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ON SIMULTANEOUS PALINDROMES

ATTILA BÉRCZES AND VOLKER ZIEGLER

Abstract. A palindrome in base g is an integer N that remains the same when its digit
expansion in base g is reversed. Let g and h be given distinct integers > 1. In this paper
we discuss how many integers are palindromes in base g and simultaneously palindromes in
base h.

1. Introduction

Let a, g ∈ Z with a ≥ 0 and g ≥ 2. If a has a symmetric digit expansion in base g, i.e. a
read from left to right is the same as read from right to left, then we call a a palindrome in
base g. In particular, we will use the following definition

Definition 1. Let a be a positive integer with g-adic digit expansion

a =
k∑

i=0

aig
i, with ai ∈ {0, 1, . . . , g − 1}, and ak 6= 0

then we write

(a)g =

k∑

i=0

aig
k−i

for the digit reversed companion to a. We call a a palindrome in base g, if we have a = (a)g.

There is a rich literature on integers that are as well palindromes for some fixed base g
as well have some other property like being a square [Kor91], a k-th power [HHL06, CLS09],
almost a k-th power [Sim72, LT08], member of a recurrence sequence [Luc03] or some other
sequences (in case of arithmetic sequence see [Col09]), a prime [BHS04] and many other
properties. Also some authors considered the case of palindromes that are palindromes in
two or more bases simultaneously. In particular, Goins [Goi09] proved that there are only
finitely many palindromes in base 10 with d ≥ 2 digits and N is at the same time a palindrome
with d digits in a base b 6= 10 (for a similar result see also [Baš12]). On the other hand Luca
and Togbé [LT08] proved that there are only finitely many binary palindrome which are
decimal Palindromes of the form 10n ± 1.

In this paper we consider the following problem

Problem 1. For which pairs of bases (g, h) ∈ Z2 with 2 ≤ h < g are there only finitely many
positive integers that are simultaneously palindromes in base g and h.
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2 A. BÉRCZES AND V. ZIEGLER

Note that the answer to this problem is negative if g = hk for some k ≥ 2, since all integers
of the form gn ± 1 are palindromes in base g as well as in base h. Therefore we consider
Problem 1 only for bases g, h such that g is not a perfect power of h.

Unfortunately we cannot give an answer to this problem yet, but using ideas form Luca
and Togbé [LT08], who proved the finiteness of binary palindromes of the form 10n ± 1, we
were able to prove the following theorem.

Theorem 1. Let 2 ≤ h < g be integers and assume that h|g and that h and g are multiplica-

tively independent. If N = agn + (a)g is a palindrome in base h, then

n ≤ max

{
log ga

log h
,
log g(log(agh))2

(log 2)3
, 1.91 · 107 log a(log log a)3,

5.11 · 1012 log g log(agh)(log(log g log(agh)))2
}

.

Note that the result of Luca and Togbé [LT08] can be derived form our Theorem 1 togehter
with an extensive computer search. In particular, if we put h = 2, g = 10 and a some integer
smaller than 106 then Theorem 1 implies that N = a10n + (a)10 can be a binary palindrome
only if n ≤ 2.65 · 1015. Our second result is:

Theorem 2. Let 2 ≤ h < g be fixed integers and assume that h|g and that h and g are

multiplicatively independent. For all ǫ > 0 there are at least Ωǫ,g,h(x
1/2−ǫ) palindromes N ≤ x

in base g that are not palindromes in base h. Moreover the constants involved in the Ω-term
are explicitly computable.

This theorem means that for h | g most numbers which are palindromes in base g are not
palindromes in base h.

The above Theorems 1 and 2 can both be deduced from the following lemma

Lemma 1. Let 2 ≤ h < g be integers and assume h|g and h and g are multiplicatively
independent. Moreover, let N be a palindrome in bases g of the form

agn +
n−m−1∑

i=0

aig
i, ai ∈ {0, 1, . . . , g − 1},

where n ≥ m+1 and a = (an−m−1 . . . a0)g is an (n−m)-digit number in base g. This means
that N is a palindrome in base g starting with the digits of a (in base g) followed by m zeros.
If

m > C(a, g, h, n) := max

{
log ga

log h
,
log g(log(agh))2

(log 2)3
,

142(log n)2, 2.022 · 1010 log g log(agh) log n
}

then N cannot be a palindrome in base h.

More precisely assume that m > (log ga)/(log h) and write α = a/
(

(a)g

)

h
. If g, h and α

are multiplicatively independent then N can be a palindrome in base h only if

(1) |log α− k log h+ n log g| <
11

9h−m
.
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If αr = gsh−t for some integers r, s, t not all zero, then N is a palindrome in base h only if

(2) |(n+ s) log g − (k + t) log h| <
11r

9h−m
.

Note that for proving Theorems 1 and 2 only the first part of the lemma is essential. How-
ever the second part of the lemma is useful if one wants to find all simultaneous palindromes
of a special form, e.g. finding all binary palindromes of the form a10n + (a)10 for some fixed
a.

In the next section we will give a proof of the fundamental Lemma 1 and in Section 3 we
deduce Theorems 1 and 2 from that lemma. In Section 4 we present some numeric results
on simultaneous palindromes in bases 2 and 10. In the last section we present some numeric
results for other bases.

2. Proof of the main lemma

The purpose of this section is to prove Lemma 1. Therefore assume that N is a palindrome
in base g as well as in base h. Let na = ⌊(log a)/(log g)⌋ + 1 be the number of digits of a in
base g. Since N is a palindrome in bases g as well as in base h and since h|g we have

N ≡ (a)g mod hm+na .

Therefore we know the last m+ na digits of N in base h, provided that (a)g < hm+na .

Lemma 2. (a)g < hm+na if m > (log ga)/(log h).

Proof. Note that a and (a)g have the same number of g-adic digits, i.e. (a)g < ag. Using the

formula for na we see that (a)g < hm+na if ga < hmhlog a/ log g+1, hence

log ga

log h
−

log a

log g
− 1 <

log ga

log h
< m

implies (a)g < hm+na . �

Therefore we assume from now on m > (log ga)/(log h). Because N is a palindrome in base
h we also know the first m+ na digits of N in base h. In particular, we have

N =
(

(a)g

)

h
hk +

k−m̃−1∑

i=0

bih
i,

where m̃ = m + na − ña with ña denoting the number of digits of
(

(a)g

)

h
in base h, and

where

k =







logN − log
(

(a)g

)

h

log h





 .

Since

m+ na = m̃+







log
(

(a)g

)

h

log h





+ 1
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we have

m̃ = m+

⌊

log (a)g
log g

⌋

−







log
(

(a)g

)

h

log h





 .

This yields the following inequality for N :
(

(a)g

)

h
hk + hk−m̃ > N >

(

(a)g

)

h
hk.

Dividing this inequality through
(

(a)g

)

h
hk yields

(3)

∣
∣
∣
∣
∣
∣
∣

agn
(

(a)g

)

h
hk

− 1

∣
∣
∣
∣
∣
∣
∣

<
h−m̃

(

(a)g

)

h

On the other hand

h−m̃

(

(a)g

)

h

= h
−m−

⌊

log (a)g
log g

⌋

+









log ((a)g)
h

log h







−
log((a)g)

h
log h

≤ h−m ≤
1

4

provided m ≥ 2. Writing α := a/
(

(a)g

)

h
and using that the inequality log |1 − x| ≤ 11x/9

holds, provided x ≤ 1/4, which can easily be proved by a Taylor expansion with Cauchy’s
remainder term from equation (3) we obtain

(4) |log α− k log h+ n log g| ≤
11

9h−m
,

which is inequality (1) in Lemma 1. Inequality (2) is deduced from (4) by multiplying it by
r and noting that r log α = s log g − t log h.

We distinguish now between two cases. The first case is that α is multiplicatively indepen-
dent of g and h and the second is that α is multiplicatively dependent of g and h. The first
case requires lower bounds for linear forms in three logarithms (we will use a result due to
Matveev [Mat00]) and in the second case our inequality will reduce to an inequality in linear
forms in two logarithms, where sharper bounds are known (we will use a result due to Laurent
et. al. [LMN95]). Unfortunately using this result will involve the prime decompositions of
g, h and α.

We start with the first case. Let us state Matveev’s theorem [Mat00]:

Theorem 3. Denote by α1, . . . , αn algebraic numbers, not 0 nor 1, by log α1, . . ., logαn deter-
minations of their logarithms, by D the degree over Q of the number field K = Q(α1, . . . , αn),
and by b1, . . . , bn rational integers. Furthermore let κ = 1 if K is real and κ = 2 otherwise.
Choose

Ai ≥ max{Dh(αi), | log αi|} (1 ≤ i ≤ n),

where h(α) denotes the absolute logarithmic Weil height of α and

B = max{1,max{|bj |Aj/An : 1 ≤ j ≤ n}}.

Assume bn 6= 0 and log α1, . . . , log αn are linearly independent over Z; then

log |b1 logα1 + · · ·+ bn log αn| ≥ −C(n)C0W0D
2Ω,
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with

Ω = A1 · · ·An,

C(n) = C(n, κ) =
16

n!κ
en(2n+ 1 + 2κ)(n + 2)(4(n + 1))n+1

(
1

2
en

)κ

,

C0 = log
(
e4.4n+7n5.5D2 log(eD)

)
, W0 = log(1.5eBD log(eD)).

We will apply Theorem 3 directly to (4). Obviously κ = 1 and D = 1, and we may choose

A1 = log(agh) since a,
(

(a)g

)

h
< agh, A2 = log h and A3 = log g. Next we have to estimate

B:

Lemma 3. B < 2n if m ≥ 2 > (log h)/(log g) + 1.

Proof. First note that 2n > (log α)/(log g) = |b1|A1/A3, since

m ≥ 1 >
log g + log h

2 log g
>

log α

2 log g

and n ≥ m.
Furthermore, we have the inequality

2n =
2 logN − 2 log a

log g

>
logN − log

(

(a)g

)

h
− log h− log g + logN − log a

log g

= k
log h

log g
+ n−

log h

log g
− 1 > k

log h

log g
= |b2|

A2

A3

.

�

Therefore we obtain W = 1.152 log n provided n > m ≥ 106. Now Theorem 3 together
with inequality (4) yields

2.022 · 1010 log g(log agh) log n > m,

which proves the first case. Note that the bound 2.022 · 1010 log g(log agh) log n contains the
bound m ≤ 106 in any case.

Now we consider the second case. Since by assumption α, g and h are multiplicatively
dependent, but g and h are multiplicatively independent thus there exist integers r, s, t with
greatest common divisor 1 such that αr = gsht with r 6= 0.

Lemma 4.

|r| ≤
log g log h(log agh)

(log 2)3
, |s| ≤

log h(log agh)2

(log 2)3
, |t| ≤

log g(log agh)2

(log 2)3

Proof. Now let p1, p2 be primes that divide gh, let eβ,i = vpi(β) for i = 1, 2 and β ∈ {g, h, α}.
Here vp(x) denotes the p-adic valuation of x. Further, assume that the vectors (eg,1, eh,1) and
(eg,2, eh,2) are linearly independent over Z2. Note that this pair of primes exists since g and
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h are multiplicatively independent. A technical but easy computation shows that

s =(eh,1eα,2 − eh,2eα,1)eα2 ;

t =(eg,1eα,2 − eg,2eα,1)eα2 ;

r =(eg,2eh,1 − eg,1eh,2)eα2

is a solution and since (eg,1, eh,1) and (eg,2, eh,2) are linearly independent r 6= 0. The statement
of the lemma now follows from the simple estimates

eh,i ≤
log h

log 2
; eg,i ≤

log g

log 2
; |eα,i| ≤

log(agh)

log 2
;

for i = 1, 2. �

We multiply inequality (4) by r and obtain

(5) |(n+ s) log g − (k + t) log h| <
r11

9h−m

This time we apply the following result due to Laurent et. al. [LMN95]:

Theorem 4. Let α1 and α2 be two positive, real, multiplicatively independent elements in a
number field of degree D over Q. For i = 1, 2, let log αi be any determination of the logarithm
of αi, and let Ai > 1 be a real number satisfying

logAi ≥ max{h(αi), | log αi|/D, 1/D}.

Further, let b1 and b2 be two positive integers. Define

b′ =
b1

D logA2

+
b2

D logA1

and log b = max

{

log b′ + 0.14, 21/D,
1

2

}

.

Then

|b2 logα2 − b1 log α1| ≥ exp
(
−24.34D4(log b)2 logA1 logA2

)
.

We choose α1 = g and α2 = h, thus we have D = 1. Put logA1 = log g and logA2 =
(log h)/(log 2) ≥ 1 and start with estimating b′:

b′ =
(n+ s) log 2

log h
+

k + t

log g

<
2n

log h
+

1

log g
+

2

log h
+

≤
s log 2
log h

+ t
log g

︷ ︸︸ ︷(
1

(log 2)2
+

1

(log 2)3

)

(log agh)2

<
2n

log h
+ 6.3(log agh)2 <

4n

log h
< 6n

provided that n > m > 3.15 log h(log agh)2. Note that the first inequality is true because of

k =







logN − log
(

(a)g

)

h

log h







<
log a+ (n + 1) log g − log a+ log g + log h

log h
= n

log g

log h
+

2 log g

log h
+ 1.
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The inequality for b′ now implies that we may choose

log b = 2 log n > max{log n+ log 6 + 0.14, 21}

provided that n > m > 37000. Now Theorem 4 yields

141(log n)2 log g log h < m log h+ log(9/11) − log

(
log g(log agh)2

(log 2)3

)

.

Let us assume n > m > (log g)(log agh)2/(log 2)3 and since we also assume n > m > 37000
this last inequality turns into

142(log n)2 log g > m.

Therefore we have completely proved Lemma 1.
Note that all our assumptions on m made during the proof together with the bounds for

m cumulate in the lower bound of Lemma 1.

3. Proof of Theorems 1 and 2

We start with the proof of Theorem 1. In this case N = agn + (a)g and therefore

m = n−

⌊
log a

log g

⌋

> n−
log a

log g
− 1.

In view of Lemma 1 this implies: If n > C(a, g, h, n) + (log a)/(log g) + 1, then N is not a
palindrome in base h. Let us consider the two inequalities n > 142(log n)2 + (log a)/(log g)
and n > 2.022 · 1010 log g log(agh) log n + (log a)/(log g). We note that the largest solution
to n = A log n + B is smaller than the largest solution to n/ log n = A + B/ logA and
the largest solution to n/ log n = C is smaller than x(log x)2 provided x > e2. Now let
A = 2.022 · 1010 log g log(agh) and B = (log a)/(log g) + 1, then

A+
B

logA
= 2.022 · 1010 log g log(agh) +

log a
log g + 1

23.73 + log(log g log(agh)

< 2.023 · 1010 log g log(agh).

Therefore the inequality n > 2.022 · 1010 log g log(agh) log n + (log a)/(log g) + 1 is fulfilled
whenever

n > 5.11 · 1012 log g log(agh)(log(log g log(agh)))2.

Similarly the largest solution to n = A(log n)2 + B is smaller than the largest solution
to n/(log n)2 = A + B/(logA)2 and the largest solution to n/(log n)2 = C is smaller than
x(log x)3 provided x > 62. This time we put A = 142 and B = (log a)/(log g) + 1 and

A+
B

(logA)2
< 142 +

log a

24.56 log g
+ 0.041.

If a ≤ 2, then the lower bound for n will be 17295 which is absorbed by the much larger
bound found in the paragraph above. Therefore we may assume that a ≥ 3 and obtain

A+
B

(logA)2
= 142 +

log a

24.56 log g
< 130 log a

and therefore the inequality n > 142(log n)2 + (log a)/(log g) is fulfilled if

n > 1.91 · 107 log a(log log a)3.

Therefore the proof of Theorem 1 is complete.
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We turn now to the proof of Theorem 2. We consider palindromes described in Lemma
1 with a < g and m = (log n)3. Then by Lemma 1 we know that for some constant Cg,h

depending only on g and h we have m > C(a, g, h, n) (see Lemma 1) for all n > Cg,h, i.e.
these palindromes cannot be palindromes in base h if n > Cg,h. On the other hand there are

≫ x1/2−ǫ palindromes of the described form provided 1/(log n)3 > ǫ, which proves Theorem
2.

4. Numerical Considerations

The purpose of this section is to consider the case g = 10 and h = 2 more closely and
think of it as a model case. The aim is to find decimal palindromes that are also binary
palindromes, however we did not find many such palindromes.

Proposition 1. Let N < 1018 be a palindrome in base 10 which is also a binary palindrome,
then N is one of the following 62 palindromes:

1, 3, 5, 7, 9, 33, 99, 313, 585, 717, 7447, 9009, 15351, 32223, 39993, 53235,

53835, 73737, 585585, 1758571, 1934391, 1979791, 3129213, 5071705, 5259525,

5841485, 13500531, 719848917, 910373019, 939474939, 1290880921,

7451111547, 10050905001, 18462126481, 32479297423, 75015151057,

110948849011, 136525525631, 1234104014321, 1413899983141,

1474922294741, 1792704072971, 1794096904971, 1999925299991,

5652622262565, 7227526257227, 7284717174827, 9484874784849,

34141388314143, 552212535212255, 1793770770773971, 3148955775598413,

933138363831339, 10457587478575401, 10819671917691801, 18279440804497281,

34104482028440143, 37078796869787073, 37629927072992673, 55952637073625955,

161206152251602161, 313558153351855313.

Proof. For all a < 1010 we construct decimal palindromes N < 1018 with an even number of
digits by reversing the digits of a and appending the reversed string of digits at the string of
digits of a, i.e. if a =

∑n
i=0 ai10

i we compute the palindrome

N =

n∑

i=0

ai10
n+1+i +

n∑

i=0

an−i10
i.

Similarly we construct for all a < 109 palindromes N < 1018 with an odd number of digits by

N =

n∑

i=0

ai10
n+i +

n−1∑

i=0

an−i10
i.

With this procedure we have a complete list of all decimal palindromes N < 1018.
Now we test for each decimal palindrome N whether it is a binary palindrome by the

following algorithm. First we compute the number of binary digits

k =

⌊
logN

log 2

⌋

+ 1.
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Let us put nk = n0 = N and compute subsequently for all 0 ≤ i ≤ ⌊k/2⌋ the i-th highest and
i-th lowest binary digits of N

dk−i =
⌊nk−i

2k−i

⌋

, di = ni mod 2

and

nk−i−1 =
nk−i − 2k−idk−i

2
, ni+1 =

ni − di
2

. If dk−i 6= di for some i then N is not a binary palindrome. If dk−i = di for all 0 ≤ i ≤ ⌊k/2⌋
then N is also a binary palindrome.

Note that if N is not a binary palindrome we do not have to compute all binary digits of N
and in many cases after computing a few digits of N will yield a result. Indeed implementing
this algorithm in sage [S+13] and running it on a usual workstation we used about ?? hours
of CPU time. �

Remark 1. We want to note that in the On-Line Encyclopedia of Integer Sequences [OEIS]
the list of the palindromes in bases 2 and 10 as sequence A060792. However, the list includes
only the simultaneous palindromes up to 7451111547.

Proposition 2. Let N = a10n+(a)10 be a binary palindrome with 10 ∤ a and a < min{106, 10n},
then it is already contained in the list of palindromes in Proposition 1.

In order to prove this proposition we have to consider the Diophantine inequalities (4) and
(5). An upper bound for m is given by Lemma 1 but this bound is very huge. Therefore we
will use continued fractions in case of (2) and a method due to Baker and Davenport [BD69]
to reduce the upper bound in case of (1). Let us state a variant of this reduction method:

Lemma 5. Given a Diophantine inequality of the form

(6) |n1 + n2ǫ+ δ| < c1 exp(−n2c2)

Assume n2 < X and assume that there is a real number κ > 1 and also assume there exists
a convergent p/q to ǫ with X/q < 1/(2κ) such that

‖qǫ‖ <
1

2κX
and ‖qδ‖ >

1

κ
,

‖qδ‖ > 1
/κ, where ‖ · ‖ denotes the distance to the nearest integer. Then we have

n2 ≤
log(2κqc1)

c2
.

Proof. We consider inequality (6) and we multiply it by q. Then under our assumptions we
obtain

c1q exp(−n2c2) > |qn1 + n2qǫ+ qδ| ≥ |‖n2qǫ‖ − ‖qδ‖| >
1

2κ
.

The last inequality holds since p/q is a convergent to ǫ and therefore |ǫq − p| < 1/q. Solving
this inequality for n2 we obtain the lemma. �

Proof of Proposition 2. Now let us apply the second part of Lemma 1 to the present situation.
Since we assume a < 106 we have m ≥ n − (log a)/(log 10) > n − 6. And therefore either
n > 30 or one of the two inequalities (1) and (2) are fulfilled with n ≤ 2.65 · 1015 := X - since
the upper bound for n obtained in Theorem 1. We have to distinguish between the two cases
αr = 10s2t or α, 2 and 10 are multiplicatively independent.
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In the second case we divide by log 2 and obtain inequality (6), with n1 = k, n2 = n,
ǫ = (log 10)/(log 2), δ = (log α)/(log 2), c1 = (11 · 26)/(9 log 2) and c2 = log 2. With this
choice we apply Lemma 5. Since ǫ is independent of a we can precompute suitable pairs
(q, κ) which may be applied to our situation. Therefore we compute the first 50 convergents
to (log 10)/(log 2). For each convergent p/q with q > 1.06 · 1016 we form the pair (q, κ)with
κ := 2X/q and get a list of 16 potential pairs applicable to Lemma 5. Now let us fix a. We
subsequently test whether in our list is a pair (q, κ) such that ‖qδ‖ > 1/κ, hence by Lemma 5
we get a new bound that should be rather small and indeed in all cases our new bound yields
n ≤ 81. Further we want to emphasize that it is highly improbable that for a given a no pair
of our list of candidates yields an application of Lemma 5 and therefore no new upper bound
for n. Therefore we are left to test all remaining n for our fixed a, which can be done by a
quick computer search.

In case of αr = 10s2t for some integers r, s, t with r2 + s2 + t2 6= 0 we know that we can
choose r = 1. Indeed the free Z-Module generated by {log 10, log 2} is the same as the free
Z-Module generated by {log 5, log 2} and log α is contained in the later one and therefore also
in the first Z-Module. Now we obtain by Lemma 1 and in particular by inequality (2)

∣
∣
∣
∣

log 10

log 2
−

k + t

n+ s

∣
∣
∣
∣
<

11 · 26

9 · 2−n(n+ s) log 2
.

Note that therefore (k+ t)/(n+ s) has to be a convergent to (log 10)/(log 2) unless n ≤ 30 or

1

2(n+ s)2
<

11 · 28

9 · 2n(n+ s) log 2
.

Let us note that this inequality does not hold for large n, in particular in all cases that we
consider we can choose the bound n ≥ 30. Therefore we know that n+ s has to be a multiple
of q, where p/q is a convergent to (log 10)/(log 2), i.e. n = kq − s for some positive integer
k. But, already for rather small k and fixed convergent p/q this choice will contradict the
inequality

(7)

∣
∣
∣
∣

log 10

log 2
−

p

q

∣
∣
∣
∣
<

11 · 26

9 · 2kq−s(kq) log 2
.

We claim that inequality (7) is never fullfilled for n ≥ 30. Since Lemma 4 we know s ≤ 34
and therefore we may assume q < 2.66 · 1015. In particular we have to prove inequality (7)
for 32 convergents. If we replace in (7) the quantities kq − s = n and kq = n + s by 30 -
we may do so since we assume n ≥ 30 - then inequality (7) is never satisfied by the first 8
convergents. For the remaining 24 cases we replace in (7) kq−s = n by q−34 and kq by q. If
this new inequality still holds also (7) holds. A quick computation using a computer algebra
system like sage [S+13] resolves this case.

Therefore we also have in this case a very efficient method to find all simultaneous palin-
dromes, i.e. we only have to test all n ≤ 30.

We implemented the idea above in sage [S+13] and computed for all 2 < a < 106 with

10 ∤ a and (a)10 is odd all n with a < min{106, 10n} such that N = a10n + (a)10 is a binary

palindrome. Note that in case of (a)10 is even then the last binary digit of N would be 0 and
N would not be a binary palindrome. The computer search took on a single PC about 80
minutes. �
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5. Other bases

In this section we want to discuss Problem 1 for further base pairs (h, g). In case of (h, g) =
(2, 10) the preceeding sections show that there are only few integers that are simultaneously
palindromes in bases 2 and 10. Looking at our results we even guess that there are only
finitely many simultaneous palindromes for the bases 2 and 10. In this last section we want
to present shortly our numeric considerations for other base pairs. In particular, we considered
the pairs (2, 3), (6, 15), (5, 7), (11, 13) and (7, 29) and counted the number N of simultaneous
palindromes smaller than some bound B. Our results are listed in Table 1 below. The
algorithms were implemented in sage [S+13] and were run on a single PC.

Table 1. Number of simultaneous palindromes

g h B N Time

2 3 366 ≃ 3.09 · 1031 9
6 15 620 ≃ 3.66 · 1015 58 1d 5h
5 7 524 ≃ 5.96 · 1016 57 7d 5h
11 13 1314 ≃ 3.94 · 1015 58 23h
7 29 720 ≃ 7.98 · 1016 73 7d 3h
2 10 1018 62 31d 17h

Let us note that the case g = 2 and h = 3 is included in the On-Line Encyclopedia of
Integer sequences [OEIS] as sequence A060792.

Looking at Table 1 the number of palindromes to the bases 2 and 3 simulaneously is very
small and indeed we are led by our numeric computations to the following problem:

Problem 2. Are there only finitely many positive integers that are palindromes in bases 2
and 3 simultaneously? If yes, how many are there? If there are infinitely many, find an
asymptotic formula for the number of positive integers ≤ N that are palindromes in bases 2
and 3 simultaneously.
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