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Abstract—In this article an electro-oculogram (EOG) based 

Human Computer Interface (HCI) will be presented, in order to 

control the mouse cursor on the screen of a computer or laptop. 

Electromyography (EMG) is the domain that employs the 

activation and deactivation (onset and cessation) of the muscles. 

EOG is the sub-domain of EMG field that focuses on the human 

eye’s movements. The EOG bio-signals can be recorded using 

Ag/AgCl electrodes coupled on the user’s skin and fed into a data 

acquisition device - an analog-to-digital converter (ADC) in order 

to be transmitted, filtered and processed on a computer or 

laptop. We acquired the EOG bio-signals with a 24-bit, 4 

channel, 51200 samples/s per channel ADC, made by the National 

Instruments (N.I.), model NI-9234 industrial ADC, using only 3 

recording channels and electrodes. After processing, the program 

running on the computer or laptop can be used to realize 

commands or control different applications according to the 

recorded bio-signals. In our case, this was done, using Artificial 

Neural Network (ANN) toolbox of MATLAB®.  This HCI can be 

used by perfectly healthy or even by disabled people. In the case 

of disabled people, these systems can be used to control any 

electronic device connected to the computer or control the device 

itself. Applications of this type of HCIs can be Internet browsing, 

mail writing, word file editing, etc. This system is meant to offer a 

new way of computer control - other than the existing standard 

communication and/or control possibilities (like keyboard and/or 

mouse). 

Keywords—Artificial Neural Network, bio-signal acquisition, 

Electrooculogram, EOG, HCI, mouse control. 

I. INTRODUCTION 

This article presents an electro-oculogram (EOG) based 
Human Computer Interface (HCI), its realization process, and 
other details, which, in the end, will be able to control the 
mouse’s cursor on the screen of a computer or laptop, 
depending on the used hardware.   

Electromyography (EMG) is the science that is based on 
the activation and deactivation (onset and cessation) of the 
human skeletal muscles. It is used in several applications, 
from sport and recreation up to electronic device control, and 
has multiple subdomains. EOG is one of them and it focuses 
primarily on the human eye’s movements. The EOG bio-
signals are generated by the movement of the human eye in 
the 4 main directions (left, right, up, down) and are recorded 
from the skin around the eye of the user. These bio-signals can 

be recorded using Ag/AgCl or any other types of electrodes, 
like the gold-plated electrodes, reusable electrodes, modified 
headbands or needle electrodes. In our application we used 
disposable Ag/AgCl electrodes to record these bio-signals. 

The Ag/AgCl electrodes are coupled on the user’s skin, as 
close as possible to the eyes and the recorded bio-signals can 
be fed into an analogic filtering system or directly in a 
digitizer (an analog-to-digital converter - ADC) in order to be 
transmitted, optionally filtered and further processed on a 
computer or laptop. After processing, the issued commands of 
the user can be used in different applications, like Internet 
browsing, mail writing, word file editing, wheelchairs 
handling, robot control, recognize reading activity, type in a 
virtual keyboard, move cursor on the screen, gaming, etc. As it 
can be seen, this kind of systems can be a new way of 
communication and/or control for healthy users - being an 
alternative way to a keyboard or a mouse or it can be used by 
disabled people. These systems can control any electronic 
device that is connected to the computer or laptop or even 
control the device itself.  

The other articles from this domain can be considered very 
wide in terms of fields of use and possibilities of use for the 
EMG and/or EOG signals. In article [1] different bio-signals 
(EMG, EOG, Electroencephalogram (EEG), Galvanic skin 
response and more) are proposed to be used as a possibility of 
for human recognition. In [2] analyses and a new statistical 
method to discriminate noise regions from EMG of muscular 
activities during rhythmic behaviors (using EMG data on 
mammalian jaw-adductor muscles during mastication) for 
biomechanical studies are presented. Other application of 
EMG is in depression observation [3]: the subjects showed 
reduced responsiveness - as compared to healthy people - 
during reward anticipation and also the punishment 
anticipation. In their work they recorded facial EMG 
reactivity, what is very less used in research - according to 
them. 

Other use of EMG signals are mentioned in [4]-[8]: an 
implementation, which accelerates the computation of 
different EMG signal’s linear envelope was presented in [4]. 
In [5] they used improved empirical mode decomposition to 
analyze the bio-signals from patients with amyotrophic lateral 
sclerosis and comparing it with EMG bio-signals from healthy 
people. According to [6], the authors could extract the motor 
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unit profile, and created an algorithm that detects the turns of 
the scanning-EMG signal and also can link this, by using 
point-tracking techniques. In [7] the authors introduced an 
approach for EMG noise level approximation in 
electrocardiogram signals, using the stationary wavelet 
transform. Article [8] presents the proposal of an onset 
detection method, using offline pathological, weak and noisy 
EMG signals. 

The EMG bio-signals can be used in different applications, 
as presented above, but it can be also a problem in different 
domains, like in the EEG domain. Articles [9]-[13] present the 
other side of EMG and/or EOG bio-signals - they are 
considered noise that generates artifacts in the EEG bio-signal 
recording process. All these articles are focused on the 
removal of these noise sources (EMG and/or EOG) with 
different processes and results, e.g. in [10] they used wavelet 
neural network to remove the noise, which combines the 
generic approximation properties of neural networks with the 
time/frequency property of the wavelet transform. According 
to [11], the ocular artifacts (with other words, EOG bio-
signals) must be removed to obtain a higher accuracy and 
quality EEG signal. Article [12] is a very extensive and also 
in-depth review of this topic of removal of EMG and EOG 
artifacts from EEG bio-signals. They reviewed the current 
methods for dealing with EMG-EOG generated noise and also 
and categorized and reviewed more than 250 refereed journal 
and conference papers from this field. 

The domain of EOG bio-signal use is mainly presented in 
articles [14]-[24]. Articles [14] and [15] presents different use 
of EOG bio-signals, like evaluating eye movement’s 
characteristics in narcolepsy [14] or drowsiness detection, 
followed by decisions according to the level of drowsiness 
[15].  

Papers [16]-[24] present shortly and give us insight in the 
field of using the EOG signals as command and/or control 
signals. In [16] a combination of eye tracking and facial 
electromyography (fEMG) during discrete choice experiments 
is presented; [18] is focused on the interaction with an 
intelligent environment through two paradigms of HCI. These 
setups/systems use commercial devices in surface 
electromyography (sEMG) and EOG application and also in 
the video-oculography (VOG) bio-signal recording domain. 
Article [20] aims to solve the problems encountered in current 
EOG systems when they are used for long periods of time and 
the users become tired. 

In [21] the identification of the characteristic peak 
amplitudes associated with eye saccades, blinks or winks 
based on a set of fuzzy logic rules classifier and a 
deterministic finite automaton is presented. In this application 
six low-level commands for navigation purposes were 
employed. Article [22] presents a single channel EOG system 
employing in-university-made ultrathin and flexible 
electrodes, which can be practically used to control computer 
or machine. As found in [23], they have realized an EOG-HCI, 
which can make the difference between eight eye directions: 
up, down, right, left, up-right, up-left, down-right and down-
left. In [24] another EOG-HCI is presented, recognizing also 8 

eye directions, but this setup/system was an in-university-
made wearable HCI device, with a weigh only of 15g. 

II. LAYOUT OF THE SYSTEM 

In our application we recorded the EOG bio-signals with a 
24-bit, 4 input channels, 51200 samples/s per channel ADC, 
made by National Instruments, model code NI-9234; we used 
only 3 input channels and the afferent electrodes from the 4 
input channels that the board can offer. We have done the 
recording in a non-invasive manner, placing the electrodes on 
the user’s skin near the eyes. After the raw data acquisition 
took place, we analyzed the EOG bio-signals (filtered of noise 
and normalized in MATLAB®) to observe whether the subject 
gaze left, right, up or down. The starting point for this work 
and system is presented and relies on [26]. 

The next step was to use the in-built Artificial Neural 
Network (ANN) of MATLAB®. We analyzed the response 
and differentiating capabilities of the trained ANN regarding 
the recorded EOG signals and also the possibility to create a 
control input channel for the used laptop to realize the mouse 
cursor movement actions on the screen with it. Our aim is to 
make and use this system as a future portable device, which 
could be also used to help the disabled people (people, who 
still can control and move their eyes) to control by simple 
instructions a computer / laptop or any other robotic device 
connected to it. This system can be used by healthy users too, 
as was demonstrated in the testing part, offering a new way to 
control the electronic devices - other than the existing standard 
communication possibilities (like the keyboard and mouse). 

In our design, we used only 3 electrodes to record the EOG 
bio-signals. Usually 5 electrodes are used in this kind of 
application, from which one 2 are used to record the vertical 
eye movements, 2 are used to record the horizontal eye 
movements and 1 electrode is the reference electrode. In some 
applications, a 6-th electrode was also used - it was the ground 
for the system. 

EOG signals may contain noise from various sources, such 
as other electronic or electrical instruments or moving 
artifacts. While recording, we tried to stop all the unnecessary 
electronic devices around the user and also the laptop was 
working only on accumulators. 

We used Ag/AgCl disposable electrodes in the recording 
process, as it can be seen in Figure 1. The disposable 
electrodes are widely used, considering that they can be 
quickly and easily applied and are also cheap [25]. Disposable 
electrodes are simply connected by connecting them to a cable 
that connects it to an ADC. There are many inexpensive types, 
shaped usually as a disk or rectangle, having glue on its side 
and contains a central electro-conductive circle made of or 
coated with Ag/AgCl. Other disposable electrodes may also 
contain a semiliquid gel around the central area (this electro-
conductive gel existed also in our case) in order to create a 
better conduction. The disadvantage of a large size of the 
electrode was not a problem in our application. Disposable 
electrodes may use salt water or saline instead of the gel [25]. 
In our case the electrodes were clipped to a modified glass, 
which was used to “carry” the electrodes, as can be seen in 
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Figure 2. We could use for this application also the reusable 
electrodes (which are smaller than the disposable ones), but 
their advantage to be able to be placed closer to the skin (in 
areas with a lot of hair) would not help us, and they also cost 
more than the disposable electrodes.  

  

Fig. 1. Ag/AgCl electrode used for recording (left - front, right - back) 

 

Fig. 2. The modified glass used in the EOG bio-signal’s recording process  

While recording, the electrodes were numbered, as 
follows: 0 - Horizontal eye movement input channel, 1 – 
Vertical eye movement input channel, 2 - Ground.  

Because we wanted a non-invasive setup, the needle 
electrodes (called also “subdermal needles”) were out of sight 
right from the beginning.  

The layout (the used setup) of the recording system can be 
seen in Figure 3 and in Figure 4 can be seen the recording 
process.  

 

Fig. 3. The used setup for recording the EOG bio-signals 

 

Fig. 4. Recording the EOG signals 

III. SIGNAL PROCESSING AND CLASSIFICATION 

Signals acquired with the system described above had been 
recorded for 50 independent measurements for each eye 
movement (right, left, down and up) from all three sensors. An 
example of the recorded signal is illustrated in Figure 5. As it 
can be seen from Figure 5, the signals are considerably noisy 
and had to be filtered which we achieved with median filters. 
After filtering the signals we obtained the shapes presented in 
Figures 6-7.  

 

Fig. 5. Example of unprocessed recorded signal  
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Fig. 6. Type T1 signal (left) and type T2 (right) 

     

Fig. 7. Type T3 signal (left) and type T4 (right) 

In order to recognize and classify the signals and identify 
the type of movement of the eye from the signals of the three 
sensors we analyzed the signal shapes and divided them into 4 
categories.  So for example if sensor 0 will give a signal of 
type T1 and sensors 1 and 2 will give signals of type T2, we 
can assume that the eye movement was in the direction “R” 
(right). The signals were further down sampled in order to 
reduce processing time and memory space. 

For recognition and classification purposes we decided to 
use an artificial neural network and analyze the obtained 
results. Artificial neural networks had been used for pattern 
recognition for more than 4 decades with more or less success. 
In the last decade a new approach called Deep Learning has 
been introduced after the works presented in [27] and [28] 
among others. Deep Learning algorithms have a range of 
methods like Deep Belief Networks, Restricted Boltzmann 
Machines and Deep Autoencoders to mention just some of 
them. These methods proved to be very useful in a large 
number of applications, a lot of worldwide companies 
employing them in their software products. In the last releases 
of Matlab Neural Network Toolbox a Deep Learning module 
based on aotuencoders had been also included. We used this 
module for our analysis [29]. 

 

Fig. 8. Sensor signals corresponding to eye movements.  

 T1, T2, T3, T4 types of signal shapes,  

 Eye movement R – right, L – left, D – down, U – up.  

 

Autoencoders perform unsupervised learning to extract 
features of the input data. In our network we trained two 
autoencoders and a softmax layer with 540 input samples 
consisting of 50 samples each and representing all four types 
of signals (T1, T2, T3 T4). We left aside 60 samples which we 
used to test the network after it had been trained. After the 
unsupervised learning session the 2 autoencoders and the 
softmax layer were stacked together to form the final network. 
For the first autoencoder we used 30 neurons for the second 10 
neurons and for the softmax layer we used 4 neurons to match 
the outputs. The output consist of a column vector for 4 
elements in double precision format with values between 0 
and 1, representing the four types of signal shapes classified as 
above in Figure 8. The index of the maximal valued element 
of the output vector shows in which type the input signal can 
be classified. The developed neural network is shown in 
Figure 9. 

 

Fig. 9. Neural network used for signal classification 

We trained the network several times always obtaining a 
performance of 100%.  This is shown in the confusion matrix 
in Figure 10. The numbers in the green squares show the well 
classified samples and those in red squares show the wrongly 
classified samples. 

 

Fig. 10. Sensor signals corresponding to eye movements  

However the results for the test samples show (in the best 
cases) that there had been six samples which were wrongly 
classified, as it can be seen in figure 11. These give an overall 
performance of just 90%.  
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Fig. 11. Confusion matrix for test session 

Analyzing the samples one by one we could find which 
were the wrongly classified samples. These samples are shown 
in Figures 12 to 17.  

 

Fig. 12. Test sample 2, sensor 0 

 

Fig. 13. Test sample 2, sensor 1 

 

Fig. 14. Test sample 2, sensor 2 

 

Fig. 15. Test sample 3, sensor 0 

 

Fig. 16. Test sample 3, sensor 1 
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Fig. 17. Test sample 3, sensor 2 

On the diagrams in figure 12 to 17 we also represented 
above the diagram, the output vector values which show in 
which type the wrongly classified signals have been included 
(see maximal value). 

IV. CONCLUSIONS 

As we can see from these diagrams the signal shapes are 
very different from the common type of shape which indicates 
that these measurements were affected with a much larger 
noise than the other samples. This can have as a cause the fact 
that the electrode was not well attached or some contact 
failure could have occurred. We can also observe that all the 
wrongly classified signals are for the case of “down” eye 
movement. This can show that the positions of the electrodes 
are not entirely fit for sensing the activation of the muscles for 
the down eye movement. These errors can be corrected in 
future experiments finding better places for the electrodes on 
the glasses. 

The overall conclusion is that the experimental system 
worked satisfactory well with the observation that care must 
be taken to firmly put the electrodes in the proper places. The 
classification using the neural network worked very well and 
classified well the vast majority of the signals. We can argue 
that those signals which were wrongly classified by the neural 
network could not be classified properly even by a human 
analyst. 
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