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Shell model in the complex energy plane and two-particle resonances
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An implementation of the shell-model to the complex energy plane is presented. The representation used in
the method consists of bound single-particle states, Gamow resonances and scattering waves on the complex
energy plane. Two-particle resonances are evaluated, and their structure in terms of the single-particle degrees
of freedom is analyzed. It is found that two-particle resonances are mainly built upon bound states and Gamow
resonances, but the contribution of the scattering states is also important.

DOI: 10.1103/PhysRevC.67.014322 PACS nunier25.70.Ef, 23.50tz, 25.60-t, 21.60.Cs

[. INTRODUCTION the continuous background, as schematically outlined in Ref.
[12]. The problem is that only a small fraction of the calcu-
The study of processes that takes place in the continuudated states are physically relevant, since most of tfienot
part of nuclear spectra is a difficult undertaking. This can beall) are either wide resonances or part of the nonresonant
seen by the large number of methods that have been pra@ontinuum. It is therefore important to be able to isolate the
posed to describe the continuum. In addition to the Feshbagbhysically meaningful states from the rest of the spectrum. In
theory[1] and its many versions, there are many methodshis paper we will show how to achieve this. We will also
where the continuum is described by a finite set of positiveshow how two-particle resonances are built from the single-
energy states. These states are usually obtained by expandiparticle degrees of freedom determining the dynamics of the
the solutions of the nuclear Hamiltonian in a harmonic-system. This is important since it is not clear how a two-
oscillator basis or by solving the eigenvalue problem withparticle resonance is formed. For instance, one may wonder
box boundary conditions. There have been also many varidge what extent such a state is built upon particles moving in
tions of these procedures, e.g., by using a transformetesonant states as well as in nonresonant continuum states.
harmonic-oscillator basi$2] or harmonic oscillators with Intuitively one would say that for the physically relevant
different frequencie$3]. The common feature of these rep- two-particle resonances one of the two particles is in a nar-
resentations is that they are constrained to real energy soluiew Gamow state while the other moves in a bound state.
tions, as required by quantum mechanics. However, th&ide resonances and the nonresonant continuum would play
widths corresponding to decay processes were already evalanly a minor role, as assumed in Refd4-16. We will
ated by means of outgoing wavéand therefore complex show that this intuitive assumption is not always supported
energies by Gamow in his seminal paper on barrier penetra-by proper calculations.
tion [4]. The Gamow states provide a natural definition of Actually the question of the importance of the nonreso-
resonant states]. nant continuum in the calculations was usually skipped in
Berggren[6], and shortly afterward Rom{7], showed relation to processes taking place in the continuum part of
that the bound and Gamow states, together with a set dhe spectrum, particularly regarding radioactive decay, where
complex scattering states, form a representation which spamseasurable lifetimes correspond to very narrow resonances.
the space of complex energies. In this representation the sc@herefore, a calculation of the corresponding decay widths
lar product(the metrig is non-Hermitian, and the norm of can be performed by using bound representations, and the
the Gamow states is defined by using a method introducedontinuum itself can be totally ignor¢d7]. This approxima-
by Zel'dovich[8]. Later on, techniques based on the com-tion, which was followed in nearly all available calculations
plex rotation of the radial distance were also used to regularef cluster decayincluding alpha particles and recent calcu-
ize the Gamow states and the matrix elements involvindations of proton decajy18—21]) was very successful in ex-
them[9]. plaining experimental daf22]. However, with the develop-
Microscopical calculations based on a single-particle repment of experimental facilities one could measure partial
resentation consisting of bound states, Gamow resonancedgcay widths of neutrons from giant resonances, and the
and complex energy scattering stat®grggren representa- continuum had to be included explicitly in the formalism
tion) were proposed some years dd®,11]. This represen- [23-25.
tation was recently expanded to study two-particle reso- Even more important, the experimental discovery of halo
nanceg12,13. It may be surprising to see that it took such anuclei triggered a very fruitful theoretical activity which
long time for us(after Ref.[11]) to arrive at the two-particle showed that halos cannot be understood without taking into
representation. One of the reasons for this delay is that onlgccount wide resonances and other elements belonging to the
recently have we managed to find a method which allowsontinuum[26,27]. All these elements are automatically in-
one to isolate the physical two-particle resonant states fromsluded in the representation presented in this paper. The
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&o @0 (©h) T (d0) real E axis and the contour . One can choose quite general
5 forms for the contour, as can be seen in R&€], but it has
to go through the origin and finish at infinite on the real
energy axis. However, as in any shell-model calculation, one
cuts the energies at a certain maximum value, which in Fig.
1 corresponds to the poifit=(d,0). The other points defin-
ing the contour in that figure are, besides the origh,
=(a,0),B=(b;,b,) andC=(c,0).
° In Eqg. (1) the scattering functions on the contour are de-
noted byu(r,E), while the wave functions of the bound
single-particle states and the Gamow resonances are denoted
by w,(r). These states are indicated by open circles in
{b,;b,) Fig. 1.
' ' An important feature in Eq1) is that the scalar product is
defined as the integral of the wave function times itself, and

FIG. 1. One-particle complex energy plane. It shows the contouf'Ot its complex conjugate. This is in agreement with the
L* corresponding to the energy of the scattering watet line) Hilbert metric on the real energy since, for bound states or
and the Gamow resonances enclosed by the coriomen circley ~ for scattering states on the refalaxis, one can choose the
defining the one-particle Berggren representation. The bound stateghases such that the wave functions are real quantities. The
which enter in the representation independently of the contour, arprolongation of the integrand to the complex energy plane
not shown. allows one to use the same form for the scalar product ev-

erywhere. This metri¢Berggren metrig produces complex
method, which is a generalization of the shell model to theprobabilities, as has been discussed in detail in, e.g., Refs.
complex energy plane, was briefly given in REf2]. We  [17,23. Here it is worthwhile to point out that for narrow
will present it in detail here, clarifying what a two-particle resonances such probabilities become virtually real quanti-
resonance is. We will also provide an insight into the influ-ties.
ence of the continuum upon the formation of two-particle The integral in Eq(1) can be discretized such that
resonances.

The formalism is shown in Sec. Il. In Sec. Il we give the
applications and a summary, and conclusions are given in f dEU(r,E)u(r’',E)=> hou(r Epu(r',Ep),  (2)

Sec. IV. Lt p

Im(E)

Re(E)

lIl. FORMALISM whereE, andh, are defined by the procedure one uses to

The Berggren(one-particle representation to be used in Perform the integration. In the Gaussian methigg are
this work was described before in a number of situationsGaussian points antl, the corresponding weights. There-
e.g., in Refs[6,10,11,25. Here we will give only a brief fore, the orthonormalin the Berggren metricbasis vectors
summary of the formalism. |@;) are given by the set of bound and Gamow states, i.e.

The regular solutions of the Schiinger equation, with <rf¢n>:{wn(r!En)}v and the discretized scattering states,
outgoing boundary conditions corresponding to a particld.e., {r|¢py={vhou(r,E,)}. This defines the Berggren rep-
moving in a central potential, provide the single-particleresentation.
bound states and the so-called Gamow resonances. The studyBY using the Berggren representation one readily gets the
of this case led6,7] to the introduction of expansions for the two-particle shell-model equations, i.e.,

Green ands functions in terms of the poles of the Green
function plus an integral along a continuum path in the com-

plex energy plane, i.e., (0,— €—€)X(ij] ;a)Ikzl (kl;a|V[ij;a)X(kl;a), (3)

Sr—r=2 Wn(r)Wn(r’)JrJ dEu(r,E)u(r’,E),
n L where a labels two-particle states, aridj,k, and| label

@ single-particle states. The tilde denotes mirror stfésnd

) ) o the rest of the notation is standard.
where we choose the integration path to lie in the fourth As usual, the two-particle wave function is

quadrant of the complex wave numkéy plane! as seen in
Fig. 1. The summation runs over all bound states and poles

of the Green functiofGamow resonancgenclosed by the .
'“>:i2<,- X(ij;e)(c ¢} ,/0), (4

This corresponds to the lower half of second, nonphysical Rie-
manE sheet. where
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FIG. 2. Discretized contour and Gamow resonances defining the FIG. 4. One-particle discretized contour which produces the
one-particle Berggren representation. The open circles indicate tH&o-particle energy region free of zeroth order states shown in Fig.
energies of the Gamow resonances while the crosses are the enbr-The open circles indicate the energies of the Gamow resonances

gies of the scattering states. while the crosses are the energies of the scattering states. Note that
the point (0,0) does not belong to the representation. The lowest
energy corresponding to scattering basis states liek g0Y.
X(ij;e)=(al(c{ ¢} )0}/ (1+ 5;) (5) gy corresponding 9 200

The discretization of the contour in Fig. 1 produces a seriestates. This problem becomes more acute as the number of
of points in the one-particle energy plane, as shown in Fig. 2elements in the basis increases, that is as the number of
Each point in this figure represents a state of our one-particlpoints in Fig. 2 becomes larger, because the two-particle
Berggren representation. Therefore, the energy of the twoshysical states would then be embeded in a dense number of
particle basis vectorg{'c;"),|0), i.e., €+ ¢, is the sum of  states belonging to the continuum.
the pointi in Fig. 2 with the pointj. Allowing the indicesi A way to avoid this problem is to choose a one-particle
andj to run over all the one-particle basis states, ordere¢ontour which leaves a physically relevant two-particle com-
such thati=<j, one obtains the energies of the two-particleplex energy region free of zeroth order states. There are
basis state¢zeroth-order energyin the correspondin¢fwo-  many possible contours that satisfy this condition. In Fig. 4
particle complex energy plane as shown in Fig. 3. One seege show one such contour and the corresponding Gamow
in this figure that the whole complex energy plane of interestesonances enclosed by it. Since the bound states have to be
is covered by zeroth-order solutions and, therefore, it woulgonsidered in any case, irrespective of the contour, we do not
be difficult in this plane to find the physical two-particle jnclude them in the discussion here.

The contour has a rectangular form defined by the points
. 0 . a_ ¢ . . . d . v . . -2d v POE(O,O),PlE(a,O),PZE(a,_C),P3E(b,_C),P4E(b,0),

andPs=(d,0). As mentioned above, the numlzeshould be

O PRI PO P 0 infinite. However, if one choosed large enough its value
Py does not influence significantly the calculated quantities of
M NN l interest. In the cases to be studied in Sec. Il we will choose
ittt e e e d fulfilling such a condition. It is also worthwhile to mention
e that, due to the Gaussian integration method, the point (0,0)
S | will not belong to the Berggren representation. The lowest
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energy on the contour corresponds to the first Gaussian point,
b 2 i.e., (E1,0).

By summing in an orderly manner the points of this figure
with themselves, one obtains the two-patrticle states shown in
Fig. 5. One can see that iB2<b then there is a region in the
two-particle complex energy plane which is practically free

FIG. 3. Zeroth-order two-particle energy points obtained from©f @ny uncorrelated solution. Choosing the real energies
the one-particle states in Fig. 2. These points define the two-partici@ndb in Fig. 4 conveniently, one can study two-particle reso-
Berggren representation. The open circles correspond to the casesli@Nces lying in any reasonable energy region. We will call
which both particles occupy Gamow states. The dots are the enefis the “allowed” energy region. In Fig. 5 all possible two-
gies in which one particle is in a Gamow state while the other is inparticle energy points have been drawn. The allowed region
a scattering state. The crosses are the energies corresponding to fcupies a rather small portion of the figure, and therefore it
cases in which both particles are in scattering states. appears somehow diffuse among all the points. For clarity of

Re(E)
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0 a2a b d ad one expects that the correlated low-energy resonances would
NARARARARERARARER AR AR RREEARAEEREANE lie below their zeroth-order positions in Fig. 6. Therefore, the
value of 2a should be as small as possible whilshould be
0 [ i) 0 large, which are just the conditions needed to obtain the al-
OF iy SRR ' lowed region.
BIREE T B OSSN ISB - Once the Berggren single-particle representation has been
1R I IOPE SN SEIR 1 chosen, the two-particle representation is built as in the stan-
o -c B TE T TAGS N R A A S 2 dard shell model, i.e., as the tensorial product of the one-
E ] particle representation with itself. This defines the two-
HEORALABEBAIIE N 3 particle space. In this space there are, in zeroth-order, two-
] OEIERCNE ORI 0N ] particle configurations containing Gamow resonances only,
- IOEIEREDOEDIDIDIE SN y which in Fig. 6 are indicated by open _circles. Besides these,
one sees that inside the allowed region there are also con-
S figurations, indicated by dots, corresponding to one particle

moving in a Gamow resonance and the other in continuum
states. These configurations can be seen more clearly in Fig.
5, where the dots form two recognizable rectangles. Each

FIG. 5. Energies of the uncorrelated two-particle states obtainef:'IeCt‘ijgle corresponds to the geometr!cal sum _Of a Gamow
from the one-particle energies of Fig. 4. The open circles corref€sonance, reprgsented by an open circle in Fig. 4, and the
spond to the cases in which both particles occupy Gamow state§.catte”ng fU”Ct'Q”S on the 'clzontour, represent(?d by the
The dots are the energies in which one particle is in a Gamow state! ©SS€S 1N that figure. In addition to the two-partl_cle Stfr"tes
while the other is in a scattering state. The crosses are the energili%vOIVIng Gamow resonances _there. are also cor_lflguratlor}S,
corresponding to the cases in which both particles are in scatterin _enOted bY Ccrosses in Fig. 5, in which both particles are in
states. The allowed region is the one with real energy between ingle-particle scattering states.

and b and with imaginary energy larger than -c. The basis vector One expec_ts that physical_ly re'e"@”t resonances —are
with lowest energy lies at,. mostly determined by two-particle configurations in which

both particles are in either bound or Gamow states. Since
- . . these states are the ones expected from the standard shell
pre_sentatlon in Fig. 6 we show the allowed region and Itsrnodel, we will call them “resonant shell model” states.
neighborhood only. _ . In the applications shown in this paper the central field
The allowed region can be determined by fulfilling SOMedetermining the single-particle basis will be of a Woods-
physically meaningful requirements. That is, the correlatedsayon type with a spin-orbit term as in RE28]. The corre-
states of interest are those which live a long time beforesponding bound and Gamow functions as well as the scatter-
decaying. One would thus be able to observe them directly ofg states will be evaluated by using the computer codes
through effects that they induce, for instance through thejescribed in Refd.28,29.
formation of halos. As we will show below, such states are As a two-body interaction we will use a separable two-
built mainly by Gamow resonances. Therefore, the contoubody force given by the derivative of the Woods-Saxon po-
in Fig. 4 should be chosen in such way as to enclose thostential. This effective interaction has shown to be satisfactory
resonances. Moreover, the valuesaph, andc should pro- to describe processes in the continuum, e.g., neutron decay
duce an allowed region where the calculated two-particldrom giant resonancg®3]. However, our purpose here is not
states may lie. Since the two-body interaction is attractivd0 explain physical processes in the continuum in detail, but
rather to understand the role played by the various ingredi-
ents entering into the calculations. The great feature of the

-2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
Re(E)

0 2E, a 2a b . . . . . .

0 v - 5 . 0 separable force is that it does not require a diagonalization of
SRR oo matrices. This is important in our case since the dimension of
ooy o the two-particle basis may be very large, and we want to
S e evaluate all states in order to examine the distribution of the
Tt tr § energies of the resonant shell model and scattering states
L., .. discussed above.

— e e e o .. . Our effective interaction matrix element is thgg0]
Ll ¢ .
£ N R (K a|V]ij;a)=—G,f(kDT,(i), (6a)
- 2
° ) + .+ + + + + + + + Where
A O  (pgm LEC D
R R APY=—""""—
3 2\4m
0 2 4 6 8 10 U2 TR .
Re(E) X (=1 N pl T pl2 N0| jq—1/2)
FIG. 6. As in Fig. 5, but enlarged such that only the allowed % fwdrcp (N[rau(r)/ar]eq(r) (6b)
region and its neighborhood are included. 0
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and U(r) is the volume part of the Woods-Saxon potential TABLE I. Values of the Woods-Saxon parameters used in the

defining the central field. The rest of the notation is standardgalculations. The spin-orbit parametery and a*° coincide with

From Egs.(3) and(6a) one obtains the dispersion relation the ones corresponding to the volume part given in this table. The
Coulomb radius in the proton cases is the samegas.e., r§°"

3 1 _2 fi(ij) @ =1.19 fm. The meaning of these parameters is as in [R&f.
G, S w,—€—¢

Core Vo (MeV) 1o (fm) a(fm) Vg, (MeV)
which allows one to evaluate the correlated energigs 78Ni (neutrons 40 127 0.67 21.43
Note that in Eq.(6b) the angular part of the matrix ele- 1005 (protons 58.5 1.19 0.75 15

ment was evaluated according to the Hilbert metric, while in

the radial part the Berggren metric is used. Note also that in

Eq. (7) the square of the matrix element appears, and not the o )

sgu;r)e of itsqabsolute value. PP Table Il. Note that even in this case the shé# 50 is rather
In the case of a separable force the amplitude of the wav¥ell defined.

function can be written as

B 1. Fermi level is bound
fa(i]) ®
0, ~ €€’ We will first analyze the case where there are bound
single-particle states, i.e., the case WSL1 in Table Il. Already
'from the start one faces the problem of determining which
single-particle states are to be included. In a standard shell-
) fG]) )2 model calculation one would include the states correspond-
N, 2= (“—) . (9)  ing to a major shell only plus possibly an intruder state. In
1<)\ Qa6 € our case that would be the shdll=4 and the intruder state

X(ij;a)=N,

whereN, can be determined by the normalization condition
ie.,

We will determine the strength of the separable force, i.e.OM112. However we now have the imaginary part of the

G, , by using the usual procedure of fitting the energy of a€N€rgy to take into account. This may produce states with

two-particle stater. However, in the drip line nuclei which Telatively small real parts of the energies, but very laiige

we will analyze there are not yet any experimental data, and',absolute valugimaginary parts. Such states would induce

therefore, we will assume that such a state lies at a certaif"y Wide two-particle resonances and their inclusion would

reasonable energy. We will also vary the valueGyf thus imply the use of contours embracing large portions of the

obtained within a reasonable range in order to study the inSMPIex energy plane which one would not expect to influ-

fluence of the two-body interaction upon the caiculated€NCe the narrow two-particle resonances of interest. We
states. therefore decided to include all single-particle states up to a

real energy of 6 MeV, and imaginary parts down to
—4 MeV. This corresponds to all states shown in Table II.

As mentioned above, to determine the strength of the

We will apply the formalism discussed above for two Separable force we will follow the standard procedure of ad-
cases, one corresponding to a nucleus close to the neutrgutsting G, by fitting the energy of a two-particle state, which
drip line and the other close to the proton drip line. In bothusually is experimentally known. In our case we will assume
nuclei we will analyze two-particle states with an angularthat such a state, which would be the ground staté%f,
momentum\=0. All partial waves withl<10 will be in-  exists below twice the energy of the lowest single-particle
cluded to evaluate the scattering states in the Berggren rep-

resentation. TABLE Il. Single-particle neutron states iffNi evaluated with
the Woods-Saxon potential given in Table I. The complex energies

A. Two-neutron resonances are in MeV. The column labeled WS1 corresponds Vg

=40 MeV, and WS2 toVy=37 MeV. The hole statesdy,, are
given to show the magnitude of the gap corresponding to the magic

IIl. APPLICATIONS

In this section we will present calculations for two-
neutron states in the double closed-shell nucl&d§. The

Woods-Saxon parameters are indicated in Table I, and thgumbeerso'

corresponding single-particle energies are in Table Il. Thesg;,;e Ws1 WS2

single-particle states are quite similar to the ones given by a

Skyrme HF calculation§31]. As seen in Table II, the shell 0gg, (—4.398,0) 2.587,0)

N=50 is well defined, since there is a gap of about 3.6 MeV1ds, (—0.800,0) (0.294;0.018)

between the lowest particle state, which here g, and  2sy, (-0.295,0) @ ————-—

the highest hole state, i.e.g),. 1ds, (1.325-0.479) (1.905; 1.241)
We will also evaluate a case where no bound singleoh,,, (3.296;-0.013) (4.681;-0.069)

particle states are present. For this, we reduced the value af,, (3.937-1.796) (4.455-2.851)

the depth of the Woods-Saxon potential ¥g=37 MeV.  og,,, (4.200-0.167) (5.799; 0.506)

The corresponding single particle energies are also given ia
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state, i.e., below 21d5/2. This energy gap, i.e., the correlation (2s,,)

energy, is more than 1 MeV in well-established normal nu- (1dg,)°
clei, like 2%%Pb (where it is 1.244 MeVY and *Ni (1.936 01 VoA et
MeV). However in our case the bound states are so few and
so slightly bound that such high-energy gaps do not seem tg -1+
be reasonable. Since there are not any experimental dat
which could guide us, and since our intention is just to see2 |
how the strength of the force affects the results, we will vary
G, from zero to a maximum value corresponding to a gap of £
2.527 MeV, i.e., for &Ni(g.s.) energy of-4.183 MeV. The 7
value of the strength corresponding to the Berggren basis
described below i$,=0.0028 MeV. -4
In the calculations to be presented here we used a rectan — — .
gular contour with vertices as in Fig. 4 wid=0.5 MeV, 4 2 0 2 4 6 8
b=9 MeV, c=—4 MeV, and d=20 MeV. We thus in- Re(E) (MeV)
clude, in the Berggren basis, all the Gamow states shown in FIG. 7. Energies of the calculated two-particle states as a func-

Table Il plus the bound statesdg, and 25,,. With this 0 5 e strengtlG,, (X 10%, in MeV) for the case WS1 of Table
contour Fhe allowed region _comprlses a two-particle energy), Only the allowed region in the two-particle energy plane is
plane with complex energiesE(,E;), such that 1 MeV  gpoun The straight lines formed by small dots correspond to con-
<E;<9 MeV and—4 MeV<E;<0 MeV. ~ tinuum configurations where one particle is in a shell-model state
As already mentioned above, we will use a Gaussiamnd the other in a scattering state. The crosses correspond to con-
method of integration over the contour. We found that intinuum configuration where both particles are in scattering states.
order to obtain convergence within six digits in the evaluatedrhe labels of the curves followed by the physical two-particle reso-
quantities, one has to include ten Gaussian points for eadliances indicate the corresponding zeroth-order configurations.
MeV on the lines of the contour in Fig. 4, except for the last
segment{the one going from I§,0) to (d,0)], where five :
points for each MeV are enough. We arrive at this conclusiorg"t Values of the streng@@,, . The energies follow the pat-
by always choosing the contour such that the resonances lerm discussed in Sec. Il. One can thus identify the distinctive

at least at 300 keV from the borders of the contour. The> raight lines corresponding to scattering configurations. For

- . . .. all G values these lines appear practically in the same posi-
number of scattering states thus included in the_basrg, 'S tion. One can also see that the two-particle resonances can
=225. The convergence of the results as a function,ods

; ; eadily be distinguished from the scattering states by just
well as t_he mflgence of the continuum upon the calculate boking at the figure. This is possibly due to the presence of
states will be given below. _an allowed region which only contains the physical states.
One can check the reliability of the results by performing | the figure the physical states are labeled by their
a calculation over the real energy axis only, that is by usingeroth-order configurations. One sees that as the interaction
the continuum shell moddi32]. Any bound state that one increases the real part of the energies behave in a standard
may thus obtain should coincide with those evaluated byhell-model fashion. Thus the state with the largest degen-
using any contour. Moreover, when evaluating the strengtleracy “feels” the interaction the most. Moreover, the ground
of the force by given a real energy, in Eq. (7) the value of  state departs from the rest of the spectrum more and more as
G, thus obtained should, independent of the contour that onthe interaction increases, also in agreement with expecta-
uses, be a real quantity. All these requirements are fulfilled inions. Guided by these well-established facts one may as-
our calculations. This is important since it is a strong test olsume that narrow configurations, which due to the centrifu-
the reliability of our computing codes as well as a confirma-gal barrier are usually the ones with highest degeneracy,
tion of the validity of the formalism. would follow a similar pattern. That is, they would be domi-

(oh,,,)’

*° L (0g,,)°

12
16
20
24
28

4 < » > Em O @O

]

In Fig. 7 we show the energies evaluated by using differ-

TABLE lll. Main components of the wave functions corresponding to the state which in zeroth order is
(0Oh;19)? as a function of5,, (X 10%, in MeV) for the case WS1 of Table II. The corresponding two-particle
energyE (in MeV) is also given. Only components which in absolute value are larger than 0.14 are given.
The basis states are ordered according to their widths. THug §F is the narrowest and %,,)? the widest

configuration.
G, E (Ohyy)? (0g7,2) (1dz)? (1f72)° (1dsp)?
8 (5.399;-0.136) (0.96,0.00  (—0.27~0.02) —_— (0.14,0.02 —_—

12 (4.784-0.342) (0.92,0.02 (—0.33-0.03) (0.14,002  (0.20,0.03 —

16  (4.283-0.664) (0.86,0.03 (—0.35-0.05) (0.36-0.19) (0.23,0.03  (0.14,0.07
20  (3.975-0.990) (0.77,0.04 (—0.33-0.06) (0.52-0.11) (0.24,0.03  (0.14,0.10
24  (3.780-1.222) (0.70-0.01) (-0.32-0.03) (0.60-0.01) (0.24,001  (0.15,0.10
28  (3.628-1.376) (0.66-0.06) (~0.31-0.01) (0.66,0.06 (0.23-0.01) (0.16,0.10
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TABLE IV. As in Table Il for the state which in zeroth order isd3,)2. The relevant basis statése., with amplitudes larger than 0.2
include now the bound configurationdd,,)? and configurations consisting of scattering states, of which we give only the largest component
under the column Scat”

Ga E (1dsp)? (Ohyyp)? (0g712)° (1d3p)? (1f7)? scat
(2.604:-0.809) — — — (1.00,0.01 — _
12 (2.541-0.679) — S _ (0.99,0.03 — _
16 (2.378:-0.506) —_— (—0.33,0.15) —_— (0.94,0.07 —_— —_—
20 (2.059:-0.401) (~0.25-0.02) (—0.46,0.06) (0.23,0.04 (0.88,0.05 —_— _—
24 (1.665;-0.447) (~0.31-0.08) (—0.48~-0.00) (0.25;-0.00) (0.705-0.05) o (0.42,0.18
28 (1.235-0.683) (-0.46-022) (-0.63-0.04) (033,000  (0.74-0.19)  (-0.24,0.06 -

nant in building up the physicaharrow) two-particle reso-  configuration (Hs,)2. This explains why the states d3,,)?
nances, as assumed in Rdfs4—16. But Fig. 7 shows just become narrower as a function Gf,. But asG,, increases
the opposite situation. As the interaction increases all rescscattering configurations become important and, as a result,
nances become narrower, except the one corresponding tiee states become wider. An interesting feature in this contex
the configuration (B;1,5)2, which becomes wider. This un- is the sudden appearance of a large contribufaira value
expected feature is a consequence of the Berggren metric, i.€.42,0.18] from a scattering configuration atG,
of the non-Hermitian character of the Hamiltonian matrix in =0.0024 MeV. This corresponds to the configurati@)
the complex energy sector. Similar properties, like violations=|0d,c3,), Where c3, is the scattering function at
of the noncrossing of levels rule, were found in the one-(0.385,0 MeV. This is a Gaussian point on the first border of
particle casg¢33]. the contour. The energy of the configuratipg> is (in

The behavior of the physical resonances in Fig. 7 is ratheMeV) (1.325-0.479+(0.385,0=(1.710-0.479, which
involved. Thus the states labeleddg),)? first become nar- is very close to the energy of the resonance, i.e.,
rower as the interaction increases, but, at a certain point, fail.665,-0.447. This can even be inferred from Fig. 7 where
G,=0.002 MeV in the figure, this tendency is reversed. Atthe down open triangle for the casedgl)? being discussed
the same time the increase ofr{ E) desaccelerates around here practically overlaps with our continuum configuration
the same value oB,, for the states (B,,,)°. |C). Therefore, according to E¢), the corresponding wave

To understand the behavior of the state{(@)?, in  function component is large.
Table Il we give the main components of the corresponding The unexpected behavior of the resonances discussed
wave functions. A feature to be noticed is that in no case arabove is representative of all the others in Fig. 7, while the
bound configurations relevant. As the interaction increasebound states behave in a standard shell-model fashion. It is
wide configurations become more and more important. Thiperhaps surprising that the first excited bound stdsseled
explains why the state becomes wider. However, the boun(?s,,)? in the figurd do not show any remarkable sensitivity
configuration (Hls,)? start to become relevant at a large to scattering states, although they lie close to the continuum
enough value ofG,. Thus, atG,=0.002 MeV, that con- threshold. Indeed, the wave functions corresponding to these
figuration contributes a value of (0.14,0.007) to the wavestates consist mainly of the configurationsd{t)? and
function. This value becomes more importanGasbecomes  (2s,,,)? for all values ofG,, .
larger, thus desaccelerating the increase of the widths. One important feature of the calculation is that the ener-

On the other hand, the wave functions of the stategjies corresponding to physical states converge to their exact
(1d3,)? presented in Table IV show that narrow configura-values relatively fast as a function of the dimension of the
tions[more exactly, configurations narrower than the zerothbasis. We show this for the statesdgk)? and (Chy;5)? in
order one, which here is €l,)?] contribute substantially to Tables V and VI, respectively. To assess whether the strength
the structure of the state as the interaction increases, particof the interaction affects the convergence, we have chosen
larly the narrow states (€ ,,)? and (Qy;,)? and the bound different values ofG,. We thus see that indeed the energy

TABLE V. Convergence of energies corresponding to the states labetkg)@lin Fig. 7 as a function of
the number of Gaussian pointg. The valueng=0 corresponds to the case where only bound states and
Gamow resonances are included in the basis. The columns are labeled by the @reqgth0?, in MeV).

Ng 4 20 24 28
0 (2.640+-0.896) (3.299; 0.607) (3.27550.858) (3.22750.975)
10 (2.63416-0.89697)  (2.13004;0.42801)  (1.79169;0.50527)  (1.360;0.82097)
50 (2.63448-0.89643)  (2.05694;0.39779)  (1.70880;0.43585)  (1.24293;0.68603)
100 (2.63349-0.89643)  (2.05889;0.40198)  (1.67618;0.44027)  (1.23509;0.68299)
150  (2.63349-0.89643)  (2.05889;0.40198)  (1.67618;0.44027)  (1.23509;0.68299)
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TABLE VI. As in Table V for the states (8,52

Ng 4 20 24 28
0 (6.018,0.004 (2.777,0.320 (2.237,0.681 (1.775,0.860

10 (6.02747-0.03903)  (3.95235;0.95715)  (3.75050;1.18517)  (3.59543;1.33198)
50 (6.02693-0.03949)  (3.97506;0.98989)  (3.77995,1.22224)  (3.62815;1.37649)
100  (6.02693;0.03949)  (3.975070.98988)  (3.77989;1.22213)  (3.62798;1.37641)
150  (6.02693;0.03949)  (3.97507,0.98988)  (3.77989;1.22213)  (3.62798;1.37641)

corresponding t@,,=0.0004 MeV, which is the smalle§@ Even the physical resonances present the same features as
value shown in those tables, coincides within a few keV within Sec. lllA1. In particular, the states labeledh(@,,)? in-

the exact result already fory=0. But asG, is increased teract strongly with all the others thereby becoming wider
that agreement deteriorates. Particularly inadequate are tienile all the other states become narrower.

energies evaluated by using=0 for the states (0,10)° However, there is an important feature in this case,
and G,=0.0020 MeV. Not only are the real parts of those Namely, the development of a bound state which is induced
energies wrong by an amount ranging from 1.2 Méw by the two-particle interaction, as shown by the states
G,=0.0020 MeV) to almost 2 MeV, but also the imaginary (1ds;)?. To analyze the reason for this behavior, in Table

parts are large and positive, which does not make sense sin¥dl we present the main components of the corresponding
it would correspond, e.g., to negative widths. This last feawave functions. As expected, one sees that when the interac-

ture does not appear for the statesi{3)2. tion is weak the state is built practically by the configuration
One can understand the deterioration of the resonant shelds)® only. As G,, increases the two-particle resonance
model resultdi.e., of neglecting the continuum by usimg approaches the continuum threshold, and scattering states
=0) as the strength increases by noticing that it is througwontribute substantially to the wave function. Thus the state
the interaction that continuum configurations become relunder the column labeledscat corresponding toG,
evant in the calculation. This also explains why the results=0.0012 MeV is Hs,Cs/,, Wherecs, is a scatteringl wave
corresponding ta,=0 for the states (ds)? are generally ~at an energy0.089,0 MeV. At G,=0.0020 MeV the reso-
better than those corresponding toh¢9,)?, since here the nance approaches threshold even more and here the con-
interaction is strongefdue to the degeneraﬁﬁ)r a given t@nuum itself becomes important. Indeed, the Iarge contribu-
value of G,. But, already withny=10, the agreement be- tion under the columnscat now corresponds to the
tween the exact results and the approximated ones is reasd#nfigurationc,,c,,, wherec,, is a scattering wave with
able in all these cases of physical states. Moreovernfor an energy(0.011,0 MeV, itself very close to threshold. As
=100 the exact results are reproduced within six digits. Thighe interaction increases even more the state becomes bound,
convergence is better than the one required to achieve a simi-
lar agreement in general, for which one needs the vajje
=225 used in our calculations, as mentioned above. oY P ] wo®
Finally it is worthwhile to point out that the presence of 1 a
scattering states lying near to physical states does not affec 1 v
the convergence, as seen in, e.g., Table V for the state =4 A
(1d3,)? with G,=0.0024 MeV(cf. Fig. 7). 3 S |

Jon,,)°

‘h) 3

iv (09,,)°

2. Fermi level is unbound

m(E) (MeV
[}
1
a
R
3
el
4 <49 »p >R 0O €O
>

In this subsection we will analyze the case where there is
not any bound single-particle states, i.e., the case WS2 ir *71 {: :
Table II. Actually there is not any essential difference be- | i 4
tween this case and the previous one since within this for-

(1 fm)zf

malism all statesincluding the continuum stateare treated 0 2 4 6 8 o 12 14
on the same footing, independently of the location of the Re(E) (MeV)
Fermi level.

FIG. 8. Energies of the calculated two-particle states as a func-
n of the strengttG,, (X 10%, in MeV) for the case WS2 of Table
I. Only the allowed region in the two-particle energy plane is

The single-particle resonances are wider than before, ar}go
therefore we used here a different one-particle contour,

namely a=0.1 MeV, b=13 MeV, c=-6 MeV, andd  g,oun. The straight lines consisting of small dots correspond to
=26 MeV. . continuum configurations where one particle is in a bound or

In Fig. 8 we present the evaluated states as a function Qamow state and the other in a scattering state. The crosses corre-
the strengttG,,, which we allowed to vary within the same spond to continuum configuration where both particles are in scat-
range as in the previous case. The straight lines discussegting states. The labels of the curves followed by the physical
above appear also in this case, with the same characteristigo-particle resonances indicate the corresponding zeroth-order
as before. configurations.
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TABLE VII. Main components of the wave functions corresponding to the state which in zeroth order is
(1dg)? as a function of3,, (X 10, in MeV) for the case WS2 of Table II. Under the columscat we give
the largest component corresponding to configurations consisting of scattering states. The two-particle energy
E (in MeV) is also given. Only components which in absolute value are larger than 0.2 are given.

G, E (1dsp)? (0hyy/)? (0g7,)? (1d3)? scat
(0.538;-0.024) (1.00,0.00 —_— —_— —_— —_—
12 (0.377-0.010) (1.00-0.04) — — — (0.21,0.23
20 0.002-0.000 (0.81;-0.04) _— —_ _— (0.44,0.0)
28 (-0.700,0)  (0.84-0.04) (-032-001) (0.21-0.01) (0.24-0.11)  ——

and atG,=0.0028 MeV the scattering states cease to bedigits, the number of scattering states for each partial wave
important. But the interaction is strong enough here to midurns out to beng=298. _
up all the shell-model configurations, showing the impor- With the single-particléBerggren representation thus es-
tance of Gamow resonances in inducing bound states in nd@blished we calculated the complex two-particle energies by
clei that lie far from the line of3 stability. solving the dispersion relatiofEq. (7)]. The corresponding
wave functions were evaluated by using Eg).

We used in our calculations of the two-proton states,
which would be resonances it??Te, values of the strength

Proton resonances are usually narrower than the corrds, in a range similar to that in the neutron cases analyzed in
sponding neutron ones due to the Coulomb barrier. It ighe previous subsections. The results of the calculation are
therefore often in this case that one studies many-body syshown in Fig. 9. The general trends in this figure are similar
tems including only narrow Gamow resonances. In this secto the ones already found for the two-neutron cases.
tion we analyze this approximation for the case of two pro- One notices that even in this case where all resonances are
tons outside th€%Sn core. The single-particle proton statesvery narrow, the narrowest resonance in zeroth order be-
correspond to the major shéll=4, which is the same as in comes wider as the interaction increases, while all the others
the previous subsections. The core mean field is described lyecome narrower. This is especially remarkable for the state
a Wood-Saxon potential with the parameters given in Table linat at zeroth order is (3/,)%, since one does not expect that
These parameters were adjusted to obtain the single-particle siate with such low degeneracy would be important in

states shown in Table VIII, which agree with systematics iny jjijing up low-lying resonances. To analyze these states, in
this region. Notice that none of these single-particle states iy o 1% we present the corresponding wave-function ampli-

bound_. . . tudes for values of the strengtd, used in Fig. 9. As ex-
As in the neutron case analyzed above, we include in our

single-particle representation even states which belong to
higher shells, namely, stated-}, and 0,3,, because they

are relatively narrow. We include these high-lying shells in
order to assess whether they can be neglected, as one do--

B. Two-proton resonances

(1d,,)* (0g,,)°
within the standard shell model. 0000 v . o, )
We chose even here the rectangular contour of Fig. 4 with % !
vertices defined by the values=0.1 MeV, b=19 MeV, ¢ 00021 Vo
=—1 MeV, andd=26 MeV. This contour encloses all the b : g
Gamow resonances of Table VIIl. Choosing the Gaussiarg %47 PP -
points as indicated above in order to obtain a precision of sixg ti g | °
£ -0.006 .‘;" 4 o 8
TABLE VIII. Single-particle proton states if°°Sn evaluated (s, ¢t P B
with the Woods-Saxon potential given in Table I. The complex en- 00087 " . i 1‘2‘
ergies are in MeV. 4y | v 16
-0.010 T T T T T
0 2 4 6 8 10
State Energy Re(E) (MeV)
1ds (2.583-0.000) FIG. 9. Energies of the physical two-particle states calculated as
281 (4.007;-0.004) a function of the strengtfs,, (X 10%, in MeV) for the proton case
0972 (4.469;-0.000) of Table VIII. All physical resonances lying up to an energy of 10
1dap (4.917-0.004) MeV are shown. Notice the scale in the imaginary part of the en-
Ohyyp0 (7.559-0.001) ergy, which indicates that the widths of the physical resonances are
1f4p (9.710-0.424) in all cases small. The labels of the curves followed by the physical
i 1352 (16.361;-0.210) two-particle resonances indicate the corresponding zeroth-order

configurations. The dashed lines were drawn to guide the eye.
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TABLE IX. Main components of the two-proton wave functions corresponding to the state which in
zeroth order is (8;,)2 in Fig. 9 as a function o5, (X 10% in MeV). The single-particle states are as in
Table VIII. Only components which in absolute value are larger than 0.2 are given.

Ga (1dsp)? (2519)° (0g712)° (1dgp)? (Ohyy)?

2 —_— (0.99,0.00 —_ —_ —_

6 (~0.28,0.00) (0.67,0.00 (0.61-0.00)  (0.23-0.00) —

10 (—0.58,-0.00) (0.42+-0.00) (0.60,0.00 (0.26,-0.00) (=0.22,0.00)
12 (—0.68,~-0.00) (0.35:-0.00) (0.54,0.00 (0.25-0.00) (=0.22,0.00)
14 (—=0.74~0.00) (0.31-0.00) (0.50,0.00 (0.23,-0.00) (=0.21,0.00)
16 (—~0.78-0.00)  (0.28-0.00) (0.46,0.00 (0.22-0.00)  (~0.20,0.00)

TABLE X. Main components of the two-proton wave functions corresponding to the state which in zeroth
order is (ds,)? in Fig. 9 as a function o6, (X 10%, in MeV). The single-particle states are as in Table VIII.
Only components which in absolute value are larger than 0.2 are given.

G, (1ds;p)? (2511)? (097,)? (1dgp)? (Ohy4)? (0iq3)?
(1.00,0.00 —_— —_— —_— —_— —_—

6 (0.95,0.00 — (0.23,0.00 — — —

10  (0.80,0.00 — (0.40,0.00  (0.22-0.00)  (—0.29~0.00) —

12 (0.72,000 (0.20~0.00) (0.45,0.00 (0.25-0.00) (—0.35~0.00) —

14 (0.65,0.00  (0.21-0.00) (0.47,0.00 (0.27-0.00) (—0.40-0.00) (0.20,-0.01)

16 (0.60,0.00 (0.21-0.00) (0.48,0.00 (0.28-0.00) (—0.43-0.00) (0.23,-0.01)

TABLE XI. Convergence of energies corresponding to the states labetigh)?lin Fig. 9 as a function
of the number of Gaussian pointg. The columns are labeled by the stren@Gth (< 10%, in MeV).

Ng 2 10 14 16
0 (4.996,0.00D (3.118,0.142 (1.150,0.349 (—0.030,0.474)

10 (4.99275,0.00151  (2.76320,0.16744  (0.27597,0.41367  (—1.21486,0.56018)
50 (4.99316,0.00007  (2.79745,0.00742  (0.35026,0.01761  (—1.12083,0.02337)
100 (4.99302-0.00000) (2.7903%0.00017)  (0.33314;0.00040) (- 1.14366+0.00053)
150  (4.99309;0.00000)  (2.79025;0.00000)  (0.33299;0.00000) (- 1.143860.00000)
200 (4.99309-0.00000)  (2.79025;0.00000)  (0.33299;0.00000) (- 1.14386;0.00000)

TABLE XIl. Two-proton wave-function amplitudes corresponding@Q=0.0016 MeV in Table Xl as a
function of the number of scattering statgsincluded in the basis. Only components which in absolute value
are larger than 0.2 are given.

Ng (1(15/2)2 (097/2)2 (0h11/2)2 (1d3/2)2 (0i13/2)2 (251/2)2

0 (0.641,0.025 (0.478,0.000 (—0.413,0.009) (0.274;0.003) (0.212;-0.022) (0.208;0.000)
10 (0.592,0.023 (0.479,0.0083 (—0.435,0.007) (0.27#0.002) (0.232-0.023) (0.206,0.00D
50 (0.598,0.004 (0.480,0.008 (—0.433-0.001) (0.277+-0.000) (0.231;0.014) (0.206,0.00D
100 (0.598,0.00# (0.480,0.008 (—0.433;-0.001) (0.277-0.000) (0.231;-0.014) (0.206,0.00D
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pected according to what we found for the neutron cases IV. SUMMARY AND CONCLUSIONS

above, the reason these states become narrower is that nar-

row configurations play an important role as the interaction In this paper we have presented a formalism to evaluate
increases. However, this trend is not as specific as beforewo-particle resonances microscopically within the Berggren
when just the narrowest neutron configuratiovhich was  representation. This consists of bound states, Gamow reso-
(0hy4/)?] contributed most to the narrowing wave function. nances, and an infiniteontinuous set of complex scattering
The equivalent shell is now ()% which first (at low  states lying on a contour in the complex one-particle energy
values ofG,) is important but then decreases as the Strengt'ﬁé\gne. The Gamow states included in the representation are
increases. Perhaps even more amazing is the behavior of theyse enclosed by the contour. The scattering states appear as
shell (1dgy;)?, which first increases in importance but sud- an integral over the contour. We discretized this integral by
denly, starting aG,=0.0010 MeV, decreases again. These ging 5 Gaussian integration procedure. Therefore, the infi-
features again indicate that the behavior of the wave funCyjte “set of scattering states becomes reduced to the finite

tions in the Berggren space can follow patterns which ar?/alueng of Gaussian points. Using this finite Berggren basis

unus_,ual fr_om a standard sh_ell-njodel viewpoint. The Or.“ywe constructed a two-particle basis set of states as the ten-
configuration in Table IX which increases continuously in

absolute value a8, increases is (ds,,)2, which is also very sorial product of the one-particle basis with itself, as in stan-

narrow, and which may explain why these two-proton reso-dat;_cz sheII-m?deI calculat|ons.tWet have Sth?wg th_at uilr:lg an
nances become narrower. arbitrary contour one may get a two-particle basis with en-

The other notable states in Fig. 9 are those |abe|e(§ergies covering the whole two-particle complex energy plane
(1ds)2, which are very narrow for all values @, and of interest. This would hinder the evaluation of two-particle
which r:apidly decrease in energy &, increases aas ex. States, since they would be embeded in a continuous set of

pected for a pairingground excitation. Eventually the state basis states. To avoid this drawback we have shown that
becomes bound for a large enough value of the strengtﬁ,here exists a contour that leaves a region in the two-particle
which in the figure is between 0.0014 and 0.0016 MeV. Tocomplex energy plane free of basis states. It is just in this
study the changing structure of these pairing states, in Tablegion where the physically relevant resonances lie. Using
X we show the corresponding amplitudes as a function othis contour we have evaluated all two-particle resonances
G, . As expected from true pairing vibratiofi34], the num- ~ with a precision of six digits by choosingy with values

ber of equally important configurations increases with thebetween 150 and 300, depending upon the case under study.
strength of the pairing force. Moreover, the real parts of theBut we have found that withy~ 10 one obtains a precision
wave-function componenisvhich actually are virtually real of a few keV for the energies of the relevant resonances,
numbers$ carry the phase 1)', wherel is the orbital angu-  while the corresponding wave functions are provided within
lar momentum of the corresponding single-particle states. I precision of a few percent by neglecting the scattering
this subject of pairing vibrations the results of the methodstates altogether, i.e., withn,= 0.

presented here and those of the standard shell-model coin- \ne have applied the formalism to study neutron excita-

cide. tions in®Ni and proton excitations int°%Sn. The single-
In this case of very narrow Gamow resonances one no-

. hat in th il ¢ ; h ) £garticle states were provided by a Woods-Saxon potential,
tices that in the two-particle wave functions the scattering, . \ye chose a separable force as the two-particle effective
states do not seem to play an important r@g Table V).

. o interaction.
To analyze this point, in Table XI we present the dependence For the neutron case we analyzed a case where the Fermi

of the calculated energies, also for the states labeleg level was bound and another one where it lied in the con-

in Fig. 9, upon the number of scattering statgsncluded in . In both i included in th
the Berggren basis. The general features of the results in tthw_um. N both cases wide resonances were inciuded in the
asis. For the proton case the Fermi level also lied in the

table do not differ much from those found in Tables V and ;
V1. That i, for small values of the streng®, the evaluated continuum, but here all Gamow resonances were narrow. We
have shown that the position of the Fermi level is irrelevant,

energies reach than exact values quicklpgacreases. But , )
this convergence wanes &, increases. Thus the energy SINce all basis states are treated on the same footing. .
evaluated by neglecting the scattering states agrees with the We have shown that states which in zeroth order consist
exact results within a few keV fo6_=0.0002 MeV, but Of configurations containing scattering states feel the interac-
disagrees strongly foB,=0.0016 Mec\y/_ tion very weakly. Instead, the physical states consist mainly
It is interesting to see whether the corresponding wavéf configurations containing only bound states and Gamow
functions converge as badly as the energies do for large vafesonances. These configurations are the ones expected from
ues of the strength. We show this in Table XII, where we usdhe shell model. Even in cases where no bound configura-
the extreme cas&,=0.0016 MeV. Perhaps surprisingly, tions are present, the two-body interaction may induce nar-
one sees that the main components of the wave function®w resonances and bound two-particle states. We found that
evaluated forng=0 agrees within a few percent with the the narrowest of those configurations in zeroth order become
exact ones. This shows that the use of only narrow Gamowider as the interaction increases. At the same time, all the
resonances, neglecting the continuum as done in [R€f,  other states become narrower. This unexpected result, which
may be appropriate to evaluate wave functions although thies induced by the Berggren metric, shows that physically
energies thus obtained are inadequate. relevant resonances, i.e., narrow ones, may be strongly influ-
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