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Abstract

The virial theorem, the Levy-Perdew relation and the differential virial theorem are derived for

density scaled Kohn-Sham systems. Earlier it was shown that there exists a value of the scaling

factor for which the correlation energy disappears and we should treat only exchange for which a

simple approximation was proposed. The new Levy-Perdew relation is applied to judge the quality

of this approximation.
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I. INTRODUCTION

This paper is dedicated to the memory of Nicholas Handy. He was an outstanding

scientist, he had very important contributions to several fields of quantum chemistry. Among

others, he emphasized the importance of density scaling [1] in the density functional theory.

This paper can be considered as a continuation of his ideas: the derivation of the virial

theorem for the scaled energy components.

A kind of scaling, the so-called coordinate scaling has been applied in density functional

theory for decades. The functionals expressed with the scaled density ̺λ(r) = ζ3̺(λr) should

satisfy several important relations[2, 3] that turned to be very useful in constructing and

improving approximate functionals.

The density scaling proposed by Chan and Handy [1] is another type of scaling, where

the density is multiplied by a positive real number ζ , that is, ̺(r) → ζ̺(r). Several studies

[4–14] utilized it in density functional theory. Zhao, Morrison, and Parr had previously

investigated closely related homogeneity relations between the functionals [15–17]. In this

paper the virial theorem will be in the focus.

II. DENSITY SCALING

In the density functional theory [18] we generally use the Kohn-Sham scheme [19], where

the Kohn-Sham equations
[

−
1

2
∇2 + vKS(r)

]

φi = εiφi (1)

are solved with the Kohn-Sham potential

vKS(r) = v(r) + vJ(r) + vxc(r). (2)

φi, εi, v, vJ and vxc are the orbitals, orbital energies, the external potential, the classical

Coulomb potential and the exchange-correlaton potential, respectively. The total energy

can be given by the quantities defined in the Kohn-Sham theory, namely,

E[̺] = Ts[̺] + J [̺] + Exc[̺] +

∫

̺(r)v(r)dr, (3)

where Ts, Exc and

J [̺] =
1

2

∫

̺(r1)̺(r2)

|r1 − r2|
dr1dr2 (4)
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are the non-interacting kinetic energy, the exchange-correlation energy and the classical

Coulomb energy, respectively.

Now, a “scaled” Kohn-Sham system is introduced that corresponds to the scaled density

̺ζ(r) = ̺(r)/ζ . Due to the scaling the particle number changes, too: Nζ = N/ζ . As we

now generally have noninteger particle numbers, density matrices [1] should be applied in

the derivation of the “scaled” Kohn-Sham equation. Then the “scaled” kinetic energy and

the scaled density read as

Tζ[̺] = min
ζ
∑M

i λi|φζi|2→̺

[

−
1

2
ζ

M
∑

i

λi〈φζi|∇
2

i |φζi〉

]

. (5)

and

̺ζ(r) =

M
∑

i

λi|φζi(r)|
2, (6)

where λi are the occupation numbers and M is the number of orbitals with non-zero oc-

cupation number. The minimization of the “scaled” kinetic energy leads to the “scaled”

Kohn-Sham equations
[

−
1

2
∇2 + vζKS(r)

]

φζi = εζiφζi, (7)

where the “scaled” Kohn-Sham potential has the form

vζKS(r) = v(r) + vJ(r) + vζxc(r). (8)

vζxc is the “scaled” exchange-correlaton potential. The total energy has a new partition:

E[̺] = Tζ[̺] + J [̺] + Eζxc[̺] +

∫

̺(r)v(r)dr, (9)

where the “scaled” exchange-correlation energy Eζxc[̺] is defined by Eq. (9) and the func-

tional derivative of Eζxc[̺] is the “scaled” exchange-correlaton potential vζxc. Note that there

is no ζ dependence in the classical Coulomb and external energy parts, only the kinetic en-

ergy and the exchange-correlation energy are scaled. It means that the scaling does not

change the sum of the kinetic and the exchange-correlation energies. From Eqs. (3) and (9)

we arrive at the significant relations

Ts[̺] + Exc[̺] = Tζ [̺] + Eζxc[̺] (10)
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and

δTs[̺]

δ̺
+ vxc(r) =

δTζ [̺]

δ̺
+ vζxc(r). (11)

Eq. (10) reflects that the density scaling either increases the kinetic part and decreases the

exchange-correlation term or vice-versa.

III. VIRIAL THEOREM

The virial theorem of quantum mechanics in case of Coulomb potential in equilibrium

molecular geometry has the form

T = −E , (12)

where T and E are the kinetic and total energies, respectively. In the Kohn-Sham scheme

of the density functional theory it can be written as [2]

Ts + Tc = −E (13)

as the non-interacting kinetic energy Ts differs from the interacting kinetic energy T . As

the difference Tc is positive the inequality Ts < −E holds.

Using the “scaled” Kohn-Sham scheme we can write

Tζ + Tcζ = −E (14)

instead of Eq. (13).

Now, use the operator r · ∇ on the “scaled” Kohn-Sham equations (7), multiply by λiφ
∗
ζi,

integrate and sum for all orbitals. Then we are led to the virial theorem

Tζ =
1

2

∫

̺r · ∇vKS(r)dr. (15)

Using the partition of the “scaled” Kohn-Sham potential (8) and the identities

J = −

∫

̺(r)r · ∇vJ(r)dr , (16)

∫

̺(r)v(r)dr = −

∫

̺(r)r · ∇v(r) (17)
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in equilibrium, we obtain

2Tζ[̺] = −J [̺]−

∫

̺(r)v(r)dr+

∫

̺(r)r · ∇vζxc(r). (18)

Making use of Eqs. (9) and (14), Eq. (18) leads to the “scaled” Levy-Perdew relation

Tcζ + Eζxc = −

∫

̺r · ∇vζxc(r)dr . (19)

IV. DIFFERENTIAL VIRIAL THEOREM

The differential virial theorem was derived by Holas and March [20] in the density func-

tional theory. Now it is extended to the “scaled” Kohn-Sham scheme. The “scaled” Kohn-

Sham equations (7) can be rewritten as

vζKS − εζi =
1

2

∇2φRe
ζi

φRe
ζi

=
1

2

∇2φIm
ζi

φIm
ζi

, (20)

Differentiating Eq. (20) with respect to xα, then multiplying with (φRe
ζi )

2 and summing for all

i, then repeating the procedure after replacing φRe
ζi by φIm

ζi and adding the two final equations

and integrating, we arrive at the differential virial theorem for the “scaled” quantities

n(r)
∂vζKS

∂xα

=
1

4

∂

∂xα

∇2n(r)− 2
∑

β

∂

∂xβ

tζαβ , (21)

where tζαβ is the “scaled” non-interacting kinetic energy density tensor defined by

tζαβ =
1

4

[

∂2

∂x′
α∂x

′′
β

+
∂2

∂x′
β∂x

′′
α

]

γζ(r
′; r′′)|

r
′=r

′′=r
. (22)

The “scaled” first-order non-interacting density matrix γζ can be expressed with the “scaled”

orbitals as

γζ(r, r
′) = ζ

∑

i

λiφ
∗
ζi(r)φζi(r

′). (23)

tζαβ is a real, symmetric tensor. The trace of tζαβ gives the “scaled” non-interacting kinetic

energy density tζ that integrates to the “scaled” non-interacting kinetic energy

Tζ =

∫

∑

α

tζαα(r)dr =

∫

tζ(r)dr . (24)

The differential virial theorem (21) can be rewritten as

∇vζKS = −fζKS (25)
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where the force field fζKS is defined

fζKS =
−1

4
∇∇2n(r) + zζKS

n(r)
. (26)

The definition of the vector field zζKS

zζKS = 2
∑

β

∂

∂xβ

tζαα (27)

is the divergence of the “scaled” non-interacting kinetic energy density tensor.

The form (25) of the differential virial theorem can be considered as a differential equation

for the “scaled” Kohn-Sham potential and can be solved as

vζKS(r) =

∫

r

∞

r
′ · fζKS(r

′), (28)

where vζKS(∞) = 0 was utilized. Making use of the partition of the “scaled” Kohn-Sham

potential (8), the unknown part of vζKS, the “scaled” exchange-correlation potential vζxc

can be obtained from Eq. (28). This equation can be used to check the accuracy of an

approximate potential.

V. DISCUSSION AND ILLUSTRATION

The forms of the virial theorem derived here for the “scaled” system are significant from

conceptual and practical points of view. Exact relations and theorems play a very important

role in the density functional theory as they proved to be useful in improving the accuracy

of approximate energy functionals. In the Kohn-Sham scheme exchange can be treated

almost exactly via the optimalized potential (OPM) [21] and the Krieger-Li-Iafrate (KLI) [22]

approaches. Only the correlation part of the Kohn-Sham potential should be approximated.

It is, however, a very difficult task. As it was shown in [4] density scaling provides an

approximation. It turned out that there exists a value of the scaling factor (ζc) for which the

“scaled” correlation energy disappears: Ecζc = 0, that is, the “scaled” exchange-correlation

energy is equal to the “scaled” exchange energy: Excζc = Exζc . The “scaled” exchange energy

Eζx[̺] is defined by the Hartree-Fock like expression [5]

Eζx[̺] = −
1

2

∫

|γζ(r1, r2)|
2

|r1 − r2|
dr1dr2, (29)
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where the “scaled” non-interacting one-particle density matrix is given by Eq. (23). Both

the OPM and the KLI methods were derived for the “scaled” quantities [5]. The ζKLI

approximation for the “scaled” exchange potential is

vζx = vζS +
ζ

̺

M
∑

i=1

〈φζi|λivζx − vζx,i|φζi〉|φζi|
2 , (30)

where

vζS =
ζ

̺

M
∑

i=1

φ∗
ζivζx,iφζi (31)

is the “scaled” Slater potential and

vζx,i(r) =
δEζx[φζi]

φζiδφ∗
ζi

(32)

is the orbital dependent (Hartree-Fock-like) exchange potential. Note that for ζ = 1 Eq.

(30) gives the original KLI exchange potential.

The values of the scaling factor (ζc) for which the ζKLI total energy equals to the exact

energy were calculated for several atoms [5]. It should be emphasized, however, that the

“scaled” correlation potential is not zero, though the “scaled” correlation energy disappears.

Therefore, the virial of the “scaled” correlation potential is also different from zero. So the

“scaled” Levy-Perdew relation (19) cannot be rewritten with the “scaled” exchange potential

Tζcc + Eζcx +

∫

̺r · ∇vζcx(r)dr 6= 0 . (33)

The deviation of the left hand side of the “scaled” Levy-Perdew relation (33) from zero

provides a test of the ζKLI method. Table I shows the values of the ζc for which the ζKLI

total energy equals to the exact energy (also presented in the Table) and the left hand side of

the “scaled” Levy-Perdew relation (33). As it is expected the latter values are not zero, but

they are small showing that the ζKLI method can be a suitable approximation for several

applications.

In conclusion, we can state that density scaling is a very powerful technique. The virial

theorem and the differential virial theorem are derived for the scaled system. As there exists

a value of the scaling factor for which the correlation energy disappears and the exchange

can be treated by a generalized OPM or KLI method, a simple approximation with only

one parameter can be generated. The virial theorem is applied to judge the quality of the

approximation.
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The values of ζc, the exact total energy and Tζcc +Eζcx +
∫

̺r · ∇vζcxdr calculated with the

ζKLI method at ζc (in Ry).

atom ζc Eexact Tζcc + Eζcx +
∫

̺r · ∇vζcxdr

Be 1.01004 -29.334 -0.012

B 1.00766 -49.300 0.002

F 1.00545 -199.432 0.008

Ne 1.00540 -257.852 -0.018

Na 1.00406 -324.480 0.024

Mg 1.00350 -400.048 0.030

Al 1.00290 -484.590 0.021

Cl 1.00189 -920.008 0.035

Ar 1.00191 -1054.776 -0.026
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