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Shell model in the complex energy plane and two-particle resonances
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An implementation of the shell-model to the complex energy plane is presented. The representation used in
the method consists of bound single-particle states, Gamow resonances and scattering waves on the complex
energy plane. Two-particle resonances are evaluated, and their structure in terms of the single-particle degrees
of freedom is analyzed. It is found that two-particle resonances are mainly built upon bound states and Gamow
resonances, but the contribution of the scattering states is also important.
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I. INTRODUCTION

The study of processes that takes place in the continu
part of nuclear spectra is a difficult undertaking. This can
seen by the large number of methods that have been
posed to describe the continuum. In addition to the Feshb
theory @1# and its many versions, there are many metho
where the continuum is described by a finite set of posit
energy states. These states are usually obtained by expa
the solutions of the nuclear Hamiltonian in a harmon
oscillator basis or by solving the eigenvalue problem w
box boundary conditions. There have been also many va
tions of these procedures, e.g., by using a transform
harmonic-oscillator basis@2# or harmonic oscillators with
different frequencies@3#. The common feature of these re
resentations is that they are constrained to real energy s
tions, as required by quantum mechanics. However,
widths corresponding to decay processes were already e
ated by means of outgoing waves~and therefore complex
energies! by Gamow in his seminal paper on barrier penet
tion @4#. The Gamow states provide a natural definition
resonant states@5#.

Berggren@6#, and shortly afterward Romo@7#, showed
that the bound and Gamow states, together with a se
complex scattering states, form a representation which sp
the space of complex energies. In this representation the
lar product~the metric! is non-Hermitian, and the norm o
the Gamow states is defined by using a method introdu
by Zel’dovich @8#. Later on, techniques based on the co
plex rotation of the radial distance were also used to regu
ize the Gamow states and the matrix elements involv
them @9#.

Microscopical calculations based on a single-particle r
resentation consisting of bound states, Gamow resonan
and complex energy scattering states~Berggren representa
tion! were proposed some years ago@10,11#. This represen-
tation was recently expanded to study two-particle re
nances@12,13#. It may be surprising to see that it took such
long time for us~after Ref.@11#! to arrive at the two-particle
representation. One of the reasons for this delay is that o
recently have we managed to find a method which allo
one to isolate the physical two-particle resonant states f
0556-2813/2003/67~1!/014322~12!/$20.00 67 0143
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the continuous background, as schematically outlined in R
@12#. The problem is that only a small fraction of the calc
lated states are physically relevant, since most of them~if not
all! are either wide resonances or part of the nonreson
continuum. It is therefore important to be able to isolate
physically meaningful states from the rest of the spectrum
this paper we will show how to achieve this. We will als
show how two-particle resonances are built from the sing
particle degrees of freedom determining the dynamics of
system. This is important since it is not clear how a tw
particle resonance is formed. For instance, one may won
to what extent such a state is built upon particles moving
resonant states as well as in nonresonant continuum st
Intuitively one would say that for the physically releva
two-particle resonances one of the two particles is in a n
row Gamow state while the other moves in a bound sta
Wide resonances and the nonresonant continuum would
only a minor role, as assumed in Refs.@14–16#. We will
show that this intuitive assumption is not always suppor
by proper calculations.

Actually the question of the importance of the nonres
nant continuum in the calculations was usually skipped
relation to processes taking place in the continuum par
the spectrum, particularly regarding radioactive decay, wh
measurable lifetimes correspond to very narrow resonan
Therefore, a calculation of the corresponding decay wid
can be performed by using bound representations, and
continuum itself can be totally ignored@17#. This approxima-
tion, which was followed in nearly all available calculation
of cluster decay~including alpha particles and recent calc
lations of proton decay@18–21#! was very successful in ex
plaining experimental data@22#. However, with the develop-
ment of experimental facilities one could measure par
decay widths of neutrons from giant resonances, and
continuum had to be included explicitly in the formalis
@23–25#.

Even more important, the experimental discovery of h
nuclei triggered a very fruitful theoretical activity whic
showed that halos cannot be understood without taking
account wide resonances and other elements belonging t
continuum@26,27#. All these elements are automatically in
cluded in the representation presented in this paper.
©2003 The American Physical Society22-1
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method, which is a generalization of the shell model to
complex energy plane, was briefly given in Ref.@12#. We
will present it in detail here, clarifying what a two-partic
resonance is. We will also provide an insight into the infl
ence of the continuum upon the formation of two-partic
resonances.

The formalism is shown in Sec. II. In Sec. III we give th
applications and a summary, and conclusions are give
Sec. IV.

II. FORMALISM

The Berggren~one-particle! representation to be used
this work was described before in a number of situatio
e.g., in Refs.@6,10,11,25#. Here we will give only a brief
summary of the formalism.

The regular solutions of the Schro¨dinger equation, with
outgoing boundary conditions corresponding to a part
moving in a central potential, provide the single-partic
bound states and the so-called Gamow resonances. The
of this case led@6,7# to the introduction of expansions for th
Green andd functions in terms of the poles of the Gree
function plus an integral along a continuum path in the co
plex energy plane, i.e.,

d~r 2r 8!5(
n

wn~r !wn~r 8!1E
L1

dEu~r ,E!u~r 8,E!,

~1!

where we choose the integration pathL1 to lie in the fourth
quadrant of the complex wave number~k! plane,1 as seen in
Fig. 1. The summation runs over all bound states and p
of the Green function~Gamow resonances! enclosed by the

1This corresponds to the lower half of second, nonphysical R
manE sheet.

FIG. 1. One-particle complex energy plane. It shows the cont
L1 corresponding to the energy of the scattering waves~full line!
and the Gamow resonances enclosed by the contour~open circles!
defining the one-particle Berggren representation. The bound st
which enter in the representation independently of the contour,
not shown.
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realE axis and the contourL1. One can choose quite gener
forms for the contour, as can be seen in Ref.@10#, but it has
to go through the origin and finish at infinite on the re
energy axis. However, as in any shell-model calculation, o
cuts the energies at a certain maximum value, which in F
1 corresponds to the pointD[(d,0). The other points defin
ing the contour in that figure are, besides the origin,A
[(a,0),B[(b1 ,b2) andC[(c,0).

In Eq. ~1! the scattering functions on the contour are d
noted by u(r ,E), while the wave functions of the boun
single-particle states and the Gamow resonances are den
by wn(r ). These states are indicated by open circles
Fig. 1.

An important feature in Eq.~1! is that the scalar product i
defined as the integral of the wave function times itself, a
not its complex conjugate. This is in agreement with t
Hilbert metric on the real energy since, for bound states
for scattering states on the realE axis, one can choose th
phases such that the wave functions are real quantities.
prolongation of the integrand to the complex energy pla
allows one to use the same form for the scalar product
erywhere. This metric~Berggren metric! produces complex
probabilities, as has been discussed in detail in, e.g., R
@17,23#. Here it is worthwhile to point out that for narrow
resonances such probabilities become virtually real qua
ties.

The integral in Eq.~1! can be discretized such that

E
L1

dEu~r ,E!u~r 8,E!5(
p

hpu~r ,Ep!u~r 8,Ep!, ~2!

whereEp and hp are defined by the procedure one uses
perform the integration. In the Gaussian methodEp are
Gaussian points andhp the corresponding weights. There
fore, the orthonormal~in the Berggren metric! basis vectors
uw j& are given by the set of bound and Gamow states,
^r uwn&5$wn(r ,En)%, and the discretized scattering state
i.e., ^r uwp&5$Ahpu(r ,Ep)%. This defines the Berggren rep
resentation.

By using the Berggren representation one readily gets
two-particle shell-model equations, i.e.,

~va2e i2e j !X~ i j ;a!5(
k< l

^k̃l ;auVu i j ;a&X~kl;a!, ~3!

where a labels two-particle states, andi , j ,k, and l label
single-particle states. The tilde denotes mirror states@6# and
the rest of the notation is standard.

As usual, the two-particle wave function is

ua&5(
i< j

X~ i j ;a!~ci
1cj

1!au0&, ~4!

where
-
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SHELL MODEL IN THE COMPLEX ENERGY PLANE AND . . . PHYSICAL REVIEW C67, 014322 ~2003!
X~ i j ;a!5^au~ci
1cj

1!au0&/~11d i j !
1/2. ~5!

The discretization of the contour in Fig. 1 produces a se
of points in the one-particle energy plane, as shown in Fig
Each point in this figure represents a state of our one-par
Berggren representation. Therefore, the energy of the t
particle basis vector (ci

1cj
1)au0&, i.e., e i1e j , is the sum of

the point i in Fig. 2 with the pointj. Allowing the indicesi
and j to run over all the one-particle basis states, orde
such thati< j , one obtains the energies of the two-partic
basis states~zeroth-order energy! in the corresponding~two-
particle! complex energy plane as shown in Fig. 3. One s
in this figure that the whole complex energy plane of inter
is covered by zeroth-order solutions and, therefore, it wo
be difficult in this plane to find the physical two-partic

FIG. 2. Discretized contour and Gamow resonances defining
one-particle Berggren representation. The open circles indicate
energies of the Gamow resonances while the crosses are the
gies of the scattering states.

FIG. 3. Zeroth-order two-particle energy points obtained fro
the one-particle states in Fig. 2. These points define the two-par
Berggren representation. The open circles correspond to the cas
which both particles occupy Gamow states. The dots are the e
gies in which one particle is in a Gamow state while the other is
a scattering state. The crosses are the energies corresponding
cases in which both particles are in scattering states.
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states. This problem becomes more acute as the numb
elements in the basis increases, that is as the numbe
points in Fig. 2 becomes larger, because the two-part
physical states would then be embeded in a dense numb
states belonging to the continuum.

A way to avoid this problem is to choose a one-partic
contour which leaves a physically relevant two-particle co
plex energy region free of zeroth order states. There
many possible contours that satisfy this condition. In Fig
we show one such contour and the corresponding Gam
resonances enclosed by it. Since the bound states have
considered in any case, irrespective of the contour, we do
include them in the discussion here.

The contour has a rectangular form defined by the po
P0[(0,0),P1[(a,0),P2[(a,2c),P3[(b,2c),P4[(b,0),
andP5[(d,0). As mentioned above, the numberd should be
infinite. However, if one choosesd large enough its value
does not influence significantly the calculated quantities
interest. In the cases to be studied in Sec. III we will choo
d fulfilling such a condition. It is also worthwhile to mentio
that, due to the Gaussian integration method, the point (0
will not belong to the Berggren representation. The low
energy on the contour corresponds to the first Gaussian p
i.e., (E1,0).

By summing in an orderly manner the points of this figu
with themselves, one obtains the two-particle states show
Fig. 5. One can see that if 2a,b then there is a region in the
two-particle complex energy plane which is practically fr
of any uncorrelated solution. Choosing the real energiea
andb in Fig. 4 conveniently, one can study two-particle res
nances lying in any reasonable energy region. We will c
this the ‘‘allowed’’ energy region. In Fig. 5 all possible two
particle energy points have been drawn. The allowed reg
occupies a rather small portion of the figure, and therefor
appears somehow diffuse among all the points. For clarity

e
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er-

le
s in
er-
n
the

FIG. 4. One-particle discretized contour which produces
two-particle energy region free of zeroth order states shown in
5. The open circles indicate the energies of the Gamow resona
while the crosses are the energies of the scattering states. Note
the point (0,0) does not belong to the representation. The low
energy corresponding to scattering basis states lies at (E1,0).
2-3
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presentation in Fig. 6 we show the allowed region and
neighborhood only.

The allowed region can be determined by fulfilling som
physically meaningful requirements. That is, the correla
states of interest are those which live a long time bef
decaying. One would thus be able to observe them directl
through effects that they induce, for instance through
formation of halos. As we will show below, such states a
built mainly by Gamow resonances. Therefore, the cont
in Fig. 4 should be chosen in such way as to enclose th
resonances. Moreover, the values ofa, b, andc should pro-
duce an allowed region where the calculated two-part
states may lie. Since the two-body interaction is attract

FIG. 5. Energies of the uncorrelated two-particle states obta
from the one-particle energies of Fig. 4. The open circles co
spond to the cases in which both particles occupy Gamow sta
The dots are the energies in which one particle is in a Gamow s
while the other is in a scattering state. The crosses are the ene
corresponding to the cases in which both particles are in scatte
states. The allowed region is the one with real energy betwee
and b and with imaginary energy larger than -c. The basis ve
with lowest energy lies at 2E1.

FIG. 6. As in Fig. 5, but enlarged such that only the allow
region and its neighborhood are included.
01432
s

d
e
or
e
e
r

se

e
e

one expects that the correlated low-energy resonances w
lie below their zeroth-order positions in Fig. 6. Therefore, t
value of 2a should be as small as possible whileb should be
large, which are just the conditions needed to obtain the
lowed region.

Once the Berggren single-particle representation has b
chosen, the two-particle representation is built as in the s
dard shell model, i.e., as the tensorial product of the o
particle representation with itself. This defines the tw
particle space. In this space there are, in zeroth-order, t
particle configurations containing Gamow resonances o
which in Fig. 6 are indicated by open circles. Besides the
one sees that inside the allowed region there are also
figurations, indicated by dots, corresponding to one part
moving in a Gamow resonance and the other in continu
states. These configurations can be seen more clearly in
5, where the dots form two recognizable rectangles. E
rectangle corresponds to the geometrical sum of a Gam
resonance, represented by an open circle in Fig. 4, and
scattering functions on the contour, represented by
crosses in that figure. In addition to the two-particle sta
involving Gamow resonances there are also configuratio
denoted by crosses in Fig. 5, in which both particles are
single-particle scattering states.

One expects that physically relevant resonances
mostly determined by two-particle configurations in whi
both particles are in either bound or Gamow states. Si
these states are the ones expected from the standard
model, we will call them ‘‘resonant shell model’’ states.

In the applications shown in this paper the central fie
determining the single-particle basis will be of a Wood
Saxon type with a spin-orbit term as in Ref.@28#. The corre-
sponding bound and Gamow functions as well as the sca
ing states will be evaluated by using the computer co
described in Refs.@28,29#.

As a two-body interaction we will use a separable tw
body force given by the derivative of the Woods-Saxon p
tential. This effective interaction has shown to be satisfact
to describe processes in the continuum, e.g., neutron d
from giant resonances@23#. However, our purpose here is no
to explain physical processes in the continuum in detail,
rather to understand the role played by the various ingre
ents entering into the calculations. The great feature of
separable force is that it does not require a diagonalizatio
matrices. This is important in our case since the dimensio
the two-particle basis may be very large, and we want
evaluate all states in order to examine the distribution of
energies of the resonant shell model and scattering st
discussed above.

Our effective interaction matrix element is then@30#

^k̃l ;auVu i j ;a&52Ga f a~kl ! f a~ i j !, ~6a!

where

f a~pq!5
11~21! l p1 l q2la

2A4p

3~21! j q11/2l̂a ĵ p ĵ q^ j p1/2 la0u j q21/2&

3E
0

`

drwp~r !@r ]U~r !/]r #wq~r !, ~6b!
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SHELL MODEL IN THE COMPLEX ENERGY PLANE AND . . . PHYSICAL REVIEW C67, 014322 ~2003!
and U(r ) is the volume part of the Woods-Saxon potent
defining the central field. The rest of the notation is standa
From Eqs.~3! and ~6a! one obtains the dispersion relation

2
1

Ga
5(

i< j

f a
2~ i j !

va2e i2e j
~7!

which allows one to evaluate the correlated energiesva .
Note that in Eq.~6b! the angular part of the matrix ele

ment was evaluated according to the Hilbert metric, while
the radial part the Berggren metric is used. Note also tha
Eq. ~7! the square of the matrix element appears, and not
square of its absolute value.

In the case of a separable force the amplitude of the w
function can be written as

X~ i j ;a!5Na

f a~ i j !

va2e i2e j
, ~8!

whereNa can be determined by the normalization conditio
i.e.,

Na
225(

i< j
S f a~ i j !

va2e i2e j
D 2

. ~9!

We will determine the strength of the separable force, i
Ga , by using the usual procedure of fitting the energy o
two-particle statea. However, in the drip line nuclei which
we will analyze there are not yet any experimental data, a
therefore, we will assume that such a state lies at a cer
reasonable energy. We will also vary the value ofGa thus
obtained within a reasonable range in order to study the
fluence of the two-body interaction upon the calcula
states.

III. APPLICATIONS

We will apply the formalism discussed above for tw
cases, one corresponding to a nucleus close to the neu
drip line and the other close to the proton drip line. In bo
nuclei we will analyze two-particle states with an angu
momentuml50. All partial waves withl<10 will be in-
cluded to evaluate the scattering states in the Berggren
resentation.

A. Two-neutron resonances

In this section we will present calculations for two
neutron states in the double closed-shell nucleus78Ni. The
Woods-Saxon parameters are indicated in Table I, and
corresponding single-particle energies are in Table II. Th
single-particle states are quite similar to the ones given b
Skyrme HF calculations@31#. As seen in Table II, the she
N550 is well defined, since there is a gap of about 3.6 M
between the lowest particle state, which here is 1d5/2, and
the highest hole state, i.e., 0g9/2.

We will also evaluate a case where no bound sing
particle states are present. For this, we reduced the valu
the depth of the Woods-Saxon potential toV0537 MeV.
The corresponding single particle energies are also give
01432
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Table II. Note that even in this case the shellN550 is rather
well defined.

1. Fermi level is bound

We will first analyze the case where there are bou
single-particle states, i.e., the case WS1 in Table II. Alrea
from the start one faces the problem of determining wh
single-particle states are to be included. In a standard sh
model calculation one would include the states correspo
ing to a major shell only plus possibly an intruder state.
our case that would be the shellN54 and the intruder state
0h11/2. However we now have the imaginary part of th
energy to take into account. This may produce states w
relatively small real parts of the energies, but very large~in
absolute value! imaginary parts. Such states would indu
very wide two-particle resonances and their inclusion wo
imply the use of contours embracing large portions of
complex energy plane which one would not expect to infl
ence the narrow two-particle resonances of interest.
therefore decided to include all single-particle states up t
real energy of 6 MeV, and imaginary parts down
24 MeV. This corresponds to all states shown in Table

As mentioned above, to determine the strength of
separable force we will follow the standard procedure of
justingGa by fitting the energy of a two-particle state, whic
usually is experimentally known. In our case we will assum
that such a state, which would be the ground state of80Ni,
exists below twice the energy of the lowest single-parti

TABLE I. Values of the Woods-Saxon parameters used in
calculations. The spin-orbit parametersr 0

so and aso coincide with
the ones corresponding to the volume part given in this table.
Coulomb radius in the proton cases is the same asr 0, i.e., r 0

Coul

51.19 fm. The meaning of these parameters is as in Ref.@28#.

Core V0 (MeV) r 0 (fm) a(fm) Vso (MeV)

78Ni ~neutrons! 40 1.27 0.67 21.43
100Sn ~protons! 58.5 1.19 0.75 15

TABLE II. Single-particle neutron states in78Ni evaluated with
the Woods-Saxon potential given in Table I. The complex energ
are in MeV. The column labeled WS1 corresponds toV0

540 MeV, and WS2 toV0537 MeV. The hole states 0g9/2 are
given to show the magnitude of the gap corresponding to the m
numberN550.

State WS1 WS2

0g9/2 (24.398,0) (22.587,0)
1d5/2 (20.800,0) (0.294,20.018)
2s1/2 (20.295,0) 22222

1d3/2 (1.325,20.479) (1.905,21.241)
0h11/2 (3.296,20.013) (4.681,20.069)
1 f 7/2 (3.937,21.796) (4.455,22.851)
0g7/2 (4.200,20.167) (5.799,20.506)
2-5
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state, i.e., below 2e1d5/2
. This energy gap, i.e., the correlatio

energy, is more than 1 MeV in well-established normal n
clei, like 208Pb ~where it is 1.244 MeV! and 56Ni ~1.936
MeV!. However in our case the bound states are so few
so slightly bound that such high-energy gaps do not seem
be reasonable. Since there are not any experimental
which could guide us, and since our intention is just to s
how the strength of the force affects the results, we will va
Ga from zero to a maximum value corresponding to a gap
2.527 MeV, i.e., for a80Ni(g.s.) energy of24.183 MeV. The
value of the strength corresponding to the Berggren b
described below isGa50.0028 MeV.

In the calculations to be presented here we used a rec
gular contour with vertices as in Fig. 4 witha50.5 MeV,
b59 MeV, c524 MeV, and d520 MeV. We thus in-
clude, in the Berggren basis, all the Gamow states show
Table II plus the bound states 1d5/2 and 2s1/2. With this
contour the allowed region comprises a two-particle ene
plane with complex energies (Er ,Ei), such that 1 MeV
,Er,9 MeV and24 MeV,Ei,0 MeV.

As already mentioned above, we will use a Gauss
method of integration over the contour. We found that
order to obtain convergence within six digits in the evalua
quantities, one has to include ten Gaussian points for e
MeV on the lines of the contour in Fig. 4, except for the la
segment@the one going from (b,0) to (d,0)], where five
points for each MeV are enough. We arrive at this conclus
by always choosing the contour such that the resonance
at least at 300 keV from the borders of the contour. T
number of scattering states thus included in the basis isng
5225. The convergence of the results as a function ofng as
well as the influence of the continuum upon the calcula
states will be given below.

One can check the reliability of the results by performi
a calculation over the real energy axis only, that is by us
the continuum shell model@32#. Any bound state that one
may thus obtain should coincide with those evaluated
using any contour. Moreover, when evaluating the stren
of the force by given a real energyva in Eq. ~7! the value of
Ga thus obtained should, independent of the contour that
uses, be a real quantity. All these requirements are fulfille
our calculations. This is important since it is a strong tes
the reliability of our computing codes as well as a confirm
tion of the validity of the formalism.
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In Fig. 7 we show the energies evaluated by using diff
ent values of the strengthGa . The energies follow the pat
tern discussed in Sec. II. One can thus identify the distinc
straight lines corresponding to scattering configurations.
all G values these lines appear practically in the same p
tion. One can also see that the two-particle resonances
readily be distinguished from the scattering states by
looking at the figure. This is possibly due to the presence
an allowed region which only contains the physical state

In the figure the physical states are labeled by th
zeroth-order configurations. One sees that as the interac
increases the real part of the energies behave in a stan
shell-model fashion. Thus the state with the largest deg
eracy ‘‘feels’’ the interaction the most. Moreover, the grou
state departs from the rest of the spectrum more and mor
the interaction increases, also in agreement with expe
tions. Guided by these well-established facts one may
sume that narrow configurations, which due to the centr
gal barrier are usually the ones with highest degenera
would follow a similar pattern. That is, they would be dom

FIG. 7. Energies of the calculated two-particle states as a fu
tion of the strengthGa (3104, in MeV! for the case WS1 of Table
II. Only the allowed region in the two-particle energy plane
shown. The straight lines formed by small dots correspond to c
tinuum configurations where one particle is in a shell-model s
and the other in a scattering state. The crosses correspond to
tinuum configuration where both particles are in scattering sta
The labels of the curves followed by the physical two-particle re
nances indicate the corresponding zeroth-order configurations.
er is
cle
iven.
TABLE III. Main components of the wave functions corresponding to the state which in zeroth ord
(0h11/2)

2 as a function ofGa (3104, in MeV! for the case WS1 of Table II. The corresponding two-parti
energyE ~in MeV! is also given. Only components which in absolute value are larger than 0.14 are g
The basis states are ordered according to their widths. Thus (0h11/2)

2 is the narrowest and (1f 7/2)
2 the widest

configuration.

Ga E (0h11/2)
2 (0g7/2)

2 (1d3/2)
2 (1 f 7/2)

2 (1d5/2)
2

8 (5.399,20.136) ~0.96,0.00! (20.27,20.02) —— ~0.14,0.02! ——
12 (4.784,20.342) ~0.92,0.02! (20.33,20.03) ~0.14,0.02! ~0.20,0.03! ——
16 (4.283,20.664) ~0.86,0.05! (20.35,20.05) (0.36,20.19) ~0.23,0.03! ~0.14,0.07!
20 (3.975,20.990) ~0.77,0.04! (20.33,20.06) (0.52,20.11) ~0.24,0.03! ~0.14,0.10!
24 (3.780,21.222) (0.70,20.01) (20.32,20.03) (0.60,20.01) ~0.24,0.01! ~0.15,0.10!
28 (3.628,21.376) (0.66,20.06) (20.31,20.01) ~0.66,0.06! (0.23,20.01) ~0.16,0.10!
2-6
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TABLE IV. As in Table III for the state which in zeroth order is (1d3/2)
2. The relevant basis states~i.e., with amplitudes larger than 0.2!

include now the bound configuration (1d5/2)
2 and configurations consisting of scattering states, of which we give only the largest comp

under the column ‘‘scat.’’

Ga E (1d5/2)
2 (0h11/2)

2 (0g7/2)
2 (1d3/2)

2 (1 f 7/2)
2 scat

8 (2.604,20.809) —— —— —— ~1.00,0.01! —— ——
12 (2.541,20.679) —— —— —— ~0.99,0.03! —— ——
16 (2.378,20.506) —— (20.33,0.15) —— ~0.94,0.07! —— ——
20 (2.059,20.401) (20.25,20.02) (20.46,0.06) ~0.23,0.04! ~0.88,0.05! —— ——
24 (1.665,20.447) (20.31,20.08) (20.48,20.00) (0.25,20.00) (0.70,20.05) —— ~0.42,0.18!
28 (1.235,20.683) (20.46,20.22) (20.63,20.04) ~0.33,0.01! (0.74,20.19) ~-0.24,0.06! ——
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nant in building up the physical~narrow! two-particle reso-
nances, as assumed in Refs.@14–16#. But Fig. 7 shows just
the opposite situation. As the interaction increases all re
nances become narrower, except the one correspondin
the configuration (0h11/2)

2, which becomes wider. This un
expected feature is a consequence of the Berggren metric
of the non-Hermitian character of the Hamiltonian matrix
the complex energy sector. Similar properties, like violatio
of the noncrossing of levels rule, were found in the on
particle case@33#.

The behavior of the physical resonances in Fig. 7 is rat
involved. Thus the states labeled (1d3/2)

2 first become nar-
rower as the interaction increases, but, at a certain point
Ga50.002 MeV in the figure, this tendency is reversed.
the same time the increase of -Im(E) desaccelerates aroun
the same value ofGa for the states (0h11/2)

2.
To understand the behavior of the states (0h11/2)

2, in
Table III we give the main components of the correspond
wave functions. A feature to be noticed is that in no case
bound configurations relevant. As the interaction increa
wide configurations become more and more important. T
explains why the state becomes wider. However, the bo
configuration (1d5/2)

2 start to become relevant at a larg
enough value ofGa . Thus, atGa50.002 MeV, that con-
figuration contributes a value of (0.14,0.007) to the wa
function. This value becomes more important asGa becomes
larger, thus desaccelerating the increase of the widths.

On the other hand, the wave functions of the sta
(1d3/2)

2 presented in Table IV show that narrow configur
tions @more exactly, configurations narrower than the zero
order one, which here is (1d3/2)

2] contribute substantially to
the structure of the state as the interaction increases, par
larly the narrow states (0h11/2)

2 and (0g7/2)
2 and the bound
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configuration (1d5/2)
2. This explains why the states (1d3/2)

2

become narrower as a function ofGa . But asGa increases
scattering configurations become important and, as a re
the states become wider. An interesting feature in this con
is the sudden appearance of a large contribution@of a value
~0.42,0.18!# from a scattering configuration atGa
50.0024 MeV. This corresponds to the configurationuC&
5u0d3/2c3/2&, where c3/2 is the scattering function a
~0.385,0! MeV. This is a Gaussian point on the first border
the contour. The energy of the configurationuC. is ~in
MeV! ~1.325,20.479!1~0.385,0!5~1.710,20.479!, which
is very close to the energy of the resonance, i
~1.665,20.447!. This can even be inferred from Fig. 7 whe
the down open triangle for the case (1d3/2)

2 being discussed
here practically overlaps with our continuum configurati
uC&. Therefore, according to Eq.~8!, the corresponding wave
function component is large.

The unexpected behavior of the resonances discu
above is representative of all the others in Fig. 7, while
bound states behave in a standard shell-model fashion.
perhaps surprising that the first excited bound states@labeled
(2s1/2)

2 in the figure# do not show any remarkable sensitivi
to scattering states, although they lie close to the continu
threshold. Indeed, the wave functions corresponding to th
states consist mainly of the configurations (1d5/2)

2 and
(2s1/2)

2 for all values ofGa .
One important feature of the calculation is that the en

gies corresponding to physical states converge to their e
values relatively fast as a function of the dimension of t
basis. We show this for the states (1d3/2)

2 and (0h11/2)
2 in

Tables V and VI, respectively. To assess whether the stre
of the interaction affects the convergence, we have cho
different values ofGa . We thus see that indeed the ener
and

TABLE V. Convergence of energies corresponding to the states labeled (1d3/2)

2 in Fig. 7 as a function of
the number of Gaussian pointsng . The valueng50 corresponds to the case where only bound states
Gamow resonances are included in the basis. The columns are labeled by the strengthGa (3104, in MeV!.

ng 4 20 24 28

0 (2.640,20.896) (3.299,20.607) (3.275,20.858) (3.227,20.975)
10 (2.63416,20.89697) (2.13004,20.42801) (1.79169,20.50527) (1.360,20.82097)
50 (2.63448,20.89643) (2.05694,20.39779) (1.70880,20.43585) (1.24293,20.68603)
100 (2.63349,20.89643) (2.05889,20.40198) (1.67618,20.44027) (1.23509,20.68299)
150 (2.63349,20.89643) (2.05889,20.40198) (1.67618,20.44027) (1.23509,20.68299)
2-7
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TABLE VI. As in Table V for the states (0h11/2)
2.

ng 4 20 24 28

0 ~6.018,0.004! ~2.777,0.320! ~2.237,0.681! ~1.775,0.860!
10 (6.02747,20.03903) (3.95235,20.95715) (3.75050,21.18517) (3.59543,21.33198)
50 (6.02693,20.03949) (3.97506,20.98989) (3.77995,21.22224) (3.62815,21.37649)
100 (6.02693,20.03949) (3.97507,20.98988) (3.77989,21.22213) (3.62798,21.37641)
150 (6.02693,20.03949) (3.97507,20.98988) (3.77989,21.22213) (3.62798,21.37641)
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corresponding toGa50.0004 MeV, which is the smallestG
value shown in those tables, coincides within a few keV w
the exact result already forng50. But asGa is increased
that agreement deteriorates. Particularly inadequate are
energies evaluated by usingng50 for the states (0h11/2)

2

and Ga>0.0020 MeV. Not only are the real parts of tho
energies wrong by an amount ranging from 1.2 Mev~for
Ga50.0020 MeV) to almost 2 MeV, but also the imagina
parts are large and positive, which does not make sense s
it would correspond, e.g., to negative widths. This last f
ture does not appear for the states (1d3/2)

2.
One can understand the deterioration of the resonant s

model results~i.e., of neglecting the continuum by usingng
50) as the strength increases by noticing that it is throu
the interaction that continuum configurations become
evant in the calculation. This also explains why the resu
corresponding tong50 for the states (1d3/2)

2 are generally
better than those corresponding to (0h11/2)

2, since here the
interaction is stronger~due to the degeneracy! for a given
value of Ga . But, already withng510, the agreement be
tween the exact results and the approximated ones is rea
able in all these cases of physical states. Moreover, forng
5100 the exact results are reproduced within six digits. T
convergence is better than the one required to achieve a s
lar agreement in general, for which one needs the valueng
5225 used in our calculations, as mentioned above.

Finally it is worthwhile to point out that the presence
scattering states lying near to physical states does not a
the convergence, as seen in, e.g., Table V for the s
(1d3/2)

2 with Ga50.0024 MeV~cf. Fig. 7!.

2. Fermi level is unbound

In this subsection we will analyze the case where ther
not any bound single-particle states, i.e., the case WS
Table II. Actually there is not any essential difference b
tween this case and the previous one since within this
malism all states~including the continuum states! are treated
on the same footing, independently of the location of
Fermi level.

The single-particle resonances are wider than before,
therefore we used here a different one-particle conto
namely a50.1 MeV, b513 MeV, c526 MeV, and d
526 MeV.

In Fig. 8 we present the evaluated states as a functio
the strengthGa , which we allowed to vary within the sam
range as in the previous case. The straight lines discu
above appear also in this case, with the same character
as before.
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Even the physical resonances present the same featur
in Sec. III A 1. In particular, the states labeled (0h11/2)

2 in-
teract strongly with all the others thereby becoming wid
while all the other states become narrower.

However, there is an important feature in this ca
namely, the development of a bound state which is indu
by the two-particle interaction, as shown by the sta
(1d5/2)

2. To analyze the reason for this behavior, in Tab
VII we present the main components of the correspond
wave functions. As expected, one sees that when the inte
tion is weak the state is built practically by the configurati
(1d5/2)

2 only. As Ga increases the two-particle resonan
approaches the continuum threshold, and scattering s
contribute substantially to the wave function. Thus the st
under the column labeledscat corresponding to Ga
50.0012 MeV is 1d5/2c5/2, wherec5/2 is a scatteringd wave
at an energy~0.089,0! MeV. At Ga50.0020 MeV the reso-
nance approaches threshold even more and here the
tinuum itself becomes important. Indeed, the large contri
tion under the columnscat now corresponds to the
configurationc1/2c1/2, wherec1/2 is a scatterings wave with
an energy~0.011,0! MeV, itself very close to threshold. As
the interaction increases even more the state becomes bo

FIG. 8. Energies of the calculated two-particle states as a fu
tion of the strengthGa (3104, in MeV! for the case WS2 of Table
II. Only the allowed region in the two-particle energy plane
shown. The straight lines consisting of small dots correspond
continuum configurations where one particle is in a bound
Gamow state and the other in a scattering state. The crosses c
spond to continuum configuration where both particles are in s
tering states. The labels of the curves followed by the phys
two-particle resonances indicate the corresponding zeroth-o
configurations.
2-8
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TABLE VII. Main components of the wave functions corresponding to the state which in zeroth ord
(1d5/2)

2 as a function ofGa (3104, in MeV! for the case WS2 of Table II. Under the column ‘‘scat’’ we give
the largest component corresponding to configurations consisting of scattering states. The two-particle
E ~in MeV! is also given. Only components which in absolute value are larger than 0.2 are given.

Ga E (1d5/2)
2 (0h11/2)

2 (0g7/2)
2 (1d3/2)

2 scat

4 (0.538,20.024) ~1.00,0.00! —— —— —— ——
12 (0.377,20.010) (1.00,20.04) —— —— —— ~0.21,0.23!
20 0.002,20.000 (0.81,20.04) —— —— —— ~0.44,0.01!
28 (20.700,0) (0.84,20.04) (20.32,20.01) (0.21,20.01) (0.24,20.11) ——
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and at Ga50.0028 MeV the scattering states cease to
important. But the interaction is strong enough here to m
up all the shell-model configurations, showing the imp
tance of Gamow resonances in inducing bound states in
clei that lie far from the line ofb stability.

B. Two-proton resonances

Proton resonances are usually narrower than the co
sponding neutron ones due to the Coulomb barrier. I
therefore often in this case that one studies many-body
tems including only narrow Gamow resonances. In this s
tion we analyze this approximation for the case of two p
tons outside the100Sn core. The single-particle proton stat
correspond to the major shellN54, which is the same as in
the previous subsections. The core mean field is describe
a Wood-Saxon potential with the parameters given in Tab
These parameters were adjusted to obtain the single-pa
states shown in Table VIII, which agree with systematics
this region. Notice that none of these single-particle state
bound.

As in the neutron case analyzed above, we include in
single-particle representation even states which belong
higher shells, namely, states 1f 7/2 and 0i 13/2, because they
are relatively narrow. We include these high-lying shells
order to assess whether they can be neglected, as one
within the standard shell model.

We chose even here the rectangular contour of Fig. 4 w
vertices defined by the valuesa50.1 MeV, b519 MeV, c
521 MeV, andd526 MeV. This contour encloses all th
Gamow resonances of Table VIII. Choosing the Gauss
points as indicated above in order to obtain a precision of

TABLE VIII. Single-particle proton states in100Sn evaluated
with the Woods-Saxon potential given in Table I. The complex
ergies are in MeV.

State Energy

1d5/2 (2.583,20.000)
2s1/2 (4.007,20.004)
0g7/2 (4.469,20.000)
1d3/2 (4.917,20.004)
0h11/2 (7.559,20.001)
1 f 7/2 (9.710,20.424)
0i 13/2 (16.361,20.210)
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digits, the number of scattering states for each partial w
turns out to beng5298.

With the single-particle~Berggren! representation thus es
tablished we calculated the complex two-particle energies
solving the dispersion relation@Eq. ~7!#. The corresponding
wave functions were evaluated by using Eq.~8!.

We used in our calculations of the two-proton stat
which would be resonances in102Te, values of the strength
Ga in a range similar to that in the neutron cases analyze
the previous subsections. The results of the calculation
shown in Fig. 9. The general trends in this figure are sim
to the ones already found for the two-neutron cases.

One notices that even in this case where all resonance
very narrow, the narrowest resonance in zeroth order
comes wider as the interaction increases, while all the oth
become narrower. This is especially remarkable for the s
that at zeroth order is (2s1/2)

2, since one does not expect th
a state with such low degeneracy would be important
building up low-lying resonances. To analyze these states
Table IX we present the corresponding wave-function am
tudes for values of the strengthGa used in Fig. 9. As ex-

-

FIG. 9. Energies of the physical two-particle states calculated
a function of the strengthGa (3104, in MeV! for the proton case
of Table VIII. All physical resonances lying up to an energy of 1
MeV are shown. Notice the scale in the imaginary part of the
ergy, which indicates that the widths of the physical resonances
in all cases small. The labels of the curves followed by the phys
two-particle resonances indicate the corresponding zeroth-o
configurations. The dashed lines were drawn to guide the eye.
2-9
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TABLE IX. Main components of the two-proton wave functions corresponding to the state whic
zeroth order is (2s1/2)

2 in Fig. 9 as a function ofGa (3104, in MeV!. The single-particle states are as
Table VIII. Only components which in absolute value are larger than 0.2 are given.

Ga (1d5/2)
2 (2s1/2)

2 (0g7/2)
2 (1d3/2)

2 (0h11/2)
2

2 —— ~0.99,0.00! —— —— ——
6 (20.28,0.00) ~0.67,0.00! (0.61,20.00) (0.23,20.00) ——
10 (20.58,20.00) (0.42,20.00) ~0.60,0.00! (0.26,20.00) (20.22,0.00)
12 (20.68,20.00) (0.35,20.00) ~0.54,0.00! (0.25,20.00) (20.22,0.00)
14 (20.74,20.00) (0.31,20.00) ~0.50,0.00! (0.23,20.00) (20.21,0.00)
16 (20.78,20.00) (0.28,20.00) ~0.46,0.00! (0.22,20.00) (20.20,0.00)

TABLE X. Main components of the two-proton wave functions corresponding to the state which in z
order is (1d5/2)

2 in Fig. 9 as a function ofGa (3104, in MeV!. The single-particle states are as in Table VI
Only components which in absolute value are larger than 0.2 are given.

Ga (1d5/2)
2 (2s1/2)

2 (0g7/2)
2 (1d3/2)

2 (0h11/2)
2 (0i 13/2)

2

2 ~1.00,0.00! —— —— —— —— ——
6 ~0.95,0.00! —— ~0.23,0.00! —— —— ——
10 ~0.80,0.00! —— ~0.40,0.00! (0.22,20.00) (20.29,20.00) ——
12 ~0.72,0.00! (0.20,20.00) ~0.45,0.00! (0.25,20.00) (20.35,20.00) ——
14 ~0.65,0.00! (0.21,20.00) ~0.47,0.00! (0.27,20.00) (20.40,20.00) (0.20,20.01)
16 ~0.60,0.00! (0.21,20.00) ~0.48,0.00! (0.28,20.00) (20.43,20.00) (0.23,20.01)

TABLE XI. Convergence of energies corresponding to the states labeled (1d5/2)
2 in Fig. 9 as a function

of the number of Gaussian pointsng . The columns are labeled by the strengthGa (3104, in MeV!.

ng 2 10 14 16

0 ~4.996,0.000! ~3.118,0.142! ~1.150,0.349! (20.030,0.474)
10 ~4.99275,0.00151! ~2.76320,0.16744! ~0.27597,0.41367! (21.21486,0.56018)
50 ~4.99316,0.00007! ~2.79745,0.00742! ~0.35026,0.01761! (21.12083,0.02337)
100 (4.99302,20.00000) (2.79031,20.00017) (0.33314,20.00040) (21.14366,20.00053)
150 (4.99309,20.00000) (2.79025,20.00000) (0.33299,20.00000) (21.14386,20.00000)
200 (4.99309,20.00000) (2.79025,20.00000) (0.33299,20.00000) (21.14386,20.00000)

TABLE XII. Two-proton wave-function amplitudes corresponding toGa50.0016 MeV in Table XI as a
function of the number of scattering statesng included in the basis. Only components which in absolute va
are larger than 0.2 are given.

ng (1d5/2)
2 (0g7/2)

2 (0h11/2)
2 (1d3/2)

2 (0i 13/2)
2 (2s1/2)

2

0 ~0.641,0.025! ~0.478,0.000! (20.413,0.009) (0.274,20.003) (0.212,20.022) (0.208,20.000)
10 ~0.592,0.023! ~0.479,0.003! (20.435,0.007) (0.277,20.002) (0.232,20.023) ~0.206,0.000!
50 ~0.598,0.004! ~0.480,0.003! (20.433,20.001) (0.277,20.000) (0.231,20.014) ~0.206,0.000!
100 ~0.598,0.004! ~0.480,0.003! (20.433,20.001) (0.277,20.000) (0.231,20.014) ~0.206,0.000!
014322-10
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pected according to what we found for the neutron ca
above, the reason these states become narrower is tha
row configurations play an important role as the interact
increases. However, this trend is not as specific as bef
when just the narrowest neutron configuration@which was
(0h11/2)

2] contributed most to the narrowing wave functio
The equivalent shell is now (0g7/2)

2, which first ~at low
values ofGa) is important but then decreases as the stren
increases. Perhaps even more amazing is the behavior o
shell (1d3/2)

2, which first increases in importance but su
denly, starting atGa50.0010 MeV, decreases again. The
features again indicate that the behavior of the wave fu
tions in the Berggren space can follow patterns which
unusual from a standard shell-model viewpoint. The o
configuration in Table IX which increases continuously
absolute value asGa increases is (1d5/2)

2, which is also very
narrow, and which may explain why these two-proton re
nances become narrower.

The other notable states in Fig. 9 are those labe
(1d5/2)

2, which are very narrow for all values ofGa and
which rapidly decrease in energy asGa increases, as ex
pected for a pairing~ground! excitation. Eventually the stat
becomes bound for a large enough value of the stren
which in the figure is between 0.0014 and 0.0016 MeV.
study the changing structure of these pairing states, in T
X we show the corresponding amplitudes as a function
Ga . As expected from true pairing vibrations@34#, the num-
ber of equally important configurations increases with
strength of the pairing force. Moreover, the real parts of
wave-function components~which actually are virtually rea
numbers! carry the phase (21)l , wherel is the orbital angu-
lar momentum of the corresponding single-particle states
this subject of pairing vibrations the results of the meth
presented here and those of the standard shell-model c
cide.

In this case of very narrow Gamow resonances one
tices that in the two-particle wave functions the scatter
states do not seem to play an important role~cf. Table IV!.
To analyze this point, in Table XI we present the depende
of the calculated energies, also for the states labeled (1d5/2)

2

in Fig. 9, upon the number of scattering statesng included in
the Berggren basis. The general features of the results in
table do not differ much from those found in Tables V a
VI. That is, for small values of the strengthGa the evaluated
energies reach than exact values quickly asng increases. But
this convergence wanes asGa increases. Thus the energ
evaluated by neglecting the scattering states agrees with
exact results within a few keV forGa50.0002 MeV, but
disagrees strongly forGa50.0016 MeV.

It is interesting to see whether the corresponding w
functions converge as badly as the energies do for large
ues of the strength. We show this in Table XII, where we u
the extreme caseGa50.0016 MeV. Perhaps surprisingly
one sees that the main components of the wave funct
evaluated forng50 agrees within a few percent with th
exact ones. This shows that the use of only narrow Gam
resonances, neglecting the continuum as done in Ref.@16#,
may be appropriate to evaluate wave functions although
energies thus obtained are inadequate.
01432
s
ar-

n
re,

th
the

c-
e
y

-

d

h,
o
le
f

e
e

In
d
in-

o-
g

e

is

he

e
l-

e

ns

w

e

IV. SUMMARY AND CONCLUSIONS

In this paper we have presented a formalism to evalu
two-particle resonances microscopically within the Bergg
representation. This consists of bound states, Gamow r
nances, and an infinite~continuous! set of complex scattering
states lying on a contour in the complex one-particle ene
plane. The Gamow states included in the representation
those enclosed by the contour. The scattering states appe
an integral over the contour. We discretized this integral
using a Gaussian integration procedure. Therefore, the
nite set of scattering states becomes reduced to the fi
valueng of Gaussian points. Using this finite Berggren ba
we constructed a two-particle basis set of states as the
sorial product of the one-particle basis with itself, as in sta
dard shell-model calculations. We have shown that using
arbitrary contour one may get a two-particle basis with e
ergies covering the whole two-particle complex energy pla
of interest. This would hinder the evaluation of two-partic
states, since they would be embeded in a continuous se
basis states. To avoid this drawback we have shown
there exists a contour that leaves a region in the two-part
complex energy plane free of basis states. It is just in t
region where the physically relevant resonances lie. Us
this contour we have evaluated all two-particle resonan
with a precision of six digits by choosingng with values
between 150 and 300, depending upon the case under s
But we have found that withng'10 one obtains a precisio
of a few keV for the energies of the relevant resonanc
while the corresponding wave functions are provided with
a precision of a few percent by neglecting the scatter
states altogether, i.e., withng50.

We have applied the formalism to study neutron exci
tions in78Ni and proton excitations in100Sn. The single-
particle states were provided by a Woods-Saxon poten
and we chose a separable force as the two-particle effec
interaction.

For the neutron case we analyzed a case where the F
level was bound and another one where it lied in the c
tinuum. In both cases wide resonances were included in
basis. For the proton case the Fermi level also lied in
continuum, but here all Gamow resonances were narrow.
have shown that the position of the Fermi level is irreleva
since all basis states are treated on the same footing.

We have shown that states which in zeroth order con
of configurations containing scattering states feel the inte
tion very weakly. Instead, the physical states consist ma
of configurations containing only bound states and Gam
resonances. These configurations are the ones expected
the shell model. Even in cases where no bound configu
tions are present, the two-body interaction may induce n
row resonances and bound two-particle states. We found
the narrowest of those configurations in zeroth order beco
wider as the interaction increases. At the same time, all
other states become narrower. This unexpected result, w
is induced by the Berggren metric, shows that physica
relevant resonances, i.e., narrow ones, may be strongly in
2-11
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enced by states lying deep in the continuum. Although
wave functions of the physical two-particle resonances
mainly built upon shell-model configurations, the corr
sponding energies are strongly influenced by scatte
states. Finally, it is important to point out that the applicati
of the method presented here shows that it is a natural
eralization of the shell model to the complex energy plan
ys

y

y

ur
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