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Abstract

Background: Mammalian target of rapamycin (mTOR) is a kinase pathway that regulates the cell cycle progression and growth.
Rapamycin inhibits this pathway. The useful effects of rapamycin on cell growth have been widely shown in animal studies. How-
ever, its beneficial effects are associated with some success in benign and malignant cancers, which have produced its moderate
outcomes in the clinic.
Objectives: The aim of this study was to investigate whether rapamycin can induce oxidative stress in MCF-7 and MDA MB-231 human
breast cancer cell lines.
Methods: The MCF-7 and MDA MB-231 cell lines were cultivated and treated with rapamycin for 72 hours. The viability of the cells was
determined using the colorimetric MTT assay. Lipid peroxidation (TBARS), protein oxidation (carbonyl groups), total antioxidant
capacity assay, and glutathione (GSH) levels were measured in the MCF-7 and MDA MB-231 cells both with and without rapamycin
treatment.
Results: The IC50 concentration of rapamycin was 100 nM in MCF-7 cells, whereas the MDA-MB-231 cells were highly resistant to
rapamycin. Our data indicated an increase in oxidative status by increasing lipid peroxidation and protein oxidation, GSH, and
total antioxidant capacity levels in the MCF-7 and MDA-MB-231 cell lines exposed to rapamycin in comparison with control cells.
Conclusions: These outcomes support our theory that rapamycin increases oxidative stress in MCF-7 and MDA MB-231 cells but also
shows high levels of antioxidant effects, which probably limit the effects of the rapamycin on the same issue in the clinic.
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1. Background

Breast cancer is the most common type of malignant
tumor in women worldwide, excluding various biolog-
ical characteristics and clinical behaviors, such as non-
melanoma skin cancer (1). Based on current data from the
american cancer society, 1,665,540 new cases and 585,720
deaths are expected to occur in the United States (US). In
2014, 235,030 new cases of breast cancer were reported in
both sexes, and nearly 40,000 women died from the dis-
ease (2). Although many cytotoxic agents are used in the
treatment of this cancer, their efficiency is somewhat lim-
ited. Thus, new treatments for breast cancer are in de-

mand.

Rapamycin or sirolimus is a lipophilic antibiotic
and fungicide produced by Streptomyces hygroscopicus,
which was obtained from a soil sample on Easter Island in
the late 20th century and developed clinically for its im-
munosuppressant characteristics (3). Rapamycin is now
regarded as an anticancer drug that blocks mTOR by bind-
ing to FK 506-binding proteins (FKBP 12). The inhibition
of mTOR reduces the phosphorylation and stimulation of
S6K1 and also of 4E-binding protein 1 (4E-BP1), which helps
to prevent the translation of mRNA required for cell cycle
progression and cell proliferation (4). Reactive oxygen
species (ROS) and cellular oxidative stress have long been
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correlated with cancer (2, 5). Oxidative stress might stim-
ulate cancer cells, and receptor tyrosine kinase-activated
cell cycle progression usually involves an increase in ROS
signaling (6, 7). However, the antioxidant system in cancer
cells is paradoxically activated to transform cells to pro-
duce a higher level of ROS in comparison with normal cells
(8). In fact, several therapeutic agents promote cell death
by increasing oxidative stress (9, 10). Anticancer drugs,
such as doxorubicin, bleomycin, cisplatin, and paclitaxel,
enhance oxidative stress (8, 11, 12). This common effect sug-
gests that cancer cells are more susceptible to oxidative
stress since they function with a raised level of ROS (13).
Hence, the increase in the ROS level by these anticancer
drugs pushes the cancer cells beyond the breaking point
where cellular organelles and DNA are damaged and the
cell undergoes apoptosis. Thus, a recurrence of the tumor
after therapy likely results from a subset of cells that have
developed the ability to overcome oxidative damage (14).

2. Objectives

Since few studies thus far have shown the effects of ra-
pamycin on oxidative stress, the aim of the current study
was to investigate malondialdehyde (MDA) and protein
carbonyl levels as oxidative stress markers and also the
GSH and ferric reducing ability of plasma (FRAP) to deter-
mine the antioxidant capacity induced by rapamycin in
MCF-7 and MDA MB-231 human breast cancer cell lines.

3. Methods

3.1. Cell Lines and Cultures

MCF-7 and MDA-MB 231 cells were obtained from the
Pasteur institute collection of cell cultures (Tehran, Iran).
MCF-7 and MDA-MB231 cells were cultured in RPMI-1640
supplemented with 10% fetal bovine serum, 2 mM glu-
tamine, and 1% (v/v) penicillin and streptomycin at 37°C
and 5% CO2 pressure. All of the cell culture reagents were
obtained from Gibco-BRL (US).

3.2. Chemicals and Drugs

All chemical substances were purchased from Sigma
(US). A stock of 1 mg/ml rapamycin was prepared by solving
it in sterile dimethyl sulfoxide (DMSO) and maintaining it
at -80°C. The ultimate vehicle concentration did not exceed
0.5% (v/v) either in the control or the treatment samples in
all experiments.

3.3. Cell Treatment and Cell Proliferation Assays

To test the effect of rapamycin on cell proliferation and
select the appropriate rapamycin concentration, cells were
seeded onto 96-well plates at 5 × 103 cells/200 µL/well. Af-
ter an overnight incubation, triplicate wells were exposed
with differing concentrations of rapamycin from 10 - 200
nM for 24, 48, and 72 hours. The relative percentage of
metabolically active cells than the number of controls that
received no treatment was then measured on the basis of
the mitochondrial alteration of 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide (MTT reagent) to for-
mazine. The degree of MTT reagent that definitely changed
to formazine indicated the amount of viable cells. The
outcomes were analyzed in a 96-well format plate reader
by measuring the absorbance at a wavelength of 570 nm.
The percentage of metabolically active cells was compared
with the percentage of control cells growing in the ab-
sence of rapamycin on a similar culture plate (2). The
IC50 was determined by nonlinear regression analysis us-
ing the equation for a sigmoid plot. The MCF-7 and MDA-MB
231 cells were seeded in 50 cm2 flasks in duplicate. MCF-7
cells were treated (based on 50% inhibitory concentration
(IC50) results) with 100 nM rapamycin for 72 hours. How-
ever, since the rapamycin was not effective on MDA-MB 231
cells, the same concentration was used for these cells. Un-
treated cells were considered the control group.

3.4. Preparation of the Cell Lysate

After incubation, trypsin was used to collect the cells;
a 2-mL culture medium was added, and the mixture was
centrifuged at 1500× g for 5 minutes in a refrigerated cen-
trifuge then washed with PBS (pH 7.4) three times. The pel-
let was transferred into an extraction solution, which con-
tained 20 mM of a potassium phosphate buffer (pH 7) and
a protease inhibitor cocktail. Cells were sonicated using a
Biosonic IV sonicator for 3 min on ice and centrifuged at
20,000×g for 50 minutes in a refrigerated centrifuge. The
supernatant was used in the tests (2).

3.5. Measurement of Anti-oxidants and ROS Markers

3.5.1. Malondialdehyde (MDA) assay

MDA is the last marker of the lipid peroxidation path-
way. This assay is according to the repercussion of MDA
with thiobarbituric acid (TBA) that forms the MDATBA
adduct that can be quantified calorimetrically and absorbs
at 532 nm (3).

3.5.2. Carbonyl Protein Content Assay

Protein carbonyl is the marker of protein oxidation.
The carbonyl was identified by measuring the protein car-
bonyl residues using dinitrophenylhydrazine (DNPH). Ab-
sorbance of the samples was measured at 370 nm (4).
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3.5.3. Glutathione Reductase Assay

The reduction of 5, 5’-dithiobis (2nitrobenzoie acid)
(DTNB) by GSH produced a yellow complex, which was used
to indicate the level of thiol protein; the color intensity of
405 nm was proportional to the level of GSH (5).

3.5.4. Total Antioxidant Capacity Assay (TAC)

TAC was measured via the FRAP method. FRAP is a
method that has been used to analyze the full potential of
antioxidants in a sample. The absorbance of the samples
was measured at 593 nm (6).

3.6. Statistical Analysis

All results were expressed as mean ± SD. Statistical
analyses were carried out using PRISM 6 .0. Student’s t-test
was utilized to analyze the statistical differences between
groups under various conditions. A P value < 0 .05 was re-
garded as statistically significant.

4. Results

4.1. Cytostatic Activity of Rapamycin

The rapamycin concentration that caused 50% growth
inhibition was determined as the 50% inhibitory concen-
tration (IC50). The IC50 value of rapamycin was 100 nM
in MCF-7. The proliferation rate of MDA-MB 231 cells was
not significantly different after treatment with rapamycin
compared to the control cells (Figures 1 and 2).

4.2. Effects of Rapamycin on Antioxidants and Oxidative Stress
Markers

The TBARS level in MCF-7 and MDA-MB 231 cells treated
with rapamycin for 72 hours revealed a significant en-
hancement (P < 0.05) when compared to the control cells
(Table 1). The same increase was also seen in the protein car-
bonyl levels in MCF-7 and MDA-MB 231 cells treated with ra-
pamycin compared to the level found in control cells (Table
1). Moreover, a significant increase (P < 0.05) was observed
in the GSH levels in the MCF-7 and MDA-MB 231 cells treated
with rapamycin compared to the control group (Table 1).
These results indicated that the level of FRAP in MCF-7 and
MDA-MB 231 cells was significantly higher (P < 0.05) com-
pared with the level in control cells (Table 1).

5. Discussion

In this study, we evaluated the cytotoxicity effects of ra-
pamycin on MCF-7 and MDA-MB231 breast cancer cell lines
and assessed the level of oxidative stress. We found that ra-
pamycin had the potential to induce oxidative stress, espe-
cially in the MCF-7 line. Enhanced stimulation of mTOR is
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Figure 1. The Cell Proliferation Rate of MCF-7 Cells After 72 Hours Incubation with
Rapamycin at 100 nM (IC50 value) Was Significantly Decreased Compared to Control
Cells (*P < 0.05)

identified in a variety of human cancers due to mutations
in tumor suppressors and/or oncogene upstream regula-
tors of mTORC1 functions. These mutations provide an ad-
vantage for cancer cells to selectively progress and prolif-
erate in comparison with normal cells.

Rapamycin is considered one of the most promising
drugs in cancer disease treatment and is currently being
examined in different clinical trials (7-9). Preclinical stud-
ies have shown that T-cell leukemia, small cell lung can-
cer (SCLC), prostate cancer, and breast cancer have been
the most susceptible cancers to rapamycin (10). The su-
peroxide anion (O-2) is the principal free radical species
produced through the usual aerobic metabolism and also
may serve as a precursor for the production of other ROS.
Moderate increases in O-2 levels actually perform an impor-
tant task in mediating cellular proliferation (11). Numer-
ous studies have confirmed that an increase in oxidative
stress production via either ROS producers or antioxidant
inhibitors may selectively execute tumor cells or possibly
decrease tumor development and growth in several cancer
cell lines. Therefore, ROS-manipulation strategies, which
include approaches to remove or generate ROS in cancer
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Table 1. Oxidative Stress Markers and Antioxidants in the Control and Rapamycin-Treated MCF-7 and MDA-MB 231 Cellsa

Parameters MCF-7 MDA-MB 231

Control Rapamycin Control Rapamycin

MDA (µmol/mg protein) 0.02±0.004 0.08 ± 0.002b 0.36±0.001 3.53±0.002b

Protein carbonyl content (µmol/mg protein) 0.007±0.001 0.01±0.001b 0.02 ± 0.002 0.03 ± 0.002b

GSH (µmol/mg protein) 0.05±0.002 0.24±0.001b 0.05 ± 0.001 0.22 ± 0.002b

Total antioxidant capacity (mmol/mg protein) 0.05±0.001 0.17±0.002b 0.02 ± 0.001 0.05±0.001b

aThe results are expressed as mean ± SD for the four experiments.
bP < 0.05: significantly different compared to the controls.
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Figure 2. The Cell Proliferation Rate of MDA-MB231 Cells Treated with Rapamycin at
100 nM Showed no Significant Difference (P > 0.05)

cells, can potentially be effective treatments. Interestingly,
cancer cells use ROS-scavenging systems as well as the tran-
scription factor NF-E22-related factor 2 (NRF2) and its asso-
ciated antioxidant systems to control their oxidative stress
phenotype to avoid cell death (12).

ROS-mediated cancer cell proliferation was identified
in liver, lung, breast, and many other types of cancers
and can be avoided through the improvement of ROS-
scavenging antioxidants (5, 13-16). In a number of cancers,
the exogenous addition of H2O2 or endogenous oncogene-
induced generation of ROS has been demonstrated to
increase tumorigenicity and proliferation by activating
the pro-tumorigenic and pro-proliferative signaling path-
ways, such as the MAPK/ERK and PI3K/AKT/mTOR pathways
(17, 18). Ionizing radiation and chemotherapeutic compo-

nents act together to promote ROS generation, thereby
leading to irreversible oxidative injury.

Chemotherapeutic agents like anti-folates, vinca alka-
loids, and taxanes enhance mitochondrial cell death via
the release of cytochrome c and interrupt the mitochon-
drial electron transport chain, which results in enhanced
superoxide generation. Other chemotherapeutics, such
as doxorubicin, carboplatin, and cisplatin, noticeably in-
crease ROS, which is the basis of their anticancer effects
(12). A prior study investigated the sensitivity of all breast
cancer cells to rapamycin and found that cell lines were
cured with the administration of rapamycin at various
concentrations for four days. Cell proliferation and DNA
synthesis were then evaluated using MTT assay and thymi-
dine incorporation, respectively. With the exception of
MDA-MB-435 and MDA-MB-231, all cells were inhibited by
rapamycin in all assays, and the decline in cell number
was accompanied with a reduction in S phase progression
(10). Additionally, a different study demonstrated the in-
hibition of the proliferation of the human pancreatic car-
cinoma cell line during treatment with rapamycin (19).
When rapamycin and CC-5013 were combined, apoptosis
was activated in MM cells (20). Our results revealed that ra-
pamycin inhibited the proliferation rate in the MCF-7 cell
line but was ineffective on the MDA-MB231 cell line. Other
researchers have reported the same results using various
drugs. The growth inhibitory features of temsirolimus (an
analog of rapamycin) were evaluated in human breast can-
cer cell lines. The T-47D, MCF-7, and BT-474 cell lines are all
estradiol responsive and were all strongly growth inhib-
ited by temsirolimus. In addition, the growth of lines MDA-
MB-468 and BT-549, which contained deletions of the PTEN
tumor suppressor gene, was highly susceptible to being
cured with temsirolimus. However, the MDA-MB-231 and
MDA-MB-435 lines were resistant to treatment with tem-
sirolimus (21). Another review obviously demonstrated
that rapamycin exhibited inhibitory activity on the MCF-
7 cell lines. Direct visualization via inverted microscopy
revealed that the MCF-7 cell lines that were cured with ra-
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pamycin exhibited the properties of apoptosis as well as
autophagy, vascularization, and cell shrinkage (22).

In vitro experiments revealed that rapamycin de-
creased 2’, 7’-dihydrodichlorofluorescein oxidation and en-
hanced glutathione. In this study, rapamycin inhibited
tBHP-induced ROS generation. Cells cured with rapamycin
had a higher viability in comparison to controls at 5 mM
tBHP, and rapamycin efficiently protected human corneal
endothelial cells (HCEC) from ROS-induced cell death by in-
creasing levels of intracellular glutathione. These results
indicated that rapamycin protects HCEC at high concen-
trations from oxidative injury-mediated cell death by the
inhibition of ROS generation (23).

In other research, the molecular mechanism under-
lying partial rapamycin resistance in yeast was investi-
gated. They used the yeast deletion collection to identify
15 deletion strains, resulting in a partial resistance to ra-
pamycin. Among these were copper chaperone Lys7, su-
peroxide dismutase 1 (SOD1), and copper transporter Ctr1,
recommending a task for oxidative stress in rapamycin
resistance. Increased levels of ROS specifically modified
mTOR such that it no longer could completely bind with
rapamycin: FKBP12. Therefore, increased oxidative stress
modifies mTOR and prevents it from binding to the ra-
pamycin: FKBP12 complex, finally resulting in its resistance
to rapamycin (24).

mTOR regulation by ROS has been shown in both hu-
man cells and yeast. Chemically activated ROS results in
the stimulation of mTOR in mammalian cells, and it is un-
clear whether this regulation is physiologically relevant
(25, 26). In our study, lipid peroxidation expressed as TBARS
was significantly enhanced in MCF-7 and MDA-MB231 cells
treated with rapamycin compared with the control group.
Other researchers have reported the same results with dif-
ferent drugs. For instance, enhanced lipid peroxidation
was seen in MCF-7 cell lines treated with adriamycin and
topotecan (2, 27). Additionally, in our research, we found
a significant increase in protein carbonyl (PCO) levels in
rapamycin-treated MCF-7 and MDA-MB231 cells in compar-
ison with the control cells. In the same study with topote-
can, the protein carbonyl levels increased in the MCF-7 cell
lines compared with the control group (2). In the present
study, we also found a significant rise in the GSH and FRAP
activity as anti-oxidant markers in MDA-MB231 and MCF-7
cell lines were cured with rapamycin. This effect may be re-
garded as a response to the enhanced oxidative stress ob-
served in cells cured with rapamycin.

It has been shown that doxorubicin raises the pro-
duction of O-2 in isolated cardiac myocytes. SOD1 activ-
ity protects rat cardiomyocytes from producing intracel-
lular ROS (28). Several studies have indicated that en-
hanced enzymatic and non-enzymatic anti-oxidant levels

are responsible for the increased resistance to a number of
chemotherapeutic agents (29). In another study, gene ex-
pression microarray analysis revealed that several ROS re-
sponse genes were upregulated following rapamycin treat-
ment, as well as glutathione reductase, delta aminolevuli-
nate dehydratase, and SOD1 (30). The role of ROS in the
proliferation of cancer has already been determined (31),
and it remains to be examined whether it might serve as
a predictor of rapamycin sensitivity in cancer malignancy.
A reexamination of previous studies that have utilized in
vitro cancer cell lines indicated that rapamycin resistance
might possibly occur from the failure of rapamycin to
bind with mTOR. It has also been demonstrated that ra-
pamycin is less efficient at blocking the phosphorylation
activity of mTOR in rapamycin-resistant MDA-MB-231 cell
lines than with rapamycin-sensitive MCF-7 (32, 33). Other
mechanisms of resistance to rapamycin have previously
been described (34) The useful effects of rapamycin have
largely been shown in preclinical animal models. However,
the clinical success of rapamycin has been associated with
only a few benign and malignant cancers. Numerous fac-
tors may lead to this moderate outcome in the clinic (35).

These findings support our hypothesis that rapamycin
enhances the oxidative stress in MCF-7 and MDA-MB231
cells. In contrast, raising antioxidant levels after treatment
with rapamycin might be one reason for the ineffective-
ness of rapamycin in MDA-MB231 and also the development
of resistance in MCF-7.
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