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Whereas the search for the degeneracy points which are better known as conical intersections �or
ci-points� is usually carried out with a lot of devotion, the nonadiabatic coupling terms �NACTs�
which together with the adiabatic potential energy surfaces appear in the nuclear
Born-Oppenheimer-Schrödinger equation are ignored in most dynamical calculations. In the present
article we consider two well known frameworks, namely, the semiclassical surface hopping method
and the vibrational coupling model Hamiltonian that avoid the NACTs and examine to what extent,
this procedure is justified. © 2007 American Institute of Physics. �DOI: 10.1063/1.2806167�

I. INTRODUCTION

The dynamics triggered in a molecule after a photon is
absorbed is usually discussed in terms of the Born-
Oppenheimer �BO� theory1 where the fast electronic degrees
of freedom are treated separately from those of the slow
nuclei. In this picture, electrons and nuclei do not easily
exchange energy. Yet, at some nuclear regions, in particular,
in the vicinity of degeneracy points this energy exchange is
more likely to occur than in other regions. It is widely rec-
ognized nowadays that were it not for these degeneracy
points important photobiochemical processes such as vision2

and photosynthesis of vitamin D could not take place.3 It is
now accepted that degeneracy points affect also important
processes such as photosynthesis in plants4 and photochem-
istry of DNA.5

Whereas the search for the degeneracy points which are
better known as conical intersections �or ci points� is always
carried out with a lot of commitment and devotion6–24 �nu-
merous numerical methods are available for this purpose� the
nonadiabatic coupling terms �NACTs� which have their ori-
gin in the BO theory are hardly ever considered.25 It is well
accepted that the NACTs are needed to carry out accurate
dynamical calculations �transition probabilities, cross sec-
tions, rate constants, etc.� However, in general they are either
avoided or replaced by other magnitudes. They are ignored
when employing the semiclassical surface hopping
method26,27�a� �SSHM� or, also, when applying classical path
methods known as Ehrenfest dynamics.27�b�,28 They are also

ignored when using the so called vibronic-coupling model
�VCM� Hamiltonian which is based on parametrized diabatic
potential matrix elements that are determined in such a way
that the corresponding adiabatic potentials fit ab initio
calculations.29

There are other, more direct, approaches where the
NACTs are imitated by employing alternative magnitudes as,
for instance, dipole �or higher orders of� moments30 or by
considering the overlap between wave functions at neighbor-
ing intervals31,32 but these will not be discussed here.

In the present article we intend to examine, to some
extent, the relevance of the SSHM and the VCM, namely,
those approaches that ignore the NACTs. This we do by
studying the relationship between the adiabatic hypersur-
faces and the corresponding NACTs.

The main assumption in applying the SSHM is that the
region which contains the minimum energy path �MEP� is
the one preferred by the wave packet while moving from the
initial �j+1, j� ci point �to be defined as inlet� to the final
�j , j−1� ci point �defined as outlet�.33–35 Because of that the
MEP region is expected to be the region that contributes
most to the j→ j−1 electronic transitions. This SSHM as-
sumption is a necessary condition for the importance of the
MEP region but there is another condition, not less impor-
tant, which requires that the spatial distribution of the �j , j
−1� NACT overlaps effectively with that MEP region. This
aspect which to our knowledge has, so far, not been dis-
cussed is a subject in the present article �see Sec. II�.

The basic assumption in the VCM is that the adiabatic
hypersurfaces and the NACTs are closely linked to each
other. In other words, once the adiabatic hypersurfaces Ej�s�
and Ej−1�s� are given the spatial distribution of the relevant
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NACT, � j j−1�s� �see below�, is also more or less determined.
In order to examine the relevance of this assumption we have
to derive an analytic expression that connects the NACTs
and the adiabatic hypersurfaces. Such an expression is
suggested �see Sec. III� and then analyzed numerically �see
Sec. V�.

The study is carried out for acetylene—a tetra-atomic
system considered by us some time ago.36 In order to sim-
plify the numerical study we limit ourselves to the Cs sym-
metry.

II. ON THE SPATIAL OVERLAP BETWEEN NACTs
AND HYPERSURFACES

A. General comments

In general, a tetra-atomic system is described in terms of
six internal coordinates. However, as mentioned earlier, our
present study is limited to the Cs symmetry where the four
atoms are forced to stay on a plane and therefore the posi-
tions of the four atoms are described in terms of five coordi-
nates. Next, to make the study both more comprehensive
and, mainly, manageable we break up the five dimensional
configuration space36 and present it as a series of two dimen-
sional configurations. To form the two dimensional configu-
rations we freeze the positions of three atoms, namely, two
carbon atoms and one of the hydrogen atoms. The positions
of the three atoms are characterized by RCC—the distance
between the two carbon atoms, by RCH—the distance be-
tween one of the carbon atoms and the frozen hydrogen, and
by �—the angle formed by RCC and RCH �thus �
=��RCC,RCH�, also ��HCC��. This situation allows the sec-
ond hydrogen to move freely in the plane formed by the
other atoms �see Fig. 1�. As is usually the case, this free
moving hydrogen is used as a test particle to locate degen-
eracy or ci points �in Fig. 1, R stands for the distance of one
of the ci points from one of the fixed carbon atoms� and it
also yields, while moving along a planar contour the spatial
distribution of the corresponding NACTs. � jk�s� �see below�.

B. Electronic nonadiabatic interaction

In the present article, we consider the four lower states
related to the Cs symmetry but the numerical study is carried
out for two adjacent adiabatic states at a time, namely, the
�j , j−1� states; j=2,3 ,4. For this purpose we consider the
corresponding NACTs, � j j−1�s�, defined in general as37

� j j−1�s� = �� j�se�s���� j−1�se�s�� , �1�

where se and s stand for a collection of electronic and
nuclear coordinates respectively, �i�se �s�; i= j , j−1 are the
corresponding adiabatic electronic eigenfunctions and � is
the grad operator with regard to the mass-scaled nuclear co-
ordinates.

Having introduced the NACTs we consider the elec-
tronic nonadiabatic interaction, Vjj−1�s�, between the states j
and j−1:37

Vjj−1�s� = � j j−1�s� · �� j�s� . �2�

This term controls also the intensity of the j→ j−1 transition
and it is well noticed that the more effective the overlap
between � j j−1�s� and the jth component of nuclear wave
function, � j�s� in a given region, the larger is the contribu-

FIG. 1. The C2H2 configuration and three ci points for which angular
NACTs, ��j j+1�� �q�; j=1,2 ,3, were calculated. We encounter three fixed
atoms, namely, two carbon atoms and one hydrogen. The fourth hydrogen is
moving on a fixed plane that contains the four atoms. �a� Results for RCC

=1.35 Å, RCH=1.10 Å, and �����HCC��=109°. The positions of the
�j , j+1� degeneracy points with respect to the second carbon are as follows
�X stands for the free moving hydrogen�:�RXC,�CCX�
= 	�2.04 Å,82.7° � , �1.58 Å,57.5° � , �1.37 Å,80.0° �
. �b� The same as in �a�
but for �����HCC��=135°:�RXC,�CCX�= 	�2.158 Å,91.2° � ,
�1.64 Å,51.2° � , �1.50 Å,151° �
..

244101-2 Halász et al. J. Chem. Phys. 127, 244101 �2007�

Downloaded 12 Mar 2008 to 129.187.254.46. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



tion from that region to the overall transition rate.
To continue we elaborate on s which is assumed to

present the following collection of coordinates: s= �� ,q ,z�,
where � �the angle� and q �the radius� are the coordinates of
the free hydrogen in the above mentioned plane and z stands
for �RCC,RCH,��, the coordinates related to the other three
atoms. Of the various possible components of � j j−1�s� the
ones related to the free hydrogen are the radial component
�qjk�� �q ,z� and the angular component �1 /q���j j−1�� �q ,z�.
Consequently, Eq. �2� can be written more explicitly as

� j j−1���q,z� · �� j =
1

q
��j j−1��� j + �qjj−1�q� j , �3�

where �� and �q are the � and q components of the grad
operator, respectively, and the corresponding polar NACTs
are known to be

��j j−1���q,z� = �� j�se��,q,z�� �

��
� j−1�se��,q,z�

� = q,� . �4�

Next we assume that the two hypersurfaces Ej�s� and
Ej−1�s� form a degeneracy point at s=s0 and that the origin of
the system of coordinates for �q ,�� is at s0. Consequently
q��s−s0� and therefore as s→s0, the first term in Eq. �3�
tends to infinity whereas the second term stays finite. This
implies that for any study performed at a relative proximity
of the ci, it is enough to consider the angular component of
the NACT. Thus recalling Eq. �2� we find that

lim
s→s0

Vjj−1�s� =
1

q
��j j−1�s���� j�s� . �5�

Finally, we return to the SSHM basic assumption,
namely, that the wave packet tends to concentrate along the
MEP region. Combining this assumption with the BO inter-
action term in Eq. �5� it is noticed that in order for Vjj−1�s� to
yield intense electronic nonadiabatic transitions from the
MEP region the overlap between the angular component,
��j j−1, and the MEP region of Ej�s� has to be effective. Our

FIG. 2. The angular �-dependent NACTs, ��j j+1�� �q�; j=1,2 ,3 as calcu-
lated for the previously mentioned two configurations along circles, with
q=0.1 Å, that surround the various degeneracy points presented in Fig. 1.
The ��12�� �q�, ��23�� �q�, and ��34�� �q� are presented in panels �a�, �b�, and
�c�, respectively. The relevant topological �Berry� phases are � j j+1��
=109° �= �.3.1408,3.135,3.124� and � j j+1��=135° �= �3.139,3.092,3.124�
where the phases in each case are for j=1,2 ,3, respectively.

FIG. 3. Representation of the �-dependent NACT, ��21�� �q� and the
�-dependent potential hypersurfaces, E2�� �q� as calculated for q=0.1 Å
�Fig. 3�a�� and q=0.2 Å �Fig. 3�b��.

244101-3 Nonadiabatic coupling in dynamics J. Chem. Phys. 127, 244101 �2007�

Downloaded 12 Mar 2008 to 129.187.254.46. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



numerical study is devoted to this issue and among other
things we show that the overlap condition may not always be
fulfilled.

III. A POTENTIAL DEPENDENT MODEL
FOR THE NACTs

It is well known that the �j ,k� NACT is given in the
form38

� jk���q� =
�� j�se��,q���H��k�se��,q��

Ej��,q� − Ek��,q�
, �6�

where H is the electronic Hamiltonian and Ei; i= j ,k are the
corresponding adiabatic hypersurfaces.

Comment. Here and in what follows, we explicitly men-
tioned only �� ,q� and ignore the z coordinates.

The expression in Eq. �6� shows that � jk is proportional
to the inverted energy gap 	Ej�� ,q�−Ek�� ,q�
−1 for any j
and k and for any component � jk. Consequently, the analyti-
cal expression for the angular NACT, ��j j−1�� �q�, is38�b�

��j j−1���q� =
�� j�se��,q���H/���� j−1�se��,q��

Ej��,q� − Ej−1��,q�
, �7�

where the �1 /q� term cancels out on both sides of the equa-
tion. Assuming that in the close proximity of the correspond-
ing ci the numerator is approximately independent of � we
may replace ��j j−1�� �q� by its approximate expression
�̃�j j−1�� �q� defined as

�̃�j j−1���q� = Cjj−1�q�	Ej��,q� − Ej−1��,q�
−1, �8�

where Cjj−1�q� is a q-dependent constant still unknown.
To determine Cjj−1�q� we employ a feature which is de-

fined as the quantization of the NACTs. Since we elaborated
on this issue on numerous occasions we just briefly refer to it
here. We start with the line integral,

� j j−1�	� = �
	

ds · � j j−1�s� , �9�

where 	 is a closed contour and � j j−1�	� is frequently re-
ferred to the topological �Berry� phase. It is noticed that
� j j−1�	� does not depend on any particular point along the
contour 	 but only on the contour itself.39

Equation �9� simplifies in case the contour is a circle
with a radius q. For that case � j j−1�	� becomes � j j−1�q� de-
fined as

� j j−1�q� = �
0

2


��j j−1���q�d� . �10�

For an isolated collection of two-state degeneracy points the
phase � j j−1�q� �just like � j j−1�	�� is expected to be an integer
multiple of 
, i.e., n
.40,41 This fact was shown to exist for
numerous realistic systems �see Ref. 25, Sec. IV� and is an
essential requirement for diabatic potentials to be single val-
ued �see Ref. 25, Sec. 3.1.1.3�.

The fact that for a given ��j j−1�� �q� the topological
phase, � j j−1�q�, is quantized is utilized to determine Cjj−1�q�.
Thus substituting Eq. �8� in Eq. �10� and recalling the quan-
tization yield the following equation:

Cjj−1�q��
0

2


	Ej��,q� − Ej−1��,q�
−1d� = 
 , �11�

which for every q �and z� uniquely determines the value of
Cjj−1�q�.

IV. NUMERICAL RESULTS

Like in previous cases the NACTs �just like the adiabatic
hypersurfaces� are calculated at the state-average CASSCF
level using 6-311G** basis set42 �employing MOLPRO �Ref.
43��. We used the active space including all ten valence elec-
trons distributed on ten orbitals �a full valence active space�.
Following convergence tests, we included in the calculations,
in addition to the four studied states, 1 2A�, 2 2A�, 3 2A�, and
4 2A�, also another four to six electronic states of the same
symmetry. The positions of the ci points with respect to two
different CCH configurations are presented in Fig. 1. One
configuration, namely, �RCC,RCH,��= �1.35 Å,1.10 Å,
109° � is identical to the one we considered in Ref. 36 and
the second, namely, �RCC,RCH,��= �1.35 Å,1.10 Å,1.35° �
is new �the two configurations differ by the value of the
angle ��. In the figures we show positions of the available
�1,2� and �2,3� cis but not all the �3,4�-cis: for the first con-
figuration �Fig. 1�a�� is presented one, out of the two
�3,4�-cis,36 and in the second �Fig. 1�b�� is shown one ci out
of three �unpublished� �3,4�-cis.

The �-dependent NACTs as calculated for the above
mentioned two configurations are given in Figs. 2�a�–2�c�. In
each panel are presented two curves: one is identical to the
relevant curve of Ref. 36 and the other as calculated for the
new described earlier configuration. All calculations were
done for q=0.1 Å. It is noticed that although the NACTs as
well as their ci points are sensitive to the assumed configu-
ration �namely, the angle �� still they can be considered as
closely related. In the figure captions the various topological
phases, � j j+1�q� are listed �see Eq. �10��. In most cases these
phases are close to the expected value of 
.

Since the various features of the just described NACTs
are analyzed elsewhere36 we continue by referring to the is-
sues as elaborated in the Introduction. In Figs. 3–6 the hy-
persurfaces Ej�� ,q� and the corresponding NACTs,
��j j−1�� �q�, as a function of � are presented. We emphasize
again that each pair �j , j−1� stands for the �j j−1�= �2,1�;
�3,2�, �4a ,3� and �4b ,3�-cis �we also remind the reader that
the 3A� and the 4A� states produce two degeneracy points
and therefore two NACTs �Ref. 36��. These results �like other
results to be given later� were derived for the first configu-
ration, namely, �RCC,RCH,��= �1.35 Å,1.10 Å,109° �. Each
figure is made up of two panels related to two different val-
ues of q, i.e., q=0.1,0.2 Å and in each panel two curves are
shown: one stands for Ej�� ,q� and the other for ��j j−1�� �q�.

In Figs. 7–10 the ab initio angular NACTs, ��j j−1�� �q�,
with the corresponding approximate potential dependent an-
gular NACTs, �̃�j j−1�� �q� as given in Eq. �8� are compared
�see also Eq. �11��.
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V. ANALYSIS AND CONCLUSIONS

A. On the overlap between ��jj−1„� �q… and Ej„� ,q…

In Fig. 3 ��21�� �q� with E2�� �q� are compared and the
comparison shows that there is a reasonable correspondence
between the two functions in the following sense: Regions
along the MEP where the potentials show a valley �i.e., �
�0,
� overlap nicely with intervals where the correspond-
ing NACTs have their maximal values. This phenomenon is
evident particularly in the case of q=0.2 Å �see Fig. 3�b��. In
Fig. 4 ��32�� �q� and E3�� �q� are presented and here the
correspondence between the two functions is less visible. In
both cases �Figs. 4�a� and 4�b�� the short intervals of the two
peaks of ��32�� �q� seem to miss the valley along MEP but
still the corresponding NACT is nonzero along the region of
interest. The situation worsens somewhat when we examine
Fig. 5 which shows ��43�� �q� and E4�� �q� for the lower
�lower in energy� ci region, In the case of q=0.1 Å we find
that parts of ��43�� �q� �at ��0� are nonzero along the re-
gion of the MEP but for ��2
 ���0� they become close to
zero. In the case for q=0.2 Å it seems that the corresponding
NACT is essentially zero along the respective MEP interval.
A similar trend is observed in Fig. 6 where we present
��43�� �q� and E4�� �q� in the close vicinity of the upper ci-
region.

The conclusion of this study is that the MEP regions
along which we expect, semiclassically, that the wave packet
will move from inlet to outlet are not always accompanied
with large values of NACTs. Moreover sometimes even the
contrary may happen, namely, along portions of the MEP
region the relevant NACTs become zero and consequently
electronic transitions are almost entirely avoided.

FIG. 4. The same as Fig. 3 but for ��32�� �q� and E3�� �q�.

FIG. 5. The same as Fig. 3 but for ��43a�� �q� and E4a�� �q�.

FIG. 6. The same as Fig. 3 but for ��43b�� �q� and E4b�� �q�.
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B. On the ability of VCM to yield the NACTs

In this section we examine to what extent the potential
dependent model �introduced in Sec. III� can form reliable
angular NACTs which, as we recall, are designated as
�̃�j j−1�� �q� �and given by Eq. �8��. In Fig. 7 the ab initio
��21�� �q� function and �̃�21�� �q� for two values of q,
namely, q=0.1,0.2 Å are compared. As is noticed both types
of NACTs are oscillatory and the fit is reasonable although
the ab initio NACTs possess much larger amplitudes. The
situation is less encouraging in the case of ��32�� �q� and
�̃�32�� �q� �see Fig. 8�. Here the model NACTs are almost flat
whereas the ab initio ones possess strong spikes which could
lead to transitions missed by the model. In Fig. 9 �and also in
Fig. 10� we find a reasonable fit between the two NACTs in
the case of q=0.1 Å but a less encouraging one for q=0.2 for
which the ab initio curves �i.e., ��43�� �q�� are always much
more oscillatory than the model ones.

C. Conclusions

The feature that characterizes most the angular NACTs
is the fact that they are oscillatory �and sometimes even
spiky� functions of the �polar� angular coordinate �. Since
this is a complicated structure it is not easy to reproduce it by
models and therefore results acquired by such models cannot
always be trusted. For instance, a necessary requirement that
the SSHM yield relevant results is that NACTs have suffi-

ciently large values in regions that contain the semiclassical
MEP �the main region along which the wave packet is mov-
ing from inlet-to-outlet�. We found that even in our limited
study �altogether four cases� this requirement is not always
fulfilled, namely, at some instances these NACTs are negli-
gibly small. In this respect, it may be interesting to mention
another semiclassical approach, the multiple spawning
method which not only follows the motion of the wave
packet in the MEP region but also incorporates the effects of
NACTs along the classical trajectory.44,45 Consequently, this
method seems to be more reliable than the other semiclassi-
cal approaches �although the details of this approach were
not examined by us�.

A similar situation is encountered for the VCM. The
model is based solely on the knowledge of the adiabatic
PESs. Nevertheless the use of this model is justified intu-
itively, by assuming that the information given by the PESs
contains the necessary information to produce the NACTs.
To examine this assumption we derived a simple expression
for the required �angular� NACTs—see Eq. �8�—based on
the adiabatic PESs �and the quantization feature13�.

In this article is argued that justification for using the
VCM is that the model-dependent NACTs are sufficiently
relevant at least at regions where this model expects the elec-
tronic transitions to take place �for instance, along the semi-
classical MEP�. We find that due to the rather strong oscilla-
tory behavior of the �ab initio� NACTs the model is
frequently inadequate when details are considered.

FIG. 7. Comparison between the �-dependent ab initio NACT, ��21�� �q�
and the �-dependent model NACT �̃�21�� �q� as calculated for q=0.1 Å �a�
and q=0.2 Å �b�.

FIG. 8. The same as Fig. 7 but for ��32�� �q� and �̃�32�� �q�.
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To our knowledge Eq. �8� was never suggested before �at
least not for the purposes as discussed here� and therefore
our findings and conclusions can be criticized. However, it
seems to us that the expression in Eq. �8� is the simplest way
to yield a relation between �angular� NACTs and the adia-
batic PESs.

In general both models, the SSHM and the VCM, are
believed to be justified. However, it is only after examining
the details that we may reveal some weaknesses and some-
times even flaws due to these approaches. If NACTs are
becoming negligibly small along the semiclassical MEP
then, immaterial how important this region is for storing the
wave packet, surface hopping along this region cannot take
place. Similar arguments apply to the VCM. It is true that in
general the potential dependent model reproduces quite well
the ab initio NACTs but it is crucial for them to have a good
fit at particular regions as, for instance, along the semiclas-
sical MEP and if they partly fail there the VCM is likely to
give inadequate results.

At this stage an important comment has to be made. Our
numerical study is based on two-state NACTs which are not
affected by other NACTs. If such disturbances become ap-
parent the system is less robust and consequently the re-
quired two-state NACTs �as obtained by Eq. �8�� become
spikier and less predictable.
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