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Abstract

Motivation: Non-invasive prenatal testing or NIPT is currently among the top researched topic in obstetric
care. While the performance of the current state-of-the-art NIPT solutions achieve high sensitivity and
specificity, they still struggle with a considerable number of samples that cannot be concluded with certainty.
Such uninformative results are often subject to repeated blood sampling and re-analysis, usually after two
weeks, and this period may cause a stress to the future mothers as well as increase the overall cost of the
test.

Results: We propose a supplementary method to traditional z-scores to reduce the number of such
uninformative calls. The method is based on a novel analysis of the length profile of circulating cell free
DNA which compares the change in such profiles when random-based and length-based elimination of
some fragments is performed. The proposed method is not as accurate as the standard z-score; however,
our results suggest that combination of these two independent methods correctly resolves a substantial
portion of healthy samples with an uninformative result. Additionally, we discuss how the proposed method
can be used to identify maternal aberrations, thus reducing the risk of false positive and false negative
calls.

Availability: The open-source code of the proposed methods, together with test data, is freely available
for non-commercial users at github web page https://github.com/jbudis/lambda.

Contact: fduris@dcs. fmph.uniba. sk.

Supplementary information: Supplementary materials are available at Bioinformatics online.
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1 Introduction

Prenatal screening and diagnostics are important parts of obstetric care.
Current methods of prenatal testing still involve most commonly inva-
sive sampling of fetal material using procedures such as amniocentesis
and chorionic villus sampling which are associated with a small but real
risk of miscarriage 0.5 — 1% (Mujezinovic and Alfirevic, 2007). To pre-
vent the risk of abortion associated with invasive sampling procedures,
non-invasive prenatal testing (NIPT) based on fetal DNA analysis from
maternal circulation has been developed. In 1997, the discovery of fetal
cell-free DNA (cfDNA) in maternal plasma and serum revolutionized the
area of non-invasive prenatal diagnostics, and opened up new options in
the field of obstetric research (Lo et al., 1997). The fetal cfDNA is of pla-
cental origin (Bischoff ez al., 2005), and it can be reliably detected from
fifth week of gestation (Lo et al., 1998). On average, the fetal cfDNA
contributes about 10% of all cfDNA fragments circulating in woman’s
blood when sampling is carried out between 10 and 20 gestational weeks,
although the variance is quite large (Fiorentino et al., 2016). The adva-
nce of massively parallel sequencing technologies together with the rapid
development of bioinformatic algorithms and tools ushered in a new era
of non-invasive prenatal identification of common fetal aneuploidies, now
commonly known as NIPT (Chiu et al., 2008; Fan et al., 2008; Chiu et al.,
2011; Sehnert et al., 2011; Bianchi et al., 2012; Straver et al., 2013; Yu
et al., 2014; Tynan et al., 2016).

While the performance of the current state-of-the-art NIPT solutions
achieve high sensitivity and specificity (Bianchi et al., 2014; Koumbaris
et al.,2016), they still struggle with a considerable number of samples that
cannot be concluded with certainty. The great source of such uninformative
samples is in the nature of the statistical testing. Considering the standard
cut-off threshold 2.5 in traditional z-score methods for reliable conclusion
of healthy samples (Bianchi et al., 2014), and testing normally distributed
ratios measured for the common aneuploidy chromosomes, the chance that
a healthy sample would achieve z-score greater than this is around 1.86%,
and it is even higher when testing for other aberrations such as monosomy,
gonosomal or sub-chromosomal aberrations.

Other problems are represented by maternal DNA aberrations such as
maternal mosaicism (Wang et al., 2014; Grati et al., 2014), unidentified
maternal tumours (Osborne et al., 2013; Amant et al., 2015), or copy
number variations (Snyder et al., 2015; Zhou et al., 2017). Hypothetically,
a duplication of even a small part of maternal chromosome, which may not
be detrimental for the mother, may result in a false positive call for fetal
aneuploidy. This is because such duplication effectively increases the size
of that chromosome, and, because maternal cfDNA is by far dominant (Lo
etal.,2010; Rava et al., 2014; Shubina et al., 2017), the signal from partial
maternal duplication can be interpreted as full fetal trisomy. Similarly, an
opposite effect can cause a false negative result.

There is a growing body of studies addressing this issue (Wang et al.,
2014, 2015a,b). A particularly interesting venue of research focuses on
qualitative differences between fetal and maternal cfDNA fragments,
namely their lengths. It was previously reported that fetal fragments are
on average shorter than maternal and that this information can be useful.
Particularly, Fan ef al. (2008, 2010) and Lo et al. (2010) were among the
first to point out that fetal cfDNA fragments are on average shorter than
maternal. Minarik et al. (2015) showed that in silico and in vitro cfDNA
fragment size selection each leads to increase of fetal cfDNA fragments
portion in the sample. Yu et al. (2014) defined a size ratio (i.e., ratio betw-
een abundances of fragments of certain lengths) of which they showed has
high correlation with fetal fraction. Additionally, they defined size-based
z-score as an alternative to the more common chromosome-count-based z-
score. Zhang et al. (2017) proposed a modification of count-based z-score

(Chiu et al., 2008) by multiplying the fractional genomic representation of
the trisomic chromosome (i.e., 13t 18" or 215%) by the ratio between
cfDNA fragments shorter than 100, 130, 150 or 166 base pairs mapped to
trisomic chromosome and reference chromosomes (all autosomes except
13th, 18" and 215%). Sun et al. (2017) proposed a method called COFFEE
which does not require a set of reference samples to distinguish between
T21 trisomic and euploid samples. Briefly, the method splits cfDNA fra-
gments into two categories: shorter than 150bp and longer than 170bp.
The chromosome 21 is also split into 200-kb bins, and a proportion of
reads in short and long category for each bin is calculated. The status of
the sample is determined based on the p-value of paired Mann-Whitney
rank-sum test between cfDNA proportions in short and long category from
the trisomic chromosome. Cirigliano et al. (2017) proposed a supposedly
very robust method based on the likelihood ratios reflecting the probability
for a sample to be affected versus the probability not to be affected given
the sample’s counting data (NCV score, Sehnert ef al., 2011) and fetal
fraction. Rather unusually, no additional details were disclosed. However,
the method seems to be somewhat reminiscent of Jiang et al. (2012) and
Tynan et al. (2016). Shubina et al. (2017) were able to identify, post test,
which of the false positive trisomy X samples were due to maternal mosai-
cism. Briefly, they observed that in case of true fetal aneuploidy, the fetal
fraction calculated from X chromosome increases when the long reads are
filtered out. On the other hand, for maternal mosaicism the filtering has
almost no effect on this fetal fraction.

For the sake of completeness, we note that there are other qualitative
information in each cfDNA fragment, for example its sequence content.
Sung et al. (2015) showed that there is a difference in dispersion of short
and long fragments across the human genome. Since fetal fragments are
on average shorter than maternal, this indirectly implies that there is dif-
ference in sequence content of fetal and maternal cfDNA (all analyses use
only uniquely mapped fragments). However, it is difficult to train such a
model because one cannot easily distinguish which fragments are fetal and
which maternal. Sung et al. (2015) did not have this problem because they
fed their model normalized read counts per 50-kb bins (i.e., they did not
distinguish the source), so they did not use the sequence content directly.
One way out of this problem is to use non-pregnant women as a source of
maternal cfDNA content, and chromosome-Y-mapped cfDNA fragments
from male pregnancies as a source of fetal content. However, we have
doubts regarding the representativeness of the Y-based fetal source. For
a comprehensive review of fetal DNA fraction estimation, see (Peng and
Jiang, 2017).

Extending the above mentioned work, in this paper we present a novel
method of combining count-based and length-based z-scores which impro-
ves on the similar state-of-the-art methods and also further boosts the
elimination of uninformative results which have a potential to cause need-
less stress to the parents, requiring repeated blood samplings and analyses.
The associated increase of expenses, in turn, lower viability of the NIPT
product. Reducing such cases is, therefore, of high interest in the area
of NIPT. Our method is also based on the length of cfDNA fragments.
Specifically, we take into account how fragments of a particular length
contribute to the z-score calculated from some chromosomes as in (Sehnert
et al., 2011). Our approach has some similarities with previously publi-
shed approaches, such as the fragments size distribution acquired from the
pair-end sequencing from Yu et al. (2014), length-based modification of
count-based z-scores from Minarik ef al. (2015), combination of count-
based and length-based information from Zhang et al. (2017) although the
proposed combination is performed in a robust statistical manner, contri-
bution of short and long cfDNA fragments to overall number of mapped
fragments to the chromosome of interest from Sun et al. (2017).

Even if some parts of the proposed methods are not as accurate as
the standard z-score, our results suggest that combination of these two
independent methods correctly resolves a substantial portion of healthy
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samples with an uninformative result. Additionally, we discuss application
of the novel method for distinguishing between fetal (e.g., aneuploidy) and
maternal signal (e.g., copy number variation).

2 Material and methods
2.1 Sample acquisition

We have collected altogether 2,621 samples with singleton pregnancy,
of which 2 569 were negative for trisomy of chromosomes 13, 18 and
21, while 5 were confirmed as T13, 6 were confirmed as T18, and 39
were confirmed as T21. Positive results were in each case confirmed by
amniocentesis. Negative samples were, however, not confirmed by any
additional gold standard method. Data analyses reported here, were, on the
other hand performed only on samples originally analysed with a sufficient
time interval to know, from a clinician feedback following the delivery,
whether any false negative results occurred.

One negative sample (analysed twice) was falsely reported as T18
(discovered by post-test amniocentesis). The samples were predominantly
of Slovak and Czech origin. All women participating in this study gave
informed written consent consistent with the Helsinki declaration.

2.2 Sample preparation and sequencing

Blood from pregnant women was collected into EDTA tubes and kept at
4°C temperature until plasma separation. Blood plasma was separated
within 36 hours after collection and stored at —20° C' unit DNA isolation.
DNA was isolated using Qiagen DNA Blood Mini kit. Standard fragment
libraries for massively parallel sequencing were prepared from isolated
DNA using an Illumina TruSeq Nano kit and a modified protocol descri-
bed previously (Minarik et al., 2015). Briefly, to decrease laboratory costs,
we used reduced volumes of reagents what was compensated by 9 cycles
of PCR instead of 8 as per protocol. Physical size selection of cfDNA fra-
gments was performed using specific volumes of magnetic beads in order
to enrich fetal fraction. Illumina NextSeq 500/550 High Output Kit v2 (75
cycles) was used for massively parallel sequencing of prepared libraries
using pair-end sequencing with read length of 2x35bp on an Illummina
NextSeq 500 platform.

2.3 Mapping and read count correction

Sequencing reads were aligned to the human reference genome (hgl19)
using Bowtie 2 algorithm (Langmead et al., 2009). The first stage of data
processing was carried out as previously described (Minarik et al., 2015).
NextSeq-produced fastq files (two per sample; R1 and R2) were directly
mapped using the Bowtie 2 algorithm with very-sensitive option. Unless
stated otherwise, only randomly chosen 5 million of alignments for each
sample were considered, thus reducing the between-sample variability
induced by sequencing. Note that all our samples had at least 5m reads.
Reads with mapping quality of 40 or higher were retained for further data
processing. Next, for each sample the unique reads were processed to eli-
minate the GC bias according to (Liao et al., 2014) with the exclusion of
intrarun normalization. Briefly, for each sample the number of unique reads
from each 20kbp bin on each chromosome was counted. With empty bins
filtered out, the locally weighted scatterplot smoothing (LOESS) regres-
sion was used to predict the expected read count for each bin based on
its GC content. The LOESS-corrected read count for a particular bin was
then calculated as RCcor = RC — |RClpess — RCavgl, where RCavg
is the global average of read counts through all bins, RC e is the fitted
read count of that bin, and RC is its observed read count.

Furthermore, variability of human genome in population also attributes
to the mapping bias, mainly in regions with common structural differences.

Some methods therefore compare bin counts across a control set of sequ-
enced samples to reduce weight of highly variable bins (Johansson ez al.,
2017). A promising approach is based on principal component analysis
(Price et al., 2006; Zhao et al., 2015). At first, bin counts are transfor-
med into a principal space. The first component represents the highest
variability across individuals in the control set. To normalize the sample,
bin counts corresponding to predefined number of top components are
removed to reduce common noise in euploid samples.

2.4 Reference z-score calculation

The reference z-scores of samples were calculated as normalized chromo-
some values (NCV) according to Sehnert et al. (2011). Given our training
set, the optimal reference chromosomes were determined to be 1, 4, 8, 10,
19 and 20 for trisomy 21, 4, 7, 8,9, 10 and 16 for trisomy 18, and 3, 4 and
7 for trisomy 13. Similarly to (Bianchi et al., 2012), samples scoring 4 and
higher were considered trisomic, while samples scoring 2.5 or lower were
considered euploid. The range (2.5, 4) was considered uninformative. We
will refer to these NCV values as reference z-scores or Zncy -

2.5 Length score calculation

We defined three novel statistics based on the fragment lengths, each buil-
ding on the previous one. The basis for our first novel statistic, termed
A-score, were read counts for the chromosome of interest (e.g., the usual
13th, 18" or 215t chromosome). However, in contrast with the traditio-
nal z-scores, we did not compare the read count with the expected normal
value estimated from a set of euploid samples. Instead, we continuously
eliminated fragments of certain length and compared the observed counts
with the expected counts, if the same amount of fragments was eliminated
randomly.

More particularly, if ¢ marks the chromosome of interest and chr; the
number of reads mapped to the i*" chromosome of the tested sample, then
let chr; (1) be the number of reads mapped to the 7t chromosome that are
of length at most [. Furthermore, let the total number of reads of the sample
be n, and let n; be the total number of reads that are of length at most
I. The number of reads mapped to the *"* chromosome (of any length)
after uniform random elimination follows a binomial distribution with
parameters (ny, p), p = chr;/n. The ratio chr; /n gives the proportion
of reads originally mapped to the it chromosome, and the number 7,
gives the number of reads to be drawn. Thus, the expected number of
reads mapped to the it chromosome after the uniform random draw and
its variance is equal to e; = myp and v; = n;p(1 — p) as in binomial
distribution, respectively.

For each sample and chromosome, we defined a series of A-scores as

chri(l) — nip

A () = ,
() np(l —p)

(¢))

where [ ranges from 50 to 200 and 7 indicates a chromosome. Next, we
defined a second novel statistic termed F'L-score as

FL; (D). (€]

= max

125<1<145
The bounds 125 and 145 were determined empirically. Finally, the F'L-
scores were normalized into z-scores which approximately follow standard
normal distribution for euploid samples (Supplementary figure S1). Then,
for any sample, its normalized F'L-score value Zpj was used as an
alternative method for the prediction of aneuploidy.

2.6 Combining the scores

In our analysis, we found no correlation between the reference (Zncv)
and length-based (Z ) scores measured in our training set of euploid
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samples (Pearson R = 0.017,p = 0.129). Thus, we considered them as
two independent random variables, each from a standard normal distribu-
tion. The sum of their squares follows a chi-squared distribution with 2
degrees of freedom, and a survival function of the chi-squared distribution
was used to associate this sum with the probability. Finally, this probabi-
lity was converted back to a standard score Zn cv 4 1, through quantile
function for easy comparison with other methods (Figure 1). Note that the
calculations were performed in log-space to overcome underflow issues.

Chi-squared distribution with 2 degrees of freedom  Standard normal distribution

00 25 50 75 10.0 5.0 25 00 25 50
Z,

NCV-FL

Fig. 1. The grey area of the left plot represents the probability of observing
Z?\ICV + ZI%“L > 5, which in this case is equal to 0.082. On the other hand, this
probability is associated with z-score 1.391 in standard normal distribution in a way that
the probability of observing z-score > 1.391 is the same 0.082. Thus, the shaded areas
are equal.

On the other hand, there was a significant correlation between Zg 7
(defined below in section 3.2) and Zp, (Pearson R = 0.55,p < 0.001).
In this case, we combined them according to (Owen and Chmielewski,
1985). Specifically, we first performed a principal component analysis
of the pairs (Zsz, Zpr). Then, we recalculated the z-scores along the
newly found eigenvectors eq, e2 using the respective eigenvalues as new
variances. The resulting scores were two independent standard normals,
and we proceeded to combine them as in the first paragraph of this section.
The resulting z-score was marked as Z sz pr, (Figure 2).

2.7 Statistical analysis

The significance of our findings was evaluated using statistical tests imple-
mented in Python scipy package (Jones et al., 2014). The linear dependency
of the two scores in negative samples was calculated with Pearson corre-
lation. Since scores of aberrant samples were not normally distributed,
Wilcoxon signed-rank test was used to estimate statistical significance of
improvement between the reference and proposed methods.

3 Results
3.1 Lambda-score profiles

First, we calculated series of A-scores for euploid and trisomic samples
for chromosomes 13, 18 and 21, and length range from 50bp to 220bp.
We observed that trisomic samples behaved differently than euploid sam-
ples (Figure 3). This difference can be explained by fetal fragments being
shorter than maternal. The fetal and maternal cfDNA differ in properties
such as length distribution and source chromosomes (Fan ez al., 2010; Yu
et al.,2014). Originally, they are mixed in some ratio, usually termed fetal
fraction, resulting in the observed properties of the mixture (read length
distribution and chromosome mapping ratios). Uniform random elimina-
tion of fragments preserves these properties of the mixture on account of
being uniform, both in euploid and trisomic cases. On the other hand, eli-
mination by length as described in section 2.5 eliminates more maternal
than fetal fragments on account of the latter being shorter than the former.
Thus, the original properties of the mixture are not preserved, if fetal and
maternal properties are not the same, which is the case for trisomic samples
with respect to chromosome mapping ratios.

FL score
o

NCV score

N

FL score
o

-4

SZ score

Fig. 2. Combination of novel FL score with the reference score NCV (top) and length-
reduced reference score SZ (bottom). Displayed are negative samples for chromosome 21.
The ellipses represent combined z-scores 2.5 and 4, respectively. On the top plot, the scores
were combined through x 2 distribution with 2 degrees of freedom. On the bottom plot,
first, principal component analysis was used to calculate axes (ej , ea) of variation along
which the two principal components were independent. Subsequently, x 2 distribution with
2 degrees of freedom was used to combine the principal components.

At first, the A-scores of trisomic samples gradually increase with the
elimination of longer fragments. This positive effect is however balanced
by the negative effect of lower number of remaining fragments, and so,
after while, the A-scores decline to the values expected by a random draw.
We observed the highest deviation of aberrant samples using thresholds
for fragment lengths between 125bp and 145bp. We therefore measured
the maximal value in this range which we termed FL score of the sample.

Note that in contrast with the reference z-score Z n ¢y, the calculation
of \-scores is not based on comparison of proportions of fragments with
healthy population. An excessive number of fragments from a chromosome
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20 Chromosome 21

= True positive
- - - Uninformative
Negative

A-score

60 80 100 120 140 160 180 200
Fragment length limit

Fig. 3. Deviation of the T21 positive samples from the euploid samples in terms of A-score.
Elimination of fragments with length above a threshold (Fragment length limit) leads to
divergence of chromosomal counts from the expectations. In the healthy samples (only 500
samples shown for clarity), the difference can be explained by fluctuations in random draw.
On the other hand, aberrant samples show profile that markedly diverge from expected
values.

would therefore not result in the positive call, if these fragments do not
have fetal length distribution. Thus, it is possible to reveal false positive
calls caused by maternal aberrations. Similar concepts have been already
utilized in distinction between maternal and fetal gonosomal aberrations
(Shubina et al., 2017), leading to the reduction of false positive results of
the monosomy X0 predictions (section 3.5).

3.2 In silico size selection

Next, we examined the effect of the length-based fragment filtering on
the reference z-scores. Particularly, we first calculated the reference z-
scores Zncy (section 2.4), and then we removed the fragments longer
than 150bp. However, this considerably changed the read count for our
samples (1.5 &£ 0.3 million), so we concluded that the trained mean and
standard deviation (used in z-score calculation) for the original data may
not be suitable for the length-reduced data. Therefore, we applied this
length-reduction to our training samples as well, determined the new mean
and standard deviation (we kept the reference chromosomes the same),
and only with these new values we calculated z-scores of the length-
reduced test samples. Comparing the original and length-reduced z-scores
(Figure 4), we observed only small and statistically insignificant increase
in z-scores of trisomic samples (average multiplicative increase 1.05X;
Wilcoxon Z = 516, p = 0.241). For future reference, we termed these
z-scores Zgz.

On the other hand, when all aligned reads were considered (recall
that up until now, all samples were restricted to the first 5 million raw
alignments, see section 2.3), and the same procedure was applied again,
the increase in z-scores of trisomic samples became statistically significant
(average multiplicative increase 1.13 X ; Wilcoxon Z = 136, p < 0.001).
As before, we recalculated the mean and standard deviation used in the z-
score calculation because of the changed read count per sample (8.8 +4.6
million, min = Sm, max = 46.3m), while the reference chromosomes were
again kept the same (section 2.4).

This finding indicates that the length-based fragment selection is bene-
ficial only for samples with more than 5 million aligned fragments, at least
for the reference z-scores. This is in accord with our previous findings
that in silico size-based filtering of fragments (only reads up to 155bp
were retained) did not lead to statistically significant increase in trisomic

Chromosome 21

30
25 A A R A
20 Ahaaadd AAfAA‘t‘ N Yo Ak
o 15 WAL ARAY aplidas aati
o
S 10 A AaXA, A AAMAATLL ALAR A A?ﬂ;ﬂ
) AQALAA A AA AR AAALlyY
s & A A iAA A’ AA Al AL
0:: = = AN 55&:5 _____ T LIS RA e = = = £ oA ==
-5
FL NCV NCV + FL sz SZ +FL
Method
30 Chromosome 18
25
*
20 ‘ . :
o 15
) —_—
S 10 3 e ‘—

FL NCV NCV + FL
Method

Chromosome 13

30
25
20
. L ° °
@ 15
o
S 10 —_—
5 L]
=== 2 D0d DO :Q;(—; . '}{0: =
-5
FL NCV NCV + FL
Method

Fig. 4. Comparison of z-score calculation methods on chromosome 21 (upper), chromo-
some 18 (middle) and chromosome 13 (lower). Reference method based on chromosomal
fragment counts (NCV) performs better than proposed FL method, albeit their combination
(NCV + FL) increased z-scores of trisomic samples (black marks). Size selection (SZ) fur-
ther improves z-scores of trisomic samples. The combination with FL method (SZ + FL)
most markedly reduces z-scores of samples evaluated as uninformative using traditional
NCYV score alone (white marks). Empty shapes represent results of the two analyses of the
IVF sample discussed in section 3.5. See Supplementary figures S2, S3, S4 for larger plots
which also include comparison with other methods as discussed in section 3.6. Scatterplot
versions of some plots are shown on Supplementary figures S14 - S17.

z-scores using MiSeq runs having 3.1 4+ 1.0 million reads per sample,
while statistically significant (p = 0.04) increase was observed for sam-
ples sequenced on Ion Torrent PGM, of which samples had 5.8 4+ 1.0
million reads (Minarik et al., 2015).

3.3 Combined scores as supplemental evaluation method

The performance of the novel statistic Zry, by itself was observed to
be weaker than that of the traditional Z ¢y (Figure 4). Particularly,
there was a substantial decrease in z-scores for trisomic samples. On
the other hand, their combination Zncv 4, resulted in statistically
significantly higher trisomic z-scores than Z ¢y (average multiplica-
tive increase 1.11x; Wilcoxon Z = 17, p < 0.001). Surprisingly, the
combined score Zg 74 1, produced only statistically insignificant incre-
ase of trisomic z-scores (average multiplicative increase 1.02 % ; Wilcoxon
Z =637, p > 0.05).

Furthermore, we observed a decrease of Zg 71 1, scores of false posi-
tive and uninformative samples when compared with reference Zncv,
even though other samples that were previously classified as negative
replaced them in the uninformative range. Additionally, Zcv + Fr and
Z g7+, resulted both in false positive results indicating that using these
metrics alone may decrease accuracy of the testing.
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3.4 Improved evaluation method

In light of our findings, we propose the following improvement of the
NIPT evaluation process. First, a reference Z ¢ is calculated. If it is in
the negative zone, then no further test is applied and the sample is closed
as normal. If the Zncy is in the uninformative zone, then Zsz 4 py,
is computed, and if this new score is in the negative zone, the sample
is closed as normal. Our findings indicate that this process considerably
decreases the number of uninformative results (Figure 4, the white marks
in particular).

3.5 A false positive sample

We observed an atypical sample from IVF pregnancy (analysed twice)
with high risk for trisomy 18 (Figure 5). Although both analyses were
supported by solid Z ¢y scores 6.82 and 6.31, the predicted aberration
was not confirmed by invasive follow-up test. On the other hand, the
fragment length Z 1, score classified it as healthy sample (-0.57, 0.34).
The combination of these scores Zncv 4 pr, led to a slightly reduced
scores (6.43, 5.88), and the inclusion of the in silico size selection further
reduced their z-scores (3.64, 3.44), getting them into uninformative range.

Chromosome 18

15
= True positive
e False positive
- - - Uninformative
10

Negative

A-score

60 80 100 120 140 160 180 200
Fragment length limit

Fig. 5. A-scores for chromosome 18. Interesting is the twice analysed false positive T18
sample discussed in section 3.5. The A-score profile, similar to healthy samples, may

indicate that the revealed aberration by Z <y (6.82 and 6.31) may be mistaken.

The most likely explanation is that this was a result of a maternal
copy number variation on the 18" chromosome which is known to cause
false positive results (Zhou et al., 2017). Unfortunately, we were not able
to perform a follow-up of maternal genotype. If this was the case, it
would indicate that the proposed method, particularly the A-score profiles,
can be used to distinguish between fetal (e.g., aneuploidy) and maternal
(e.g., copy number variation) NIPT signals. Such method would be very
valuable, but validation on a larger cohort of such samples is required.

Other possible and rather interesting hypothesis is that this was the case
of a trisomic vanishing twin. In this case, we would expect that the cfDNA
fragment length distribution originating from the trisomic vanishing twin
would be similar to that of the trisomic living fetus, though we were not able
to find publications supporting or opposing this expectation. However, the
observation indicates that the fragment length distribution is similar to that
of a mother. Thus, either the vanishing twin hypothesis or the assumption
about the read length distribution is wrong. In case of the latter, such
difference could then be utilized for reducing the false NIPT results due
to vanishing twin effects.

3.6 Comparison with other methods

Using the trisomic dataset, we compared the proposed methods with three
other methods which also use cfDNA fragment length distribution, parti-
cularly with methods due to Yu et al. (2014), Zhang et al. (2017) and Sun
et al. (2017). The details of the computation of the three methods are in
Supplementary material. Results for the T21 trisomic data set are shown
on Figure 6. Similar results for chromosome 18 and 13 or shown on the
Supplementary figures S5 and S6, respectively. Results including euploid
as well as trisomic dataset are shown on Supplementary figures S2, S3 and
S4 for chromosome 21, 18 and 13, respectively.

30 Chromosome 21

25

20

15

Score

poradon g da——

FL NCV NCV+FL SZ SZ+FL Yu Zhang Sun
Method

Fig. 6. Comparison of z-score calculation methods on chromosome 21 on the trisomic
dataset. Yu stands for (Yu et al., 2014), Zhang stands for (Zhang et al., 2017) and Sun
stands for (Sun et al., 2017).

We observed that Zy-,, behaves very similarly to Z r 1, (Supplementary
figures S7), although there was a statistically significant increase in triso-
mic z-scores for the Zy-,, method (average multiplicative increase 1.05 X ;
Wilcoxon Z = 391, p = 0.017). On the other hand, Zy,, performed
much worse when compared with Zxcv 4+ Fr, (average multiplicative
increase 2.13x; Wilcoxon Z = 0,p < 0.001) (Supplementary figure
S8). Please note that this makes perfect sense because Zy, and Zy,, are
both based solely on the fragment length information. On the other hand,
ZNcv+rFL is based on chromosome-count information as well, and it
greatly outperforms them both.

We also observed that Zzj,q,g performed similarly to Zycv4FL
(Supplementary figure S9), Zncv + 1, although our method was mar-
ginally better (average multiplicative increase 1.05x; Wilcoxon Z =
94,p < 0.001). Again, this makes perfect sense. Both Zzj4ng and
ZNcv+rL are based on length and chromosome-count information, and
they perform similarly.

COFFEE is difficult to compare as the — log(p) values are not z-
scores (especially visible for euploid samples on Supplementary figure
S2). However, it has comparable values with Z xcv 4 pr, on T21 trisomic
samples (Supplementary figure S10).

4 Conclusion

The reference z-score method (Zxcy) of aneuploidy prediction based
on chromosomal proportions is already widely accepted, since it can quite
well separate between trisomic and euploid samples. To avoid false pre-
dictions in routine diagnosis, NIPT tests have typically a range of scores
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which are considered too risky for definite predictions. Such uninforma-
tive results are often subject to repeated blood sampling and re-analysis,
usually after two weeks, and this period may cause a stress to the future
mothers. In addition to that, high numbers of uninformative results also
increase the overall cost of the whole procedure. The supplementary sco-
res proposed in this paper may offer a useful way for reducing the number
of uninformative samples in several ways.

In our data set, we classified 53 of 2,569 (2.06%) negative samples
as uninformative using the reference Zn ¢y method. The combination
of Zncv with the Zgy, score, Zncv+FL, led to similar number 51
(1.98%), albeit only 15 of them were shared in both metrics. The addition
of size selection to the combined method (Zgz4 ) produced similar
number of uninformative samples to 48 (1.87%) but only 4 of them were
shared with the reference method. Thus, the combination of these appro-
aches can be used to substantially reduce the number of uninformative
results as proposed in section 3.4. In our case, 49 out of 53 uninformative
samples would be closed as negative without affecting the prediction of
true positive samples.

A proper verification of the proposed method should also include true
positive samples with Zx ¢y in the uninformative range which the pro-
posed method would classify either as positive or uninformative (that is, it
should not create false negatives). Unfortunately, we did not observe any
true positive sample in the uninformative range. To address this issue, we
subsampled our data to 2.5m reads (half of considered Sm earlier) what
produced some true positive samples in the uninformative range for Z y oy
method. We observed that Zn cv 4 r 1, method either correctly classified
these samples as positive or kept them in the uninformative range (Supple-
mentary figure S11, S12, S13). Note that we did not consider Zsz 4 Fr,
method because this method (particularly Z g ) requires at least Sm reads
to work as discussed in section 3.2. While not conclusive, this is at least
some kind of evidence that the proposed method does not create false
negative calls out of uninformative results.

Another way to lower the number of uninformative samples is to clas-
sify uninformative samples with low Zr, score as negative. Setting the
threshold for Z i, score to 0, 1, 2 led to correct elimination of 24 (45.28%),
41 (77.36%) and 50 (94.34%) out of 55 true negative samples with uninfor-
mative Z oy call. The thresholds, however, must be chosen with caution,
since the lowest observed Z i1, score of positive sample was 1.34. Because
this sample also had high chromosomal Z n &y score 11.02, the false nega-
tive call with Zg, threshold set to 2 could be avoided by preferring the
reference method, albeit similarly low Z 1, scores may occur along with
the low score of the reference method.

A typical NIPT analysis is suitable for prediction of monosomy as well.
The monosomic samples are distinguished by negative z-scores below
some predefined threshold, for example —3 (Mazloom et al., 2013). In
contrast with the sign of chromosomal Zx v score, which indicates
increase or decrease of DNA material from specific chromosome, the sign
of the fragment length Zp, score indicates maternal or fetal origin of
the aberration. This way, the scores may be divided into four categories
representing: 1) maternal duplication (Zpp, < 0, Zycy > 0), 2) fetal
duplication (Zrpr, > 0, Zycy > 0), 3) maternal deletion (Zpy, < 0,
Zncv < 0),and4) fetal deletion (Zrr, > 0, Znycov < 0), thus making
the prediction more informative (Figure 7).

Also, we observed a statistically significant increase in trisomic z-
scores for method Zncv 4+ pr,. Thus, this method can be considered as
an improved version of Zncv .

Finally, we discuss the possibility of either our method being able to
distinguish between fetal and maternal NIPT signals or trisomic vanish-
ing twin having different cfDNA fragment length distribution than living
trisomic fetus. To verify these hypotheses, more tests on a larger cohort of
samples are required.
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Fig. 7. Comparison of z-scores calculated chromosomal count (NCV) and fragment length
(FL) methods. Positive (black) and negative (white) samples with z-scores higher that 2.5
(NCV method) are represented by triangles (chromosome 21), diamonds (chromosome 18)
and circles (chromosome 13). Other negative samples are accumulated in form of a density
plot in the intersection of major axes (x = 0; y = 0). Major axes divide predictions
into four classes, while the fetal trisomies are located in top, right quartile (Zgy, > O,
Zncv > 0). Empty shapes represent results of the two analyses of the IVF sample
discussed in section 3.5.

Elimination of long fragments may significantly improve prediction
accuracy of trisomy testing. The number of sequenced DNA fragments
must be however sufficient to balance the lower number of analysed fra-
gments. Based on the patterns observed in z-score profiles, we designed a
novel method for prediction that is independent to standard method based
on chromosomal counts. We presented that combination of these two meth-
ods may conclude samples that cannot be safely classified using a single
method. However, care should be taken when interpreting short cfDNA
fragments as solely or predominantly fetal, because Jiang et al. (2015)
showed that “populations of aberrantly short and long DNA molecules
existed in the plasma of patients with hepatocellular carcinoma”. On the
other hand, patients with carcinoma have other tell-tale signs such as large
copy number aberrations that can help identify such case (Chan et al.,
2012; Dharajiya et al., 2017).
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