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ABSTRACT

We report a quantitative multiscale (MS) procedure based on the recently developed Stochastic Kinetic Mean Field approach (SKMF)
[Erdélyi, M. Pasichnyy, V. Bezpalchuk, J. J. Toman, B. Gajdics, and A. M. Gusak, Comput. Phys. Commun. 204, 31-37 (2016)], combined
with the Phase Field model (PFM) and CALPHAD database, to study the nucleation-growth-coarsening process in alloys. The SKMF
approach reproduces the nucleation and early growth of precipitates in the matrix, and the PFM then simulates the coarsening of the micro-
structure. To ensure the consistency of the procedure, the length and time scales of SKMF and PFM are explicitly connected. Moreover,
both the effective interaction energies used in the SKMF and the free energy used in the PFM are taken from CALPHAD database. Two
different implementations of the procedure are proposed. First, the postnucleation microstructure as provided by SKMF is used as the initial
condition for subsequent PFM simulations. Second, only the particle size distribution and particle density are transferred to PFM, thereby
giving access to bigger systems. The proposed procedure is tested in the specific case of the Ag-Cu model alloy.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5099676

I. INTRODUCTION

The development of new efficient multiscale (MS) approaches
has recently become a first class issue in the field of materials
science. Indeed, only MS models can comprehensively account
for the numerous dynamical processes rooting the formation of
complex microstructures, including structural phase transitions,
precipitation, grain boundary formation, or defect kinetics."” In
particular, the dynamics of the nucleation-growth-coarsening
process has specifically sparked the development of a series of MS
approaches.”™ These involve atomistic models downscale, such as
Molecular Dynamics (MD)” and Kinetic Monte Carlo (KMC),’
and mesoscopic approaches upscale such as the Phase Field Model
(PFM).”""" PFM was notably proved efficient to simulate coarsening
kinetics in multicomponent alloys, first qualitatively'” and then
quantitatively when combined with CALPHAD data, which provides
the thermodynamic description of systems.'” The founding principle
of PFM based MS procedures is to evaluate the phenomenological
parameters stepping in the PFM equations, by means of various
smaller scale approaches.”™'* This paragon was then improved by

using KMC simulations of the postnucleation microstructure as the
initial condition for the subsequent PFM calculations.”

However, these MS procedures can be hard to reproduce,
notably because the integrated numerical approaches are manifold’
and sometimes not entirely transferable to other materials.” For
this reason, we propose a simple alternative MS approach in this
work, where the recently developed Stochastic Kinetic Mean Field
(SKMF) model'™'® is used on the atomic scale, whereas PFM is
used for the longer scale. SKMF was adapted from the Kinetic
Mean Field (KMF) model'’ generalized from the original 1D
model of George Martin, ® to which a dynamic Langevin noise was
added as it provides results similar to the lattice KMC."” However,
the connection between SKMF and PFM is easier, as the SKMF
internal energy involves composition dependent effective interac-
tion energies, which can be taken from CALPHAD, thereby, it can
match the chemical free energy used in the PFM. This connection
is justified by the equivalence of the stationary states of the SKMF
on the atomic scale, and the local minima of the Mean-Field
Bragg-Williams (MFBW) free energy on the mesoscale.'®*"*'
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Another insight of the proposed MS procedure is to explicitly
match the space and time scales between atomic (SKMF) and
mesoscopic (PFM) levels. By doing so, a consistent integration of
the constitutive models within the MS procedure can be achieved.”

The proposed model is tested on the silver-copper binary
alloy, notably because it undergoes an isostructural precipitation
when the binodal is crossed. Besides, silver-copper alloys are still
considered for microelectronics applications.””

This work is organized as follows. First, a updated version of the
SKMF approach accounting for the more general case of asymmetric
phase diagrams is presented. Then, the PFM is briefly refreshed. To
parametrize the proposed MS procedure based on SKMF and PFM,
the space and time scales of the two constituting models are con-
nected by matching the interface profiles and growth velocity of an
isolated growing precipitate, in the case study of the AgCu model
alloy. For both approaches, the thermodynamic data are taken from
CALPHAD. Therefrom, the MS procedure is implemented to simu-
late the full nucleation-growth-coarsening process. Two strategies are
proposed. First, the PEM is fed with the SKMF simulations of the
microstructure. Second, the MS procedure is upscaled, as the particle
size distribution (PSD) and the number of precipitates provided by
SKMF are used as the input for the PEM simulations.

1Il. NUMERICAL METHOD
A. Stochastic kinetic mean-field model

The SKMF approach'™'® is based on the model of Martin."*
Here, the local atomic configuration in a A-B binary alloy is described
by the occupation probability ¢; of A atoms on a site i so that 1 — ¢
is the occupation probability of B atoms on the same site. The time
evolution of ¢; is governed by a nonlinear stochastic equation satisfy-
ing the balance of the conservation of matter and the fluxes of atoms
between the site i and its Z nearest neighboring sites j,

dC,‘ Z
T Z[]jﬂi —/'Hj}- (1)

=

In this equation, J;_; and Ji_; are the material fluxes of A
atoms from site j to site i and vice versa, both containing a
mean-field and a fluctuation part,

Jij = I 4 ST, @

Here, ]}\g is the mean-field (MF) atomic flux from site i to site
j» defined from the mean-field (MF) exchange rate Fi;-[F between
sites 7 and j as follows:

I = a1 =y 3)

i—j

Similarly, the fluctuation part 5758 in the total flux can be

i—j -
. . L
expressed from a dynamic Langevin noise &, ;ng as”

S = (1 — o™, @

i—j
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Lang . . .
" is but a white noise of

where the dynamic Langevin noise J;;

amplitude A,

glang _ An

= (5)

where At is the time step of the simulation. In compliance with the
definition of a Gaussian noise, 8 is a random uniform number of
zero mean value and a mean squared value equal to 1. The intro-
duction of stochasticity in the SKMF model makes it possible to
describe the initial stages of nucleations, thereby overcoming one
limitation of the deterministic model of Martin. It should be noted
that adding the noise to the flux rather than the concentration
notably allows to circumvent potential singularities in the composi-
tion change rates.”> When A, is set to zero, the SKMF model
becomes purely deterministic.
The MF jump frequency F%IF is defined as

Ey— (EA + Ef)) ©

MF __
FiJ —vexp<— % T

Here, k;, is the constant of Boltzmann, T is the absolute tem-
perature, and v is the frequency of the atoms trying to reach the
saddle point energy E; assumed constant in this work. Besides,
each energy Ef (X = A, B; s =1i,j) is the sum of the interaction
energies between an atom X on site s and the Z nearest neighbor
atoms in the vicinity V(s) of site s in the first coordination shell,

4
E = ) [aVax+ 1 —a)Vxs), ()
I=LIEV(s)

where Va4, Vpg, and Vg are the A-A, B-B, and A-B pair interac-
tion energies in the A-B alloy, respectively. It should be noted that
a more realistic description of a system could be provided by the
n-body interaction model, as it might lead to a more accurate esti-
mation of jump frequencies and interface energies. The SKMF
model is not restricted to pair-interaction energies. It can be
equipped with n-body potentials instead, and atomic interactions
beyond the first coordination shell can also be considered. We stick
to the pair interactions for demonstration purposes in the case of
the Ag-Cu system. An equivalent expression of the MF jump fre-
quency I’f;[F is used in practice in SKMF simulations, on introduc-
ing the parameters,

1 1
M= E(VAA — V), V= E(VAB — [Vaa + Ves]).  (8)

The parameter V corresponds to the mixing energy of the
solid solution, and the parameter M accounts for the A/B asym-
metry of the tracer diffusion coeflicients. Thereby, different values
for the parameter M will result in different kinetic pathways
toward equilibrium (e.g., interface sharpening instead of broaden-
ing in miscible alloys”>**). Then, F%m can customarily be rewritten
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in the alternative form

E..
MF __ i
l"i,j =T)exp (— _ka> N 9)

where T’y = vexp{[ — Eo + Z(Vap + V3g)]/kyT} and E-,j is an eff-
ective interaction energy defined by

V4 V4
Ej=M-V) Y a+M+V) Y a0

I=1,IEV(i) I=1IEV(j)

The internal energy of an inhomogeneous solution in a 3D
atomistic model (just like SKMF) can be calculated from the inter-
action energies between atoms,

N
U=> u (11)
i=1

where N is the number of atoms and u; is the mean internal energy
of site i. The latter can be calculated as a sum of the interaction
energy of an A atom on site i and the interaction energy of a
B atom on site i weighted by the finding probabilities of A and B
on site i,

1
u = [E} + (1 — c)EP]. (12)

Here, the factor 1/2 compensates the double counting of
interactions. Using expression (7) for the energies E' and Ef, and
expression (8) for the parameters M and V, the internal energy
density can be rewritten as

u; = uac; +ug(l —¢;) +ci(1 — ¢;)Vy

+%(t_?l —&)ZM + (1 = 2¢) Vo), (13)

where uy = ZVaa/2, up = ZVpp/2, Vo = ZV,and ¢, = 1/Z 212:1 ¢
is the local average concentration of A atoms in the vicinity of site i.

In a homogeneous binary solution, the probability ¢; to find an
atom A in site i and the locally averaged probability ¢; reduce to the
average concentration ¢ of the alloy: ¢; = ¢; = ¢. Accordingly, the
internal energy u; of an atom on site i is equal to the density of inter-
nal energy u in the homogeneous solution: u; = u(c) = uac+ up
(I —¢)+ c(1 — ¢)Vq. Thus, the regular solid solution model for the
internal energy per atom u(c) is recovered for the homogeneous
solution,

u(c) = ugc+ ug(l —¢) + (1 — ) Vy. (14)

As can be seen, the first two terms are the internal energies of
the pure A and B components, and the excess internal energy

ARTICLE scitation.org/journalljap

density reads as
Aty (c) = ¢(1 — ) V. (15)

Obviously, Au(c) is symmetrical, so that only symmetrical
solubility limits corresponding to the minima of the excess free
energy can be accounted for at equilibrium. Consequently, the
stationary states of the original SKMF model"> could only display
symmetrical solubility limits as well.

In this article, we use a version of the original SKMF model
that is modified to be applicable to asymmetric phase diagrams,”
such as that of Ag-Cu. For that purpose, we modify the expression
of the MF jump frequency F%-IF, defined through Egs. (8)-(10).
This can be done by replacing the constant parameter V; in
Eq. (15) by a composition dependent parameter V(c) defined by

V(C) = V() + V1(2C - 1), (16)

where the two coeflicients Vo(T) and V,(T) can be taken for
example from the Redlich-Kister polynomials used in CALPHAD
to reproduce the experimental solubility limits of the alloy. By
doing so, the excess internal energy becomes

Auee(c) = c(1 — o) [Vo + Vi(2c — 1)]. (17)

Now, the stationary states of the SKMF model will display the
same asymmetric solubility limits if taking

Vi) =V + V(2 — 1), (18)

where we V =V,/Z, V' =V /Z (as Vy and V; defined for one
atom, while V and V' are defined for one bond), and

1 4 4
G =c—— |+ Z a+¢+ Z ¢ 19)
Z(Z + 1) I=LIEV(i) I=1IEV(j)

so that the interaction energy E ;j defined in Eq. (10) becomes

4
Ej=WM-[V+VQ-D) Y «
I=1IEV(i)
4
+MHV+VCG—D) Y a (20)

I=1IEV()

In this work, the SKMF model is used to study the kinetics of
phase separation in the Ag-Cu immiscible alloy on the atomic scale.
The Ag-Cu system displays an asymmetric phase diagram,”® and
the expression (20) is thus used for the interaction energy.
Thermodynamic data are taken from CALPHAD to fit the experi-
mental solubility limits of the system:™ fyo = f ag/Nao fou = fcu/Na
Vo = Vo/Na, and Vi = V| /Ny, where Ny is Avogadro’s number
and f,, = —11945+9.67T J/mol, fg, = —13054+ 9.62T J/mol,
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Vo =34532—19.178TJ/mol, and V| = —5996 + 1.725T J/mol.
Moreover, silver and copper display very similar tracer diffusion
coeficients in Ag, Cu, and the Ag-Cu alloy.27’28 Thus, the diffusion
asymmetry parameter M is set to 0. Finally, the FCC lattice consists
of 168 grid points, and it is equipped with periodic boundary condi-
tions. Equation (1) is solved in a reduced form using reduced time
step At" = AtTy, reduced noise amplitude A, = A,/+/Ty, reduced
fluxes ] = J;j/T, furthermore M, V, and V’ are used in kT units.
The reduced time step is set to At” = 0.01, which defines the reduced
time #5r of SKMF simulations, as the product between the number
of iterations and the time step. Finally, when a dynamic noise is used
(nucleation-growth), the reduced noise amplitude is A, = 0.35.

B. Phase-field model

In the phase-field model, the microstructure of the decompos-
ing binary A-B system is described by the coarse grained concen-
tration c(r, t) of component A. The temporal evolution of this
concentration field is then given by the Cahn-Hilliard equation’

Jdc OF(c)
L) o

Here, M is the atomic mobility, and F(c) is the total nonequi-
librium free energy on the volume Q, which embodies the bulk free
energy and the interfacial energy”’

F:J [ﬁ,(c)+f\v42 do. 22)
Q 2

The parameter x > 0 is the gradient energy coeflicient and
fn is the MFBW free energy defined by

49 = Atter(6) + Ky TlcInc + (1 — ¢) In (1 — 0)], (23)

where Au(c) = c(1 —¢)[Vo + Vi(2c — 1)] is the internal energy
emerging in the SKMF model [see Eq. (17)]. To model the kinetics
of phase separation in the PFM, the phase-field equation (21) is
numerically solved in its reduced form. For that purpose, the
reduced free energy potential f, is expressed in units of k; T,

f}:( ) =c(1 —c¢) —+ (2 —-1)

k, T k T
+clnc+ (1 —=¢ln(1—0). (24)

Besides, on introducing the characteristic time and length scales
to and I;, the PFM reduced time is t;FM = t/ty, and the reduced
gradient operator is V' = [,V. Setting ty = x/(x M(ky T)%) and
lp = \/x/(x"kyT), where k" sets the reduced width of diffuse inter-
faces between phases, the reduced phase-field equation is

Jc .2 c ) 2
5= () [ln(:)—i—alc fac—K V], @5
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where a; = —6V,/(k,T), a, = (6V; —2V,)/(kyT) from the first
derivative of ﬁ: (c) in Eq. (24). Here, the mobility is assumed cons-
tant, as it was justified for the Ag-Cu system in Ref. 27.

The PFM model is used to study the kinetics of phase separa-
tion in the Ag-Cu immiscible alloy at the microstructure scale. In
Eq. (21), c(r, t) is the local concentration of silver. All thermody-
namic parameters are thus the same as in the SKMF model.
Moreover, the mobility M for this system was computed as a func-
tion of temperature T in Ref. 27. As for the parameter «;, it will be
computed through the multiscale procedure in what follows.
Phase-field simulations are performed by numerically solving the
nonlinear equation (25) for x* = 1.0, using the Spectral-Eyre (SE)
scheme.”’ The 3D simulation box consists of 168> grid points. It is
equipped with periodic boundary conditions. A uniform reduced
time step At = 0.02, which defines the reduced time tp,, of PFM
simulations, and a mesh size Ax' = Ay’ = Az' = 0.97 are chosen.
This choice of space step will allow to match the size of the PFM
simulation box with that of SKMF in real units (see the paragraph
on the length scale of the multiscale method). In the spinodal
region, the initial state is a homogeneous solution with small com-
position fluctuations of amplitude 0.002, centered in the average
composition ¢ of silver.

C. Sequential MS procedure

The multiscale (MS) procedure proposed in this work is
sequential: numerical methods (SKMF and PFM) operate at their
natural scale (atomistic and mesoscopic, respectively) and are con-
nected via the upstream transfer of relevant parameters.

The procedure first consists of connecting the length and time
scales of SKMF and PFM. Second, it proceeds by simulating the
first stages of the decomposition dynamics on the atomic scale by
means of the SKMF simulations, and then using this simulation
output as the initial solution of PFM simulations for the latest
stages of the dynamics. Third, the MS procedure is upscaled, by
using the particle size distribution (PSD) and density as an input
for PEM simulations on a larger simulation box.

The first step of the MS procedure guarantees the consistent
integration of the two models within the global approach. Besides,
it provides the MS procedure with its space and time scales in real
units. A choice was made to connect the SKMF and PFM on the
elementary case study of the growth of a single spherical germ. In
details, the SKMF atomistic model intrinsically contains its own
length scale in real units, through the 3D-lattice. On the contrary,
the resolution of the PFM is the spatial correlation length (= ).
This characteristic length scale is thus chosen to be the pivot
between the two methods. It is connected to the natural length
scale of the SKMF model, by matching the interface profiles
between the copper-rich precipitate and the silver-rich matrix as
simulated by both methods. Next, the time scales of SKMF and
PFM are connected by matching the time evolution of the precipi-
tate radius in both cases. An estimation of the interatomic
diffusion coefficient for the Ag-Cu alloy, calculated in a former
work”” is also used to express the time scale of the MS procedure
in real units. Moreover, the equivalence between the stationary
states of the SKMF on the atomic scale and the absolute
minimum of the Mean-Field Bragg-Williams (MFBW) free energy
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used in the PFM ensure the thermodynamical consistency of the
MS procedure.

The second level of the MS procedure is to feed the PFM with
the atomistic simulations of the SKMF. In that case, SKMF and
PEM simulations are performed on simulation boxes with the same
size (168% grid points in this work) and connected at the instant
corresponding to the maximum number of particles. This strategy
is nonetheless limited by the computational load of SKMF simula-
tions on a big simulation box. To upscale the MS procedure,
the PSD and number of precipitates provided by SKMF at the
maximum number of particles is then used as the input for the
PFM simulations on a bigger simulation box (5122 in this work).

lll. PARAMETRIZATION OF THE MS PROCEDURE FOR
Ag-Cu

A. Solubility limits and nucleation-growth domain

The solubility limits in the Ag-Cu alloy were computed using
both SKMF and PFM independently, by taking the maximum and
minimum values of the bulk concentration. In both cases, the crite-
rion for reaching the equilibrium concentration in the bulk of the
precipitates and the matrix was the stationarity of the numerical
solubility limits. This criterion was met after roughly 30 000 itera-
tions by the SKMF model and 5000 iterations by the PEM. Results
for the SKMF and the PFM are displayed in Fig. 1 using blue
squares and red circles, respectively (full marks), vs the experimen-
tal binodal curve taken from Ref. 26 (continuous line).

In the temperature range of solid Ag-Cu (T < 1050K), the
solubility limits of both SKMF and PFM are in good agreement
with the experimental phase diagram. This is not surprising, con-
sidering that the MFBW free energy density that determines the
equilibrium state of the PFM, as well as the equivalent stationary
states of the SKMF model, were parametrized using the same data

1050 9—; ‘
1000 on

<950 o

= 900 o

(]

E 850 P

g 800% m

2 750 | b

g

ﬁ @

o

\ \
0.2 0.4 0.6
Average Ag concentration ¢

FIG. 1. Solubility limits (full marks) and spinodal limit (empty marks) for differ-
ent temperatures in the Ag-Cu system, as provided by PFM (red circles) and
SKMF simulations (blue squares), vs the binodal line provided by CALPHAD
(black line), and the spinodal line provided by the CH linear theory (black dots).
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taken from CALPHAD. In particular, the asymmetry of the Ag-Cu
phase diagram is accounted for.

The spinodal limit was also determined using SKMF and PFM.
For that purpose, simulations were performed using different average
concentrations and at different temperatures. In the PFM, the initial
condition was a homogeneous solution with small fluctuations of
composition of amplitude 0.002 (static noise). In SKMF, a homoge-
neous system with a 107 fluctuation on a single site was used
without dynamic noise (A, = 0). Only concentration-temperature
couples allowing phase separation were considered to be inside the
spinodal region. Incidentally, this procedure allowed to circumscribe
the nucleation-growth domain of the Ag-Cu system.

It should be mentioned that, when approaching the binodal
line from the metastable region using SKMF without dynamic
noise, the system might be stuck in a metastable state, thereby blur-
ring the delimitation between metastable and unstable regions in
the phase diagram. To evaluate this bias, the same study of the
binodal line was also performed using SKMF with dynamic noise
(not presented). Results with and without dynamic noise proved
very similar, and this bias could then be neglected. The simulations
gave somewhat different compositions than the linear CH theory
(dotted line) for both methods. The discussion of this disparity
is beyond the scope of the present paper and some aspects of it is
already discussed elsewhere.”” In the following, simulations are per-
formed at T = 873K, and for an average concentration ¢ = 0.83,
which places the system outside of the spinodal limit in the
nucleation-growth domain for both methods.

B. Space scale

In the SKMF model, the length scale is naturally set by the
lattice spacing. In the case of the Ag-Cu alloy, the average lattice
parameter of the FCC lattice is about ay = 3.8 A% so that
Ax = ag/2 = 0.19 nm. Consequently, the lattice grid used for the
SKMF approach (168 sites) roughly corresponds to a (32 nm)?
spatial domain. In the PEM, the space scale is determined by the
upstream setting of the correlation length by means of an atomistic
approach, chosen to be the SKMF model here. Note that in reality,
during the decomposition, the lattice constant changes as its value
in pure Cu is 3.597 A and it is 4.079 A in pure Ag.”” In our simula-
tions, the lattice misfit was neglected, and no elastic effects were
considered.

For that purpose, the growth of a single precipitate of copper
is simulated using SKMF, for an average concentration ¢ = 0.83
and at T = 873 K. The resulting equilibrium profile of the Ag/Cu
interface in the (100) direction is materialized by blue squares in
Fig. 2. The criterion for reaching the equilibrium interface was the
stationarity of the interface width and solubility limits. At this tem-
perature, and for ¢ = 0.83, this requirement was met after roughly
30 000 iterations. The SKMF interface profile was then fitted by a
typical hyperbolic tangent function reproducing the PEM interface
profile. In details, the interface ansatz was I(x) = Ay + A;tanh(x/l)
(correlation factor p > 0.999), where the characteristic length scale
was found to be [y = 0.196 nm (red line in 2). The choice to take
At = 0.97 thus provides Axppy = Axsive = 1.90 X 1071 m (see
Table I). Though singular, this small space step for the PEM is the
price to pay for fitting the composition values of SKMF on the
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FIG. 2. Ag/Cu interface equilibrium profile as obtained by SKMF simulations
(blue squares) for ¢ = 0.83, at T = 873K, fitting (correlation factor p > 0.999)
by the PFM tanh profile (red line) and the resulting PFM profile (red circles).

atomic scale via the continuous and derivable functions solving the
phase-field equation (21). In passing, a similar value was used in pre-
vious PFM based MS procedures.””” However, in no case does it
attest for the applicability of the PFM on the atomic scale.

To justify the transfer of the composition profile from the
atomistic SKMF to the continuum PFM, we must run SKMF until
it reaches a state where the interface is smooth enough to serve as
an adequate initial condition for the numerical solution of PFM. It
was shown before that continuum equations are valid on the
atomic scale if diffusion distances are longer than a few times the
atomic distance.”*’> We must note, however, that this distance
might depend strongly on the diffusion asymmetry (composition
dependence of the diffusion coefficient).”>”” As in the Ag-Cu
system, the diffusion asymmetry is negligible, that is M = 0, the
former case holds. We have chosen the runtime of SKMF simula-
tions accordingly. This is notably supported by the diffuse interface
profile that naturally arises in atomistic SKMF simulations where
Fick’s continuous diffusion is not assumed and which matches the
hyperbolic tangent profile of phase field.

In these conditions, the 168> simulation box used in both PFM
and SKMF simulations gives roughly a (32 nm)? spatial domain. The
corresponding PFM interface is also displayed (red circles) in Fig. 2.

The gradient energy coefficient x can be derived from Iy,
using that x = k,TI2, which leads to x = 4.6 x 107! ] nm? or
x=21eVnm! at T = 873K (density is 72.9nm~> for Ag-Cu).
This is slightly higher than x = 1.5eVnm™' as obtained via

TABLE I. Space and time steps for the SKMF and PFM, at T=873 K.

SKMF PFM

At=632x107" s
Ax=190%x10""m

At=9.03x107%s
Ax=190x10"""m
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MC/MD calculations in Ref. 27 at T = 900 K. It results from stiffer
interfaces in the SKMF model compared to the procedure used in
Ref. 27. In passing, it was observed in Ref. 27 that for temperatures
ranging from 600 to 1000 K, x could be considered independent of
the temperature. We thus suggest that this constant value of x can
be used in this range of temperature to compute back the length
scale I for any temperature.

C. Time scale

To provide the time scale #, of PFM simulations in real units
for the Ag-Cu alloy, the atomic mobility M is estimated in the stan-
dard framework of Martin'® for bulk diffusion in a binary alloy,

)
M= kT

D. (26)

Here, D is the chemical interdiffusion coefficient. It is
assumed to be independent of the local concentration of silver and
copper in the vicinity of the interface. This is justified by similar
tracer diffusion coefficients for copper and silver in copper, silver,
and silver-copper. This approximation is consistent with the choice
to set the diffusion anisotropy parameter M to zero in the SKMF
model [see Eq. (10)]. Under this approximation, the following estima-
tion of the chemical interdiffusion coefficient was derived in Ref. 27:
D(T = 873K) = 75.9nm? s 1. The expression (26) then gives the
atomic mobility at T = 873 K: M = 161 nm? s~ ! eV 1, and the time
scale of the PFM procedure follows fy = 5 /(k, TM) = 3.16 x 10 s.
By definition, t, also sets the time scale of the MS procedure.

The consistent integration of the SKMF model within the MS
procedure requires that its time scales is connected to the time
scale of the PFM. To do so, the growth of a single precipitate is
simulated using SKMF and PFM, at T = 873 K, and for an average
concentration ¢ = 0.83. To estimate the precipitate radius, the limit
between the precipitate and the matrix is set at half interface. The
same initial spherical nucleus of radius R(t = 0) = 3.8 nm (20 grid
spacing) by far superior to the critical radius for nucleation, and
bulk concentration 0.013 given by the lower solubility limit of the
alloy is used in both SKMF and PFM. This initial condition corre-
sponds to the equilibrium shape and bulk concentration of the pre-
cipitate. It ensures that only the growth process by means of
Fickian diffusion is modeled, except for the first iterations when the
interface of the nucleus aligns on its equilibrium profile (Fig. 2).
Also, the noise amplitude is set to zero in the SKMF simulations
for consistency with the PFM.

The time evolution of the precipitate radius R(¢) as simulated
by SKMF and PFM is displayed in Fig. 3. The two curves match,
provided that the reduced time scale in the SKMF simulations was
preliminary rescaled by a factor 7y = 3.50 + 0.01. This proves that
the reduced time scales of SKMF and PFM are in a proportionality
relationship fgyr = Tolppy- After that, the SKMF model could, in
turn, be equipped with the real time scale ¢, of the PFM, as derived
from the atomic mobility M, resulting in Fig. 3. Alternatively, the
real time scale of the SKMF approach could have been estimated
independently, by explicitly calculating the MF jump frequency
FZ.[F [see formula (9)] and then compared to the PFM time scale t,.
However, in this work, a choice was made to “impose” the same
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FIG. 3. Time evolution of the radius R(f) of a single growing precipitate, for
¢ =0.83, at T = 873K, as provided by SKMF simulations (blue squares) after
rescaling by a factor 7o = 3.50 and PFM simulations (red circles).

time scale to both methods, thereby ensuring the consistent con-
nection between the simulation of the early and later stages of the
system kinetics, by means of the SKMF and PFM, respectively.
Considering that Aty = 0.01 and Aty = 0.02, the shared
time scale for SKMF and PFM in real units can be displayed in
Table I through their respective time steps. In particular, it can be
seen that the time step for the PFM is roughly seven times as big as
that of SKMF: Atppy = 7.00 X Atsgvr. SKMF simulations were also
performed using a dynamic Langevin noise for the single precipi-
tate growth, and the same time scale as in the previous case was
obtained. However, due to the stochastic nature of SKMF, addi-
tional nuclei appeared. In this case, the time scale was fitted for the
growth of the first precipitate. It should also be noted that the
two curves for R(t) in Fig. 3 align on a square root law of time.
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This validates the hypothesis of the Fickian diffusion regime, as
predicted in the Wagner theory for the growth of a single
precipitate.38

IV. MS SIMULATION OF NUCLEATION-GROWTH IN
Ag-Cu

A. SKMF simulations

SKMF simulations have been performed at 873 K annealing
temperature. A total of 8.75 - 10° iterations were necessary to inves-
tigate the nucleation of Cu rich clusters in the Ag matrix. As one
can see it in Fig. 1, the initial ¢ = 0.83 average composition is
inside the miscibility gap but outside of the spinodal region for
both methods. In order to overcome the nucleation barrier,
dynamic noise was used. The nucleation time depends on both the
noise amplitude and the chemical driving force. The latter is higher
for (¢, T) couples close to the binodal curve in the phase diagram.
At a given temperature, a higher ¢ leads to a longer nucleation
time, whereas a higher A, usually means faster formation of viable
Cu rich precipitates but worse statistics. Figure 4(a) shows the
appearance of the first small nuclei (<1 nm).

Then, additional nuclei keep forming while the latter grow
rapidly, resulting in an increasing mean radius R [Fig. 5(a)], until
the simulation reaches the maximum number of Cu rich precipi-
tates [Fig. 5(b)]. This step (t = 0.16s) was taken as the initial state
of PFM simulations (see Sec. IV B). Contrary to the isolated
growing precipitate, SKMF simulation continued with A, # 0,
while no dynamic noise was used in PFM. Thereafter, the number
of precipitates decreases, while R increases at the same time, corre-
sponding to the coarsening process.

Figure 4(a) shows that at the early stages (<0.05s), no
nucleus can be observed. After the appearance of the first nucleus,
the system quickly (~0.1s) reaches the maximum number of pre-
cipitates, where the average size of the particles is around 1.5 nm.

()

FIG. 4. Microstructures obtained by SKMF simulations using a dynamic noise of amplitude A* =0.35, at T = 873K, for ¢ =0.83, at times (a) t =0.05 s,

(b)t=0.16s,and (c) t = 7.90s.

J. Appl. Phys. 126, 065106 (2019); doi: 10.1063/1.5099676
Published under license by AIP Publishing.

126, 065106-7


https://aip.scitation.org/journal/jap

Journal of
Applied Physics

—_
@
(=]
w

ARTICLE scitation.org/journalljap

o SKMF
O PEM init. state

I
2

[\S)

—_ —
(=] N
(=] (&2}

‘;;

number of precipitates
~
(%))
o

mean radius R(¢) (nm)
&

—

Vil

.ﬁi .1 o |

(=}
u
o

o homonuclear
o heteronuclear
O PFinit. state

fraction of bonds
o
(2]

B o 0.25 © © 000,
25 0.5 o SKMF Qﬁ
a OPEM init. state '
0 0 0
1073 1072 107! 10° 1073 1072 107! 10° 1071 100 10! 102
time ¢ (s) time 7 (s) time ¢ (s)
(a) (b) (c)

FIG. 5. (a) Number of precipitates, (b) mean precipitate radius, (c) fraction of homo and heteronuclear bonds, as obtained by SKMF simulations (blue squares) using a
dynamic noise of amplitude Ay = 0.35, for ¢ = 0.83, at T = 873 K. Red circle: initial configuration for PFM simulations.

This is followed by a slow coarsening process, while the mean
radius of the precipitates increases [Fig. 4(b)]. The fraction of AA,
BB, and AB bonds can be calculated for the whole system based on
the probabilistic approach of SKMFE. Between sites i and j, the value
of cicj, (1 —¢;)(1 —¢j), and ¢;(1 — ¢;) + (1 — ¢;)¢; gives the fraction
of Ag-Ag, Cu-Cu, and Ag-Cu bonds, respectively. The formation
of homonuclear (Ag-Ag and Cu-Cu) bonds is energetically advan-
tageous, thus the system wants to minimize the number of unfavor-
able heteronuclear Ag—Cu bonds, as it is presented in Fig. 5(c).

B. PFM simulations

Consistently with SKMF, PFM simulations were performed
using ¢ =0.83 and T =873K. The initial conditions was the
SKMF microstructure at t = 0.16 s [Fig. 4(b)]. In order to transfer
the solution from SKMF to PFM, we used the fact that in the
SKMEF approach, the atom occupation probability varies smoothly

(b)

from one site of the FCC lattice to another. It was thus possible to
interpolate the atomic coordinates on the empty lattice sites into a
quasicontinuous configuration for subsequent PFM simulations
[Fig. 6(a)]. One should keep in mind that this procedure to transfer
the solution from SKMF to PFM relies upon the same justification
we used in Sec. IIT B to connect the space scales of both methods
by matching the interface profile of a single growing precipitate.
Moreover, the PFM coarse grained concentration c is a contin-
uous field defined at the mesoscopic level, which is discretized on a
simple cubic lattice afterwards. Thus, the connection of the SKMF
and PFM not only requires to interpolate the SKMF concentration
from the FCC lattice to the simple cubic lattice, but it also virtually
changes the nature of the variable describing the system. This
discussion is not trivial, but it is beyond the scope of this work.
The time t = 0.16 s corresponds to the maximum number of pre-
cipitates in the SKMF simulation (122). The evolution of the
microstructure simulated by the PFM is displayed in Fig. 6.

(©)

FIG. 6. Microstructures obtained by PFM simulations using as initial condition the microstructure as obtained by SKMF at t = 0.16's, at T = 873K, for ¢ = 0.83, at times

(@)t =0.16s, (b) t =2.69s and (c) t = 19.15s.
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Between t = 0.16 s and t > 2 s, the system undergoes a short tran-
sient regime. It is characterized by the decrease of the volume frac-
tion of precipitates and numerous denucleation events for small
particles. Then, the coarsening regime is initiated, where the
volume fraction of precipitates remains steady, bigger particles
grow, and smaller particles denucleate or coalesce.

To quantify this trend, the PSD of the system is shown in
Fig. 7(a) at different times. The initial distribution for PFM simula-
tions is given in the inset. It can be seen that the distribution
flattens and migrates toward bigger particles with time. This
process is usually described by the Lifshitz Slyozov Wagner (LSW)
theory,” stating that the microstructure is self-similar during the
coarsening stage. As a corollary, the reduced PSD scaled by the
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FIG. 7. Particle size distribution in PFM simulations, at T = 873K, for
¢ = 0.83, (a) at different times (inset: initial particle size distribution in PFM as
taken from SKMF simulations), and (b) scaled by the mean radius, vs the theo-
retical particle size distribution in the LSW theory (black line).
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mean radius R (red histogram) follows the LSW theoretical distri-
bution (black line) in Fig. 7(b).

The variation of the number of precipitates and mean precipi-
tate radius R is also plotted in Fig. 8. During the first transient
regime, the number of precipitates plummets, while the mean radius
raises fast to 2.1 nm. Then, the growth dynamics slows down during
the coarsening regime. In Fig. 8(b), the formation of steps corre-
sponds to the concomitant coalescence of a cluster of precipitates,
when the statistics becomes insufficient. The evolution of the mean
radius R as simulated by PFM (red circle@) is also compared to
the LSW theoretical law R(t) = (Ri + Kt) "~ (black line), where
R, = 2.27 nm is the mean radius at the beginning of the coarsening
stage and K = 2.78 nm® s~! is the LSW rate constant. The fit proce-
dure was performed between t =1s and t = 10s (p > 0.99). PFM

results are in good qualitative agreement with the LSW theory.
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FIG. 8. (a) Number of precipitates and (b) mean precipitate radius, as obtained
by PFM (red circles) for ¢ = 0.83, at T = 873 K. Black line: LSW fit. Inset:
comparison between PFM (red circles) and SKMF (blue line) simulations at
early stages of dynamics.
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FIG. 9. (a) Initial PSD for PFM upscaled simulations and (b) corresponding
inverse partition function F§1(u) used on a random trial u with uniform law.

It should be noted that the rate constant K is high here. This
is due to ¢ = 0.83 being close to the spinodal limit at T = 873K,
as a high volume fraction of the second phase (copper here) was
shown analytically"’™** and numerically>**** to increase the rate
constant, sometimes up to one order of magnitude. Moreover, the
analytical models in Ref. 41 also predict a more symmetric and
broader normalized PSD than that expected from the original LSW.
This is consistent with the present work [see Fig. 7(b)].

To allege for the self-consistency of the MS procedure, SKMF
simulations were extended to the early stages of the coarsening
process (insets in Fig. 8). It can be seen that the total number of
precipitates as provided by PFM (red circles) and SKMF (blue line)
are in good agreement, although in SKMF these values are some-
what higher. The mean radius only differs by a roughly constant
gap. These disparities are linked with the presence of noise in the
SKMF simulations, which maintains the nucleation process during
the coarsening regime. A stricter comparison between the SKMF
and PFM simulations of the coarsening stage would have required

ARTICLE scitation.org/journalljap

to remove the dynamic noise from the SKMF simulations after
t =0.16s corresponding to the connecting time between SKMF
and PFM, as the silver matrix subsequently reaches thermal equilib-
rium, so that almost no further nucleation is expected and Ostwald
ripening can be considered as the dominant precipitation process.
The observed compatibility between SKMF and PFM results none-
theless tend to support the self-consistency of the MS procedure.

C. Upscaling the MS procedure

The second step of the MS procedure is to integrate the PSD
and precipitate density as provided by SKMF in PFM simulations.
Indeed, the stumbling block of the MS procedure developed hith-
erto is the computational cost of SKMF simulations when a large
simulation box is used. To circumvent this shortcoming, only the
PSD and the precipitate density taken from SKMF are upscaled
from atomic to mesoscopic level. This original approach allows to
use an arbitrarily bigger simulation box for PFM calculations.
Consistent with the integrated MS procedure, the SKMF micro-
structure at ¢t = 0.16 s was considered here. It contains 122 particles
in a volume of 32 = 32768 nm?, corresponding to a precipitate
density of 3.72 x 1073 prec. nm~—>. Here, PEM simulations were
performed on a 5123 computational grid, corresponding to a
volume of roughly 100° nm®. Using the same precipitate density,
the PFM simulation box initially contained 3723 particles, thereby
ensuring a good statistics. The associated PSD is shown again in
Fig. 9(a). For the initial state of PFM simulations, 3723 particles
were generated and distributed uniformly in the simulation box.
Moreover, the radius of each particle was chosen randomly, follow-
ing the PSD of SKMF.

For that purpose, the inverse Fy' of the cumulative distribu-
tion function Fr(r) = P(R <r) (P being the probability) associ-
ated to the PSD of SKMF was determined [see Fig. 9(b)]. Then,
each particle radius R was drawn as R = Fp'(u), where u is a
random trial of the uniform law between 0 and 1. The evolution of

FIG. 10. Microstructures obtained by PFM simulations on a 5123 grid point simulation box using as initial condition the number of precipitates and PSD as obtained by
SKMF on a 168° grid point simulation box, at T = 873 K, for ¢ = 0.83, at times (a) t = 0.16's, (b) t = 1.26's, and (c) t = 17.7 s.
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the microstructure simulated by the PFM on a 100* nm® computa-
tion grid is displayed in Fig. 10, at time t = 0.16 s (PFM initial
state), t = 3.37s,and t = 19.15s.

V. CONCLUSION

In this work, we reported a quantitative multiscale procedure
based on the recently developed SKMF approach, combined with
the PFM, and parametrized via CALPHAD database, to simulate
the nucleation-growth-coarsening process in alloys. The SKMF was
chosen as an alternative to other atomistic approaches such as
KMC to reproduce the nucleation stage of the kinetics, as it can be
integrated more easily within a PFM based MS approach.
Moreover, the PFM was used at the mesoscopic level to simulate
the subsequent coarsening process, as it can address bigger space
and time scales. The originality of the proposed MS procedure is
threefold. First, the space and time scales were explicitly matched
between atomic and mesoscopic levels. Second, the thermodynamic
consistency was guaranteed by adjusting on the same thermody-
namic data taken from CALPHAD, both the effective interaction
energy in the SKMF model and the free energy in the PEM. Third,
the postnucleation microstructure simulated by SKMF was explic-
itly transferred to the PFM. Alternatively, only the PSD and the
precipitate density taken from SKMF were fed into PFM simula-
tions, thereby allowing to use bigger simulation boxes for PFM
calculations. The developed procedure was applied to the Ag-Cu
model alloy, for which a ready-to-use version was proposed in this
article. In this case, the coarsening process at high volume fractions
of precipitates for which analytical results become scarcer could be
simulated.
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