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Scissors resonance in the quasicontinuum of Th, Pa, and U isotopes
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The γ -ray strength function in the quasicontinuum has been measured for 231–233Th, 232,233Pa, and 237–239U
using the Oslo method. All eight nuclei show a pronounced increase in γ strength at ωSR ≈ 2.4 MeV, which is
interpreted as the low-energy M1 scissors resonance (SR). The total strength is found to be BSR = 9–11 μ2

N when
integrated over the 1–4 MeV γ -energy region. The SR displays a double-hump structure that is theoretically not
understood. Our results are compared with data from (γ , γ ′) experiments and theoretical sum-rule estimates for
a nuclear rigid-body moment of inertia.
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I. INTRODUCTION

Atomic nuclei in the actinide region are unique from an
astrophysics point of view, because they are purely made in
rapid neutron-capture processes in explosive stellar environ-
ments [1]. Attempts have been made to use the abundances of
232Th and 235,238U observed in the solar system (measured from
meteoritic analyses) to estimate the age of the Galaxy, although
these estimates are very uncertain and model-dependent.
Thorium has been observed in stars similar to the Sun, and
also in older metal-poor stars [1].

To predict the abundance of the actinides, one has to know
the relevant reaction rates not only for the most long-lived
nuclei, e.g., 232Th (14.05 Gy) and 238U (4.468 Gy), but also for
the ones with extremely high neutron excess. Therefore, one
must rely on calculations to estimate unknown cross sections
where experimental data are lacking. This is not only relevant
for the astrophysical nucleosynthesis [1,2], but also for future
and existing nuclear reactors [3].

Together with optical-model potentials, the nuclear level
density and γ -ray strength function (γ SF) are crucial inputs for
calculating neutron-induced reaction cross sections for neutron
energies above the neutron-resonance region. These quantities
provide information on the average properties of excited nuclei
and are particularly applicable for describing gross features
in the quasicontinuum region, where the number of levels is
too high to measure individual states and their transitions.
To ensure a reliable estimation of unknown cross sections, a
detailed knowledge of both the level density and γ SF is vital.

An enhancement of the γ SF may boost the γ decay relative
to other decay branches such as particle emission or fission.
For the actinides, which have deformed shapes, the low-energy
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orbital M1 scissors resonance (SR) contributes significantly to
the γ -decay probability.

The first geometrical description of the SR was given by
Lo Iudice and Palumbo [4]. Naively, the SR can be viewed
as the proton and neutron clouds oscillating against each
other like scissor blades. For deformed nuclei, Chen and
Leander [5] predicted strong M1 transitions between �� = 1
Nilsson orbitals1 originating from the same spherical state.
These predictions were later supported by the observation of
an enhancement at Eγ ≈ 2.2 MeV in the γ spectra of the
excited 161Dy nucleus [6].

Discrete scissors states built on the ground state can be
populated in the (γ , γ ′) and (e,e′) reactions. Here, the strength,
spin, and in some cases the parity of the strongest scissors
states in 232Th and 235,236,238U have been determined with
typical summed strengths of BSR ∼ 3–4 μ2

N [7–10], where μN

is the nucleon magneton. Because such measurements rely
on the identification of single states in an energy region of
104–105 levels per MeV, it is reasonable to believe that not all
the strength has been experimentally resolved.

Recently [11], a review of several experiments and various
models on the SR has been presented. The microscopic
description of the SR is based on single-particle couplings
between orbitals of the same angular momentum � and j . These
proton and neutron two-quasiparticle configurations contribute
in a more or less coherent way. Therefore, the macroscopic
picture of oscillating scissors blades is rather oversimplified.
Recent quasiparticle random phase approximation (QRPA)
calculations [11,12] are generally in agreement with the

1The single-particle Nilsson orbitals are labeled by �π [Nnz�],
where � is the projection of the angular momentum vector j on the
nuclear symmetry axis.
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observed energies of the scissors states and strengths observed
in (γ , γ ′) and (e,e′) reactions.

According to the generalized Brink hypothesis [13], the
SR is not only built on the nuclear ground state, but on all
excited states in the nucleus. The Oslo method, which is based
on particle-γ coincidences, makes it possible to explore the
decay of SR states in the quasicontinuum region. The method
permits the extraction of both level density and γ SF in one
and the same experiment [14,15]. These measurements cover
the rather unexplored γ - and excitation-energy region up to the
neutron binding energy (or the threshold for fission). Recently,
the level densities of 231–233Th and 237–239U [16] and the γ SFs
in 231–233Th and 232,233Pa [17] using this method have been
reported.

The main purpose of the present work is to make a
comprehensive and systematic analysis of several actinides
by exploiting nine reactions in total. The previous data of the
γ SFs of 231–233Th and 232,233Pa [17] are reanalyzed and new
experiments on 237–239U are presented. In addition, the level
densities of 232,233Pa are reported for the first time.

The structure of the manuscript is as follows. Section II
describes the experimental techniques and methods, and in
Sec. III the extraction and normalization of the γ SFs are
discussed. In Sec. IV the SRs are presented and extracted
resonance parameters are given. Section V compares the data
with previous results and models. Conclusions are drawn in
Sec. VI.

II. EXPERIMENTS

The experiments with were performed with the MC-
35 Scanditronix cyclotron at the Oslo Cyclotron Labo-
ratory (OCL). The selfsupporting 232Th target (thickness
0.968 mg/cm2) was bombarded with a 12-MeV deuteron
beam and a 24-MeV 3He beam. The 238U target (thickness
0.260 mg/cm2 and enrichment 99.7%) had a carbon backing
(thickness 0.043 mg/cm2) and was bombarded with a 15-MeV
deuteron beam. Particle-γ coincidences were measured with
the SiRi particle telescope and the CACTUS γ -detector
system [18,19].

In order to reduce the intense elastically scattered projec-
tiles on the detectors and exposure of deuteron break-up, the
64 SiRi telescopes were placed in backward direction covering
eight angles from θ = 126◦ to 140◦ relative to the beam axis.
These angles also give a broader and higher spin distribution
that are in better agreement with the real spin distribution of
the nucleus. The front and back detectors have thicknesses of
130 and 1550 μm, respectively. The CACTUS array consists of
28 collimated 5′′ × 5′′ NaI(Tl) detectors with a total efficiency
of 15.2% at Eγ = 1.33 MeV.

The particle-γ coincidences with time information were
sorted event by event. Gates were set on the 64 �E-E
matrices to select various particle types. From the known
charged-particle type and the kinematics of the reaction, the
energies deposited in the telescopes can be translated to
initial excitation energy E in the residual nucleus. To avoid
contamination from γ rays emitted by the fission fragments,
we consider only excitation energies below the fission barrier.
For each energy bin E, the γ spectra are unfolded [20] using
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FIG. 1. (Color online) First generation (primary) γ -ray matrix in
239U. At each excitation energy bin, γ spectra can be projected out,
giving the energy distribution of the first γ ’s from that excitation
energy. The excitation energy (E) and γ energy (Eγ ) axis have
dispersion 14.0 keV/ch and 32.4 keV/ch, respectively.

new NaI-response functions based on several in-beam γ lines
from excited states in 13C, 16,17O, 28Si, and 56,57Fe, where the
relative detector efficiency as function of γ energy could be
extracted in a reliable way.

An iterative subtraction technique was applied to separate
out the first-generation (primary) γ transitions from the total
γ cascade [21]. The technique is based on the assumption
that the γ distribution is the same whether the levels were
populated directly by the nuclear reaction or by γ decay from
higher-lying states. This assumption is necessarily fulfilled
when states have the same relative probability to be populated
by the two processes, since γ -branching ratios are properties
of the levels themselves. If the excitation bins contain many
levels, as is the case for the actinides, it is likely to find the
same γ distribution independent of the method of population.
Figure 1 shows the final first-generation γ -ray matrix P (E,Eγ )
for the 238U(d,pγ )239U stripping reaction.

Fermi’s golden rule predicts that the decay probability may
be factorized into a transition matrix element between the
initial and final states, and the density of final states [22,23].
Furthermore, according to the Brink hypothesis [13], the γ -ray
transmission coefficient T is approximately independent of
excitation energy. The first-generation matrix P (E,Eγ ), which
expresses the probability to emit a γ -ray with energy Eγ from
excitation energy E, may therefore be factorized as follows:

P (E,Eγ ) ∝ T (Eγ )ρ(E − Eγ ), (1)

where ρ(E − Eγ ) is the level density at the excitation energy
after the first γ -ray has been emitted in the cascades. This
factorization allows a simultaneous extraction of level density
and γ -ray transmission coefficient since the number of data
points of the P (E,Eγ ) matrix exceeds by far the number of
unknown data points of the vectorsT (Eγ ) and ρ(E − Eγ ). The
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TABLE I. Parameters used to extract level densities and γ SFs (see text).

Reaction and Sn σ (Sn) D0 ρ(Sn) ρ(Sn)adopted 〈�γ (Sn)〉 〈�γ (Sn)〉adopted

final nucleus (MeV) (eV) (106 MeV−1) (106 MeV−1) (meV) (meV)

(3He,α) 231
90 Th 5.118 7.78 9.6(15) 12.7(33) 12.7 26(2) 26

(d , d ′) 232
90 Th 6.438 8.05 0.78(20)a 30(8)a 20 30(10)a 40

(3He,3He′) 232
90 Th 6.438 8.05 0.78(20)a 30(8)a 30 30(10)a 40

(d , p) 233
90 Th 4.786 7.81 16.5(4) 7.4(15) 4.0 24(2) 20

(3He, t) 232
91 Pa 5.549 8.19 0.51(3) 68(13) 68 40(1) 35

(3He, d) 233
91 Pa 6.529 8.82 0.42(8) 77(21) 77 30(10)a 45

(d , t) 237
92 U 5.126 8.02 14.0(10) 9.3(19) 7.4 23(2) 26

(d , d ′) 238
92 U 6.154 8.26 3.5(8) 20(6) 20 30(10)a 55

(d , p) 239
92 U 4.806 7.84 20.3(6) 6.1(12) 2.45 23.6(8) 33

aEstimated from systematics [25].

least-square fit of T ρ to P [see Eq. (1)] determines only the
functional form of T and ρ. If one solution of the functions
T and ρ is known, one may construct identical fits to the
P (E,Eγ ) matrix by

ρ̃(E − Eγ ) = A exp[α(E − Eγ )] ρ(E − Eγ ), (2)

T̃ (Eγ ) = B exp(αEγ )T (Eγ ). (3)

The transformation parameters A, α, and B can then be
estimated.

The level density function needs two normalization points
to deduce A and α of Eqs. (2) and (3). These points are
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FIG. 2. (Color online) Level densities for 232,233Pa. The experi-
mental data are normalized to the level density of known discrete
levels at low excitation energy E (solid lines) and the level density
extracted from known neutron resonance spacings D0 at the neutron
separation energy Sn. The connection between ρ(Sn) (the upper right
data points) and our experimental data are made with a constant-
temperature formula with TCT = 0.44 and 0.46 MeV for 232,233Pa,
respectively. Note the extreme high level density for the odd-odd
232Pa, which reads ≈ 68 million levels per MeV at Sn = 5.55 MeV.

determined at low excitation energy from the known level
scheme [24], and at high energy from the density of neutron
resonances following (n, γ ) capture at the neutron separation
energy Sn. Here, the data point ρ(Sn) is calculated from
� = 0 neutron resonance spacings D0 taken from RIPL-3 [25]
assuming the following spin distribution [26]

g(E = Sn,I ) 	 2I + 1

2σ 2
exp[−(I + 1/2)2/2σ 2]. (4)

The spin-cutoff parameter σ at the neutron separation energy
Sn was estimated by use of the systematics of Ref. [27]. The
values of Sn, D0, σ , and ρ are listed in Table I. Further details
on the normalization procedure are described in Refs. [14,28].

Recently [16], the level densities of 231–233Th and 237–239U
were reported. For the sake of completeness and to demonstrate
the normalization procedure, we show in Fig. 2 the level
densities for 232,233Pa. The figure demonstrates how the level
density is normalized to the anchor points at low and high
excitation energies. It is interesting to see that only a small
fraction of the levels have been observed in these isotopes,
e.g., at E ≈ 1 MeV only 10% of all levels are known. Above
E ≈ 2 MeV the level density follows the constant-temperature
level density formula [26], in accordance with the findings for
the other actinides. Since details on the level densities and
thermodynamics have been presented recently [16], we will
only focus on the γ SF and the appearance of the SR in the
following.

III. NORMALIZATION OF THE γ -RAY
STRENGTH FUNCTION

The actinides have a rapidly increasing level density with
excitation energy due to a high density of single-particle
orbitals. Furthermore, the presence of a low pairing gap
and high-j orbitals surrounding the Fermi level produce a
broad spin distribution at high excitation energy. The light-ion
reactions used in this work may not populate the highest
spins present in the nucleus, which in turn could influence
the shape of the observed primary γ spectra P . Since the
transmission coefficient T is assumed to be independent of
spin, the observed P matrix should be fitted with the product
T ρred, where the reduced level density is extracted by a lower
value of ρ at Sn. Since there are uncertainties in the total
ρ(Sn) through the estimate of σ and also the actual spin
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distribution brought into the nuclear system by the specific
reaction, the extracted slope of T (the α parameter) becomes
rather uncertain.

The parameter B controls the scaling of the transmission
coefficient T (Eγ ). Here we use the average, total radiative
width 〈�γ 〉 at Sn assuming that the γ decay is dominated by
dipole transitions. For initial spin I and parity π , the width is
given by [28]

〈�γ 〉 = 1

2πρ(Sn,I,π )

∑
If

∫ Sn

0
dEγ BT (Eγ )

×ρ(Sn − Eγ ,If ), (5)

where the summation and integration run over all final levels
with spin If that are accessible by E1 or M1 transitions with
energy Eγ . However, the determination of B becomes also
rather uncertain because the integral of Eq. (5) depends on
the functions of level density ρ(E) and spin-cutoff parameter
σ (E).

The above complications encountered for the actinides
make the standard normalization procedure of the Oslo
method rather difficult to perform. The α and B parameters
have large uncertainties, and only the A parameter can be
determined with a reasonable precision. Therefore, another
procedure is adopted in this work where we compare the
γ SF with the extrapolation of known data from photonuclear
reactions.

The γ SF for dipole radiation can be calculated from the
transmission coefficient T (Eγ ) by [25]

f (Eγ ) = 1

2π

T (Eγ )

E3
γ

. (6)

These data are compared with the strength function de-
rived from the cross section σ of photonuclear reactions
by [25]

f (Eγ ) = 1

3π2�2c2

σ (Eγ )

Eγ

. (7)

In Fig. 3 the γ SF derived from (γ , x) cross sections on 232Th
and 236,238U by Caldwell et al. [29] are shown. Naturally,
the data are seen to drop off when Eγ < Sn. Furthermore, we
observe that the γ SF does not vary much with neutron number,
as seen for 236,238U in panel (c). However, a comparison
between 232Th and 236U in panel (b) reveals that the γ SF
increases when the proton number goes from Z = 90 to 92.
Thus, we assume that the γ SFs from 232Th and 238U can be
applied for 231–233Th and 237–239U, respectively. For 232,233Pa
with Z = 91, we use the average values of 232Th (Z = 90)
and 236U (Z = 92). At 7 MeV of γ energy, these two γ SFs
deviate with 25%. A reasonable estimate of the uncertainty in
the interpolation for 232,233Pa is 10%, which is much less than
the uncertainty due to low statistics.

Since our data cover γ energies below Sn, we have to
extrapolate the (γ , x) data to lower energies using reasonable
functions. For the double-humped giant electric dipole reso-
nance (GEDR) we fit the data with two enhanced generalized
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FIG. 3. (Color online) Estimation of the underlying γ SF in Th
(a), Pa (b), and U (c) isotopes. The red solid curve represents the
strength expected without the scissors strength. The (γ , x) data are
taken from Caldwell et al. [29] and the ARC data from Refs. [25,30].
The dashed curves are the M1 spin-flip resonance recommended by
RIPL and an unknown pygmy resonance, which is introduced to take
into account the increased strength at Eγ ≈ 7.3 MeV.

Lorentzians (EGLO) as defined in RIPL [25], but with a
constant temperature of the final states Tf . The (γ , x) data [29]
also reveal a resonance-like bump at around 7.3 MeV (labeled
pygmy in Fig. 3). This unknown resonance2 together with the
M1 spin-flip resonance (labeled M1 in Fig. 3) recommended
by RIPL, are included in the strength as standard Lorentzian
shapes. The various resonance parameters which define the
solid red line shown in Fig. 3, are included in Table II. For
comparison we also include in the figure the E1 and M1

2We will not speculate here about the origin of this resonance.
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TABLE II. Resonance parameters used for γ SF extrapolation.

Isotopes ωE1,1 σE1,1 �E1,1 ωE1,2 σE1,2 �E1,2 Tf ωpyg σpyg �pyg ωM1 σM1 �M1

(MeV) (mb) (MeV) (MeV) (mb) (MeV) (MeV) (MeV) (mb) (MeV) (MeV) (mb) (MeV)

231–233Th 11.5 374 4.2 14.4 840 4.2 0.2 7.2 10 2.0 6.67 4.36 4.0
232,233Pa 11.5 473 4.2 14.4 900 4.2 0.2 7.3 13 2.0 6.61 5.46 4.0
237–239U 11.4 572 4.2 14.4 1040 4.2 0.2 7.3 15 2.0 6.61 7.00 4.0

strengths derived from (n,γ ) average resonance capture data
(ARC) from Ref. [30].

Provided that the extrapolations in Fig. 3 (red solid lines) are
reliable, we may assume that this γ SF represents the “baseline”
with no additional strength from other resonances. Thus, we
normalize the measured γ SF to this underlying background
as demonstrated in Fig. 4. Here, the α parameter is adjusted
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FIG. 4. (Color online) Normalization of the γ -ray strength func-
tions with respect to the red solid curves of Fig. 3, which are assigned
to the Th, Pa, and U isotopes.

to obtain the right slope of the observed γ SF, and B is tuned
to scale the data to the underlying background. To see the
deviations from a standard normalization procedure, we also
calculate the parameter values necessary to obtain the given fit
to the γ SF background.

The adopted values for the level density and γ width
〈�γ (Sn)〉 are shown in Table I. In the case of the (d, p)
reaction it seems that about half of the spin distribution at
high excitation energy is covered by the reaction. We also
observe that the adopted 〈�γ (Sn)〉 values deviate from the
measured values. The exact reason is difficult to pin down
since the normalization integral of Eq. (5) depends on how
the spin-cutoff parameter, level density, and transmission
coefficient vary in the whole energy region up to Sn. The
observed deviations may also be due to the fact that the high
excitation-energy part was in some cases poorly populated as,
e.g., for 232Th. Then the evaluation of Eq. (5) depends strongly
on proper extrapolations of ρ and T in the unknown energy
regions.

IV. THE SCISSORS RESONANCE

In Figs. 5–7 we have subtracted the assumed background
line of Fig. 4 for the thorium, protactinium and uranium
isotopes. We observe a clear overshoot of strength in the
Eγ = 1–4 MeV region, which is analyzed in the following.
The present SR distributions differ from the ones previously
measured [17]. The main reason is that the (γ , x) data of
Gurevich et al. [31] have been replaced by the newer and
more precise data of Caldwell et al. [29], which gives more
reliable extrapolations, as shown in Fig. 3. Furthermore, the
new NaI-response functions have slightly changed the SR
γ -energy distributions.

Although some of the experimental γ SFs are hampered
by poor statistics, it appears that the additional γ strength
can be decomposed into two Lorentzians. However, we
should point out that large statistical errors for 232,233Pa
could also make these data compatible with only one broad
Lorentzian.

The resonance centroid (ωSR,i), cross section (σSR,i), and
width (�SR,i) are listed in Table III for the lower (i = 1) and
upper (i = 2) resonances. From the resonance parameters, the
integrated strengths of the two components can be calculated
by

BSR,i = 9�c

32π2

(
σSR,i�SR,i

ωSR,i

)
. (8)
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FIG. 5. (Color online) The extracted scissors resonance for
231–233Th. The various nuclei are produced with different reactions
and different excitation energy regions of the primary γ matrix are
utilized.

Furthermore, the total strength and the average centroid are
expressed by

BSR =
∑
i=1,2

BSR,i , (9)

ωSR =
∑

i=1,2 ωSR,iBSR,i∑
i=1,2 BSR,i

. (10)

In Table III the upper and lower scissors strength (BSR,i),
together with the average centroid (ωSR) and total strength
(BSR) are also listed.

Previous measurements for the SR built on the ground
state [7–9] reveal centroids around 2.2 MeV of excitation
energy, which corresponds to the first resonance in our
γ SF. Table III shows that, on average, the first resonance
is centered around ωSR = 2.05(15) MeV with a strength of
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BSR = 5.9(18)μ2
N . Several of the mentioned studies show that

levels in the E ≈ 2.2 MeV region have spin-parity Iπ = 1+,
which strongly support the interpretation as the scissors
resonance. To our knowledge, the SR is the only known
candidate for a soft resonance mode at these low energies.
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FIG. 7. (Color online) Same as Fig. 5 for 237–239U.
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TABLE III. Scissors resonance parameters and the sum-rule estimates of Eqs. (19) and (20) (see text).

Nuclide Deformation Lower resonance Upper resonance Total Sum rule

AX δ ωSR,1 σSR,1 �SR,1 BSR,1 ωSR,2 σSR,2 �SR,2 BSR,2 ωSR BSR ωSR BSR

(MeV) (mb) (MeV) (μ2
N ) (MeV) (mb) (MeV) (μ2

N ) (MeV) (μ2
N ) (MeV) (μ2

N )

231Th 0.24 2.30(15) 0.50(5) 0.90(10) 6.9(11) 3.15(15) 0.60(20) 0.50(10) 3.4(13) 2.58(15) 10.3(17) 2.0 8.6
232Th 0.24 1.95(15) 0.45(10) 0.80(20) 6.5(22) 2.85(10) 0.60(20) 0.40(10) 3.0(12) 2.23(14) 9.5(26) 2.0 8.6
233Th 0.24 1.85(10) 0.40(5) 0.85(10) 6.5(12) 2.70(20) 0.30(5) 1.10(20) 4.3(11) 2.19(15) 10.8(16) 2.0 8.5
232Pa 0.24 2.20(20) 0.40(20) 0.90(20) 5.8(32) 3.10(30) 0.60(40) 0.40(20) 2.7(23) 2.49(24) 8.5(39) 2.0 8.7
233Pa 0.25 2.00(20) 0.30(20) 0.90(30) 4.8(36) 3.10(30) 0.40(30) 0.90(30) 4.1(34) 2.51(25) 8.9(49) 2.0 9.0
237U 0.26 2.15(10) 0.45(5) 0.80(10) 5.9(10) 2.90(20) 0.40(10) 0.60(15) 2.9(11) 2.40(14) 8.8(15) 2.1 9.5
238U 0.27 1.95(15) 0.45(5) 0.80(10) 6.5(12) 2.90(15) 0.40(10) 0.60(15) 2.9(10) 2.24(15) 9.4(16) 2.2 9.8
239U 0.25 2.00(15) 0.30(5) 0.80(10) 4.2(10) 2.80(15) 0.30(5) 1.20(20) 4.5(11) 2.41(15) 8.8(14) 2.0 9.1

Our data show a second component located on average
�ωSR = 0.89(15) MeV higher than the lower resonance
and with a strength of 3.5(16)μ2

N . This component was
not reported in the earlier experiments [7–9]. However, in
a recent work [10] from the High-Intensity γ -ray Source
(HIγ S) facility at the Triangle Universities Nuclear Laboratory
(TUNL) a concentration of 1+ states was found at E ≈ 3 MeV
in 232Th. These data will be compared with the present results
in the next section.

V. COMPARISON WITH OTHER DATA AND MODELS

A. Other data

When comparing data and model predictions for the SR
built on the ground state, it is common to quote the average
excitation energy and the summed strength. For measuring of
the SR built on the ground state, (γ , γ ′) and (e,e′) reactions
have been frequently used. In the past, the experimental
values obtained from these reactions were rather uncertain
because many weak-intensity γ (or e) lines were difficult
to detect due to high backgrounds. In addition, there were
also limitations on the excitation energies covered by the
experiments. An indication of missing strength comes from
the odd-mass deformed rare-earth nuclei, which display only
half of the summed strength (≈ 1.5μ2

N ) compared to their
even-even neighbors (≈ 3μ2

N ), which is rather surprising from
a theoretical point of view. The strength is fragmented into
several weak and unresolved lines in the spectra due to 5–10
times higher level density in odd-mass nuclei. An example is
163Dy where new and more sensitive experiments by Nord
et al. [32] in 2003 revealed twice the strength originally
observed in 1993 by Bauske et al. [33].

For the actinides, the second concentration of SR states
at excitation energies E ≈ 2.9 MeV was first observed in
2011 at the HIγ S facility [10]. Prior to this study, the second
high-energy component was observed neither in 232Th nor in
235,236,238U [7–9]. The HIγ S experiment on 232Th not only
pushed the previous [7] summed strength of 2.6(3)μ2

N up to
4.3(6)μ2

N , but also revealed a two-component structure that
may bring new insight to the SR mechanism.

Even though the (γ , γ ′) method is based on discrete
population of states built on the ground state, a comparison
with the present results from decay in the quasicontinuum

can be made. However, one should keep in mind that these
experiments represent two different systems with respect to
the nuclear moment of inertia, as described in the following.

Figure 8 shows the γ SF from the Oslo method [panel (a)] in
232Th compared with the states measured at the HIγ S facility
[panel (b)] [10]. One should note that the abscissa and ordinate
of these plots are different. The HIγ S data are presented
as discrete BSR values for each state observed with γ ’s of
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FIG. 8. (Color online) Comparison between Oslo (a) and HIγ S
(b) data for 232Th. The HIγ S data are discrete levels with measured
B(M1). The folded red curve of these data using Lorentzian shapes
are shown in arbitrary units. The Oslo and HIγ S data show some
resemblance, except that the HIγ S data are shifted ≈300 keV up in
energy and are a factor of 2 lower in summed strength than the Oslo
data (see text).
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M1 multipolarity. According to the Brink hypothesis [13],
these excitations should also be built on excited states in the
continuum. In order to compare with the Oslo data, we have
folded the HIγ S data using two Lorentzians with widths of
� = 0.75 and 0.35 MeV for states below and above excitation
energy E = 2.5 MeV, respectively. These widths are chosen
somewhat smaller than the widths extracted from the Oslo data
in Table III since the spread in the energy positions of the 1+
states also contributes to the width. We see from Fig. 8(b) that
the two resonance peaks are located ≈ 300 keV higher than
for the Oslo data. The total strength measured by the HIγ S
group [10] is 4.3(6)μ2

N versus the higher value of 9.5(26)μ2
N

in the present study.
These results are not necessarily representing a contro-

versy. Similar deviations have been found for the scissors
strength in the deformed rare-earth region where (γ , γ ′)
experiments [11] typically yield strengths of BSR = 3–4 μ2

N .
Various measurements of the γ decay between levels in the
quasicontinuum show significant higher SR strength. Here, the
two-step cascade method and the Oslo method give integrated
strengths of 6–7 μ2

N [34,35]. One could speculate if the lower
strength in (γ , γ ′) experiments is due to missing states caused
by low γ intensities relative to the background or because of
limited excitation-energy regions. However, the deviation may
also be due to the fact that the scissors strength depends on the
moment of inertia that takes different values for the ground
state and the levels in the quasicontinuum.

From theoretical considerations described in the next
section, the strength of the SR should be proportional to
the moment of inertia, which may take a lower and upper
limit. In principle, for the SR built on the ground state,
the ground-state moment of inertia should be applied. This
quantity is easily extracted from the first rotational 2+ state in
even-even deformed nuclei by

�gs = 3�
2/E2+ . (11)

For the SR in the quasicontinuum, the rigid-body moment of
inertia should be used:

�rigid = 2
5mNr2

0 A5/3(1 + 0.31δ), (12)

with r0 = 1.15 fm and δ is the nuclear quadrupole deforma-
tion3 taken from [36].

In the case of 232Th, we have E2+ = 0.0494 MeV giving
the lower limit �gs/�

2 = 60.7 MeV−1, while the rigid value
becomes �rigid/�

2 = 120.8 MeV−1, which represents the
upper limit. It is interesting that the ratio �rigid/�gs = 2.0
is in agreement with the ratio

∑
B(M1)Oslo/

∑
B(M1)HIγ S =

2.2(7) for 232Th. A similar scaling is valid also for the well
deformed rare-earth region. These observations may call for
a consistent model that is capable of describing the SR states
built on the ground state as well as the SR distribution in the
quasicontinuum.

3In this work, we use the quadrupole deformation parameter δ,
which relates to the deformation parameters ε2 and β2; to lowest
order δ ≈ ε2 ≈ β2

√
45/16π .

B. Models

Numerous SR models have been launched to explain
the results of the (γ , γ ′) and (e,e′) reactions [11]. The
predictions for deformed rare-earth nuclei were often guided
by the measured values found at the time when the models
were published. Quasiparticle random phase approximation
(QRPA) models are rather popular, although these also have
some freedom for tuning the results to experimental data. A
common definition [37] of an SR state is when the orbit-to-spin
ratio is |Ml/Ms |2 
 1. In the work of Kuliev et al. [12],
QRPA calculations were performed for the E = 2–4 MeV
excitation region. Their calculations for 232Th and 236,238U give
typical strengths of

∑
B = 5–6 μ2

N at the average excitations
energy of E = 2.6 MeV. With a moment of inertia ratio of
�rigid/�gs ≈ 2.0 these predictions are in agreement with the
present findings.

It is interesting to investigate the most important single-
particle orbitals responsible for the SR in the QRPA calcula-
tions [12]. The various SR states are composed of several pairs
of Nilsson orbitals, having �� = 1. The most pronounced
pairs of the strongest SR states at low excitation in 232Th and
238U are 1

2
−

[530]p ⊗ 3
2

−
[521]p and 5

2

+
[642]p ⊗ 7

2
+

[633]p,
respectively. The strongest and higher-lying SR states of
232Th, are calculated to have excitation energies of 2.998
and 3.134 MeV. Their wave-functions are dominated by [38]
the 3

2
+

[402]p ⊗ 5
2

+
[402]p and 1

2
+

[541]p ⊗ 1
2

+
[530]p config-

urations, respectively. The mechanism behind the splitting
of the strength into two energy regions is not clear, other
than the distance of the Nilsson orbitals to the Fermi surface
has some relevance. The strong admixture of many two-
quasiparticle orbitals in the SR states indicates that these
excitations are rooted in collective motion.

In this work we have chosen the sum-rule approach [39],
which is a rather fundamental way of predicting both ωSR and
BSR. The drawback is that only these two gross properties are
given. This approach requires that the strength be located at
one specific excitation energy, and is not able to explain why
the SR distribution splits into two components.

We follow the description of Enders et al. [40] with the
exception that the ground-state moment of inertia will be
replaced by the rigid-body moment of inertia. The inversely
and linearly energy-weighted sum rules are given by

S+1 = 3

8π
�rigidδ

2ω2
D(gp − gn)2

[
μ2

NMeV
]
, (13)

S−1 = 3

16π
�IV(gp − gn)2

[
μ2

NMeV−1
]
. (14)

For the g factors4 we use the common expression gp − gn ≈
2Z/A, which rests on the assumption that the neutron and
rotational gyromagnetic factors are gn ≈ 0 and gR ≈ (gp +
gn)/2 ≈ Z/A, respectively [41]. Since the SR is measured in
the quasicontinuum, the isovector moment of inertia �IV is
taken as the rigid-body moment of inertia �rigid as discussed
above.

4Bare gyromagnetic factors are gp = 1 and gn = 0.
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According to Enders et al. [40] the K = 1 component of the
isovector giant quadrupole resonance (IVGQR) will dominate
S+1 and has to be removed using a reduction factor

ξ = ω2
Q

ω2
Q + 2ω2

D

(15)

that depends on the energy centroids of the isovector giant
dipole (IVGDR) and isoscalar giant quadrupole (ISGQR)
resonances:

ωD ≈ (31.2A−1/3 + 20.6A−1/6)(1 − 0.61δ) MeV, (16)

ωQ ≈ 64.7A−1/3(1 − 0.3δ) MeV. (17)

In the mass region investigated here, ξ is rather independent
on A (and δ) and takes the value ξ ≈ 0.27. The adequate
expression of S+1 for the low-lying scissors mode then reads

S+1 = 3

2π
�rigidδ

2ω2
Dg2

ISξ, (18)

where gIS = 1
2 (gp + gn) ≈ Z/A.

The two sum rules can now be utilized to extract the SR
centroid and strength:

ωSR =
√

S+1/S−1

= δωD

√
2ξ, (19)

BSR =
√

S+1S−1

= 3

4π

(
Z

A

)2

�rigidδωD

√
2ξ . (20)

It is interesting to note that S−1 does not depend on ξ . Thus,
if the experimental ω

exp
SR is known, a less rigorous relation for

the strength is

BSR = ω
exp
SR S−1

= ω
exp
SR

3

4π

(
Z

A

)2

�rigid, (21)

which replaces the centroid from the sum rule with the
experimental value. However, this was not necessary in the
present work since both the centroid and strength are well
described by the sum rules.

The total SR strength and weighted centroid for the eight
nuclei of Figs. 5–7 are summarized in Table III. The two last
columns of Table III show the predicted sum-rule estimates.
Both the ωSR and BSR values are in good agreement with
our measurements. Although S−1 depends very weakly on
δ, the ωSR follows a δ dependence; see Eq. (19). However,
since BSR = ωSRS−1 the strength follows ≈ δ, contrary to
the strong δ2 dependence for SR states built on the ground
state [42,43]. Unfortunately, our data do not allow us to con-
clude any systematic behavior regarding A or δ; all eight nuclei
display the same resonance parameters within the experimental
errors.

In Fig. 9 we have plotted the sum-rule estimates for 232Th
and compared to the experimental values. With the assumption
of a rigid-body moment of inertia in the quasicontinuum, the
Oslo data are very well reproduced at a deformation of δ =
0.24. For illustration, it is interesting to show the sum-rule
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FIG. 9. (Color online) Comparison between observed SRs for
232Th from Oslo and HIγ S. The data are compared with sum-rule
estimates using �rigid and �gs for the two experiments, respectively.
The deformation dependence for SR built on the ground state is
assumed to be constant for ω and follows a δ2 rule for

∑
B(M1).

estimates for different deformations, still assuming the 232Th
system. The sum rule predicts that the centroid as well as the
strength will decrease linearly with δ as one approaches more
spherical nuclei. For the HIγ S data the strength and centroid
are overestimated by the sum-rule approach using ground-state
moment of inertia. In this case, one cannot calculate the δ
dependence directly from the sum rule as the E2+ energy is
unknown for deformations differing from the deformation of
232Th with δ ≈ 0.24. However, it is well known that the average
centroid is approximately constant and the strength follows a
≈δ2 rule [40]. These dependencies are indicated as dashed
blue lines in Fig. 9. It would be very interesting to follow the
SR in the quasicontinuum to lower deformations to see if the
strength and centroid decrease as expected.

Over the last 30 years many theoretical works have been
published for the SR built on the ground state [11]. However,
the centroid and strength of the SR in the quasicontinuum is
the quantity that directly relates to the reaction rates in, e.g.,
astrophysical environments. For example, for the r process,
which involves nuclei with extreme N/Z ratios, the decrease
in neutron-separation energy with neutron number is expected
to give an increasing impact from the SR on the reaction
rates. The SR represents also an important ingredient for the
simulations of fuel cycles for fast nuclear-power reactors. Sen-
sitivity and uncertainty studies [44,45] for reactors included in
the Generation IV (Gen IV) initiative and accelerator driven
systems (ADS) show that the cross sections involved must be
known with high precision. Thus, there is a great need for new
theoretical and experimental investigations of the summed SR
strength, its dependence on the deformation, and the origin of
the two-component structure seen here in the quasicontinuum
of the actinides.
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VI. CONCLUSIONS

The level densities of 232–233Pa and the γ SFs of 231–233Th,
232,233Pa and 237–239U have been determined using the Oslo
method. The level densities show a constant-temperature
behavior as recently reported for 231–233Th and 237–239U.

All the eight actinides investigated show an excess in the
γ SFs in the Eγ = 1–4 MeV region, which is interpreted as
the scissors resonance in the quasicontinuum. The underlying
strength has been subtracted by extrapolating the assumed
strength from the tails of other resonances; the double
humped GEDR, the spin-flip GMDR and an unknown pygmy
resonance.

The sum rule applied to the quasi-continuum gives a
satisfactory description of the SR for all isotopes studied.
The approach predicts that ωSR and BSR are proportional to
the deformation parameter δ. This is in contrast with the δ2

behavior of the SR built on the ground state. Furthermore,
the SR shows a splitting into two components, which is
in accordance with data from the HIγ S facility. However,
there are currently no firm theoretical explanations of the
two-component structure seen in the present study. Theoretical
and experimental studies of the SR in the quasicontinuum are

called for to obtain reliable reaction rate predictions used in
nuclear-astrophysics and reactor applications.
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