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Abstract

In this paper, we give a review on automatic image processing tools to rec-

ognize diseases causing specific distortions in the human retina. After a brief

summary of the biology of the retina, we give an overview of the types of le-

sions that may appear as biomarkers of both eye and non-eye diseases. We

present several state-of-the-art procedures to extract the anatomic components

and lesions in color fundus photographs and decision support methods to help

clinical diagnosis. We list publicly available databases and appropriate measure-

ment techniques to compare quantitatively the performance of these approaches.

Furthermore, we discuss on how the performance of image processing-based sys-

tems can be improved by fusing the output of individual detector algorithms.

Retinal image analysis using mobile phones is also addressed as an expected

future trend in this field.
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1. Introduction

The retina (fundus) [1] has a very specific diagnostic role regarding human

health. The eye is a window into the body responsible for sensing information

in the visible light domain, thus, it is also suitable to make clinical diagnoses

in a non-invasive manner. The retina is a spherical anatomic structure on the

inner side of the back of the eye as shown in Figure 1(a). It can be subdivided

into ten layers supporting the extraction of visual information by photoreceptor

cells: the rods and the cones. As any other tissue, the retina also has blood

support through the vascular system, which is clearly visible from outside with

an ophthalmoscope during clinical examinations. At the center of the retina

a darker, round spot, the macula resides, whose center is known as the fovea,

which is responsible for sharp vision. The optic disc – including the optic cup –

is a bright oval patch, where the optic nerve fibers leave the eye and where the

major arteries and veins enter and exit. The special structure of the retina limits

the possible appearances of distortions caused by different diseases. Namely,

the most common lesions appear as patches of blood or fat in retinal images.

Diseases affecting the blood vessel system cause similar vascular distortions here

than in any other part of the body, but are easier and better seen if examined

by an experienced professional.

From diagnostic point of view, retinal image analysis is a natural approach

to deal with eye diseases. However, it is getting more and more important

nowadays, since the types and quantities of different lesions can be associated

with several non-eye diseases, as well. In automatic image analysis, the fovea,

macula, optic disc, optic cup, and blood vessels are the most essential anatomic

landmarks to extract (see Figure 1(b)). Besides them, the recognition of specific

lesions is also critical to deduce to the presence of diseases they are specific to.

In this work, we focus on automatic color fundus photograph analysis tech-

niques to support clinical diagnoses. Accordingly, the rest of the paper is or-

ganized as follows. We highlight the major eye and non-eye diseases having

symptoms in the retina in section 2. In section 3, we provide an overview of im-
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Figure 1: Basic concepts of retinal image analysis; (a) the structure of the human eye and

the location of the retina, (b) sample fundus image with the main anatomic parts and some

lesions.

age acquisition techniques and summarize the most important automatic image

processing approaches. These tools include image enhancement and segmen-

tation methods to extract anatomic components and lesions. We exhibit both

supervised and non-supervised techniques here. Moreover, we discuss on how

the aggregation of the findings of different algorithms by fusion-based methods

may improve diagnostic performance. For the quantitative, objective compara-

bility of different approaches, we also present several publicly available datasets

and the commonly applied performance measures. We discuss on possible fu-

ture trends including retinal image analysis on mobile platform in section 4.

Finally, in section 5, we draw some conclusions to provide a more comprehen-

sive comparison of the available approaches and to give suggestions on possible

improvements regarding both detection accuracy and efficient computing.

2. Clinical background of color fundus photograph analysis

The retina is the only site to observe vessel-related and other specific lesions

in vivo and recent studies showed that these abnormalities are predictive to

several major diseases listed next.
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2.1. Diabetes

In 2015, 415 million adults suffered from diabetes mellitus [2]. This number

is growing, and by 2040, it is expected to reach 642 million. Long-time diabetes

affects the blood vessels also in the eyes, causing diabetic retinopathy (DR). In

the case of DR, the blood vessels supplying the retina may become thick and

weak, causing leaks called hemorrhages (see Figure 2). These leaking vessels

lead to swelling and edema, causing eyesight deterioration. The fluid exudates

in the retina can be observed as small yellowish spots (see Figure 1(b)). The

earliest signs of diabetes are microaneurysms (MAs, see Figure 1(b)), which

are focal dilations of the capillaries and appear as small darkish spots. The

identification of exudates, hemorrhages, and MAs are important for the early

prevention of DR-caused blindness.

Figure 2: A sample retinal image with cotton wool spots and hemorrhages.

2.2. Cardiovascular diseases

Hypertension. Wong et al. [3] summarized the major effects of systemic hyper-

tension in the retina. Hypertensive retinopathy may cause blot- or flame-shaped

hemorrhages, hard exudates, micro- or macroaneurysms, and cotton wool spots,

which occur due to the occlusion of arteriole and appear as fluffy yellow-white
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lesions (see Figure 2). Ikram et al. [4] pointed out that the risk of hypertension

was increased with general arteriolar narrowing in the retina, mainly in the el-

derly population. There is a connection also between the arteriolar-to-venular

diameter ratio and higher blood pressure, but with lower influence than the ar-

teriolar narrowing. Cheung et al. [5] concluded that retinal arteriolar tortuosity

was connected with higher systemic blood pressure and body mass index, while

venular tortuosity was associated with lower high-density lipoprotein cholesterol

level, as well.

Coronary heart disease. Coronary heart disease is the leading cause of death

worldwide. Recent studies (e.g., [6]) showed that there is a correlation be-

tween coronary heart disease and coronary microvascular dysfunction. Liew

et al. [7] collected the main symptoms of microvascular dysfunctions like focal

arteriolar narrowing, arteriovenous nicking and venular dilation. McClintic et

al. [8] reviewed the recent findings regarding the connection between coronary

heart disease and retinal microvascular dysfunction. Liew et al. [9] examined

retinal vessels with fractal analysis in order to detect whether it had any con-

nection to coronary heart disease. Their observations suggest that non-optimal

microvascular branching may cause the disease. Vessel abnormalities can be

characterized by geometric measures that will be discussed in section 3.3.3.

2.3. Stroke

Since the cerebral and retinal vasculature share similar physiologic and

anatomic characteristics, reasonable research efforts have been made in the re-

cent years to reveal the connection between cerebral stroke and retinal vas-

culature. Baker et al. [10] concluded that signs of hypertensive retinopathy

were associated with different types of stroke. Cheung et al. [11] showed that

increased retinal microvascular complexity was associated with lacunar stroke

and alterations of retinal vasculature may cause microangiopathic events in the

brain. Patton et al. [12] summarized the recent advancements in the possibilities

of examining the retina to search for cerebrovascular diseases.
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3. Analysis of color fundus photographs

3.1. Color fundus photography

Fundus photography is a cost-effective and simple technique for trained med-

ical professionals. It has the advantage that an image can be examined at

another location or time by specialists and provides photo documentation for

future reference.

Panwar et al. [13] recently collected the state-of-the-art technologies for fun-

dus photography. Currently available fundus cameras can be classified into five

main groups: (1) Traditional office-based fundus cameras have the best image

quality, but also the highest cost overall, and personal clinical visits are re-

quired by the patients. The operation of such devices requires highly trained

professionals because of their complexity. (2) Miniature tabletop fundus cam-

eras are simplified, but still require personal visits in a clinical setting. High

cost also limits the wider spread of these devices. (3) Point and shoot off-the-

shelf cameras are light, hand-held devices. They have low cost and relatively

good image quality. The main limitation of these cameras is the lack of fixa-

tion, so proper focusing is a cumbersome task. Reflections from various parts

of the eye can hide important parts of the retina. (4) Integrated adapter-based

hand-held ophthalmic cameras can produce a high resolution, reflection-free im-

age. The bottleneck is the manual alignment of the light beam, which makes

image acquisition highly time-consuming. (5) Smartphone based ophthalmic

cameras emerged from the continuous development of the mobile phone hard-

ware. The application of such devices may have a major impact in clinical

fundus photography in the future. The main limitations of the mobile platform

are rooted in its hand-held nature: focusing and illumination beam positioning

can be time-consuming. However, despite their performance is not yet assessed

in comprehensive clinical trials, these devices show promising results.

3.2. Image pre-processing

Pre-processing is a key issue in the automated analysis of color fundus pho-

tographs. The studies of Scanlon et al. [14] and Philip et al. [15] reported that
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20.8% and 11.9% of the patients, respectively, had images from at least one eye

that cannot be analyzed clinically because of insufficient image quality. The ma-

jor causes of poor quality are the non-uniform illumination, reduced contrast,

media opacity (e.g., cataract), and movements of the eye. The application of

pre-processing techniques can mitigate or even eliminate these problems, but

improves the efficiency of the image analysis methods on good quality images,

as well. Among several other image processing methods, Sonka et al. [16] and

Koprowski [17] offer a great outlook on pre-processing methods.

The pre-processing method proposed by Youssif et al. [18] aims to reduce the

vignetting effect caused by non-uniform illumination of a retinal image. Small

dark objects like MAs can be enhanced by this step.

Walter et al. [19] defined a specific operator for contrast enhancement us-

ing a gray level transformation. Intensity adjustment was used to enhance the

contrast of a grayscale image by saturating the lowest and highest 1% of the in-

tensity values in [20]. The histogram equalization method proposed in [18] also

aimed to enhance the global contrast of the image by redistributing its intensity

values. To do so, the accumulated normalized intensity histogram was created

and transformed to uniform distribution. Contrast limited adaptive histogram

equalization [21] is also commonly used in medical image processing to make the

interesting parts more visible. This method is based on local histogram equal-

ization of disjoint regions. A bilinear interpolation is also applied to eliminate

the boundaries between regions.

By [22], MAs appearing near vessels become more easily detectable with

the removal of the complete vessel system before candidate extraction. After

removing the vessel system, intrapolation techniques [23] can be used. Lin et

al. [24] recommended a method for vessel system detection, which considered

the vasculature as the foreground of the image. The background was extracted

by applying an averaging filter, followed by threshold averaging for smoothing.

The background image was then subtracted from the original one.

The choice of the appropriate image pre-processing methods also depends

on the subsequently used algorithms. Antal and Hajdu [25] proposed to se-

7



lect an optimal combination of pre-processing methods and lesion candidate

extractors by stochastic search. The main role of pre-processing methods in

this ensemble-based system is to increase the diversity of the lesion candidate

extractor algorithms. Further, Tóth et al. [26] proposed a method to find the

optimal parameter setting of such systems. More details on the ensemble-based

approaches will be given in section 3.5.

3.3. Localization and segmentation of the anatomic landmarks

3.3.1. Localization and segmentation of the optic disc and optic cup

In general, the localization and the segmentation of the optic disc (OD,

see also Figure 1(b)) mean the determination of the disc center and contour,

respectively. These tasks are important to locate the anatomic structures in

retinal images as well as in registering pathological changes within the OD

region. Especially, the abnormal enlargement of the optic cup (OC) may relate

to glaucoma.

The OD localization methods can be divided into two main groups: ap-

proaches that are based on the intensity and shape features of the OD and

those that use the location and orientation of the vasculature.

Lalonde et al. [27] applied Haar DWT-based pyramidal decomposition to

locate candidate OD regions, i.e., pixels with the highest intensity values at the

lowest resolution level. Then, Hausdorff distance-based template matching was

used to find circular regions with a given dimension to localize the OD. Lu and

Lim [28] designed a line operator to capture bright circular structures. For each

pixel, the proposed line operator evaluated the variation of the image brightness

along 20 line segments of specific directions. The OD was located using the line

segments with maximum and minimum variations.

Hoover and Goldbaum [29] proposed to use fuzzy convergence [30] to localize

the OD center. Here, the vessel system was thinned and fuzzy segments modeled

each of the line-like shapes. As a result, a voting map was generated and the

pixel having the most votes was considered as the OD center. Foracchia et al. [31]

exploited the directional pattern of the retinal vasculature to localize the OD.
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After segmenting the vasculature and determining the centerlines, diameters,

and directions of the vessels, a parametric geometric model was fit to the main

vessels to localize the OD center. Youssif et al. [32] proposed a method, where

the OD was localized by the geometry of the vessels. After vessel segmentation,

matched filtering was applied with different template sizes at various directions.

Then, thinning was used to extract the centerline of each vessel.

Several other approaches considering various principles exist for the detection

of the OD, like kNN location regression [33], Hough-transform [34, 35], and

circular transformation [36], as well.

Yu et al. [37] identified the candidate OD regions using template matching

and localized the OD based on vessel characteristics on its surface. The obtained

OD center and estimated radius were used to initialize a hybrid level-set model,

which combined regional and local gradient information. Cheng et al. [38] pro-

posed superpixel classification to segment the OD and OC. After dividing the

input image into superpixels, histograms and center surround statistics were

calculated to classify the superpixels as OD/OC or non-OD/non-OC ones.

Hajdu et al. [39] proposed an ensemble-based system specifically designed

for spatial constrained voting. Here, the output of each individual algorithm is

a vote for the center of the OD. Tomán et al. [40] extended this system with

assigning weights to the detector algorithms according to their individual accu-

racies. Hajdu et al. [41] made a further extension by introducing corresponding

diversity measures to discover the dependencies of the detector algorithms bet-

ter. A detailed comparison of the aforementioned algorithms is enclosed in Table

1 (see Appendix).

The cup-to-disc ratio is the ratio of the diameters of the OD and OC and the

main indicator of glaucoma [42]. Glaucoma caused blindness is irreversible, but

preventable with early detection and proper treatment. Furthermore, a recent

study [43] showed that participants with glaucoma were more likely to develop

dementia. For the determination of the cup-to-disc ratio see [44, 45, 46], while

a mobile phone-based approach will be presented in detail in section 4.
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3.3.2. Localization and segmentation of the macula and the fovea

The fovea, as the center of the macula, is situated at the distance two and

half times of the OD diameter between the major temporal vascular arcades (see

Figure 1(b)). Since the macula is the center of sharp vision, it has an important

role in image analysis. The automatic localization of the macula/fovea is gener-

ally based on visual characteristics and positional constraints. Sinthanayothin

et al. [47] localized the macula within a predefined distance from the OD as the

region having maximal correlation between a template and the intensity image

obtained by HSI transformation. Li and Chutatape [48] estimated the location

of the macula by fitting a parabola on the main vessels having its vertex at the

OD center. The macula was found on the main axis of the parabola based on

its intensity and distance from the OD. Tobin et al. [49] relied solely on the

segmented vessels and the position of the OD. They determined a line that was

roughly passing through the OD and the macula using a parabolic model of the

vasculature and localized the fovea by its distance from the OD. Chin et al. [50]

localized the fovea as the region of minimum vessel density within a search re-

gion that was derived from anatomic constraints. Instead of a predefined value,

the distance of the OD and macula was learned from annotated images.

Niemeijer et al. [51] used an optimization method to fit a point distribution

model to the fundus image. The points of the model specified the location of

the anatomic landmarks of the fundus including the fovea. In [52], the same

authors presented a faster method using a kNN regressor to predict the distance

of the OD and fovea at a limited number of locations in the image based on

a set of features. Welfer et al. [53] considered the relative locations of the

retinal structures and mathematical morphology for macula detection. After

the candidate regions were identified, morphological filtering was applied to

remove lesions, and the center of the darkest region was selected as the fovea.

Antal and Hajdu [54] applied a stochastic search-based approach to improve

macula detector algorithms with finding the optimal adjustment of parameters

by simulated annealing.
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Most of the macula/fovea detection approaches rely on the spatial relation-

ship between the anatomic landmarks and their detection accuracies may drop,

if the geometry considered strictly fixed. For example, the ratio of the OD di-

ameter and the OD to fovea distance may vary depending on the age of the pa-

tient and pathologies such as optic nerve hypoplasia and physiologic macrodisc.

Another important issue is that some of these methods (e.g., [49, 50]) were de-

veloped to work only with images centered at the fovea. A detailed comparison

of the algorithms is enclosed in Table 2 (see Appendix).

The proper localization of the macula is important also in the recognition of

age-related macular degeneration (AMD), which is the leading cause of blind-

ness among adults and is an increasing health problem. AMD cannot be cured,

but its progress can be prevented by early diagnosis and treatment. There are

two major forms of the disease: non-exudative (dry) AMD that is indicated

by the presence of yellowish retinal waste deposits (drusen) in the macula, and

exudative (wet) AMD that is characterized by choroidal neovascularization that

leads to blood and protein leakage (exudates). Non-exudative AMD is the more

common form and it causes vision loss in the central region first; however, it can

lead to the exudative form that can cause rapid vision loss if left untreated. Au-

tomatic image analysis methods aiming to detect the presence of this disease are

currently based on support vector machine classification [55], hierarchical im-

age decomposition [56, 57], statistical segmentation methods [58], deep learning

[59], and pixel intensity characteristics [60].

3.3.3. Segmentation of the vessel system

Segmentation. In general, most vessel segmentation methods consider the green

channel of the image, because the contrast is higher and the noise level is lower

here.

Soares et al. [61] proposed a method that classified pixels as vessel or non-

vessel ones using supervised classification. Here, Gabor transform was applied

for contrast enhancement. Lupaşcu et al. [62] used AdaBoost to construct a

classifier. In this method, 41 features were extracted based on local spatial
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properties, intensity structures and geometry.

Methods based on matched filtering convolve the retinal image with 2D tem-

plates, which are designed to model the characteristics of the vasculature. The

presence of a feature at a given position and orientation is indicated by the

filter response. Chaudhuri et al. [63] had one of the earliest approaches for

the automated segmentation of the vascular system. They proposed a tem-

plate with a Gaussian profile to detect piecewise linear segments of vessels. The

filter response image was thresholded and post-processed to obtain the final

segmentation. Kovács and Hajdu [64] also proposed a method based on tem-

plate matching and contour reconstruction. The centerlines of the vessels were

extracted by generalized Gabor templates followed by the reconstruction of the

vessel contours. The intensity characteristics of the contours were learned in

training databases with a typical output is shown in Figure 3.

(a) (b) (c)

Figure 3: Segmentation of the vascular system by [64]; (a) original image, (b) manually

annotated vascular system, (c) automatic segmentation result.

As lesions can exhibit similar local features as vessels, their occurrence might

deteriorate the quality of segmentation. Annunziata et al. [65] proposed a

method to address the presence of exudates. After pre-processing, exudates

are extracted and inpainted and a multi-scale Hessian eigenvalue analysis was

applied to enhance vessels. A detailed comparison of the algorithms can be

found in Table 3 (see Appendix).
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Artery and vein classification. By the classification of the vessels, important di-

agnostic indicators can be obtained, such as the arteriolar-to-venular diameter

ratio. In general, vessels show different characteristics, size and color; arteries

are brighter and usually thinner as it can also be observed in Figure 4. Zam-

perini et al. [66] classified vessels based on color, position, size and contrast by

investigating the surrounding background pixels. Relan et al. [67] used Gaus-

sian Mixture Model – Expectation Maximization clustering to classify vessels.

Dashtbozorg et al. [68] proposed a classification method based on the geome-

try of vessels. First, a graph was assigned to the vessel tree around the OD.

Next, different intersection points were determined: bifurcation, crossing, meet-

ing, and connecting points. Finally, classification was performed based on a

list of features, like node degree, vessel caliber, orientation of links. Estrada

et al. [69] also considered a graph theoretical approach extended by a global

likelihood model. Relan et al. [70] applied a Least Square – Support Vector Ma-

chine technique to classify veins based on four color features. Table 4 contains

a detailed comparison of the algorithms (see Appendix).

Figure 4: A retinal image from the STARE database [71] illustrating severe vessel tortuosity.

Vasculature measurements. The measurement of vascular tortuosity (see Fig-

ure 4) is important in the detection of hypertension, diabetes and some central
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nervous system diseases. Some of the earliest works were summarized by Hart

et al. [72] with proposing a tortuosity measure to classify vessel segments and

networks, as well. Since then, several different approaches have been proposed

and currently tortuosity measurement algorithms can be categorized in five main

groups: (1) arc length over chord length ratio, (2) measures involving curvature,

(3) angle variation, (4) absolute direction angle change, (5) measures based on

inflection count. Grisan et al. [73] highlighted some methods from each group.

Moreover, they proposed a tortuosity density measure to handle vessel segments

of different lengths with summing every local turn. Lotmar et al. [74] introduced

the first method of the first category, which was later widely utilized. Poletti

et al. [75] proposed a combination of methods for image-level tortuosity estima-

tion. Oloumi et al. [76] considered angle variation for tortuosity assessment in

the detection of retinopathy of prematurity. Lisowska et al. [77] compared five

methods settling on different principles. Perez-Rovira et al. [78] proposed a com-

plete system for vessel assessment that used the tortuosity measure by Trucco

et al. [79]. Aghamohamadian-Sharbaf et al. [80] created a curvature-based algo-

rithm applying a template disc method. They also showed that curvature had

a non-linear relation with tortuosity. A detailed comparison of the algorithms

is enclosed in Table 5 (see Appendix).

Vessel bifurcations are important in the detection of certain central nervous

system diseases. Tsai et al. [81] proposed a method for vessel bifurcation es-

timation consisting of three components: a circular exclusion region to model

the intersections, a landmark location for the intersection itself, and orientation

vectors to represent the vessels meeting at the intersection. This algorithm it-

eratively mapped vessels in order to obtain bifurcations and crossings. Several

other vasculature measurements have been reported, like fractal dimension of

the vasculature for the detection of DR [82] or for the detection of stroke [83],

vessel diameter [84], and arteriolar-to-venular diameter ratio [85, 86]. Xu et

al. [87] proposed a graph-based segmentation method to measure the width of

vessels.
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3.4. Detection of retinal lesions

3.4.1. Detection of microaneurysms

MAs (see Figure 1(b)) are swellings of the capillaries and appear as dark red

isolated dots. They are very common lesions of various diseases, thus, reasonable

efforts have been made for their proper detection considering several principles.

Walter et al. [88] introduced an algorithm for MA candidate extraction.

It starts with image enhancement and green channel normalization, followed

by candidate detection with diameter closing and an automatic thresholding

scheme. Finally, the classification of the candidates was performed based on

kernel density estimation. Among the most widely applied candidate extractor

methods we find Spencer et al. [89] and Frame et al. [90]. Here, shade correction

was applied by subtracting a median filtered background from the green chan-

nel image. Candidate extraction was accomplished by morphological top-hat

transformations using twelve structuring elements. Finally, a contrast enhance-

ment operator was applied followed by the binarization of the resulting image.

Slightly different approaches can be found in [91, 92, 93].

Abdelazeem et al. [94] recommended the usage of circular Hough transforma-

tion [95] to extract MAs as disc-shaped spots. Lázár and Hajdu [96] proposed a

method using pixel intensity profiles. After smoothing the green channel with a

Gaussian filter, the image was analyzed along lines at several directions. Based

on intensity peaks, adaptive thresholding was applied to binarize the image and

the final components were filtered based on their sizes. Zhang et al. [97] consid-

ered multi-scale correlation filtering and dynamic thresholding. Five Gaussian

masks with different variances were applied and their maximal responses were

thresholded to extract MA candidates. The results of two different candidate

extractors are also shown in Figure 5. Table 6 contains a detailed comparison

of the algorithms (see Appendix).

As a recent multi-modal approach, Török et al. [98] combined MA detection

with tear fluid proteomical analysis [99] for DR screening.
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(a) (b)

Figure 5: Results of microaneurysm candidate extraction; (a) by [88], (b) by [96].

3.4.2. Detection of exudates

Generally, exudate detection techniques can be separated in two groups.

Algorithms in the first group are based on mathematical morphology, while

those in the second on pixel classification.

Walter et al. [100] proposed a method that used morphological closing as

a first step to eliminate vessels. Then, local standard deviation was calculated

to extract the candidates. Finally, a morphological reconstruction method was

used to find exudate contours. Since the OD also appears as a bright spot,

Sopharak et al. [101] eliminated the OD as a first step. Then, Otsu thresholding

was used to locate high intensity regions. After contrast enhancement, Welfer

et al. [102] applied an H-maxima transform on the L channel in the color space

CIE 1976 L*u*v*.

In order to determine whether a pixel is in the exudate region or not,

Sopharak et al. [103] introduced a method using fuzzy c-means clustering. Then,

morphological operations were applied to refine the results. In [104], Sopharak

et al. showed that Naive Bayes classification can also be applied for this task.

Sánchez et al. [105] detected small isolated exudates and used them for train-

ing. Therefore, a new training set was defined for classification for each image.

Niemeijer et al. [106] recommended a multi-level classification method, where
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candidates were labeled as drusen, exudates or cotton wool spots. Garćıa et

al. [107] used neural networks to identify exudates. Harangi et al. [108, 109]

proposed a system for exudate detection using a fusion of active contour meth-

ods and region-wise classifiers; for some detection results see Figure 6.

(a) (b)

Figure 6: Exudate detection by [109] after contrast enhancement and cropping; (a) original

fundus image, (b) the result of detection.

In addition to the aforementioned methods, [22] suggested the detection of

lesions including exudates within a complex landmark extraction system for DR

screening. A detailed comparison of the algorithms is enclosed in Table 7 (see

Appendix).

3.4.3. Detection of other lesions

Cotton wool spots are reminiscent in appearance of exudates; therefore,

similar approaches can be considered for their detection. However, for the same

reason, the differentiation of cotton wool spots and exudates is a challenging

task [106]. Hemorrhages are dark lesions, but their varied shape and size are

similar to that of exudates. For example, after some appropriate modifications

the exudate detection method [108] could be applied for the segmentation of

hemorrhages, as well. A survey on recent methods for hemorrhage detection

can be found in [110].
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3.5. Ensemble-based detection

Though single methods can perform well in general, there are challenging

situations when they fail. In fact, there is no reason to assume that an individual

algorithm could be optimal for such heterogeneous data as retinal images.

To address this issue, a possible approach is to apply ensemble-based sys-

tems, which principle had a strong focus in our contributions presented in this

section. An ensemble-based system consists of a set of algorithms (members),

whose individual outputs are fused by some consensus scheme, e.g. by majority

voting. An ensemble composed of algorithms based on sufficiently diverse prin-

ciples is expected to be more accurate than any of its members if they perform

better than random guessing [111]. The diversity of the members allows an

ensemble to respond more flexibly to various conditions originating from e.g.,

the presence of specific diseases in a dataset.

For example, the detection of the OD may be based on its main character-

istic being a bright oval patch. However, if bright lesions like exudates are also

present, the objects might be misclassified. To overcome these problems, we can

create ensembles of algorithms to fuse their findings. Qureshi et al. [112] pro-

posed a combination of algorithms for the detection of the OD and macula. The

selection of the algorithms was based on detection accuracy and computation

time. Moreover, a weight value was assigned to each algorithm according to its

candidate extraction performance. The final locations of the OD and macula

were determined by a weighted graph theoretical approach, which took the mu-

tual geometric placements also into consideration (see Figure 7). Harangi and

Hajdu [113] introduced an ensemble-based system also for OD detection, but

extracted more candidates for each member algorithm. Weights were assigned

to the candidates according to the ranking and accuracy of their extractor al-

gorithms.

Ensemble-based systems have been applied for lesion detection, as well. Nagy

et al. [114] proposed a system for exudates that was an optimal combination of

pre-processing methods and candidate extractors. The ensemble pool consisted

of several 〈pre-processing method, candidate extractor〉 pairs in all possible
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(a) (b)

Figure 7: Simultaneous ensemble-based detection of the OD and macula by [112]; (a) candidate

regions voted by various detector algorithms, (b) final candidates using geometric relationships

(distance and angle).

combinations. To find the best ensemble, a simulated annealing-based search

algorithm was used. Next, a voting scheme was applied with the following

rule: if more than 50% of the ensemble member pairs marked a pixel as an

exudate one, their labeling was accepted. Antal and Hajdu [115, 116] applied

roughly the same approach for MA detection. Further, Antal and Hajdu [117]

proposed a complete system for DR-screening, where fusion-based approaches

were considered for both the detections of anatomic parts/lesions and to make

the final decision for an image based on the output of different classifiers as

illustrated in Figure 8. On the basis of these works, we can conclude that

ensemble-based methods often outperform individual algorithms, especially in

more challenging situations. This claim is also supported by the corresponding

performance measures in Tables 1, 6, and 7 (see Appendix).

3.6. Performance evaluation of algorithms

3.6.1. Databases for performance evaluations

In this section, we list several publicly available databases that are generally

used to quantitatively compare the performances of the algorithms collected in
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Figure 8: Flowchart of the ensemble-based system for retinal image analysis from [117].

this review.

Retinopathy Online Challenge (ROC) [118] is a worldwide online competi-

tion dedicated to measure the accuracy of MA detectors. The ROC database

consists of 50 training and 50 test images having different resolutions (768×576,

1058 × 1061 and 1389 × 1383 pixels), 45◦ field-of-view (FOV) and JPEG com-

pression. For objective comparisons of the MA detector algorithms, a test set

is provided, where the MAs are not given.

The DIARETDB0 database [119] contains 130 losslessly compressed color

fundus images with a resolution of 1500× 1152 pixels and 50◦ FOV. 110 images

contain abnormalities, like hard exudates, soft exudates, MAs, hemorrhages and

neovascularization. For every fundus image, a corresponding ground truth file

is available containing the OD/macula centers and all lesions appearing in the

specific retinal image.

The DIARETDB1 v2.1 database [120] contains 28 losslessly compressed

training and 61 test images, respectively, with a resolution of 1500× 1152 pix-

els and 50◦ FOV. As ground truth, an expert in ophthalmology marked the
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OD/macula centers and the regions related to MAs, hemorrhages, and hard/soft

exudates.

The HEI-MED database [121] consists of 169 images of resolution 2196×1958

pixels with a 45◦ FOV, among which 54 images are classified manually by an

ophthalmologist as containing exudates.

The Messidor database [122] consists of 1200 losslessly compressed 24-bit

RGB images with 45◦ FOV at different resolutions of 1440× 960, 2240× 1488,

and 2304 × 1536 pixels. For each image, a grading score is provided regard-

ing the stage of retinopathy based on the presence of MAs, hemorrhages and

neovascularization.

The DRIVE [123] database contains 40 JPEG-compressed color fundus im-

ages of resolution 768× 584 pixels and 45◦ FOV. For training purposes, a single

manual segmentation of the vessel system is available for each image. For the

test cases, two manual segmentations are available; one is used as ground truth,

the other one is to compare computer-generated segmentations with those of an

independent human observer.

The STARE database [71] consists of 397 fundus images of size 700 × 605

pixels. STARE contains annotations of 39 possible retinal distortions for each

image. Furthermore, the database includes manual vessel segmentations for 40

images, and artery/vein labeling for 10 images created by two experts. Ground

truth for OD detection is provided for 80 images, as well.

The HRF database [124] contains high-resolution fundus images for vessel

segmentation purposes. It consists of 45 JPEG-compressed RGB images of

size 3504 × 2336 pixels and the images are divided to three sets of equal sizes,

namely, healthy, glaucomatous and DR ones. This database contains the manual

annotations of one human observer.

3.6.2. Performance measurement

As the primary aim of the automatic retinal image analysis methods is to

support clinical decision-making, it has key importance to objectively measure

their performances, i.e., the level of agreement between their outputs and a
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reference standard (ground truth), which is typically a set of manual annotations

created by expert ophthalmologists.

The most commonly used measures to assess the performance of retinal im-

age segmentation methods are sensitivity, specificity, precision, accuracy, and

the F1-score. These measures rely on the number of true positive (TP , cor-

rectly identified), false positive (FP , incorrectly identified), true negative (TN ,

correctly rejected), and false negative (FN , incorrectly rejected) hits. The

sensitivity and specificity of a method are calculated as TP/(TP + FN) and

TN/(TN +FP ), respectively, while precision is as TP/(TP +FP ). Accuracy is

determined as (TP +TN)/(TP +FP +TN +FN), while the F1-score measures

the performance of a method by equally weighting sensitivity and precision via

2TP/(2TP + FP + FN).

When a method also assigns confidence values to its output, its specificity

and sensitivity can be adjusted by thresholding these confidence values. Plot-

ting the resulting sensitivity against 1−specificity as the threshold is changed

yields a receiver operator characteristics curve. As sensitivity and specificity fall

between 0 and 1, the receiver operator characteristics curve resides within the

unit square. The area under the receiver operator characteristics curve (AUC)

quantifies the overall performance of a given method: an AUC value of 1 means

perfect performance, while 0.5 indicates random behavior. All these measures

are routinely applied to the evaluation of the different types of algorithms de-

scribed in this review.

As the different image analysis methods are evaluated using various (often

non-public) dataset, their performance measures are not directly comparable in

general. For this reason, it is also not easy to select a single best method for a

given task based on solely its reported performance measures. For example, it

is often uncertain how the sensitivity and specificity of a method would change

depending on the ratio of diseased and non-diseased images in the dataset.

Therefore, we recommend the evaluation of methods on a subset of images

representing the desired data to be processed in order to select the appropriate

image analysis methods. However, in this selection Tables 1-7 may give some
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clues by showing certain accuracy figures for both diseased and non-diseased

datasets.

It is also worth noting how the retinal image analysis performances of the

currently available automated diagnostic systems compare to that of human

experts. Abràmoff et al. [125] presented a DR screening system having nearly

the same performance as human experts in terms of sensitivity and specificity,

achieving an AUC value 0.850. Other state-of-the-art approaches Hansen et

al. [126] and Agurto et al. [127] reported AUC figures 0.878 and 0.890, respec-

tively. The ensemble-based DR screening system described by Antal and Hajdu

[117] provided an AUC value 0.900 in a disease/no disease setting. However,

these AUC figures were found on datasets having different proportions of pa-

tients showing/missing signs of DR.

4. Future trends in retinal image analysis

Considering the recent advances in the discovery of retinal biomarkers and

biomarker candidates, more widespread adoption of retinal imaging can be ex-

pected in the clinical practice in the future for the early identification of several

chronic diseases and long-term conditions. With the increasing amount of reti-

nal images, the application of automatic image analysis techniques are expected

to become more important to aid the work of the medical experts and to de-

crease the associated care costs. The automatic analyses of retinal images may

also facilitate the establishment of large-scale computer aided screening and pre-

vention programs. In this respect, telemedicine and mobile devices may play a

critical role in the future, e.g., by allowing patients to send retinal images for

regular control without the need of visiting a screening center.

In the recent years, mobile devices have a rapid and extensive development.

Their hardware resources and processing power give us the chance to consider

them as possible tools for ophthalmic imaging. Bolster et al. [128] reviewed the

recent advancements in smartphone ophthalmology. In most solutions, extra

hardware is necessary to acquire good quality images. One such tool is the
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Welch Allyn iExaminer System shown in Figure 9, which can be attached to

an Apple iPhone 4/4S. To date, this is the only FDA-approved ophthalmoscope

for mobile phones [129]. In general, compared to professional fundus cameras,

smartphone-based ophthalmoscopes have a narrower FOV, lower contrast, and

less brightness/sharpness in comparison with a clinical device (see Figure 10).

Figure 9: A retinal camera attached to a mobile phone.

(a) (b)

Figure 10: Sample fundus images acquired by (a) a mobile fundus camera (FOV 25◦), (b) a

clinical device (FOV 50◦).

Haddock et al. [130] described a technique, which lets high-quality fun-

dus images be taken. This is a relatively cheap solution with consisting of a

smartphone (iPhone 4 or 5), a 20D and an optional Koeppe lens. Prasanna
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et al. [131] outlined a concept of a smartphone-based decision support system

for DR screening. Giardini et al. [132] proposed a complex system based on an

inexpensive ophthalmoscope adapter and mobile phone software.

Besenczi et al. [133] recommended an image processing method for cup-

to-disc ratio measurement on images taken by mobile phones. An important

motivation of the study was the comparison of the mobile platform with the

clinical setting, so images were acquired from the same patients by both mobile

and office-based cameras. Cup-to-disc ratio calculation was based on the fusion

of several OD detectors. After the segmentation of the OD region, each pixel

was classified based on its intensity as an OD, OC or vessel one. The steps

of the proposed method are also shown in Figure 11. It has been found that

the accuracy drops only moderately on the mobile platform comparing with the

clinical one.

(a) (b) (c) (d)

Figure 11: The results of [133] for OD and OC segmentation on a mobile (top row) and

a clinical (bottom row) fundus image; (a) original images, (b) OD centers and average size

OD discs, (c) precise OD boundary extracted by active contour, (d) OD and OC pixels after

classification.

5. Conclusions

The efficiency of the state-of-the-art methods summarized in this paper are

measured on images belonging to public and non-public datasets. Although
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the objectivity of these quantitative measures are evident, less is known about

how these algorithms are expected to perform in general. For example, most

papers do not mention how the selected image acquisition technique or image

resolution affects the overall performance of these methods. Thus, it would be

a very precious future practice to evaluate regarding several factors to allow

other researchers to fine tune the parameter settings of the algorithms for their

specific image data, as it is done e.g. in [134] for noise filtering. Though in this

work we focus on fundus photography, from other image acquisition techniques

we can highlight optical coherence tomography with the corresponding image

analytic methods [135, 136].

As for performance, the accuracies of the algorithms are generally considered

as primarily important. On the other hand, some approaches, like the fusion-

based ones discussed in the paper, can be expected to raise accuracy at the

expense of computational time. Unfortunately, proper benchmarking analyses

are often omitted in the presentation of the algorithms, and the rapid devel-

opment of computer hardware and the various hardware platforms also make a

quantitative comparison of the execution times challenging. However, observ-

ing the methodologies the algorithms are generally based on we can draw some

conclusions. For example, the growing amount of clinically annotated images

should lead to the raise of detection accuracy for algorithms considering machine

learning without increasing the processing time of an image to be evaluated.

On the other hand, the offline learning process may become computationally

very demanding. Algorithms considering filters based on local neighborhoods

can improve their accuracies with reacting to higher resolution with simply

increasing the size of the filters for the cost of execution time. As a critical

issue regarding computational performance, possibilities of distributed process-

ing should be checked in each method. Parallel implementations can be easily

provided for pixel- and region-level feature extraction or image-level processing.

For algorithms having free parameters, the optimal settings of them for differ-

ent datasets can be determined by stochastic optimization, which approaches

also offer heuristic parallel search strategies at the expense of a slight risk for
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dropping some accuracy. In several methods, an efficient solution to reduce the

computational time is to substitute processes operating in the spatial domain

with alternatives in the frequency domain. Algorithms interpreting an image

in a wider biological context are challenging to make computationally efficient.

For example, if the detected components and relations are processed by graph

algorithms, the solutions can be found only in heuristic ways.

As a brief summary of this review we can claim that the comprehensive

predictive and exploratory investigation of medical data – including the auto-

matic analysis of retinal images – has the potential to effectively support clinical

decision-making and with the progress towards personalized medicine it will be-

come indispensable.
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Appendix

Table 1: Algorithms for the localization and segmentation of the OD.

Authors Method Database(s) used No. of

images

Performance

measure

Lalonde et al. [27] pyramidal decomposition, template matching non-public dataset 40 ACC 1.0000

Lu and Lim [28] line operator DIARETDB0, DIARETDB1,

DRIVE, STARE

340 ACC 0.9735

Hoover and Goldbaum [29] fuzzy convergence of the retinal vessels STARE 81 ACC 0.89

Foracchia et al. [31] modeling the direction of the retinal vessels STARE 81 ACC 0.9753

Youssif et al. [32] 2D Gaussian matched filtering, morphological op-

erations

DRIVE; STARE 121 ACC 1.00; ACC 0.9877

Abràmoff and Niemeijer [33] kNN location regression non-public dataset 1000 ACC 0.9990

Sekhar et al. [34] morphological operations, Hough transform DRIVE; STARE 55 ACC 0.947; ACC 0.823

Zhu and Rangayyan [35] edge detection, Hough transform DRIVE 40 ACC 0.9250

Lu [36] circular transformation ARIA, Messidor, STARE 1401 ACC 0.9950

Qureshi et al. [112] majority voting-based ensemble DIARETDB1; DIARETDB1;

DRIVE

259 ACC 0.9679; ACC 0.9402;

ACC 1.00

Harangi and Hajdu [113] weighted majority voting-based ensemble DIARETDB0; DIARETDB1 219 PPV 0.9846; PPV 0.9887

Hajdu et al. [39] spatially constrained majority voting-based en-

semble

non-public dataset; Messidor 1527 ACC 0.921; ACC 0.981

Tomán et al. [40] spatially constrained weighted majority voting-

based ensemble

Messidor 1200 ACC 0.98

Yu et al. [37] template matching, hybrid level-set model Messidor 1200 ACC 0.9908

Cheng et al. [38] superpixel classification non-public dataset 650 ACC 0.915
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Table 2: Algorithms for the localization and segmentation of the macula and the fovea.

Authors Method Database(s) used No. of

images

Performance

measure

Sinthanayothin et al. [47] template matching, positional constraints non-public dataset 112 SE 0.804, SP 0.991

Li and Chutatape [48] pixel intensity, positional constraints non-public dataset 89 ACC 1.00

Tobin et al. [49] parabolic model non-public dataset 345 ACC 0.925

Chin et al. [50] minimum vessel density, positional constraints non-public dataset; Messidor 419 ACC 0.8534; ACC

0.7294

Niemeijer et al. [51] point distribution model non-public datasets 500;

100

ACC 0.944; ACC 0.920

Niemeijer et al. [52] kNN regression non-public datasets 500;

100

ACC 0.968; ACC 0.890

Welfer et al. [53] mathematical morphology DIARETDB1; DRIVE 126 ACC 0.9213; ACC 1.00

Antal and Hajdu [54] intensity thresholding DIARETDB0; DIARETDB1;

DRIVE

199 ACC 0.86; ACC 0.92;

ACC 0.68
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Table 3: Algorithms for the segmentation of the retinal blood vessel system.

Authors Method Database(s) used No. of

images

Performance

measure

Soares et al. [61] 2D Gabor wavelet, Bayesian classification DRIVE; STARE 60 AUC 0.9614; AUC 0.9671

Lupaşcu et al. [62] AdaBoost-based classification DRIVE 20 AUC 0.9561, ACC 0.9597

Chaudhuri et al. [63] 2D matched filters non-public dataset NA NA

Kovács and Hajdu [64] template matching, contour reconstruction DRIVE; STARE; HRF 105 ACC 0.9494; ACC 0.9610;

ACC 0.9678

Annunziata et al. [65] Hessian eigenvalue analysis, exudate inpainting STARE; HRF 65 ACC 0.9562; ACC 0.9581
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Table 4: Algorithms for the classification of arteries and veins.

Authors Method Database(s) used No. of

images

Performance (ACC)

Zamperini et al. [66] supervised classifiers non-public dataset 42 0.9313

Relan et al. [67] GMM-EM clustering non-public dataset 35 0.92

Dashtbozorg et al. [68] graph-based classification DRIVE; INSPIRE-AVR [86];

VICAVR [137]

138 0.874; 0.883; 0.898

Estrada et al. [69] graph-based framework, global likelihood model non-public dataset;

1:2:DRIVE; INSPIRE-AVR

110 0.910; 1:0.935, 2:0.917;

0.909

Relan et al. [70] LS-SVM classification non-public dataset; DRIVE 90 0.9488; 0.894
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Table 5: Algorithms for the assessment of vessel tortuosity.

Authors Method Database(s) used No. of

images

Performance (SCC)

Grisan et al. [73] inflection-based measurement RET-TORT [73] 60 0.949 (artery), 0.853 (vein)

Poletti et al. [75] combination of measures non-public dataset 20 0.95

Oloumi et al. [76] angle-variation-based measurement non-public dataset 7 NA

Trucco et el. [79] curvature and vessel width-based measurement DRIVE 20 NA

Aghamohamadian-Sharbaf

et al. [80]

curvature-based measurement RET-TORT 60 0.94
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Table 6: Algorithms for the detection of MAs.

Authors Method Database(s) used No. of

images

Performance

measure

Walter et al. [88] Gaussian filtering, top-hat transformation non-public dataset 94 SE 0.885 (FPI 2.13)

Spencer et al. [89] morphological operators, matched filtering non-public dataset NA SE 0.824, SP 0.856

Niemeijer et al. [91] kNN pixel classification non-public dataset 140 SE 1.00, SP 0.87

Mizutani et al. [92] double-ring filter, neural network classification ROC 50 SE 0.648 (FPI 27.04)

Fleming et al. [93] contrast normalization, watershed region growing non-public dataset 1441 SE 0.854, SP 0.831

Abdelazeem [94] circular Hough transformation non-public dataset 3 NA

Lázár and Hajdu [96] directional cross-section profiles non-public dataset; ROC 110 RS 0.233; RS 0.423

Zhang et al. [97] multi-scale correlation coefficients ROC 50 RS 0.357

Antal and Hajdu [115] ensemble-based detection ROC 50 RS 0.434
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Table 7: Algorithms for the detection of exudates.

Authors Method Database(s) used No. of

images

Performance

measure

Ravishankar et al. [22] mathematical morphology non-public dataset, DI-

ARETDB0, DRIVE, STARE

516 SE 0.957, SP 0.942

Walter et al. [100] mathematical morphology non-public dataset 30 SE 0.928, PPV 0.924

Sopharak et al. [101] optimally adjusted morphological operators non-public dataset 60 SE 0.80, SP 0.995

Welfer et al. [102] mathematical morphology DIARETDB1 89 SE 0.7048, SP 0.9884

Sopharak et al. [103] fuzzy c-means clustering, morphological oper-

ators

non-public dataset 40 SE 0.8728, SP 0.9924

Sopharak et al. [104] Naive Bayes and SVM classification non-pubic dataset 39 SE 0.9228, SP 0.9852

Sánchez et al. [105] linear discriminant classification non-public dataset 58 SE 0.88 (FPI 4.83)

Niemeijer et al. [106] kNN and linear discriminant classification non-public dataset 300 SE 0.95, SP 0.86

Garćıa et al. [107] 1:MLP, 2:RBF, and 3:SVM classification non-public dataset 67 1:SE 0.8814, PPV 0.8072; 2:SE

0.8849, PPV 0.7741; 3:SE

0.8761, PPV 0.8351

Harangi et al. [108] active contour fusion, region-wise classification 1:DIARETDB1; 2:HEI-MED 258 1:SE 0.86, PPV 0.84 (lesion

level); 1:SE 0.92, SP 0.68 (im-

age level); 2:SE 0.87, SP 0.86

(image level)

Nagy et al. [114] majority voting-based ensemble DIARETDB1 89 SE 0.72, PPV 0.77
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hardt, M. D. Abràmoff, Vessel boundary delineation on fundus images us-

ing graph-based approach, IEEE Transactions on Medical Imaging 30 (6)

(2011) 1184–1191. doi:http://dx.doi.org/10.1109/TMI.2010.2103566.

[88] T. Walter, P. Massin, A. Erginay, R. Ordonez, C. Jeulin, J.-

C. Klein, Automatic detection of microaneurysms in color fun-

dus images, Medical Image Analysis 11 (6) (2007) 555–566.

doi:http://dx.doi.org/10.1016/j.media.2007.05.001.

[89] T. Spencer, J. A. Olson, K. C. McHardy, P. F. Sharp, J. V. For-

rester, An image-processing strategy for the segmentation and quan-

tification of microaneurysms in fluorescein angiograms of the ocular

fundus, Computers and Biomedical Research 29 (4) (1996) 284–302.

doi:http://dx.doi.org/10.1006/cbmr.1996.0021.

47



[90] A. J. Frame, P. E. Undrill, M. J. Cree, J. A. Olson, K. C. McHardy,

P. F. Sharp, J. V. Forrester, A comparison of computer based classifica-

tion methods applied to the detection of microaneurysms in ophthalmic

fluorescein angiograms, Computers in Biology and Medicine 28 (3) (1998)

225–238. doi:http://dx.doi.org/10.1016/S0010-4825(98)00011-0.

[91] M. Niemeijer, B. van Ginneken, J. Staal, M. S. A. Suttorp-Schulten, M. D.
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J. Tőzser, A. Hajdu, V. Nagy, B. Domokos, A. Csutak, Combined meth-

ods for diabetic retinopathy screening, using retina photographs and

tear fluid proteomics biomarkers, Journal of Diabetes Research 2015.

doi:http://dx.doi.org/10.1155/2015/623619.
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A. Berta, J. Tőzser, A. Hajdu, V. Nagy, B. Domokos, A. Csutak, Tear

fluid proteomics multimarkers for diabetic retinopathy screening, BMC

Ophthalmology 13 (1) (2013) 1–8. doi:http://dx.doi.org/10.1186/1471-

2415-13-40.

[100] T. Walter, J.-C. Klein, P. Massin, A. Erginay, A contribu-

tion of image processing to the diagnosis of diabetic retinopathy-

detection of exudates in color fundus images of the human retina,

IEEE Transactions on Medical Imaging 21 (10) (2002) 1236–1243.

doi:http://dx.doi.org/10.1109/TMI.2002.806290.

[101] A. Sopharak, B. Uyyanonvara, S. Barman, T. H. Williamson,

Automatic detection of diabetic retinopathy exudates from non-

dilated retinal images using mathematical morphology methods, Com-

puterized Medical Imaging and Graphics 32 (8) (2008) 720–727.

doi:http://dx.doi.org/10.1016/j.compmedimag.2008.08.009.

[102] D. Welfer, J. Scharcanski, D. R. Marinho, A coarse-to-fine strat-

egy for automatically detecting exudates in color eye fundus images,

Computerized Medical Imaging and Graphics 34 (3) (2010) 228–235.

doi:http://dx.doi.org/10.1016/j.compmedimag.2009.10.001.

[103] A. Sopharak, B. Uyyanonvara, S. Barman, Automatic exudate de-

tection from non-dilated diabetic retinopathy retinal images us-

49



ing fuzzy C-means clustering, Sensors 9 (3) (2009) 2148–2161.

doi:http://dx.doi.org/10.3390/s90302148.

[104] A. Sopharak, M. N. Dailey, B. Uyyanonvara, S. Barman,

T. Williamson, K. T. Nwe, Y. A. Moe, Machine learning ap-

proach to automatic exudate detection in retinal images from di-

abetic patients, Journal of Modern Optics 57 (2) (2010) 124–135.

doi:http://dx.doi.org/10.1080/09500340903118517.

[105] C. I. Sánchez, R. Hornero, M. I. López, M. Aboy, J. Poza, D. Abásolo, A
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