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Abstract. In surgical pathophysiology ischemia-reperfusion, inflammatory processes, sepsis, vascular interventions, tissue
trauma, shock, all mean conditions in which hemorheological parameters show alterations. Despite of numerous clinical
and experimental studies, the in vivo hemorheology is not completely understood yet, and several fundamental questions
still need to be answered. Investigating these issues, experimental surgical models are important, in point of view of the
translational research as well. In this paper we aimed to make an attempt on summarizing the possible factors and conditions
that might have an effect on hemorheological results in experimental surgical studies. Hemorheological parameters show
alterations in surgical pathophysiological processes in a complex way. However, the changes are dominantly non-specific.
Standardized experimental conditions, related to the experimental animal (species, animal welfare) anesthesia-medications,
operation, sampling and, if applicable, conditions of the postoperative period, are inevitable for a safe assessment of valuable
(hemorheological) results. Parallel investigations —such as microcirculatory monitoring, imaging techniques, other laboratory
methods, histomorphology— have great importance, together with individual analysis of changes, for a better understanding
of the changes and for comparability with clinical results.
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1. Introduction

Since many decades, surgery together with surgical research has been a challenging field of basic,
applied and clinical hemorheology. At the dawn of clinical hemorheology a noble Swedish surgeon
professor, Lars-Erik Gelin (1920-1980), when investigated anemia of injury, revealed the importance
of altered flow properties of blood with postcapillary stagnation of red blood cells and a relative increase
in fibrinogen concentration [1]. Their intensive research work led to the development of the Dextran
40 as a therapeutic agent for improving blood flow [1, 2]. At that era surgery was a very flourishing
field of clinical hemorheology.

In surgical pathophysiology ischemia-reperfusion —as part of necessary interventions in parenchy-
mal organ surgery, operations on extremities, tissue/organ transplantation, presented in compartment
syndromes, traumatic vessel occlusions—, inflammatory processes, sepsis, vascular interventions, such
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as intravascular devices, presence of anastomoses, shunts, tissue trauma, shock, all mean conditions
in which hemorheological parameters show alterations [3—7]. The magnitude of changes can be dif-
ferent, though, dominantly being non-specific. At the same time, micro-rheological parameters, such
as red blood cell deformability, mechanical stability and aggregation play important roles in determin-
ing microvascular flow pattern [8—10]. In the literature there are controversial data on the relation of
micro-rheological impairment and microcirculatory deterioration. It is still unknown what the exact
magnitude of micro-rheological changes is that will turn to microcirculatory deterioration in a given
tissue area, organ or in the whole body.

Despite of numerous clinical and experimental studies, the in vivo hemorheology is not completely
understood, yet, and several fundamental questions still need to be answered. Numerous unsolved
problems exist related to the time factor, the range of reversibility-irreversibility of local versus sys-
temic hemorheological changes, the relation of altered micro-rheological factors to microcirculatory
events during and after surgery. The process of erythrocyte aggregation and its role in pathophysiolog-
ical processes have not been elucidated completely yet [11, 12]. Controversial data are available on the
basic mechanisms and background of red blood cell mechanical stability and mechanical trauma [5].
Further important concerns are the issues of experimental design: inter-species, age- and gender dif-
ferences, comparability of the blood sampling sites, and sample handling standardizations, as well as
methodological adaptations [6, 13].

Investigating these issues, experimental surgical models are still important, in point of view of the
translational research as well. In this paper we aimed to make an attempt on summarizing the possible
factors and conditions that might have an effect on hemorheological results in experimental surgical
studies.

2. Main factors and pathophysiological processes affecting the rheology of blood

Any surgical intervention affects the whole body. Among others, anesthesia, immobilization, possible
blood loss, volume therapy, the intervention itself, wound healing, postoperative period, metabolism,
all have an influence on the condition. Thus, in experimental surgical models the complex approach is
essential.

Tissue damage, hypoxia, mechanical trauma to blood, free radicals —deliberated during reperfusion
of a previous ischemically insulted tissue and/or by inflammation— alters micro-rheological parameters
via different mechanisms (Fig. 1).

Metabolic (decrease in pH, increase of H™ and lactate) and micro-environmental osmolarity changes
alter the morphological and mechanical properties of blood cells. The pH decrease turns the red
bloods cells’ discocyte shape into a stomacyte or sphero-stomacyte form. While, when ATP depletion
and calcium accumulation are dominant, the echinocyte and sphero-echinocyte forms appear. Both
morphological transformations are associated with deterioration of red blood cells’ deformability and
disturbed aggregation [14, 15]. Change in oxygenation is known to alter micro-rheology. Deoxygenated
red blood cells have decreased deformability and enhanced aggregation. Under hypoxia, the swelling
alters the cellular surface/volume ratio, thus deformability as well [13, 16-18].

Mechanical trauma to blood cells also has to be taken into consideration [5, 19, 20]. In conditions
leading to ischemia and reperfusion (e.g., clamping vessels, obturation/occlusion and revascularization)
and by usage of various intravascular devices for diagnosis and for therapy (including vascular stents,
grafts, prostheses, artificial valves, etc), mechanical trauma to blood appears [5, 7]. For instance, in
sepsis, red blood cells can be damaged mechanically due to the presence of thrombi and micro-thrombi
(DIC), or even during therapeutic efforts, such as direct removal of toxins from the bloodstream by
high-volume hemofiltration as well [5, 21].
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Fig. 1. Schematic summary of factors and effects influencing the fluidity of blood, and their inter-relations. Initiating effects
(tissue damage, hypoxia, mechanical trauma to blood, free radicals, and in combinations) lead to metabolic alterations and
inflammatory processes affecting micro- and macro-rheological parameters, flow characteristics and endothelial functions,
resulting in microcirculatory disturbances and decrease in perfusion. And it generates further tissue damage.

In the circulation blood cells are exposed to mechanical stress during their entire life-span. A shear
stress in the range of about 5-20 Pa may even improve the red blood cell deformability in a reversible
way, by NO release from the cells [22-24]. Higher shear stress, depending on the magnitude and
exposure time, causes mechanical trauma to the blood cells [5, 20]. If the stress is high enough, the
mechanism of erythrocyte mechanical cell damage includes overstretching or fragmentation of the
cells, hemolysis, resulting in free hemoglobin in the plasma and release of microparticles. In case of
‘sublethal trauma’ the red blood cells are not hemolysed yet, but their micro-rheological properties are
worsening, as enhancement in aggregation and decrease in deformability [5, 25-27].

Modern investigation of hemocompatibility of various intravascular tools, as well as of various
blood contacting biomaterials used in intra- or extracorporeal medical devices provided important
results in the context of thrombogenicity and mechanical trauma to blood [28, 29]. In a wide range of
diagnostic and therapeutic interventions the usage of various contrast materials also has an impact on
fluidity of blood [30]. These issues had been widely investigated by Professor Friedrich Jung and his
co-workers [29-37].

Oxygen-centered free radicals initiate chain reactions. Red blood cells can be impaired by damaging
the cell membrane (lipid peroxidation) and the proteins (receptors, ion pumps, structural proteins,
with the formation of sulfhydryl cross-links), as well as by alterations in the hemoglobin molecules
(methemoglobin, Heinz-body formation) [4, 6, 38]. Since red blood cells are rich in iron (Fenton-
reaction) and un-nucleated (lack of new protein generation for repairs), they are highly sensitive to
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oxidative stress [38]. Free radicals can be generated in excessive amount during reperfusion of a
previous ischemically insulted tissue and during inflammatory processes, being triggered even by the
previously tissue damage [4, 39].

Nitric oxide (NO), deliberating from the endothelial cells and from erythrocytes, plays an important
role in the local flow regulation, also showing a beneficial effect on red blood cell deformability.
However, in the presence of superoxide anion, peroxynitrite anion is formed, which is harmful free
radical that can further jeopardize the cells [39].

During acute phase reactions the hemorheological changes are non-specific: increase of plasma
viscosity by elevated fibrinogen concentration and a,-macroglobulin, increase in immunoglobulin
levels, decrease in albumin level, rise in leukocyte count, increase or decrease of platelet count,
hemoconcentration, as well as erythrocytes’ micro-rheological changes [3, 4, 6].

The links between blood fluidity alterations and microcirculatory disturbances are complex [8, 9,
40, 41]. Impaired red blood cell deformability may contribute to an increased blood viscosity and
microcirculatory deterioration [8-10, 42, 43]. Enhanced red blood cell aggregation elevates blood
viscosity and increases the flow resistance [11, 12, 44]. When erythrocyte aggregation is enhanced, the
axial migration of the red blood cells in the vessel becomes more expressed, resulting in a widening
Poiseuille-zone that facilitates leukocyte tethering and margination, also slowing down the rolling [41,
45, 46].

Hypoxia leads to impaired endothelial cell barrier function as well [33, 47]. Additionally, altered
blood rheology has an impact on the shear stress profile on the endothelial surface modulating numer-
ous vascular functions via mechanotransducers [47, 48], thus, altered rheology can cause further
progression in the pathophysiological process [4].

As clear examples for the complex hemorheological and microcirculatory changes, ischemia-
reperfusion and sepsis can be mentioned.

For tissue ischemia-reperfusion, in the microcirculatory bed, the “no-reflow” phenomenon is char-
acteristic as a consequence of microvascular spasm, swelling of endothelial cells, bleb formation on
the endothelial surface, increased capillary permeability, interstitial edema, micro-thrombi, neutrophil
adhesion and plugging, local acidosis, and presence of red blood cells with impaired deformability and
enhanced aggregation [49, 50]. If hypovolemia also appears, arteriolar vasoconstriction develops on the
basis of an increased sympathetic activation causing A1 vasoconstriction and inverse A4 vasodilation,
resulting in reduction of capillary cross-sectional area and endothelial swelling [51, 52].

The pathophysiology of sepsis includes several points which link it to the rheology of blood. The
microcirculatory deterioration in sepsis is multifactorial, disturbing micro-vascular blood flow and
vascular resistance. Hemodynamic changes, redistribution of organ flow, vasodilatation and vasoplegia,
opening arterio-venous shunt, all together determine the amount of blood entering the capillaries.
In capillaries rigid blood cells may easily plugged, and as a result of endothelial dysfunction, the
perfusion further decreases due to increased adhesiveness for platelets, leukocytes and erythrocytes.
Furthermore, microvascular thrombosis, increased capillary permeability, edema and enhanced red
blood cell aggregation also contribute to perfusion problems [53-58]. In a developed manifest sepsis
red blood cell deformability worsens, fibrinogen concentration increases with resultant enhancement
inred blood cell aggregation [4, 59-62]. However, in early stage, a decrease in erythrocyte aggregation
might be also observed due to the fibrinogen consumption and supposed direct bacterial effects on
blood cells [62, 63].

The initiating harmful effect and the consequent micro- and macro-rheological alterations lead
to microcirculatory deterioration with decreasing perfusion. These all may cause further circulatory
problems, hypoxia and tissue damage leading to further rheological disturbances [4]. The listed primary
effects obviously can be associated, since hypoxia causes tissue damage, such as free radicals do [39],
and as oxidative stress, for instance, may increase the sensitivity of erythrocytes to shear-mediated
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Table 1

Considerations and possible influencing factors on hemorheological results in experimental surgical models

Experimental animal Anesthesia, drugs Intervention Blood sampling and Follow-up
testing period
— species — premedication — vessel cannulation — sampling site — postoperative
— strain, genetic — anesthetics (type, — intravascular devices ~ — anticoagulant analgesia
background dosage) — intubation/ — volume _ antibiotics
— gender — ventilation tracheostomy — repeatability _ wound care

— sample handling

— estrus cycle — body temperature — extension and (st — — prevention of

—age ) maintenance complexity of the s o.rage, e viro autophagy

- :ansportzftlolrl g — intraoperative operation agelr'lgl, temperatirs g, housing

- O.USHLg. (1mc'u 1mg volume correction poss@;e o Moeding
microbiologica — anticoagulants cer.ltrl ugation, Hte — postoperative
statu.s) — contrast materials adjustmeng t.)uffers, volume

— feeding method specific ;

. correction
— comfort of animals conditions, etc)

— co-morbidities

damage [64] (Fig. 1). Furthermore, when the effectiveness of eliminating red blood cells with impaired
deformability worsens, the rheology of circulating blood can be altered that, for instance, happens after
splenectomy or in cases of hyposplenic/asplenic conditions [65].

3. Considerations in experimental surgical models

Following the animal protection and laboratory animal science considerations [66], well-defined
and correctly designed animal experimentations are still important in biomedical research. Most of the
surgical investigations, by their nature, involve animal models. Several questions exist that cannot be
examined by in vitro methods or in tissue cultures.

In vivo studies have serious requirements and challenges. In Table 1 the major factors are summarized
that might influence the (hemorheological) results.

Concerning the 3Rs (replacement, reduction, refinement), it is highly important to provide safe
measurement methods and standardization of surgical/microsurgical skills, instruments, anesthesia,
necessary sham operations as control, as well as all the circumstances of the operation. For clinical
hemorheological studies a measurement technique guideline is available [13]. With respect to animal
experimentation, no such guideline has been published, yet. Besides considering inter-species and
gender differences [67, 68], sampling conditions (site, volume, repeatability, anticoagulant), sample
handling (storage, preparation, centrifugation, hematocrit adjustment, usage of buffers, etc), and device-
specific sensitivity and method-related measurement conditions have to be taken into consideration
when planning experiment and evaluating the results [6, 13, 69].

4. Conclusion

Hemorheological parameters show alterations in surgical pathophysiological processes in a com-
plex way. However, the changes are dominantly non-specific. Standardized experimental conditions,
related to the experimental animal (species, animal welfare) anesthesia-medications, operation, sam-
pling and, if applicable, conditions of the postoperative period, are inevitable for a safe assessment
of valuable (hemorheological) results. Parallel investigations —such as microcirculatory monitoring,
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imaging techniques, other laboratory methods, histomorphology— have great importance, together with
individual analysis of changes, for a better understanding of the changes and for comparability with
clinical results.
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