On the Catalan equation over
algebraic number fields

By B. Brindza, K. Gyory at Debrecen and R. Tijdeman at Leiden

1. Introduction

In 1844 Catalan [4] conjectured that 8 and 9 are the only consecutive positive
integers which both are perfect powers. Cassels [3] made the weaker conjecture that the
equation

M) x?—yi=1

has only finitely many solutions in positive integers x>1, y>1, p>1, g>1. The latter
conjecture was proved by Tijdeman [14]. He showed that an upper bound for the
solutions of (1) can be computed by using Baker’s method for estimating linear forms in
logarithms of algebraic numbers. Langevin [8] followed Tijdeman’s proof to show that
(1) implies
y?< x? <expexpexpexp(730) 1).

For the further history of the problem and related results we refer to Ribenboim [10],
Shorey and Tijdeman [13], Chapter 12 and Tijdeman [14], [16].

In the present paper we shall give a generalization of Tijdeman’s result to the case
that the ground ring is the ring of integers of an arbitrary algebraic number field. Let K
be an algebraic number field with ring of integers Oy. Further, let [a] denote the
maximum absolute value of the conjugates of an arbitrary algebraic number «.

Theorem. There exists an effectively computable number C which depends only on
K such that all solutions of the equations

@ xPty?=1 in x,yel, p,geN
with x, y not roots of unity and p>1, g>1, pq>4 satisfy
) max ([x1, Ty}, p, ) <C.

In other words, (2) has only finitely many non-trivial solutions and all these can
be, at least in principle, effectively determined.

!) The assertion on the bound in Tijdeman [15], p. 386 is incorrect.
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The restrictions on x, y, p, g in the theorem are necessary. If x or y is a root of
unity, then max ([x], [y]) is bounded, but p or ¢ may be arbitrarily large. If p or g equals
1, then clearly there are infinitely many solutions. Finally, if p=¢g=2 and if K has
infinitely many units and 2 splits into [K : @] distinct prime ideals (this is the case, for
example, when K =@(1/7)), then all units ¢ in Oy satisfy ¢=1(mod2). Hence, for any
unit ¢ € Og there are x, ye Oy such that e+&e '=2x, e—e =2y and so x?—y?=1.
Thus the equation x?>—y? =1 has infinitely many solutions x, y € O.

We also note that the dependence of C on K cannot be relaxed to dependence on
the degree of K only, since for any g we can choose arbitrary x € @, p € N and define y
such that x?+y?=1.

As in the rational case, the constant 1 at the right hand side of (2) is essential for
the argument. Pillai [9] conjectured that for given non-zero rational integers a, b, k the
more general equation

4 ax?—byl=k

has only finitely many solutions in rational integers x>1, y>1, p>1, g>1 with pg>4.
The conjecture is still open, but the assertion has been proved under the condition that
at least one of the numbers x, y, p or q is fixed (cf. Shorey and Tijdeman [13], Theorems
12.1, 12.2). A natural extension of Pillai’s conjecture is the problem if, for given non-
zero a, b, k € O, equation (4) has only finitely many solutions x, y € Og, p,q € N with
xy#+0, x and y no roots of unity and p>1, g>1, pg>4. It is easy to show that the
latter assertion is true if at least one of the numbers x, y, p or g is fixed. If p or q is fixed,
then apply Lemmas 8 and 7 stated in § 2. If x or y is fixed and both are units, then
apply Lemma 5. If x or y is fixed and one of them is not a unit, then Lemma 6 implies
that g or p is bounded and then the argument for fixed p or g can be applied.

The proof of the Theorem is not merely a straightforward generalization of the
rational case. In the general case new arguments were needed to deal with the cases that
p or q is bounded and that x or y is a unit or has a bounded norm. Furthermore, the
case that the linear form vanishes requires a new argument.

2. Lemmas

To prove the theorem we shall need some lemmas. Let K be an algebraic number
field of degree n with ring of integers 0.

Lemma 1. Let a€ O, a0, a not a root of unity. There exists an effectively
computable positive number C; depending only on n such that

[a]>1+C,.

Proof. This result is due to Schinzel and Zassenhaus [11]. They gave an explicit
value for C, which was improved upon, at least asymptotically, by Dobrowolski [5]
and Cantor and Straus [2].

For any algebraic number o, we denote by H(a) the height of «, i.e. the maximal
absolute value of the coefficients of the minimal defining polynomial of & over Z.
Without further reference we shall use the following inequalities (cf. [7], § 1. 1).
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%) [@]<2H(x), H@=ZQRlal)" for ae O,
(6) H(e/B) < (1 +[B)y for o,fe0g, B#*0.

Let a,,..., o, (k=2) be algebraic numbers in K with heights at most A4,,..., 4,,
respectively, and suppose 4,22 (j=1,..., k). Put

k—1
Q' =] log4;, Q=Q'logA4,.
j=1

J

Lemma 2. There exist effectively computable absolute constants C, >0 and C3;>0
such that the inequalities

0<|of - afk— 1] <exp{—(C,kn)*** Qlog 'log B}

have no solutions in rational integers b,,..., b, with absolute values at most B (= ?2).

Proof. This profound result is a direct consequence of Baker [1], Theorem 2; cf.
Shorey, van der Poorten, Tijdeman and Schinzel [12], p. 66.

As to the proofs of Lemmas 3—38, first references concern the book of Shorey and
Tijdeman which also contains historical data. Second references concern refinements of
the lemmas due to Gydry. These refinements provide explicit values for the computable
numbers occurring in the lemmas. Let r denote the unit rank of K.

Lemma 3. There are independent units 1,,..., 1, in Ox such that
max[n|< C,

and that every unit ne Oy can be written as n=n'ni"---v,” with a,,...,a,€Z and
1< Cs, where C, and Cs are effectively computable numbers depending only on K.

Proof. See [13], Corollaries A.4 and A.5 or [6], Lemma 3.

There are n isomorphisms a,,..., 6, of K into the complex numbers; denote the
images of an element o of K under these isomorphisms by ¢;(0) =a® for i=1,...,n.

Lemma 4. Let 0+ o€ K with |Ng,q(0)) =m. Then there exists a f € K associated to
o such that

1 ‘
[log(m "|B9)|<Cs for i=1,...,n,
where Cg is an effectively computable number which depends only on K.

Proof. See [13], Lemma A.15 or [6], Lemma 3.

Lemma 5. Let y,,y, and y be non-zero elements of Ug. If ¢, ¢, are units in Oy
such that y,& +7,8, =7, then

max (lEI—L m < C7

where C, is an effectively computable number which depends only on K and y,, y,, y.

Proof. [13], Theorem 1. 3, [6], Theorem and its Corollary.
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Let v21 and s20 be rational integers. Let {n,,..., n,} be a set of non-zero non-
units of Ox. Denote by S, = % ,(ny,..., m,) the set of all non-zero elements of Oy of the
form pny'---m, where vy,..., v, are non-negative rational integers and ue O with
[ul1<v. Consider the equation

() &1+ &Y, =yy" In &,8,y€ 0k, 1,72, 7€S,, g€ N
with &, &, units and y+0.

Lemma 6. Let y be a non-zero non-unit in Og. Let ©=0. Suppose

®) min (ord, (7,), ord, (7)) S ¢

for every prime ideal f in Og. Then equation (7) implies that the greatest prime factor of q
is bounded by an effectively computable number depending only on 1, K and S,.

Proof. [13], Theorem 9. 3.

Let fe K[X] be a monic polynomial with splitting field L over K, and let n>2
be a rational integer. Consider the equation

9 f(x)=y" in x,ye 0.

Lemma 7. Suppose that f(X) has at least two simple roots if n=3, and at least
three simple roots if n=2. If x, y € O satisfy (9) then

max (m’ WD é CB
with some effectively computable number Cg depending only on n,f and L.
Proof. [13], Theorems 6.1 and 6. 2.

Lemma 8. Suppose f(X) has at least two distinct roots. Further, assume 0%y € Og
is not a root of unity. Then (9) implies that n is bounded by an effectively computable
number C, depending only on f and L.

Proof. [13], Theorem 10.5. Take y=z=1, 7=0.

Remarks. 1. The dependence on S, in Lemma 6 is actually dependence on
K,v,m,,..., n,. By [13], Corollary A.2 the algebraic integers 6 € K with [6]< D belong to
a computable finite set which depends only on K and D. We can therefore reduce the
dependence on S, in Lemma 6 to dependence on K, v,[,l,...,[n,]. In this way we shall
apply Lemma 6 in section 3.

2. The dependence on L in Lemmas 7 and 8 is actually dependence on the
degree and the discriminant of L only. (Cf. the Notes of Chapters 6 and 10 of [13].) By
applying [13], Corollary A.7 we infer that the dependence on L of Cg and Cq can be
reduced to dependence on K and f. In section 3 we shall apply Lemma 7 with Cg
depending only on n, f and K and Lemma 8 with C, depending only on f and K.

3. Proof of the Theorem

In the proof ¢, c,,... denote effectively computable numbers which depend only
on K. Further, C,, C, will denote the constants occurring in Lemma 1 and Lemma 3,
respectively. As in Lemma 4, oV,..., «™ will signify the images of « € K under the
corresponding isomorphisms of K into C.
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A) Let x, y, p, q be a solution of (2) satisfying the restrictions of the theorem. We
first show that we can make certain assumptions without loss of generality.

It suffices to prove the theorem in case p and g are primes with p>c¢;, g>¢;
where ¢, is some large number satisfying the conditions stated below. Indeed, if e.g. p
has a prime factor p, such that p, <c,, then (2) implies

P

(10) +((xPr)Pr—1)=y.

By assumption x and y are not roots of unity, hence xy % 0. By applying Lemmas 8 and

N P
7 with f(X)= +(X?*—1) to (10), we obtain that g, [yland |xP'|=[x]?* are bounded by

c,. But then, by Lemma 1, max ([x], p)<c3 and (3) follows with an appropriate C. We
may therefore assume that p has a prime factor p, >c¢, and that ¢ has a prime factor
4, > ¢;. Then (2) implies

WP (=1,

Hence, if the assertion of the theorem is proved for primes p, q larger than c,, then the
theorem holds true in the general case.

If q is a prime with ¢> 2, then q is odd. Hence we can restrict our attention to the
equation

(11) xP+yi=1 in x,yel, pge N
with p and g primes, p>c,, ¢ >c,, since we can replace y by —y when necessary.

It is further no restriction to assume that neither x nor y is a unit in 0. Indeed, if

both x and y are units, then (11) and Lemma 5 with y, =y,=y=1 1mply [xIP<c, and
[yIP < c,, whence (3) follows with an appropriate C. If exactly one of x, y is a unit, x say,
then, by applying Lemma 6 with y,=y,=y=1, gg=—xP, ¢;=1 to —x?P+1=y% we'

obtain g <cs. This is excluded by taking c; > cs.

We may also assume that [x]>3 and [y]> 3. Indeed, if e.g. [y]<3 then Lemma 6
with s=1, n, =y, u=v=1, g =—1, e, =y,=y=1 implies p=<cq. This is excluded by
taking ¢, > cs. We shall show that the condition min([x],[y])>3 implies that

(12) if |x9=[x] then |y“’|__>_%l7l.

It follows from (11) that
xM)P+(yMNi=1 (j=1,...,n)

which gives
[xIP <[y + 1.

Further, by (11), [y1?<[x]” + 1. Consequently

|y(j)|q [x1P—1 1\4
r#-murf>“{

whence (12). Similarly,

(12) it 1y=I7] then x2 2[R,
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Finally, if p=gq then x?, —xy is a solution of the equation
uu—1)=v? in uvelg.

But xy is not a root of unity, hence, by Lemma 8, we have p<c,. By taking ¢, >c¢,,
this is excluded. Hence we may assume without loss of generality that p>gq.

B) By A) we may restrict our attention to equation (11) in non-zero non-units
X, y € Og with [x]>3 and [y]>3 and primes p, q with p>q>c, =2. We first deal with
the special case that

(13) (x=1)P+(y—107=0
which requires another treatment than the general case.

If £|x—1 for some prime ideal £ in Ok, then (13) implies 4|y —1. But it follows
then from (11) that 4| x. Hence £|1 which is impossible. Thus x —1 is a unit in O and,
by (13), y—1 is also a unit in 0.

Subsequently we show that there is a unit ¢ in Og such that
x=1—¢g? and y=1+¢".

Let w be a complex number such that w?=1-—x. Then wPi=(y—1)%. Hence
wP=9(y—1) with ¢ a gqth root of unity. For any gqth root of unity { we have
(¢w)i=1—x and ({w)?=(Po(y—1). By (p,q)=1 we can choose { such that (?=p 1.
Put ¢e={w. Then ¢?=1—x and ¢?=y—1. Hence ¢”,¢?€ K. Since (p,q)=1, we find
¢ € K by applying Euclid’s algorithm to the exponents. But ¢? is a unit, thus ¢ is also a
unit in O. Further, since by assumption [y]>3, we have [¢]> 1, hence ¢ is not a root of

unity. Therefore we have by Lemma 1

(14) [el>1+C,.
Let £ be an arbitrary prime ideal divisor of g in 0. (11) and (13) imply that
15) (x—1)?P=1—y?=x?(mod £).

Since x —1 is a unit, 4}/ x—1 and so, by (15), £/ x. There is an x’ € Ox with £ }x’ and
xx'=1(mod ). Hence (15) gives

(x—=1)x")?=1(mod £).
Here (x—1) x'=1-x"#%0 and 1 (mod £). This means that p is the smallest positive
integer t for which
(1—x'Y=1(mod £).
But
(1=xW#~1=1(mod p),
hence p|N(#)—1 in Z. Since N(#)=q’ with some positive integer f<n, we obtain

(16) P=q".

Using (14) and (16), we shall now prove that g is bounded. We may assume
without loss of generality that [¢]is |¢|. Put

f@)=(1—z9+(1+2z7)0—1.

0=f(fs)='§:O (i) (—8“)"+I=io (?) Pl —1.

Then
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The leading term of f is pz®~ 14 We have

p—2 q-1

()T (5)e-

§q|8|p(q—l)+pz_:2( )lalkq-l- Z ( )lellp
k=0

By p>q and (14), we obtain

1722/(p 1922 /(q
<lelq4~P 4 — (k—p+1)q 4 — (-gptq
I<[el*™7+ g(k)lal + ;(,)m
q

B e ()

6i+Zpl8I ""+Zq|el .

plsl(rl)q___

|
By (14), (16) and g >c, we have
P _p q" 1 ¢
Lt g 1T a1
o7 = e =14 Gy min (2 a1+ cl))
after taking c, sufficiently large. It follows that

C, 1@ & '
1+C, él—ﬁ< 2 <‘8|") :Z‘ (W)

Sz_p_ _2_p_< Cl ,
Tle? o fel” 1+ G

a contradiction.

C) In view of A) and B) we restrict our further attention to equation (11) in non-
zero non-units x, y € Og with [x]>3 and [y]|>3 and primes p, ¢ with p>g>¢, =2 such
that

(17) (x—1)P+(y—1)"+0.

For any a € K, we denote by [a] the principal ideal generated by . We have, by (11),
l=0-x][1+x+-+x?"]=[x—1] [f(x—1)+p]
for some f € Ox. We can write
[p]= At -

where #£,,..., 4, are distinct prime ideals in'(DK, s<n, and a,,..., a, are positive integers
not exceeding n. If, for some prime ideal 4 and positive integer a, 4£° is a common
divisor of [x—1] and [f(x—1)+p] then £°|[p] and therefore a<n. Hence we can
write

[x—1]=p1 - peat

where « is an integral ideal and b,,..., b, are rational integers with absolute values at
most n. Since N(4;)=p’* for some positive integer f;<n, we have

PESN(ASP* (i=1...,9).
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Let h denote the class number of K. We have
(18) [x— 11" = (1" - fo) .

Here 2"=[x] and (/z'{‘ o ps")t=[mo] for some k € Ox and ny € K such that 1z0=ﬂ

s
with n,, 7, € Ox and

19 |log |INgo(ml| S cslogp  (k=0,1,2).
It follows from (18) that
(20) (x—1)"=emyx1

for some unit g€ Ox. By virtue of Lemmas 3 and 4 and (19) and (20) there are

independent units #,,..., n, in Og such that mgx[ﬁl§ C, and that

1) (=P =ni" e Oow?
where the u; are rational integers with 0<u;<qfori=1,...,r,0+we O and 0%6,€ K

with 00=Z—1 such that 6,60, € Oy and
2

(22) max |log|0||<cologp (k=0,1,2).

15jsn

This gives (recall (6))

(23) H(0o)=H(0,/0,) < (10,1410, < p°.
Similarly, we can write
24 A=yl =ni" - nrroa?

with rational integers v, such that 0<v,<p for i=1,...,r, and with 0+ oe O,
0=%14€ K such that

(25) max |log|§|| < c;; logq
1<jsn
and
(26) H(t) = 4.

D) From (11) we obtain
(x(j))l’_l_(y(j))q: 1 (j= 1,..., n)-

Hence we may assume without loss of generality that |x|=[x]. Put X =H(x) and
Y =H(y). Since, by assumption, [x]>3, we have

27 X @), xIS2X  (cf (5)
and similarly

(28) Y™, [yls2y.
It follows from (11) that

9) A= —%ﬁ=;1;

52 Journal fir Mathematik. Band 367



98 Brindza, Gydry and Tijdeman, Catalan equation over number fields

whence
1 _p
(30) |A1I=W§X o,
On the other hand, by Lemma 2 and p>gq, we have
(1) |4;] > exp { — ¢4 (log X) (log Y) (log log Y) (log p)} -
Now (30) and (31) imply
(32) p=c;s(log Y)? logp.
By estimating 4,:=1 ——(;y?i=% we can prove in a similar way that
(33) q<cy6(log X)* logp.
E) We shall now prove that
(34) g <cyy(logp)e.
To prove this, we may assume that
(39) q>logp.
Further, we may assume that
(36) min (X, Y) > p‘

for some large number c,,, to be chosen later. Indeed, if Y <p™ then g <p<c,(logp)?
follows from (32), whence (34). Further, in case X <p®, (34) immediately follows from
(33). Observe that (36) implies

€19

(37 min (x1, [yl) > p?".

By |x|=[x] and (12), we have lylg%ry]. From (11) we obtain

1

(—y)

(38)

Further, by taking c,o large enough, (37) and |x| >3 imply

(39) |x — 1] = max (% |x], ]/fﬂ) = max (% [x], p)

and it follows that

» i 2 22
p 14 14

< -< < .
=g; [x =1 = [x—1] = [x]

(x - D+ 1)P—(x—1)
(x—1)

(40)

xP 4l
(x—1)* B

Similarly, by (11) and (37),

@) ifzmax (3 q).
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Hence we have, by taking c,o large enough,

(l—y)"__ll___ (1= y)+1

42 =7y —r

A

L q _2p®
LTS

For any complex numbers z,, z,, z,

3 3
2,2,23—1= EII E-D+ Y @-D)@E-D+ .;1 (z;—1).

15i<js3

Hence (38), (40) and (42) imply

-y < ¢ P*
43) et 1B
Further we have, by (11), (39) and (41),
A=y |_[a=yr| |1=x | ( 1 )( 1 )"
= . S2({ 14+ — ) (14—
(x=1)? v x-17|= |yl Ix—1|
(44)
ptq 2p
§2(1+'—i’—> §2(1+£> <c,;.
p
For
=y
45) Ay:= P
we obtain, from (43) and (44),
c23p*
(46) |43 < S

Suppose now that 4 +0, i.e. that (x —1)?" (1 — y)®. Using (45), (21) and (24), we

obtain
. _ (g \r4
Az=n5* - 17715057 o) !

where e;€Z with |ej<pq for i=1,...,r. Put #,=2H(s), #,=2H(w) and
#, =max (), #,). Then

47 H(%)é(ﬁﬂ@"é(-%+9fz)"_5_02499’5”-

By applying Lemma 2 to A; and using (23), (26), (47) and p>q we obtain
|43] > exp { — c,6(log p)™ log H#,} .
This together with (46) and (27) implies
(48) c2slog X <loglx1=< c,o(logp)™™ log .

If 5, <c;, then (48) and (33) give (34). We therefore assume that J#,>c;, where c,
satisfies some conditions stated below.
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First suppose that .%’2 > c3;. Then, by (22) and (35), we have

<p‘"<c§3<9fr (j=1,...,n).

gm
Hence we obtain, from (21) and (27)

e < [ — 1

Jii

S|V -1 . c§4<c35X"9’¢”3_ (j=1,...,n)

by making c,; large enough. Choosmg j such that |wY| =[wl, we obtain

9(1')

q 1 1\4 q
c35X",}?;57>!WI"g(Z.}f2") > HF"

if ¢, is sufficiently large. Consequently, we have

49) log X >ci6qlog ¥, if 5, is large enough.
By using (24) and (25) one can prove in a similar manner that
(50) log Y > c3, plog #,

if #,>cy; and c,, is sufficiently large. If #, =, then (48) and (49) imply (34). Next
suppose #,=,. From (11) we obtain [yI*<1+[xI° <[x1*?. This together with (27)
and (28) implies :

(1) qlogY <cigplogX.
Now (50), (51) and (48) imply
3y pqlog #o <qlogY <c35 plog X < c3q p(logp)™ log #o,
whence (34) follows.
F) To prove (34) we are left with the case
(52) (x=1)PP =1y

If #|x—1 for some prime ideal £ in Ok, then (52) implies 4|y —1. But it follows then
from (11) that £|x. Thus £|1 which is impossible. Hence x —1 is a unit in @k and thus,
by (52), y—1 is also a unit in Ox. By Lemma 3 we can write

@1) x—1=r -G w?
and

24) 1—y=ny' - 107
instead of (21) and (24) respectively, where 0,, 1o, W, 0 € O with

max (ITI to) < cao
and u;, v, € Z with 0Su;<q, 0=v;<p for i=1,...,r. We can now repeat the argument
of part E) above with
N ot
ST -1y

instead of 4;. Since, by (17), 4, +0, inequality (34) follows.
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G) We shall now prove that p is bounded from above by using (32), (34) and
Lemma 2. Note that (32) and (34) are independent of the assumption |x|=[x] made in
D). Hence we may assume without loss of generality that, instead of this assumption,
|y|=[y]. Then, by (11),

1=yt | _ 20 _

q
43) ’(l—y)q =y | ST ="
Hence, using again (11),
xR0 T o
G4 =y “ A=y |= G <o
Putting
xPh

A==y b
it follows from (53) and (54) that

Cas
55 As| <==.
Suppose that |4s|+0, i.e. that x?"+(1—y)™". We are going to derive a lower
pp 5
bound for |45|. By (24) we have

xPh g - x"\?
(1— y)qh =M Toq(;?;

with rational integers d; such that |d| <pq for i=1,..., r. Hence, by (53) and (25),

h

r 1 q
—Z1=¢Cu ( H l'lil_d')p [Tol” S cis.
i=1

Then, by (12'), we have

[X]= c46 %] = 7 101 < s (H(0))".
Put 5, =2H(o). It follows that

(56) H (j—:)é(m'+m")”§cigx§”"-

i —a [ XY
As=ni* "’ﬂr'To"(;;) -1

and using (26) and (56), we obtain

(57) |45 >exp { —cs; q(log p)*** log 3 }.
Comparing (55) with (57) we obtain

(58) log Y < cs3loglyl < cs4q(log p)*** log ;.

If o, < csq for some cs5 then (58) together with (32) and (34) yields p < cs6(logp)™ and
$O pScsg.
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By applying Lemma 2 to
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Suppose now that #;>css for some sufficiently large css. Then we have,
analogously to (50),

(59) log Y >cs9plog ;.

From (58), (59) and (34) it follows now again that p < ce,(logp)®, whence p<cg,. By
taking ¢, > cg, this is excluded.

H) We are left with the case xP*=(1—y)?". This together with (11) gives
(1—y9*=(1—y)™. Putting u=y% v=y(1—y), it follows that

(60) (u(1—u))t = v

where v+0. By assumption y is not a unit, hence v is not a root of unity. Applying
Lemma 8 to (60), we obtain g < cq;. By taking ¢, > cg; this is excluded. The proof of the
theorem is complete.
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