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Abstract

Pennini and Plastino showed that the form of the Fisher information generated by the canonical

distribution function reflects the intrinsic structure of classical mechanics. Now, a quantum me-

chanical generalization of the Pennini - Plastino theory is presented based on the thermodynamical

transcription of the density functional theory. Comparing to the classical case, the phase–space

Fisher information contains an extra term due to the position dependence of the temperature.

However, for the special case of constant temperature, the expression derived bears resemblance to

the classical one. A complete analogy to the classical case is demonstrated for the linear harmonic

oscillator.
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I. INTRODUCTION

Fisher information [1] has received a growing interest in physics for about twenty years

[2]. A decade ago Pennini and Plastino [3] showed that the form of the Fisher information

generated by the canonical distribution function reflects the intrinsic structure of classical

mechanics. They proved that the Fisher information has a universal form containing the

derivatives of the generalized coordinates and momenta with respect to time.

A ”thermodynamical” interpretation of ground-state quantum mechanics is possible on

the grounds of density functional theory. About thirty years ago Ghosh, Berkowitz and

Parr published a paper entitled ”Transcription of ground-state density functional theory

into a local thermodynamics” [4]. They found a phase–space distribution function f(r,p)

by maximizing a phase–space Shannon information entropy subject to the conditions that f

yields the density n(r) and the local kinetic energy density of the system. A local Maxwell-

Boltzmann distribution function was obtained and the concept of local temperature was

developed. Several approximate expressions for important quantities such as exchange en-

ergy were derived [5]. Local entropy, free energy were defined and the analogy with the

classical thermodynamics of fluids was founded [6]. The formalism has been generalized in

several ways [7–17].

Here a quantum mechanical generalization of the Pennini - Plastino theory is presented

utilizing the thermodynamical transcription of the density functional theory. The form of

the phase–space Fisher information is not exactly the same as the classical one as there is an

extra term due to the position dependence of the temperature. However, if the temperature

is constant, a form resembling to the classical one is gained. A complete analogy to the

classical case is demonstrated for the linear harmonic oscillator.

In the following section the Pennini - Plastino theory is summarised. Section III. gives

the gist of the thermodynamical interpretation of ground-state quantum mechanics. Section

IV. presents the new theory: the phase–space Fisher information based on density functional

theory. The last section is devoted to illustrative examples and discussion.
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II. CLASSICAL SYSTEMS

First the classical results based on the work of Pennini and Plastino [3] are summarized.

Consider a classical system with degrees of freedom l. The phase-space coordinates are

denoted by z = (q1, ...ql, p1, ..., pl). In thermal equilibrium at the temperature T the canonical

probability density is

˜̺(z) =
e−β̃H(z)

Z
, (1)

where H is the Hamiltonian, β̃ = 1/(kT ) and k is Boltzmann’s constant. The partition

function reads

Z =

∫

dze−β̃H(z). (2)

The canonical equations

q̇i =
∂H(z)

∂pi
, (3)

ṗi = −
∂H(z)

∂qi
(4)

can be rewritten

q̇i = −kT
∂ ln ˜̺(z)

∂pi
, (5)

ṗi = kT
∂ ln ˜̺(z)

∂qi
(6)

with i = 1, ..., l. In deriving Eqs. (5) and (6) we utilized that

∂ ln ˜̺(z)

∂pi
= −β̃

∂H(z)

∂pi
, (7)

and

∂ ln ˜̺(z)

∂qi
= −β̃

∂H(z)

∂qi
. (8)

The phase space Fisher information has the form

I =
l
∑

i=1

∫

dz ˜̺(z)

(

a

[

∂ ln ˜̺(z)

∂pi

]2

+ b

[

∂ ln ˜̺(z)

∂qi

]2
)

, (9)
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where the coefficients a and b are introduced for dimensional reasons [18]. Making use of

Eqs. (7) and (8) we arrive at

I = β̃2

l
∑

i=1

∫

dz ˜̺(z)

(

a

[

∂H(z)

∂pi

]2

+ b

[

∂H(z)

∂qi

]2
)

. (10)

Substituting the canonical equations (3) and (4) into this form of the Fisher information the

final expression is gained:

I = β̃2
l
∑

i=1

(

a〈q̇2i 〉+ b〈ṗ2i 〉
)

. (11)

There are several related papers in the subject, see e.g. [19–22].

III. A ”THERMODYNAMICAL” TRANSCRIPTION OF QUANTUM MECHAN-

ICS

To present the quantum mechanical generalization of the Pennini-Plastino theory, the

Ghosh-Berkowitz-Parr transcription of the density functional theory [4] is utilized. In this

section this ”thermodynamical” transcription is summarized.

Consider a system of N electrons moving in a local external potential v(r). Based on

the Hohenherg-Kohn theorems [23] v(r) is determined within a trivial additive constant by

the knowledge of the ground-state electron density n(r) and the ground-state total energy

takes its minimum at the true density. According to the Kohn-Sham theory [24] there

exists a non-interacting system, where the electrons move independently in a common, local

(Kohn-Sham) potential.

Introduce a phase-space distribution function f(r,p) with the properties:
∫

dpf(r,p) = n(r) , (12)

∫

drn(r) = N , (13)

and
∫

dp
p2

2m
f(r,p) = ts(r) . (14)

m is the mass. The integral of the non-interacting kinetic energy density ts(r) gives the

non-interacting kinetic energy Ekin

Ekin =

∫

drts(r) . (15)
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Several distribution functions satisfy the marginal conditions (12-14). The general forms

of distribution functions satisfying somewhat different marginal conditions were studied by

Cohen [25]. Ghosh, Berkowitz and Parr selected a distribution function by maximizing the

entropy

S =

∫

drs(r) , (16)

s(r) = −k

∫

dpf(ln f − 1) (17)

subject to the constraints of correct density ( Eq. (12)) and correct non-interacting kinetic

energy ( Eq. (14)). k is the Boltzmann constant. They obtained a local Maxwell-Boltzmann

distribution function

f(r,p) = e−α(r)e−β(r)p2/2m , (18)

where α(r) and β(r) are r-dependent Lagrange multipliers. The local temperature T (r) is

defined in terms of the non-interacting kinetic energy density

ts(r) =
3

2
n(r)kT (r) , (19)

i.e. by the ideal gas expression. Eqs. (14), (18) and (19) lead to

β(r) =
1

kT (r)
(20)

and

f(r,p) = [2πmkT (r)]−3/2 n(r)e−p2/2mkT (r) . (21)

It can be rewritten as

f(r,p) = eµ/2kT (r)e−(p2/2m+veff )/kT (r) , (22)

where

veff = µ−
lnλ3n

β
(23)

and

λ =
1

2πmkT
. (24)

Note that this effective potential veff is not the same but related to the Kohn-Sham potential

[4].
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IV. FISHER INFORMATION AND QUANTUM SYSTEMS

Now we turn to the quantum mechanical generalization of the Pennini-Plastino theory

[3]. First define the phase-space distribution function ̺(r,p) as

̺(r,p) =
f(r,p)

N
=
e−βheff

N
, (25)

where

heff =
p2

2m
+ veff − µ . (26)

N appears in the definition of ̺(r,p) because the density integrates to the number of elec-

trons N ( Eq. (13)) in the density functional theory, while ̺(r,p) is normalized to 1.

Differentiation of ̺(r,p) leads to the quantum mechanical counterparts of the classical

canonical equations (7) and (8):

∂ ln ̺

∂pi
= −β

∂heff
∂pi

, (27)

and

∂ ln ̺

∂xi
= −

∂(βheff )

∂xi
= −β

[

∂heff
∂xi

+ heff
∂ ln β

∂xi

]

, (28)

i = 1, 2, 3. Equations (27) have exactly the same form as the classical ones (Eq. (7)). Eqs.

(28) are different from the classical ones because of the position dependence of the local

temperature.

The phase space Fisher information takes the form

I =

∫

drdp̺
[

a(∇p ln ̺)
2 + b(∇q ln ̺)

2
]

. (29)

The coefficients a and b are included due to dimensional reasons. Taking into accout of Eqs.

(27) and (28) we are led to

I = β2

∫

drdp̺
[

a(∇pheff )
2 + b(∇rheff + heff∇r(ln β))

2
]

. (30)

Comparing Eq. (30) with the classical one (Eq. (10)) we can see that there is an extra term

(the last one in Eq. (30)) due to the position dependence of β. In certain special cases it

may happen that the β is constant (see the following section). Then the phase space Fisher

information has the same form as the classical one:

I = β2

∫

drdp̺
[

a(∇pheff )
2 + b(∇rheff)

2
]

. (31)

In the following section two examples are presented.
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V. EXAMPLES AND DISCUSSION

Consider first the example of the linear harmonic oscillator. The potential is V = 1
2
mω2x2,

where m is the mass and ω is the frequency. The ground-state density is given by

n(x) =
(mω

π~

)1/2

e−mωx2/~. (32)

The kinetic energy density

t(x) =
~
2

2m

(

dψ

dx

)2

+ c∇2n (33)

is not uniquely defined. (ψ is the wave function.) Any value of c gives the proper kinetic

energy as the Laplacian of the density n integrates to 0. After elementary calculation we

are led to

t(x) = ~ωn
[mω

2~
x2(1 + 4c̃)− c̃

]

, (34)

where c̃ = 2mc/~2. With the choice of c̃ = −1/4 we obtain

t(x) =
1

4
~ωn(x). (35)

Instead of Eq. (19) we have now

t(x) =
1

2
kTn(x) =

n(x)

2β
(36)

as the degrees of freedom is one in the present example. Therefore we have a constant inverse

temperature:

β =
2

~ω
, (37)

or kT = ~ω/2, that is, the temperature corresponds to the ground-state energy of the

oscillator. From Eq. (31) the phase-space Fisher information can be given by

I = β

(

a
1

m
+ bmω2

)

. (38)

The choice a = m/β0 and b = 1/(mω2β0) leads to

I = 2
β

β0
(39)
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in agreement to the classical result [3], where β0 is an arbitrary, fixed reference inverse-

energy. As the ground-state energy is E = ~ω/2 the phase-space Fisher information can

also be written as

I = 2
β2

β0
E (40)

in accordance with the classical expression [3].

As a second example consider the Hydrogen atom in its ground state. The density is

given by

n(r) =
1

π

(

Z

a0

)3

e−2Zr/a0 , (41)

where

a0 =
~
2

me2
(42)

and Z, r, m and e are the atomic number, the radial distance, the electron mass and the

magnitude of the electronic charge, respectively. The kinetic energy density is not uniquely

defined. We select the gradient form

t(r) =
~
2

2m
(∇ψ)2, (43)

where ψ is the ground-state wave function. Adding a term proportional to the Laplacian of

the density would result a kinetic energy density with the same kinetic energy but different

local temperature. Expression (43) leads to

t(r) =
~
2Z2

2ma20
n(r), (44)

therefore the local temperature is constant:

kT =
1

β
=
Z2me4

3~2
. (45)

Using Eq. (31) the phase-space Fisher information has the form

I = β

(

3a
1

m
+ b

4

3

Z4m3e8

~6

)

. (46)

Selecting a = m/β0 and b = ~
6/(Z4m3e8β0) we are led to

I =
13

3

β

β0
. (47)
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We have to emphasize that the ”thermodynamical” transcription is done for the quan-

tum mechanical ground state. Therefore the notation ’temperature’ is strictly speaking an

analogy. As it was already mentioned the local kinetic energy is not uniquely defined. We

can take advantage of this freedom. We can always select a form for the local kinetic energy

which is everywhere positive resulting in a positive temperature. Though generally the local

temperature depends on the position, in special cases it might be constant. The examples

presented above are such cases. In these examples the phase-space Fisher information has

an analitical form. In other cases or other expressions of the local kinetic energy the phase-

space Fisher information can only be numerically determined that can be the subject of

further investigation.

In the classical case the temperature is a parameter independent of the system consid-

ered. In the quantum mechanical theory presented here, however, the ’temperature’ is an

inherent property of the system as it is determined by the local kinetic energy. Therefore

the ’temperature’ depends on characteristic parameters of the system, e.g on the frequency

of the harmonic oscillator and on the atomic number of the Hydrogen atom.

In summary, a quantum mechanical generalization of the Pennini - Plastino theory is

presented making use of the thermodynamical transcription of the density functional theory.

Comparing to the classical case, the phase–space Fisher information contains an extra term

due to the position dependence of the temperature. However, if the temperature is constant,

the expression derived bears resemblance to the classical one. This complete analogy to the

classical case is exposed for the linear harmonic oscillator.
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