) disease. It has
been long included in U.S. and EU Pharmacopoeias as an
excipient (drug carrier, solubilizer), but as a therapeutic
agent against this rare lysosomal disease it was authorized
by FDA and EMA only in 2010 and 2013, respectively. The
fast granting of orphan drug designation about 10 years
after the incidental discovery of the beneficial effect of
HP-B-CD in 2001 (1 /) was due to the exceptionally good
cooperation between academia, industry and government
initialized by patient organizations

Administration of Cyclodextrins in Neurological
Diseases

Niemann-Pick Type C Disease

NPC is an autosomal recessive lipid storage disorder charac-
terized by progressive neurodegeneration ( |- . Present-
ing symptoms in early childhood are ataxia, seizures,
progressive deterioration of motor functions followed by
reduced weight gain, cognitive decline and premature death

7). Owing to mutations of the genes NPC/ or NPC2
responsible for cholesterol trafficking, NPC patients accumu-
late cholesterol in their organs and also in brain, causing
severe neurological symptoms. The positive effects of HP-
B-CD both in animal experiments and human clinical studies
(! ) were explained at first by cholesterol solubiliza-
tion | 14 . Camargo et al. ; published the first ev-
idence that intraperitoneal injection of HP-B-CDs decreases
liver cholesterol storage and slightly delays neurological
symptoms in Npcl ™ mice, although the BBB was shown
to be practically non-permeable for CDs, and intrathecal
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Figure 4. Survival rate of Npcl ™~ mice with no treatment and chronic
treatment with s.c. injection of 20% hydroxypropyl-B-cyclodextrin (HP-
B-CD) (4000 mg/kg) every other day starting postnatal day 7. Adapted
and modified with permission from Davidson et al.

application did not improve the efficacy. Later on, however,
it became clear that HP-B-CD can hardly, if at all, enter into
cells 2/, so the sink mechanism was hypothesized that
HP-B-CD removes cholesterol from the cell membrane
from outside stimulating in this way the cholesterol traf-
ficking within the cell toward the membrane. Since then, an-
imal studies have confirmed that HP-B-CD treatment
reduces cholesterol pool in liver, brain, and other organs
5), improves pathological lysosomal enzyme
, prevents neurodegeneration and reduces tau
pathology ¢ ), delays the appearance of neuro-
logical symptoms , and improves longevity
(14 - ( ). However, there was no evidence
of increased cholesterol concentration in plasma or urine
of treated NpcI™~ mice, suggesting that HP-B-CD does
not carry cholesterol from the cells into the blood for urinary
excretion (!5, and the sequestered cholesterol is excreted
as bile acid . Recent studies delved deeper into the
cellular mechanisms, addressing the role of inefficient auto-
phagy, processes to digest the cell’s own components, in
NPC and the stimulating effect of HP-B-CD on the autopha-
gic processes including the enzymatic esterification of
cholesterol 716:7,165). In spite of the fact that the mechanism
is unclear, sporadic treatments of children with NPC have
started in several countries. A Phase I clinical trial to prove
the efficacy and to determine the proper dose has been going
on in the National Institutes of Health (NIH) (

CDs can no longer be considered as inert drug carriers
because of their cellular effects. These effects, however,
depend on which CD (cavity size) and which derivative
(type and number of substituents) is used. According to
the literature, the widest range of pharmaceutical benefits
has been described for Me-B-CDs followed by polysulfated
CDs. HP-B-CD demonstrates similar impacts, but lower ef-
ficiency compared to Me-B-CD, particularly when the affin-
ity to cholesterol is involved. Application of HP-B-CD is

activity
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Table 3. Effects of cyclodextrins in animal models of CNS diseases

Active
Disease model Cyclodextrin ingredient Effects Reference
Niemann-Pick type C disease
Npel™" mutant mice HP-B-CD HP-B-CD Liver cholestercl |, delayed
neurological symptoms
Npel™  mutant mice HP-B-CD HP-B-CD Brain cholesterol & GSL |, neurodegeneration |,
delayed onset, lifespanT
Npcl™ mutant mice HP-B-CD HP-B-CD Body cholesterol pool |, neurodegeneration |, lifespant
Npcl™" mutant mice HP-B-CD HP-B-CD - Cholesterol pools |, cerebellar neurodegeneration |,
lifespan t
Npcl ~/~ mutant mice HP-B-CD HP-B-CD - Correction of lysosomal defects in CNS,
: neurodegeneration |
APP-overexpessing Npcl e HP-B-CD HP-B-CD Cholesterol pool |, tau pathology |,
mutant mice neurodegeneration |, lifespan
Npe2™~ mutant mice HP-B-CD HP-B-CD Brain cholesterol & GSL |, neurcdegeneration |,
delayed onset, lifespan 1
Other neurodegenerative diseases
APP transgenic Tgl9959 mice HP-3-CD HP-B-CD Amyloid-p burden |, tau pathology |, cognitive functions
model of AD
o-synuclein transgenic mice Me-B-CD Me-B-CD Brain a-synuclein accumulation |, neuronal integrity
model of PD
6-OH-dopamine model of PD in rat HP-B-CD D-264 Enabled D-264 to exert neuroprotective effect in the CNS {159}
Reserpine hypclocomotion model HP-B-CD D-264 Enabled D-264 to exert neuroprotective effect in the CNS
of PD in rat
Brain Ischemia-Reperfusion
MCA occlusion-reperfusion in rats ~ HP--CD + PLGA Puerarin Brain infarction volume |, improved EEG
Hypoxia-ischemia in rats HP-B-CD HP-B-CD Brain infarction size |, excitotoxicity |
Epilepsy
Pentylenetatrazole-induced SBE;-B-CD Carbamazepine  Anti-epileptic activity T 7
convulsions in mice
CNS infections
Measles encephalitis in mice a-CD Ribavirin Viral load |
Measles encephalitis in mice B-CD Ribavirin Viral load |
Human African trypanosomiasis HP-3-CD Melarsoprol Parasitic load |, BBB integrity 1
in mice .
Human African trypanosomiasis RAMEB Melarsoprol Parasitic load |, BBB integrity 1
in mice
Brain tumors
Malignant L9 glioma model in rats B-CD Camptothecin ~ Survival timet
Malignant GL261 glioma model B-CD-based Rhodamine Uptake by tumor-associated macrophages ¢
in mice polymer
Malignant C6 glioma model in rats a-CD Gadolinium Cerebral blood volume guantification by MRI

AD, Alzheimer’s disease; o-CD, ai-cyclodextrin; APP, amyloid precursor protein; BBB, blood—brain barrier; B-CD, B-cyclodextrin: CD, cyclodextrin; CNS,
central nervous system; EEG, electroencephalogram; GSL, glycosphingolipid; HP--CD, 2-hydroxypropyl-B-cyclodextrin; MCA, middle cerebral artery;
Me-B-CD, methylated B-cyclodextrin; MRI, magnetic resonance imaging; PD, Parkinson’s disease; PLGA, poly(lactic-co-glycolic ac1d RAMEB, randomly

methylated-B-cyclodextrin, SBE;-B-CD, sulfobutyl ether;-B-CD.

still also expected in other diseases in addition to NPC due
to the better regulatory status and less drastic effects
compared to those of Me-B-CDs. For instance, neurotox-
icity induced by hypoxia, glutamate and N-methyl-D -as-
partic acid can be decreased by HP-B-CD and Me-B-CD
via cholesterol depletion both in vitro and in vivo

Based on the successful example of NPC1 therapy, the
efficacy of CDs has been tested in animal models of other
lysosomal storage disorders with neurodegeneration. CD
treatment is essentially of equal benefit to NPC2™~ mice,
which have a gene defect responsible for 5% of cases in

human NPC disease, suggesting that CD can replace the
function of NPCI protein, NPC2 protein, or an entire -
cholesterol shuttling mechanism controlled by NPC pro-
teins (T: 2}. However, CD administration in mouse
models of GM1 gangliosidosis and mucopolysaccharidosis
type Illa, two severe inherited human metabolic disorders
characterized by accumulation of cholesterol and glyco-
sphingolipids, had no detectable benefit ( . Similarly,
HP-B-CD treatment could not delay motor impairment
and Purkinje cell loss in a knock-out mouse model of mu-
colipidosis II, a lysosomal storage disorder caused by lack
of N-acetylglucosamine-1-phosphotransferase resulting in
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loss of the Npc2 protein involved in the lysosomal export of
cholesterol and sphingolipids in the brain

Other Neurodegenerative Diseases

The CD-mediated cholesterol modulation changes the ac-
tion of various proteins located in the lipid rafts such as re-
ceptors, transporters, and ion channels having significant
role in the pathogenesis of stroke, cerebral hypoxia/
ischemia, traumatic brain injury, Alzheimer’s disease, and
Parkinson’s disease . HP-B-CD and also the unmodi-
fied B-CD and «-CD can inhibit the aggregation of proteins
such as amyloid-B and e-synuclein that is a hallmark
in the brain pathology of Alzheimer’s and Parkinson’s dis-
eases and other neurodegenerative disorders, The effect is
concentration dependent and proved in vive by treating
Tg19959 transgenic mice overexpressing amyloid precursor
protein (APP), a mouse model of Alzheimer’s disease (|
( - 3). Treated animals showed reduced levels of mem-
brane cholesterol and upregulated the genes involved in
cholesterol trafficking including ABCA1 and NPC1
ABCALI is a key regulator of amyloid-p aggregation and
deposition ), and ABCAl-mediated amyloid-B clear-
ance is an important factor in the removal of amyloid-B
from the brain in decreased amyloid-B deposition and
reduced amyloidogenic processing of APP /1°7). Subcu-
taneous HP-B-CD administration for 4 months starting at
postnatal day 7 could prevent tau pathology in hippocam-
pus and cortex and improve cognitive functions, spatial
learning and memory in APP transgenic mice (157 ).

Alterations in brain cholesterol and lipid homeostasis
and increased expression of caveolin-1 can be seen in Hun-
tington’s disease. Mutation of huntingtin gene leads to
neurodegenerative disease characterized by motor, behav-
ioral and cognitive dysfunctions o). Total cholesterol
levels were increased in human caudate nucleus from Hun-
tington’s disease patients and in primary striatal neurons
from knock-in mice expressing full-length mutant hunting-
tin | . In vitro treatment of cells expressing huntingtin
with B-CD or simvastatin, a cholesterol-lowering drug,
reduced cholesterol accumulation and high levels of
cholesterol-enriched domains caveolin-1 and glycosphingo-
lipid GM1 and protected the cells against N-methyl-p-
aspartate mediated excitotoxicity (1.5 ( ¢ ). As an
interesting new therapeutic approach, modified amphiphilic
B-CD is used as efficient and safe vector during repeated
intracerebral injections of short interfering RNAs (siRNAs)
in mice, an experimental treatment resulting in selective
alleviation of motor deficits in a model of Huntington’s
disease

Decreasing the cholesterol levels in transgenic a-syn-
ucleinopathy mice using Me-B-CD resulted in a decrease
in oligomeric a-synuclein accumulation in vivo, suggest-
ing the its therapeutic use in Parkinson’s disease (/5%
HP-B-CD excipient increased the in vive efficacy of

D-264, a D3 preferring dopamine D2-D3 receptor agonist
drug, in reserpinized and 6-OH-dopamine induced unilat-
eral lesioned rats, animal models of Parkinson’s disease

|

Although the in vitro antiprion effect is also explained
partly by cholesterol depletion from the lipid rafts, the
stabilization of the prion protein structure by both
B-CD and Me-B-CD, but not by a- or v-CD, might also
play a role . However, daily oral administration of
0.16% HP-B-CD alone, or in combination with p53 inhib-
itor pifitrin &, was inefficient in Syrian hamsters inocu-
lated with 1% scrapie brain homogenates; it did not
change PrPS¢ expression or the manifestation of clinical
symptoms |

Brain Ischemia-Reperfusion

Puerarin, a poorly water-soluble isoflavonoid, was used in
HP-B-CD inclusion complex and added to poly(lactic-co-
glycolic acid) (PLGA) nanoparticles to increase entrapment
efficiency .. The effect of these puerarin nanoparticles
was compared to that of control and puerarin groups in mid-
dle cerebral artery occlusion-reperfusion model in rats
. Puerarin nanoparticles significantly decreased brain
infarct volume measured by CT scan, improved cortical
EEG parameters, and reduced neuropathological changes
;1. Intraperitonal injection of HP-B-CD within 30 min

of hypoxia-ischemia decreased the infarction size and
reduced neuronal excitotoxicity in hippocampus of rats

Epilepsy

Oral administration of carbamazepine in a complex with
SBE7-B-CD resulted in higher antiepileptic activity than
carbamazepine alone in mice with pentylenetetrazole-
induced convulsion model of epilepsy |

CNS Infections

CDs can be used to increase the efficacy of antiviral treat-
ments in CNS infections. Intraperitoneal injection of riba-
virin complexed with a-CD (in a molar ratio 1:3) could
significantly increase ribavirin concentration in brain tissue
and decreased cerebral viral load in mouse model of mea-
sles encephalitis ). Similarly, ribavirin-B-CD com-
plexes (in a molar ratio 1:1) also reduced viral load in the
brain in the same model compared to the changes induced
by ribavirin only /.

In 2 mouse model of human African trypanosomiasis,
oral administration of melarsoprol-CD inclusion com-
plexes formed by HP-B-CD or RAMEB was more effec-
tive than melarsoprol alone (/). The complexes rapidly
cleared Trypanosoma parasites from the CNS, restored
BBB integrity and reduced the severity of infection-
induced neurological symptoms | 7()). Pharmacokinetic
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and tissue distribution studies in mice had previously
indicated that brain tissue accumulation of HP-B-CD in-
clusion complex of melarsoprol was ten times higher than
that of melarsoprol nanosuspension (!79). HP-B-CD
complex was suggested to be used for the treatment of ce-
rebral trypanosomiasis or brain tumors, and the nanosus-
pension for treatment of refractory leukemia where
limitation of cerebral toxicity is an important consider-
ation

Although no comparison is available for antimycotic
treatment with or without CD complexes, it is known that
CD-containing pharmaceutical formulations of intravenous
itraconazole or voriconazole were effective in the treatment
of CNS infections in human patients suffering from asper-

gillosis , human histoplasmosis presenting with
stroke and meningitis J, and murine coccidioidal men-
ingitis

Brain Tumors

Alhough blood-tumor barrier in cerebral malignancies is
usually more permeable than the.intact BBB, effective
treatment of brain tumors is still a difficult issue. 6-O-cap-
ro-p-CD nanoparticles containing camptothecin, a topo-
isomerase I inhibiting plant alkaloid, decreased tumor
growth and significantly increased median survival by
27% on an intracranial rat xenograft model using L9 glio-
sarcoma cells, whereas the anticancer drug in PLGA or pol-
y(citric acid) polymeric nanoparticles did not change the
survival time . It was confirmed that B-CD-based
polymer-rhodamine nanoparticles can enter the tumor in
GL 261 glioma model in mice because tumor-associated

microglia cells and macrophages phagocytosed the nano- -

particles and migrated into the tumor . Due to the
impermeability of «-CD across the BBB and blood-tumor
barrier, a newly de‘}eloped magnetic resonance imaging
(MRI) preclinical contrast agent—gadolinium per (3,6-
anhydro)-o-CD—was used for the quantification of cere-
bral blood volume in tumor regions, in healthy brain tissue,
and in the contralateral hemisphere of C6 glioma tumor-
bearing rats

Cyclodextrins as Excipients for CNS-Acting Drugs

Although direct beneficial effects were not published about
specific BBB or brain-related effects, CDs are the pharma-
ceutical excipients of choice in several formulations for
treating CNS diseases such as epilepsy (2, or
multiple sclerosis J. Formulations of antiepileptics
could include B-CD for semicarbazone ( 1+5 ), HP-B-CD for
semicarbazone and carbamazepine | , and SBE-§-
CD for carbamazepine and topiramate | | ). HP-
BCD was applied in the oral formulation of cladribine

1, a drug developed for treatment of multiple scle-
rosxs that ultimately did not receive FDA approval.

Potential Therapeutic Applications of Cyclodextrins
Antimicrobial Effect

The antimicrobial effect of cholesterol-interacting CDs
(Me-B-CD in most experiments) against various viruses like
HIV or influenza and bacteria including E. coli, cholera,
Salmonella was also explained by the cholesterol depletion
inhibiting the adhesion of pathogenic cells to host cells
Inhibition of cell adhesion via disruption of lipid rafts
is utilized when Me-B-CD or HP-B-CD are considered as
contraceptives Another theory explains the effect
of various tailored B- and y-CD derivatives against pore-
forming bacteria such as anthrax, Streptoccoccus aureus
and Clostridium perfringens ). CDs having seven- or
eight-fold symmetry similar to that of the pores formed
by pathogens can perfectly block the material flux through
the pores, thus inhibiting the infection as proven in vivo in
mice with pneumonia caused by Streptoccoccus aureus.

Vascular and Immune Systems

Depletion of membrane cholesterol with B-CDs inhibits
platelet aggregation indicating therapeutic potential in the
treatment of atherosclerosis ( . Intravenous administra-
tion of HP-B-CD resulted in reduced atherosclerotic regions
in thoracic aorta of hereditary hyperlipidemic Watanabe
rabbits (|

Cholesterol depletion from cells has an influence on the
immune system as well, among the effects it enhances the
expression of mediators of inflammation, activates T-cells,
regulates signaling pathways . Therapeutic ben-
efits of cholesterol depletion with B-CDs against immuno-
senescence due to aging have also been studied

The a-CD derivatives, especially DIMEA and trimethyl-
a-CD, interact with phospholipids in the cell membrane and
disrupt lipid rafts causing similar effects to those of Me-p-
CDs; therefore, the pharmaceutical effects might be similar
although less studied . The therapeutic effect of DI-
MEA against endotoxin shock caused by lipopolysaccha-
rides was proven in mice I). Because vy-CD
derivatives do not interact remarkably with cell membrane
constituents their intrinsic therapeutic effect has not been
studied thoroughly, except that of sugammadex. Some vy-
CD derivatives were found active in plugging the pores
caused by bacterial exotoxins. Other derivatives planned
for the capture of specific molecules have special therapeu-
tic applications like B-CD dimers in age-related macular
degeneration

Anticancer Effects

Disrupting lipid rafts by cholesterol depletion using Me-
B-CD results in reduced expression of proteins respon-
sible for signaling, cell proliferation and angiogenesis,
inhibiting tumor development in mice (0% -206), A
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further improvement of the anticancer effect was ob-
served with folate-appended Me-B-CD (20/). This target-
ing to tumor cells overexpressing folate receptors
resulted in remarkable impacts in vivo, reducing tumor
size and enhancing survival of mice compared to treat-
ment with Me-B-CD or doxorubicin, a well-known anti-
tumor agent (-

The CD polysulfates, B-CD tetradecasulfate and y-CD
docosadisulfate, were found to mimic biological carbohy-
drate polysulfates such as heparin and chondroitin sulfate

). They are characterized by a high number of sulfate
groups in a molecule providing steric hindrance of the en-
tries of the cavities and thus inhibition of the inclusion
complex formation. In these molecules, CDs are not hosts,
only backbones for the sulfate moieties. Their antiangio-
genic, anticancer, and antirheumatic effects were demon-
strated, and the inhibition of restenosis after surgery was
also proven M2

Conclusions

CDs are important as both excipients and active pharma-
ceutical ingredients in the treatment of neurological dis-
eases. They are present as solubilizers in many centrally
acting marketed drugs like antiepileptics. HP-B-CD
received orphan drug designation for the treatment of
Niemann-Pick type C disease, which prompted further
research to reveal the potential therapeutic use of CDs in
lysosomal storage diseases, neurodegenerative diseases,
stroke, neuroinfections, and brain tumors. At the same time,
new promising CD derivatives and CD nanoparticles are
being developed for drug delivery to the CNS. The BBB
is a key player in both drug delivery to the CNS and path-
omechanism of many neurological diseases. Although
several biological effects of CDs were studied on models
of the BBB, we are far from understanding the complex in-
teractions between CDs and the brain endothelium. In this
context, further research should focus on revealing the ef-
fects of CDs on brain endothelial cells at the molecular
level including lipid changes at the BBB.
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