
 1 

Effect of caspofungin and micafungin in combination with farnesol against Candida 

parapsilosis biofilms 

 

Renátó Kovács1*, Aliz Bozó1, Rudolf Gesztelyi2, Marianna Domán1, Gábor Kardos1, Fruzsina 

Nagy1, Zoltán Tóth1, László Majoros1 

1Department of Medical Microbiology, University of Debrecen, Hungary 

2Department of Pharmacology and Pharmacodynamics, University of Debrecen, Hungary. 

Keywords: echinocandin, time-kill experiment, FIC index, drug interaction, nonlinear 

regression 

*Corresponding author: Renátó Kovács, Department of Medical Microbiology, University of 

Debrecen, 4032 Debrecen, Nagyerdei krt. 98., Hungary 

Phone: 00-36-52-255-425, Fax: 00-36-52-255-424;  

e-mail: kovacs.renato@med.unideb.hu 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 2 

Abstract 

The in vitro activity of caspofungin and micafungin was determined with and without farnesol 

in RPMI-1640 against Candida parapsilosis biofilms. Drug interactions were examined using 

the XTT colorimetric assay-based broth microdilution checkerboard method. Drug-drug 

interactions were assessed utilizing a fractional inhibitory concentration index (FICI), Bliss 

independence and a comparison of time-kill curves. The median sessile MICs of five C. 

parapsilosis clinical isolates ranged between 32-256 mg/L, 16-512 mg/L and >300 µM for 

caspofungin, micafungin and farnesol, respectively. The median MICs for caspofungin and 

micafungin in combination with farnesol showed 8-64- and 4-64-fold decrease, respectively. 

Paradoxical growth noticed with both echinocandins was eliminated by farnesol. Based on 

FICIs, synergism was observed for caspofungin (range of median FICIs: 0.155-0.5) and 

micafungin (range of median FICIs: 0.093-0.5). Concordantly, MacSynergy analysis and 

global fitting of nonlinear regression based on a Bliss independence model showed synergism 

for caspofungin and micafungin, as well. In line with FICI findings and the Bliss 

independence model, synergistic interactions were confirmed by time-kill experiments. The 

metabolic activity of fungal cells was significantly inhibited by caspofungin+farnesol at all 

three tested combinations (4mg/L+75µM, 8mg/L+75µM, 16mg/L+75µM) between 3-24 hours 

compared with control (P<0.05-0.001). Significant inhibition was observed for 

micafungin+farnesol between 3-12 hours (P<0.001) but not at 24 hours. Despite the favorable 

effect of farnesol in combination with echinocandins, further in vivo studies are needed to 

confirm its therapeutic advantage in catheter-associated infections caused by C. parapsilosis. 



 3 

1. Introduction 

 

The frequent usage of intravascular devices predispose patients to invasive Candida 

parapsilosis infection due to the high rate of biofilm production by this pathogen, which may 

reach 86% [1]. Although infections caused by C. parapsilosis show the highest 90-day 

survival rate (70.7%) among the five most important Candida species, higher mortality 

appears to be associated with biofilm formation with mortality rates of 70% and 45.7% for 

biofilm producer and non-producer Candida species, respectively [2,3]. 

According to the guidelines of the Infectious Diseases Society of America, catheter removal is 

recommended in non-neutropenic patients for catheter-related bloodstream infections caused 

by Candida species [4]. However, for patients with poor venous access, an alternative, 

catheter salvage therapy may be a better option [5]. Data in a recent study showed that central 

venous catheter removal did not have a significant impact on the survival rate in surgical 

patients with candidemia caused by C. parapsilosis [6]. Therefore, administration of an 

antifungal lock solution might improve the outcome of biofilm-related infections caused by C. 

parapsilosis [7]. Since the number of biofilm-active antifungal drugs is limited (primarily 

echinocandins and lipid-associated formulations of amphotericin B), the discovery of new 

compounds with anti-biofilm activity has become more important in the last few years [8]. 

Farnesol is an isoprenoid quorum-sensing molecule, which inhibits the yeast-to-hypha 

transition in C. albicans and consequently blocks biofilm formation [9,10]. C. albicans 

produces the highest level of farnesol (35.6±16.5 µM) while C. parapsilosis releases less than 

1 µM [11]. Nevertheless, exogenous farnesol can decrease biofilm formation in C. 

parapsilosis, probably by a pathway different from that of C. albicans, as C. parapsilosis does 

not form true hyphae [12,13]. 
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Until recently little was known about drug interactions between traditional antifungal agents 

and farnesol against non-albicans Candida species. Hence, our aim in this study was to 

examine the in vitro interaction between two echinocandins (caspofungin, micafungin) and 

farnesol against C. parapsilosis biofilms. 

This work was partly presented at 7th Trends in Medical Mycology meeting, 9-12 October 

2015, Lisbon, Portugal, poster number: P073 
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2. Materials and methods 

 

2.1 Organisms 

 

In our preliminary experiments, twelve out of twenty-six clinical C. parapsilosis isolates 

formed biofilms; out of which five strains derived from blood culture were used in this study 

(16641, 17432, 17818, 10252, 9613) together with ATCC 22019 as a reference strain. Clinical 

isolates were identified by APID32C panel as well as matrix-assisted laser 

desorption/ionization time of flight mass spectrometry (Microflex, Bruker Daltronics, 

Bremen, Germany). Biofilm production of examined C. parapsilosis isolates was verified 

using a crystal violet assay as previously described [14]. 

 

2.2 Susceptibility testing of planktonic cells 

 

MICs of caspofungin (Sigma, Budapest, Hungary, pure powder), micafungin (Astellas, pure 

powder) and farnesol (Sigma, Budapest, Hungary) were carried out by broth microdilution 

method in RPMI-1640 (with L-glutamine and without bicarbonate, pH 7.0 with MOPS; 

Sigma, Budapest, Hungary) according to the CLSI standard M27-A3 protocol [15]. 

Final drug concentrations ranged between 0.06-4 mg/L for caspofungin and micafungin, as 

well as 1.17-300 µM for farnesol. Farnesol was obtained as 3M stock solution that was diluted 

to a 30 mM working stock solution in 100% methanol. The working concentrations for drug 

were prepared in RPMI-1640. Each drug-free control well contained 1% (vol/vol) methanol 

[16].  

The inoculum was 0.5-2.5x103 cells/mL. The plates were incubated for 24 hours at 37 °C. 

MICs were detected based on turbidity (492 nm) as at least 50% growth reduction compared 
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with the antifungal free control [16]. Percent of change of turbidity was calculated on the 

basis of absorbance (A) as 100% × (Awell – Abackground)/(Adrug-free well – Abackground). The 

background was measured from the fungus-free well [16,17]. 

 

2.3 Biofilm formation 

 

Biofilms were grown according to the method described by Pierce and colleagues with some 

modifications [17]. Isolates were subcultured on Sabouraud dextrose agar. Fungal cells were 

harvested by centrifugation (3000g for 5 minutes) and washed three times in sterile 

physiological saline. After the final washing, the pellets were resuspended in approximately 

5-6 mL physiological saline and counted using Burker’s chamber. The final density of 

suspension was 1x106 CFU/mL in RPMI-1640, as confirmed by quantitative culture as well 

[17]. 

A total of 100 µL of the C. parapsilosis suspension were pipetted into polystyrene flat-bottom 

96-well microtitre plates then sealed with parafilm and incubated statically for 24 hours at 37 

°C. After the incubation time, the medium was removed and the plates were washed three 

times [17]. 

 

2.4 Susceptibility testing of biofilms 

 

Based on our preliminary results the examined concentrations for MIC determination in 

biofilms were 4-256 mg/L, 2-512 mg/L and 1.17-300 µM for caspofungin, micafungin and 

farnesol, respectively. Caspofungin and micafungin concentrations ranged between 0.5-32 

mg/L for the sessile ATCC 22019 reference strain. 

To determine the biofilm MICs, one-day-old biofilms were washed three times with 200 µL 



 7 

sterile physiological saline. Different drug concentrations were added to preformed biofilms 

then the plates were incubated for 24 hours at 37 °C and the MICs were defined as the lowest 

concentration that induced at least 50% reduction in metabolic activity of fungal cells. 

Metabolic activity was quantified by XTT (2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-

tetrazolium-5-carboxanilide) assay, as previously described [16,17]. XTT solution (0.5 g/L) 

was supplemented with menadione (10 mM prepared in 100% acetone) to a final 

concentration of 1 µM. Drugs were removed prior to assay of metabolic activity by washing 

with physiological saline. Afterwards 100 µL aliquot of XTT/menadione solution was added 

to each well containing the prewashed biofilms as well as to negative control wells. Plates 

were covered with aluminium foil and incubated in darkness for 2 hours at 37 °C. After 

incubation, 80 µL supernatant from each well was measured photometrically at 492/620 nm. 

The percentage change of metabolic activity was calculated in the same way as changing of 

turbidity for planktonic cells. [16,17]. 

 

2.5 Interactions between farnesol and echinocandins 

 

Drug interactions were measured by a two-dimensional broth microdilution checkerboard 

assay both for planktonic and sessile cells [16,18,19]. Based on our preliminary results the 

examined concentration ranges were the same as mentioned above at planktonic and sessile 

MIC determination.  

A fractional inhibitory concentration index (FICI) was used to assess the drug interactions 

between farnesol and echinocandins: 

ΣFIC=FICA+FICB=MICA
comb/MICA

alone+MICB
comb/MICB

alone, where MICA
alone and MICB

alone 

are the MIC values of agents A and B used alone and MICA
comb and MICB

comb are the MICs of 

agents A and B when acting in combination, respectively. FICI was defined as the lowest 
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ΣFIC [16,18,19]. The MIC values of the drugs alone and of all isoeffective combinations were 

determined as the lowest drug concentrations showing at least 50% reduction of turbidity for 

planktonic and at least 50% reduction of metabolic activity for sessile cells compared with the 

untreated controls. Off-scale MIC values were converted to the next highest two-fold 

concentration. Synergism was defined as FICI ≤0.5, indifferent interaction as FICI between 

>0.5 and 4 and antagonism as FICI >4 [16,18,19]. 

To analyse drug-drug interactions further, we built Bliss independence models (BIs) using 

MacSynergy II software [20]. BI calculates the difference (ΔE) of predicted percentage of 

growth (Eind) and experimental observed percentage of growth (Eexp) to define the interaction 

of the combination of each drug. Eind is calculated by the equation: Eind=EA×EB where Eind is 

the predicted percentage of growth that defines the effect of combination where the drugs are 

acting alone. EA and EB are the experimental percentages of growth with each drug acting 

alone. The synergy volumes were calculated at the 95% level of confidence. The obtained ΔE 

values of each combination were represented as the z axis in 3-D plot [16,18]. The volumes of 

synergy or antagonism were given in units of µM2%, which are analogous to the units for area 

under a dose-response curve in the two-dimensional graph. MacSynergy II defines µM2% 

threshold values in log volume between >2 to 5, 5 to 9 and >9 for minor synergy, moderate 

synergy and strong synergy, respectively. The corresponding negative values define minor, 

moderate and strong antagonism, respectively. Values between -2 and 2 µM2% are considered 

as indifferent interaction. When a small number of drug concentration pairs results in 

antagonistic interaction in a generally synergistic combination, the applied terminology is 

“synergy for most combinations” [20]. 

Another procedure following the Bliss independence model, used in the present work for 

biofilms, was a global fitting of nonlinear regression model (recommended by the GraphPad 
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Software, Inc.). Curve fitting and statistical analysis were performed using GraphPad Prism 

6.05, while other calculations were made by means of Microsoft Office Excel 2013. 

 

2.6 Time-kill experiments 

The findings of the checkerboard 96-well plates were confirmed by time-kill investigations 

for sessile C. parapsilosis cells. Based on the results of XTT assay, three caspofungin and 

micafungin concentrations were chosen (4, 8 and 16 mg/L) and their anti-biofilm effect alone 

and in combination with 75 µM farnesol was examined. One-day-old biofilms were washed 

three times with 200 µL physiological saline, then the different drug concentrations in RPMI-

1640 were added to wells assigned to endpoints 3, 6, 9, 12 and 24 hours. After 3, 6, 9, 12 and 

24 hours incubation, the corresponding wells were washed and the metabolic activity of the 

biofilm was measured as described above. Baseline metabolic activity was measured without 

adding the drug. Time-kill curves were prepared from the measured metabolic activity values 

using GraphPad Prism 6.05. 

 

2.7 Data analysis 

 

In time-kill experiments, one-way ANOVA with Dunnett’s post-testing was used to analyse 

the metabolic activity reduction exerted by drugs alone and in combinations compared to 

control. 
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3. Results 

 

The tested planktonic C. parapsilosis isolates were classified either susceptible or 

intermediate to caspofungin and micafungin according to CLSI breakpoints [21]. The median 

value and ranges of MIC values for planktonic and sessile C. parapsilosis cells are shown in 

Table 1 and Table 2. The median MICs for micafungin against sessile cells showed a wider 

range compared to caspofungin. The measured median MIC value against the sessile strain 

ATCC 22019 for caspofungin and micafungin was equal to that of the planktonic form (2 

mg/L and 1 mg/L, respectively) (Table 2). 

The median MIC values observed for caspofungin and micafungin in combination with 

farnesol showed a 2-64-fold decrease against planktonic cells, respectively (Table 1). A 

similar reduction in median MICs was observed for sessile cells (8-64-fold and 4-64-fold for 

caspofungin and micafungin, respectively) (Table 2). In the case of planktonic ATCC 22019, 

a 2- to 16-fold MIC decrease was detected while a 2-fold MIC reduction was observed for 

sessile cells (Table 1, Table 2). For planktonic cells farnesol MIC values were reduced 4-32-

fold in combination with caspofungin, while in combination with micafungin farnesol MICs 

were reduced 16-256-fold. Similarly reductions in echinocandin MICs were observed with 

farnesol against sessile cells (4-32-fold and 8-16-fold, with caspofungin and micafungin 

respectively). 

Table 3 and Table 4 summarize the in vitro interactions between farnesol and the two 

echinocandins based on the FICI. Antagonism was never observed (all ΣFICs <4). For 

planktonic cells based on FICI, synergy with caspofungin and farnesol was observed only 

against a single isolate (17432), however, for the combination of micafungin with farnesol 

synergy was demonstrated against all planktonic C. parapsilosis except for ATCC 22019 

(Table 3). 
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Synergy between farnesol and micafungin as well as farnesol and caspofungin was observed 

for all clinical isolates when grown in biofilm (Table 4). The level of synergy was variable; 

the lowest level of synergy was noticed for isolate 16641 in both cases (median FICI was 0.5) 

(Table 4). Neither drug combinations showed synergy against the isolate ATCC 22019 in 

either planktonic or sessile form. 

Interactions between echinocandins and farnesol against planktonic cells using MacSynergy II 

are shown in Table 3. Synergy for most combinations was observed both with caspofungin 

and micafungin (Figure 1 A-B). In accordance with FICI findings, synergism was detected 

using the MacSynergy software for all sessile clinical C. parapsilosis isolates (Table 4 Figure 

1 C-D). The interactions were variable for both planktonic and sessile strain ATCC 22019; 

based on FICI calculations indifferent interactions were observed for both drugs. However, 

using MacSynergy calculations, the interaction between both echinocandins and farnesol was 

synergistic. 

In time-kill experiments, caspofungin alone did not inhibit significantly the metabolic activity 

of sessile clinical isolates in the first three hours compared with the control biofilms. 

However, significant reduction was observed at 6, 6-9 and 6-24 hours with 4 mg/L, 8 mg/L 

and 16 mg/L concentrations, respectively (P<0.05-0.001) (Figure 2). In combination with 75 

µM farnesol, a significant reduction of metabolic activity was observed for all sessile clinical 

C. parapsilosis isolates at each tested time point (P<0.05-0.001) (Figure 2). 

The metabolic activity of biofilms of all five C. parapsilosis isolates were inhibited by the 

three tested micafungin concentrations in the first 9 hours (P<0.05-0.001). In addition, 

significant reduction of metabolic activity was observed with 16 mg/L micafungin even at 12 

hours (P<0.001). At 24 hours, metabolic activity increased to similar levels to controls (Figure 

2). 

In the presence of 75 µM farnesol, 4 mg/L micafungin triggered a marked reduction in 
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metabolic activity in the first 6 hours for the five clinical isolates. This reduction continued in 

the first 9 hours with 8 mg/L micafungin+75 µM farnesol and 16 mg/L micafungin+75 µM 

farnesol, respectively. However, after nine hours the metabolic activity of fungal cells 

increased steadily; reaching similar levels to controls. In spite of this increase, the metabolic 

activity of sessile fungal cells was significantly lower for all of three combinations between 3 

and 12 hours compared with control (P<0.001). At 24 hours, significant differences were 

never observed between the metabolic activity of fungal cells treated with combinations 

compared with control fungal cells (Figure 2). 

Global fitting revealed paradoxical growth between 32-128 mg/L and 64-512 mg/L 

concentrations for caspofungin and micafungin, respectively, which was eliminated by 

addition of farnesol. The logEC50 of caspofungin in combination with farnesol was -4.438, 

while this value was -4.552 for micafungin+farnesol. The logEC50 of farnesol was  

-2.989 and -3.115 in combination with caspofungin and micafungin, respectively. Global 

fitting suggested potential synergistic interactions at high concentrations from 64 mg/L+75 

µM farnesol and 128 mg/L+75 µM farnesol for caspofungin and micafungin, respectively. At 

lower concentrations an additive effect was observed. 
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4. Discussion 

 

The use of central venous catheters poses a severe risk of device-related infections caused by 

C. parapsilosis, moreover, the formed biofilm may be a potential source of invasive Candida 

infection [22]. Although catheter removal is recommended for catheter-associated infections 

caused by Candida species, in certain situations this procedure does not always result in a 

better outcome [6]. Therefore, an antifungal lock solution or drug combinations may have a 

role in treatment of infections related to Candida biofilms. 

In previous in vitro studies, potential lock concentrations were compared against C. 

parapsilosis biofilms. Amphotericin B deoxycholate and caspofungin alone demonstrated 

complete inhibition against C. parapsilosis biofilms. However, only one strain was used in 

that study [23]. In another study, amphotericin B lipid complex supplemented with EDTA 

was more effective compared with amphotericin B lipid complex or EDTA alone [24]. 

Another potential therapeutic strategy in antifungal catheter lock therapy may be the 

disruption of fungal quorum sensing. In 2001, farnesol was described as the first eukaryotic 

quorum-sensing molecule in C. albicans [10]. To date, its exact mode of action in Candida 

species remains little known, nevertheless, it is described as having a pivotal role in blocking 

filamentation and biofilm formation through the direct inhibition of Ras1 and the adenylyl-

cyclase-CAMP-PKA-Efg1 pathway in C. albicans [25]. In addition to inhibition of biofilm 

production, exogenous farnesol can inhibit growth (>50 µM), and also influence lipid 

metabolism, alter the lipid polarization and has an effect on genes of amino acid biosynthesis 

and ribosome biogenesis in C. parapsilosis [9,12,14]. 

Cordeiro et al. observed significant MIC reductions against planktonic C. parapsilosis strains 

with higher MIC (2 mg/L) when farnesol and caspofungin were combined. The published 

FICI range (0.124-0.5) indicated synergistic interaction. Similar effect was observed for 
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fluconazole+farnesol and itraconazole+farnesol, as well as partly for amphotericin B+farnesol 

[26]. 

Unlike the findings of Cordeiro et al., we observed variable results regarding the interaction 

of caspofungin+farnesol against planktonic C. parapsilosis [26]. However, our calculated 

median FICI values were very close to the synergy threshold and the MacSynergy tests 

resulted in synergy for most combinations. Nevertheless, our biofilm-based results 

demonstrated consistent synergistic interactions for both caspofungin+farnesol and 

micafungin+farnesol combinations against all tested sessile clinical isolates. It is noteworthy 

that indifferent interactions were observed for planktonic and sessile cells of the ATCC 22019 

strain based on FICI, probably due to its poorer biofilm production; synergy was detected 

only with MacSynergy analysis in case of most tested combinations [27]. 

Notably, based on FICI values and MacSynergy II analysis, higher level of synergy was 

observed for biofilms compared with planktonic cells both for caspofungin and micafungin. 

Moreover, the presence of synergy for biofilms was confirmed by time-kill investigations as 

well. A significant reduction in metabolic activity was detected at all tested combinations at 

all time points for caspofungin while significant inhibition in metabolism was observed only 

in the first 12 hours for micafungin. 

Farnesol consistently enhanced the activity of caspofungin and micafungin against one-day-

old C. parapsilosis biofilms, as concordantly shown in two independent experimental settings 

(checkerboard dilution and time-kill).  

Previously, synergistic interactions exerted by farnesol with micafungin were described 

against C. albicans SC5314 biofilm using FICI and Bliss independence model [16]. A similar 

phenomenon was observed for combinations of farnesol and fluconazole. The interaction 

between farnesol and amphotericin B was variable, because there was no interaction based on 

FICI indices, while synergism was detected according to Bliss independence model [16]. 
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Similar variability was observed in case of nonlinear regression models in this study, where 

indifferent interaction was suggested at some lower concentrations, which were found 

synergistic with other analyses. This variability was not found when analysing higher 

concentrations. Existence of such variability points to the necessity to use multiple analytic 

approaches in parallel when examining drug interactions. 

Although farnesol may potentiate the activity of echinocandins against C. parapsilosis 

biofilms, disruption of quorum sensing may have unfavourable effects as well. It may trigger 

dispersion, which may lead to disseminated Candida infection [28]. Furthermore, biofilm may 

cover the catheter tip or outer surface therefore both antifungal lock and systemic antifungal 

therapy may be required [22]. These issues need attention before the clinical utility of farnesol 

can be properly assessed. 

In conclusion, it is the first study that examines the effect of farnesol in combination with 

echinocandins against biofilm of a non-albicans species. Based on these results, farnesol 

showed synergistic interactions with caspofungin and micafungin against one-day-old C. 

parapsilosis biofilms. Farnesol may be a potential adjuvant in a catheter lock solution, but 

further in vivo studies are needed to assess safety and to confirm efficacy. 
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Figure 1 

Effect of farnesol in combination with caspofungin (A and C) and micafungin (B and D) 

against planktonic (A and B) and sessile (C and D) cells of a representative isolate C. 

parapsilosis 17432 using MacSynergy II analysis. Peaks of positive values represent synergy, 

while negative values indicate antagonism. 

 

Figure 2 

Time-kill curves of caspofungin (A) and micafungin (B) alone and in combination with 

farnesol against biofilm-derived five C. parapsilosis clinical isolates. Each time point 

represents the mean±SEM (error bars, standard error of mean) of the five isolates. 
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Table 1 Minimum inhibitory concentrations (MICs) of caspofungin and micafungin alone and 

in combination with farnesol against C. parapsilosis planktonic cells. 

 

Drug Isolate 

Median MIC (range) of drug used (50% O.D. reduction in turbidity) 
Alone In combination 

Echinocandin 
(mg/L) Farnesol (µM) Echinocandin 

(mg/L) Farnesol (µM) 

CAS 

16641 4 300 (300->300) 0.12 (0.12-2) 37.5 (37.5-75) 
17432 4 150 0.06 18.75 
17818 4 (2-4) 150 0.06 (0.03-0.12) 37.5 (1.17-75) 
10252 4 >300 2 18.75 
9613 2 (2-4) 300 (150->300) 0.06 (0.06-2) 75 (37.5-150) 

ATCC 22019 2 75 (75-150) 1 (0.25-1) 18.75 (18.75-37.5) 
 

MICA 

16641 2 (1-4) 300 (150->300) 0.5 (0.06-0.5) 9.38 (1.17-18.75) 
17432 4 >300 (150->300) 0.06 (0.03-0.5) 2.34 (2.35-4.7) 
17818 2 (2-4) 300 (150-300) 0.12 (0.06-2) 9.38 (4.7-9.38) 
10252 2 (2-4) >300 1 (0.25-1) 18.75 (4.7-18.75) 
9613 4 (2-4) >300 (150->300) 0.5 (0.12-1) 37.5 (1.17-37.5) 

ATCC 22019 1  75 0.06 (0.06-0.12) 18.75 
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Table 2 Minimum inhibitory concentrations (MICs) of caspofungin and micafungin alone and 

in combination with farnesol against C. parapsilosis biofilms. 

 

Drug Isolate 

Median MIC (range) of drug used (50% O.D. reduction in metabolic 
activity) 

Alone In combination 
Echinocandin 

(mg/L) 
Farnesol 

(µM) 
Echinocandin 

(mg/L) Farnesol (µM) 

CAS 

16641 32 (16-64) >300 4 (4-8) 18.75 
17432 256 >300 4 150 (37.5-150) 
17818 256  >300 4 18.75 (18.75-75) 
10252 256 >300 4 75 (37.5-150) 
9613 256 (256-512) >300 4 75 (37.5-75) 

ATCC 22019 2 (2-4) >300 1 (1-2) 18.75 (4.7-75) 
 

MICA 

16641 16 (16-32) >300 4 (2-4) 75 (2.35-75) 
17432 256 (256-512) >300 4 (2-8) 37.5 (37.5-150) 
17818 512 (256-512) >300 8 (4-8) 75 (4.7-75) 
10252 512 (256- >512) >300 8 (4-8) 37.5 (9.4-37.5) 
9613 256 (256-512) >300 8 37.5 (18.75-75) 

ATCC 22019 1 (1-2) >300 0.5 75 (37.5-300) 
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Table 3 In vitro interactions by FIC indices (FICI) and MacSynergy II analysis of 

caspofungin and micafungin in combination with farnesol against C. parapsilosis planktonic 

cells. 

 

Drug Isolate 
FICI MacSynergy II analysis 

Median (range) of 
FICI Interaction Synergy/antagonism 

(µM2%) Interaction 

CAS 

16641 0.53 (0.28-0.563) Indifferent 2.31/-2.97 Synergy for most 
combinations 

17432 0.375 Synergy 34.69/-2.85 Synergy for most 
combinations 

17818 0.515 (0.375-0.530) Indifferent 8.1/-1.25 Synergy for most 
combinations 

10252 0.530 Indifferent 28.5/-2.73 Synergy for most 
combinations 

9613 0.53 (0.53-0.56) Indifferent 2.98/-2.28 Synergy for most 
combinations 

ATCC 22019 0.75 (0.625-1) Indifferent 12.48/-10.54 Synergy for most 
combinations 

 

MICA 

16641 0.31 (0.12-0.5) Synergy 20.09/-0.21 Synergy for most 
combinations 

17432 0.131 (0.016-0.5) Synergy 51.12/0 Synergy 

17818 0.31 (0.28-0.56) Synergy 9/-0.6 Synergy for most 
combinations 

10252 0.5 (0.375-0-53) Synergy 3.83/0 Synergy 
9613 0.5 (0.5-0.56) Synergy 8.52/0 Synergy 

ATCC 22019 0.56 (0.56-0.62) Indifferent 78.21/-19.47 Synergy for most 
combinations 
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Table 4 In vitro interactions by FIC indices (FICI) and MacSynergy II analysis of 

caspofungin and micafungin in combination with farnesol against C. parapsilosis biofilms. 

 

Drug Isolate 
FICI MacSynergy II analysis 

Median (range) of 
FICI Interaction Synergy/antagonism 

(µM2%) Interaction 

CAS 

16641 0.5 (0.375-0.5) Synergy 80.54/0 Synergy 
17432 0.28 (0.185-0.28) Synergy 131.13/0 Synergy 
17818 0.155 (0.141-0.155) Synergy 126.03/0 Synergy 
10252 0.155 (0.155-0.28) Synergy 155.01/0 Synergy 
9613 0.25 (0.156-0.25) Synergy 273.08/0 Synergy 

ATCC 22019 0.502 (0.5-0.531) Indifferent 38.71/-3.39 Synergy for most 
combinations 

 

MICA 

16641 0.5 (0.375-0.5) Synergy 66.38/0 Synergy 
17432 0.188 (0.157-0.281) Synergy 81.28/0 Synergy 
17818 0.14 (0.125-0.156) Synergy 297.4/0 Synergy 
10252 0.093 (0.077-0.1925) Synergy 337.93/0 Synergy 
9613 0.188 (0.155-0.188) Synergy 250.53/0 Synergy 

ATCC 22019 0.625 (0.563-1) Indifferent 15.98/-13.74 Synergy for most 
combinations 

 

 

 

 

 

 

 

 


