Szakdolgozat

Almási Gábor

Debrecen

2010
Push-to-Talk adó-vevő szolgáltatás mobilhálózatokon

Témavezető: Dr. Szabó István
Készült: Almási Gábor
Tanszékvezető egyetemi docens
Mérnök informatikus
Szilárdtest Fizika Tanszék
Tartalomjegyzék

Tartalomjegyzék ..............................................................................................................I
Szójegyzék ........................................................................................................................IV
1. Bevezetés .......................................................................................................................1
2. A Push-to-Talk over Cellular kialakulása .................................................................3
   2.1 OMA .....................................................................................................................3
   2.2 Push-to-Talk szabványok és szolgáltatók .............................................................3
3. Szolgáltatások konvergenciája: IMS .......................................................................5
   3.1 Számlázás ............................................................................................................5
   3.2 Szolgáltatások integrálása ..................................................................................5
   3.3 Alapvető QoS biztosítása ..................................................................................6
4. Hálózati hozzáférés a PTT szolgáltatáshoz ...............................................................7
   4.1 Mobilszolgáltatói megközelítés ........................................................................7
      4.1.1 GPRS-támogató csomópont ......................................................................7
      4.1.2 APN ...............................................................................................................7
      4.1.3 PDP kontextus .............................................................................................8
   4.2 PTT szolgáltatói oldal ........................................................................................8
      4.2.1 Bérelt vonali összeköttetés .......................................................................8
      4.2.2 Virtuális magánhálózat ............................................................................9
5. VoIP ................................................................................................................................10
   5.1 Késleltetés ............................................................................................................10
      5.1.1 Feldolgozási idő ..........................................................................................11
      5.1.2 Sorbanállási késleltetés ............................................................................11
      5.1.3 Sorbaállítási késleltetés ............................................................................11
      5.1.4 Terjedési késleltetés ..................................................................................11
      5.1.5 Hálózati késleltetés ....................................................................................11
   5.2 Késleltetés-ingadozás .........................................................................................12
   5.3 Csomagvesztés ..................................................................................................12
   5.4 Szolgáltatásminőség ...........................................................................................13
      5.4.1 Integrált szolgáltatások ..............................................................................13
         5.4.1.1 Szabályozott terhelési szolgáltatás .........................................................13
5.4.1.2 Garantált szolgáltatás ................................................................. 13
5.4.1.3 RSVP .......................................................................................... 13
5.4.2 Megkülönböztetett szolgáltatások .................................................. 14
5.4.3 PTT szolgáltatásminőség .............................................................. 15

6. A PTT meghatározó protokolljai és technológiái .................................. 16
   6.1 Datagram típusú adattovábbítás: UDP ........................................... 16
   6.2 Valós idejű kommunikáció: RTP ..................................................... 17
   6.3 Kapcsolat minőségének felügyelete: RTCP ..................................... 19
      6.3.1 RTCP csomagok ....................................................................... 20
      6.3.2 Az RTCP fejrész szerkezeti felépítése: .................................... 20
   6.4 Fél-duplex üzemmód megvalósítása: TBCP .................................... 21
      6.4.1 Priorizálás .................................................................................. 21
      6.4.2 TBCP üzenet ............................................................................ 22
   6.5 Kapcsolat leírása: SDP ................................................................... 23
   6.6 Beszéd digitalizálása: AMR ............................................................ 25
   6.7 Kapcsolat felépítése: SIP ................................................................. 27
      6.7.1 SIP hálózati elemek .................................................................. 27
      6.7.2 SIP üzenetek ............................................................................ 28
         6.7.2.1 SIP kérés ........................................................................... 28
         6.7.2.2 SIP válasz .......................................................................... 29
      6.7.3 Egységes erőforrás-azonosító .................................................... 30
   7. PTT használata a gyakorlatban ......................................................... 32
   7.1 Felhasználási lehetőségek .............................................................. 32
   7.2 PTT funkciók ................................................................................... 33
   7.3 Korlátozások ................................................................................... 33

8. PoC üzemeltetéséhez szükséges hálózati komponensek ......................... 35
   8.1 PoC szerver .................................................................................. 35
   8.2 Kiegészítő szerverek ..................................................................... 36

9. Csoportkezelés .................................................................................. 38

10. Digitális adó-vevő rendszerek ............................................................ 40
    10.1 TETRA ......................................................................................... 40
    10.2 PTT és TETRA ............................................................................. 41
11. Összefoglalás .........................................................................................................................43
13. Köszönetnyilvánítás ..............................................................................................................45
14. Irodalomjegyzék ................................................................................................................46
Szójegyzék

- **3GPP** – 3rd Generation Partnership Project
- **3GPP2** – 3rd Generation Partnership Project 2
- **ACELP** – Algebraic Code Excited Linear Prediction
- **AF** – Assured Forwarding
- **AMR** – Adaptive Multi-Rate
- **AMR-NB** – Adaptive Multi-Rate Narrowband
- **AMR-WB** – Adaptive Multi-Rate Wideband
- **APN** – Access Point Name
- **ASCII** – American Standard Code for Information Interchange
- **BE** – Best Effort
- **CLRF** – Carriage Return, Line Feed
- **CNG** – Comfort Noise Generation
- **DMO** – Direct Mode Operation
- **DSCP** – Differentiated Services Codepoint
- **DTX** – Discontinuous Transmission
- **EDGE** – Enhanced Data Rates for GSM Evolution
- **EDR** – Egységes Digitális Rádió-távközlő Rendszer / Egységes Digitális Rádiórendszer
- **EF** – Expedited Forwarding
- **ETSI** – European Telecommunications Standards Institute
- **FQDN** – Fully Qualified Domain Name
- **GGSN** – Gateway GPRS Support Node
- **GPRS** – General Packet Radio Service
- **GPS** – Global Positioning System
- **GSM** – Global System for Mobile Communications (eredetileg Groupe Spécial Mobile)
- **HSDPA** – High Speed Downlink Packet Access
- **HSPA** – High Speed Packet Access
- **HSPA+** – Evolved High Speed Packet Access
• HSUPA – High Speed Uplink Packet Access
• HTTP – Hypertext Transfer Protocol
• IEEE – Institute of Electrical and Electronic Engineers
• IETF – Internet Engineering Task Force
• IMS – IP Multimedia Subsystem
• IP – Internet Protocol
• ISO – International Organization for Standardization
• ITU-T – International Telecommunication Union – Telecommunication Standardization Sector
• LAN – Local Area Network
• LTE – Long Term Evolution
• MIME – Multipurpose Internet Mail Extensions
• MMUSIC – Multiparty Multimedia Session Control
• MOS – Mean Opinion Score
• NTP – Network Time Protocol
• OMA – Open Mobile Alliance
• OSI – Open Systems Interconnection
• P2T – Push-to-Talk
• PDN – Public Data Network
• PDP – Packet Data Protocol
• PDU – Protocol Data Unit
• PHB – Per-hop behavior
• PMR – Professional/Private Mobile Radio
• PoC – Push-to-Talk over Cellular
• POTS – Plain Old Telephone Service
• PSTN – Public Switched Telephone Network
• PTT – Push-to-Talk
• QoS – Quality of Service
• RFC – Request for Comments
• RSVP – Resource Reservation Protocol
• RTCP – RTP Control Protocol
• RTP – Real-time Transport Protocol
• SDP – Session Description Protocol
• SGSN – Serving GPRS Support Node
• SID – Silence Insertion Descriptor
• SIP – Session Initiation Protocol
• SIPS – Secure Session Initiation Protocol
• SNR – Signal-to-Noise Ratio
• SUA – SIP User Agent
• TBCP – Talk Burst Control Protocol
• TCP – Transmission Control Protocol
• TETRA – Terrestrial Trunked Radio
• TLS – Transport Layer Security
• UAC – User Agent Client
• UAS – User Agent Server
• UDP – User Datagram Protocol
• UMTS – Universal Mobile Telecommunications System
• URI – Uniform Resource Identifier
• UTF-8 – 8-bit Unicode Transformation Format
• VAD – Voice Activity Detection
• VAS – Value-Added Services
• VoIP – Voice over Internet Protocol
• VPN – Virtual Private Network
• W3C – World Wide Web Consortium
• WAN – Wide Area Network
• WiFi – Wireless Fidelity
• WiMAX – Worldwide Interoperability for Microwave Access
• W-CDMA – Wideband Code Division Multiple Access
• XDM – XML Data Management
• XDMC – XML Data Management Client
• XDMS – XML Data Management Server
• XML – Extensible Markup Language
1. Bevezetés

A digitális forradalom korában megfigyelhető az a tendencia, miszerint az analóg elven működő távközlési rendszereket egyre inkább felváltják az újabb, modernizált megvalósítások. Nincs ez másként a mobil telekommunikáció területén sem.

A Push-to-Talk over Cellular technológia digitális adó-vevő szolgáltatást kínál, melyet mobilhálózatokon vehetünk igénybe. Amint a neve is utal rá, egyetlen gombnyomással érhetünk el más előfizetőket, illetve csoportokat. A Push-to-Talk (PTT, P2T) fél-dulex (váltakozó irányú) kommunikációt tesz lehetővé, tehát egyszerre egy felhasználó forgalmaz, a többi résztvevő pedig hallgatja. Az analóg elven működő CB és PMR rendszerek kiváló alternatívája lehet a PTT. Távolsági korlátok nélkül van lehetőség azonnali információcsereére, valamint minimális térőr mellett is biztosított a megfelelő hangminőség. A szolgáltatás már hazánkban is bárki számára elérhető.

A hétköznapi életben mobiltelefonunkat a hagyományos hívásokon és üzenetküldéseken kívül gyakran egyéb speciális alkalmazások futtatására is használjuk. A kiegészítő szolgáltatásokat, amelyek nem kötődnek szorosan a készülék alapvető funkcióihoz, hozzáadott értéki (értéknövelt) szolgáltatásoknak nevezzük (VAS – Value-Added Services). Két típusát különböztetjük meg:¹

- az eredeti szolgáltatást egészíti ki, azzal szorosan együttműködik,
- függetlenül működik más applikációktól, egyedülálló alkalmazás.

A Push-to-Talk az utóbbi kategóriába tartozik, egyedi feladatkört lát el. Egyes ilyen szolgáltatások gyárilag támogatottak a készülék által, illetve a mobilszolgáltató díjtalannal rendelkezésre bocsátja azokat (általában piaci érdekeltől vezérelve, a termékek vonzóbbá tételenek céljából), míg más kiegészítő szolgáltatások igénybevételénél költséget számlanak fel, így a PTT esetében is, ugyanis külön előfizetés szükséges a használatához.

A Push-to-Talk over Cellular jelenleg széles körben elterjedt technológia, főként a tengerentúlon és Európa nyugati országaiban jelentős a térhódítása. Hatékonyságát mi sem bizonyítja jobban, mint a tény, hogy az USA-ban a ’90-es évek közepétől sikeresen alkalmazzák, ami garancia a sikerre. Többek között ez a beváltás teszi a PTT-t az egyik leghasznosabb hozzáadott értékű szolgáltatássá.

¹ Value-added Services, http://www.mobilein.com/what_is_a_VAS.htm
Az infokommunikációs hálózatok szakirány végzős hallgatójaként a távközlés minden formája érdekel, így kézenfekvő választásnak bizonyult a kutatás ebben a témakörben. Azért döntöttem a Push-to-Talk digitális adó-vevő rendszerének tanulmányozása mellett, mert számomra ígértesnek és hasznosnak tűnők alkalmazása az analóg hálózatokkal szemben, és nem utolsó sorban bármelyik hazai mobilszolgáltatón keresztül használható. Mivel Magyarországon jelenleg az egyedüliként ilyen szolgáltatást nyújtó cég (PTTSystems Kft.) munkatársai a legilletékesebbek e témában, hozzájuk fordulhatterek gyakorlati segítségért, és közelebbi tapasztalatokat szerezhetem a szolgáltatásról.

Jelen dolgozatom célja, hogy átfogó képet adjon a Push-to-Talk over Cellular technológiáról, annak működési hátteréről, valamint magyarázatokkal szolgáljon a felmerülő kérdésekre.

A dolgozat során érintett témákat igyekeztem logikusszerűen szerkezet szerint felépíteni. Szó lesz a Push-to-Talk kialakulásának körülményeiről, annak rendszerbe illesztéséről, a kapcsolódó mobilhálózati technológiákról, az IP feletti beszédátvitel megvalósításáról és a VoIP állította kihívásokról. Tárgyalom a szolgáltatásminőség biztosításának módjait, az OSI modellnek megfelelő bontásban részletezem a PTT által használt protokollokat a megértéshez szükséges mélységekben. Bemutatom a szolgáltatás felhasználási területeit szemléletes példákkal illusztrálva, érvekkel és ellenértékekkel alátámasztva vizsgálom annak létfogosulatosságát. Kitérek a PTT tulajdonságairára és gyakorlati jellemzőire, ismertetem a benne rejlő lehetőségeket, elemzem a megvalósítási körülményeket és korlátokat, továbbá összevetem a hasonló képességekkel rendelkező digitális PMR hálózatokkal.

A részletes tartalomjegyzék segítségével könnyedén áttekinthetjük az érintett témákat. A dolgozatban felhasznált ábrákat a megfelelő RFC dokumentumok alapján készítettettem.
2. A Push-to-Talk over Cellular kialakulása

A mobiliparban egyre szembetűnőbb, ahogyan a gyártók eltérő megoldásokat fejlesztenek ki a keletkezett problémákra és az újabb technológiák megvalósítására, nincs ez másként a PoC esetében sem. Az utóbbi két év közepéig azt az állítást az adó-végző rendszereket tervezte, melyeket csak a saját készülékek lehettek. Az az egyén közös szabványok létrehozására, biztosítva ezzel egy nagyobb szintű globális együttműködést. Kialakult az OMA szövetsége, szárnyai alatt pedig megszületett a Push-to-Talk over Cellular.

2.1 OMA

Az Open Mobile Alliance (OMA) 2002 közepén tartotta első értekezletét, tehát viszonylag új kezdeményezésről beszélhetünk. Az OMA szövetsége kétszáznál is több kulcsfontosságú szervezetet csoportosít.

Alapító okirata szerint a fő célkitűzései között szerepel, hogy kiváló minőségű nyílt szabványokat készítsen a piaci- és vásárlói igényeknek megfelelően, együttműködési képességre vonatkozó teszteléseket végezzen, általános ipari szemléletmódot hozzon létre és vezessen be, valamint szoros összhangban dolgozzon más szabványosító szervezetekkel (például IETF, 3GPP, 3GPP2, W3C).


2.2 Push-to-Talk szabványok és szolgáltatók

Az OMA által megalkotott nyílt PTT szabvány hivatalos elnevezése Push-to-Talk over Cellular (PoC), a Push-to-Talk csupán a szolgáltatásra utal. Emellett számos szabvány került kidolgozásra, melyek nem teljesen kompatibilisek a PoC megvalósítással. A mai napig

---

egymás mellett használják ezeket, de feltűnően sok akadály jelentkezik a rendszerek összekapcsolásánál, az együttműködési kísérletek alkalmával. Talán a legjobb példa a Nokia zárt PTT implementációja: régebb óta jelen van, mint a PoC, azonban a funkcionalitásbeli különbségek egyre csak nőnek az OMA megoldásának javára. Egyre inkább olyan irányvonal körvonalazódik, hogy fel kell hagyni a kimondottan gyártó-specifikus PTT fejlesztésekkel. Manapság a Nokia is előnyben részesíti (saját szabványa ellenében) a PoC integrációját legújabban készülékeiben. Több gyártó már a nyílt szabvány alapján valósítja meg rendszerét (pl. az Ericsson Instant Talk szolgáltatása), véleményem szerint ez tűnik járható útnak a jövőbeli interoperabilitás szempontjából.

A PTT szolgáltatást olykor különböző fantázianevek takarják (pl. a Nextel esetében Direct Connect), ennek ellenére gyakorlatilag ugyanazt az adó-vevő funkciót láthatja el mind. Érdemes megemlíteni néhány PTT szolgáltatót: AT&T, Nextel, Verizon, Pushcom, PTTSystems, InTechnology stb.

---

3 Forrás: PTTSystems Kft.
3. Szolgáltatások konvergenciája: IMS

A harmadik generációs mobilhálózatok egyik kulcsfontosságú célja, hogy összekapcsolja az Internet világát a cellás hálózatokkal, lehetővé téve ezáltal, hogy az összes szolgáltatás egyaránt elérhető legyen mindkét környezetből. Ennek a korántsem egyszerű feladatnak a megvalósítására hivatott az IP Multimédia Alrendszer (IMS – IP Multimedia Subsystem). Mivel már a GSM rendszereken belül is képesek a felhasználók adatkapcsolaton keresztül elérni bizonyos internetes szolgáltatásokat, így itt is megfogalmazódott az egyesítésre irányuló igény. Az IMS előnyben részesíti az IETF szabványok implementálását a magasabb szintű együttműködés biztosítása érdekében.

Három lényeges aspektusból is szükség van az IMS architektúrára, nevezetesen: számlázási folyamatok kialakítása, különböző szolgáltatások integrálása és a szolgáltatásminőség biztosítása.4

3.1 Számlázás

A mobilinternet-szolgáltatók leggyakrabban a generált adatforgalom tükrében számolnak fel költségeket, ami több okból sem elonyos a felhasználónak. A küldött és fogadott adatmennyiség rendkívül változó lehet a szolgáltatások eltérő jellegéből adódóan, ezért különös figyelmet kell fordítani azok típusának megkülönböztetésére. Az IMS egyedi számlázási rendszert kínál oly módon, hogy a szolgáltatók rálátást nyernek a használt szolgáltatásokra, így a tartalmuknak megfelelő díjszabást alakíthatnak ki. Egy hang alapú összekötetés forgalma például töredéke egy videokonferenciáéknak, ezért kedvezőbb díjazást érdemes kialakítani. Lehetőség nyílik az adatforgalom mérése mellet időtartam alapon, vagy éppen az üzenetküldések számának megfelelően fizetni, mindez erősen szolgáltatófüggő.

3.2 Szolgáltatások integrálása

A gyártók és szolgáltatók sokrétűen fejlesztenek a mobiliparban, megszámlálhatatlanul elérhető szolgáltatás van jelen, eltérő megvalósításokkal. A tartalomszolgáltatóknak nem az a célja, hogy csak a saját multimédia alkalmazásait biztosítsa az előfizető számára, éppen ellenkezőleg, minél több lehetőséget szeretne kínálni, az IMS ebben is magas fokú támogatást

nyújt. Ilyen integrációra jó példaként szolgálhat a következő eshetőség: az előfizető hangüzenetek küldésére és tárolására képes készüléket használ, egy harmadik fél pedig kifejlesztett egy technikát, mellyel az írott szöveg hangüzenetté alakítható. A szolgáltató ilyenkor megveheti ezt a konvertáló szolgáltatást, és összekombinálhatja a hangüzenetkezeléssel, ezáltal az sms-ek hallható formában is megjelenhetnek a felhasználó telefonján, a gyengénlátók számára hasznos megoldást kínálva így.\(^5\)

### 3.3 Alapvető QoS biztosítása

Az Internet Protocol önmagában nem foglalkozik a minőségbiztosítással, de ez nem is feladata. Az IMS egyik célja, hogy a hálózati réteg szintjén integráljon egy minimális szintű QoS támogatást. A témával részletesen a „Szolgáltatásminőség” című fejezetben foglalkozunk.

---

4. Hálózati hozzáférés a PTT szolgáltatáshoz

Az IP alapú Push-to-Talk over Cellular működésének szempontjából lényegtelen az adatkapcsolat kialakításának módja. A kapcsolódás történhet közvetlenül vezeték nélküli hálózatokból, úgyminth IEEE 802.11x (WiFi), IEEE 802.16x (WiMAX) stb. használatával, amennyiben támogatja a készülék ezt a lehetőséget. Azonban a kliensek leggyakrabban a mobilhálózatok adatkapcsolati technológiáit kiaknázva kommunikálnak, így pl. GPRS, EDGE, W-CDMA, HSPA (HSDPA és HSUPA), HSPA+, LTE stb. segítségével csatlakozhatnak, akár egy osztásnyi térről mellett is.

4.1 Mobilszolgáltatói megközelítés

A GPRS gerinchálózatát a GSM és az UMTS is használja, mint belső csomagkapcsolt tartományt (Packet-Switched domain). A következő három alfejezet áttekintést ad a számunkra szükséges fogalmakról a GPRS architektúra vonatkozásában.

4.1.1 GPRS-támogató csomópont

A Push-to-Talk szempontjából fontos megemlítenünk a GPRS-támogató csomópontokat (GSN – GPRS Support Node), amelyek közvetlenül kiveszik részüket a forgalomirányításból. Kétféle támogató csomópontról beszélünk:

- Kiszolgáló GPRS-támogató csomópont (SGSN – Serving GPRS Support Node): legfontosabb feladatai közé tartozik a forgalomirányítás, kapcsolatteremtés a GPRS gerinchálózat és a mobil eszközök között, valamint a PDP kontextus kialakítása a GGSN-nél együttműködve.

4.1.2 APN

A mobilszolgáltatók biztosítanak előfizetőik számára egy (vagy több) hozzáférési pontot külső csomagkapcsolt adathálózatok (pl. Internet) eléréséhez, amikre a megfelelő APN (Access Point Name – Hozzáférési pont név) logikai nevek megadásával hivatkozunk. Az APN egy teljes tartománynév, az igényelt szolgáltatásra utal, amelyet egy adott GGSN-en keresztül érhetünk el (tehát az APN egy GGSN csomópontot jelöl).
Mivel a készülékeken alapértelmezettként beállított APN-ek általában egyszerű internet-hozzáféréshez fenntartott adatkapcsolatot takarnak, ezért több előfizető forgalma is egy bizonyos GGSN csomópontron keresztül továbbítódik (tekintet nélkül az adatfolyam típusára), ahol torlódás alakulhat ki túlzott mértékű igénybevétele esetén. A versenyhelyzet elkerülése érdekében célzó szolgáltatások számára dedikált APN-eket alkalmazni, ami a PTT-re nézve egyenesen kötelező, hogy megfelelő QoS biztosítása mellett lehessen üzemeltetni azt.

4.1.3 PDP kontextus

A mobil állomás és a GGSN között kiépül egy virtuális kapcsolat (egy „alagút”), amit PDP (Packet Data Protocol) kontextusnak nevezünk. Létrejötte után azon keresztül zajlik minden, a kiválasztott szolgáltatással kapcsolatos forgalom, egészen a PDP környezet megszűnéséig. Ez történhet automatikusan egy bizonyos tétlenségi idő lejárta után, de ezzel szemben lehet állandó is a PDP kapcsolat, ami csak manuális bontás után szűnik meg. Utóbbit igényli többek között a PTT és a jelenlét szolgáltatás is. A PDP környezet felépítése alatt rendelődik IP-cím a készülékhez (feltéve, hogy nem statikus címkiosztást használunk, valamint IP alapú PDN-hez csatlakozunk), egyben ez lesz a PDP cím is, amely a kontextus teljes időtartama alatt változatlan marad, függetlenül a mobilkészülék helyzetétől.⁶

4.2 PTT szolgáltatói oldal

Földrajzilag különböző helyszíneken találhatók a PTT szolgáltató és a mobilszolgáltatók központi telephelyei. Ebből kifolyólag szükség van olyan hálózati kapcsolatok kialakítására, amelyek megfelelő adatvédelem mellett gyors elérést tesznek lehetővé, illetve biztosítják a szolgáltatás QoS igényeit. A Push-to-Talk szolgáltatók leggyakrabban bérelt vonali összeköttetéssel, vagy újabban VPN alagutazással oldják meg a mobilszolgáltatók hálózatával történő kommunikációt.

4.2.1 Bérelt vonali összeköttetés

A bérelt vonal olyan dedikált WAN összeköttetés két telephely között, amely állandó rendelkezésre állást biztosít. Kifejezetten a meghatározott sávszélességet igénylő

---

⁶ Kappler, C. (2009): UMTS Networks and Beyond, John Wiley & Sons, Chichester (UK), p103
szolgáltatások biztosításánál jut fontos szerephez, ahol a késleltetés és jitter minimalizálása kritikus tényező a szolgáltatásminőséget tekintve. Hátránya, hogy viszonylag drága a kiépítése (főleg hosszabb távolságoknál), valamint a fenntartási költsége is magas.

4.2.2 Virtuális magánhálózat

A virtuális magánhálózat (Virtual Private Network – VPN) alkalmazásával kihasználhatjuk az Internet kínálta lehetőségeket, nyilvános hálózaton keresztül építhető ki biztonságos kapcsolat a telephelyek között (site-to-site VPN), illetve lehetőséget ad távmunkásoknak a vállalati hálózat elérésére (remote access VPN), szintén biztonsági kockázatok nélkül. Virtuális összeköttetéseket valósít meg a VPN technológia, mert fizikai bérelt vonal helyett az Interneten keresztül kapcsol össze távoli helyeket, s mindezt költségékhelytékony módon teszi. Magánhálózat jellegét a titkosítás lehetősége és a VPN alagutak létrehozása adja, így a jogosulatlan hozzáférés kizárható. Továbbá a VPN lehetővé teszi az adatok bizalmas kezelését, biztosítja azok sérthetetlenségét, valamint hitelesítő eszközöket is kínál (jelszavak, tanúsítványok stb. kezelése autentikáció céljából).
5. VoIP


Mindenekelőtt fontos tisztáznunk, hogy a VoIP, és a vele gyakran azonosított IP telefonía nem ugyanazt takarja. Utóbbi ugyanis egy tágabb fogalom, ami a digitális telefonrendszereket IP alapú szabványokkal hivatott megvalósítani. Ennek tulajdonképpen egy részhalmaza a VoIP, melynek csak a PTT szempontjából fontos jellemzőinek tárgyalására sorítkozik a fejezet további részeiben.

A legfontosabb elvárás, amit a VoIP-nak teljesítenie kell, hogy legalább olyan megbízható kapcsolatot lehessen kiépíteni vele, és minimum olyan hangminőséget produkáljon, mint amilyet a hagyományos analóg telefonrendszerek szolgáltatnak (POTS – Plain Old Telephone Service). A VoIP olyan problémákat is indukál, amik nincsenek jelen a ma is használatos PSTN (Public Switched Telephone Network) hálózatokban. A következőkben azokat a kritikus tényezőket vizsgálom meg, amelyek jelentősen befolyásolhatják a hangátvitel minőségét.

5.1 Késleltetés

A végfelhasználók között tapasztalható késleltetés (latency / delay / lag) több forrásból tevődik össze, melyek együtt alkotják a késleltetési faktort. Ez az időtartam a küldő fél forgalmazásának első pillanatától kezdődik, és egészen a beszéd megérkezéséig tart, amit a címzett fogad. Más szavakkal, az IP csomag első bitjének elküldése és a fogadóhoz történő megérkezése közötti időintervallumot értjük késleltetés alatt. Amennyiben ennek teljes időtartama 150 ms alatti, akkor még nem érzékelhető a késedelem, azonban az ezt meghaladó értékeknél már zavaró, sőt kifejezetten idegesítő hatással bírhat.7

5.1.1 Feldolgozási idő

A feldolgozási (kezelési) időt közvetlenül a küldő- és továbbító hálózati elemek határozzák meg. Több ténnyező befolyásolja az ebből adódó késedelmet, ezek az alábbiak:

- Tömörítési idő: a beszéd (AMR) kódolásának időbeli hossza, gyorsasága.
- Csomagolási idő: jelen esetben az AMR kodekkel létrehozott hangminták megfelelő számú összegyűjtésének, és azok csomagba szervezésének ideje.
- Csomagkapcsolási idő: a csomagot beolvassa egy köztes hálózati elem, majd megvizsgálja azt a továbbítási döntés meghozatalához, végül a kimeneti portra küldi; ezek a tevékenységek közösen járulnak hozzá a csomagkapcsolási időtartamból adódó késleltetéshez (a bemeneti sorból a kimeneti sorba jutás időtartama).

5.1.2 Sorbanállási késleltetés

A változó késleltetésnek számító sorbanállási idő a továbbítandó csomagok kimeneti sorban való tartózkodási idejét takarja

5.1.3 Sorbaállítási késleltetés

A sorbaállítási késleltetés az a rögzített idő, amely szükséges egy keret adott hálózati interfészre helyezéséhez. Szorosan kötődik az órajelhez (pl. soros linkeknél).

5.1.4 Terjedési késleltetés

Az átviteli közeg hosszával egyenesen arányos a jelterjedési idő nagysága, ami azonban a mai technológiai fejlettségnek köszönhetően szinte elhanyagolható késleltetést jelent. Azért érdemes megemlíteni, mert hozzájárul a teljes késleltetési időhöz.

5.1.5 Hálózati késleltetés

A WAN szolgáltató belső hálózatában eltöltött időt értjük hálózati késleltetés alatt. Mértékét szinte lehetetlen pontosan meghatározni, mivel legtöbbször nem ismerhetjük ennek a hálózatnak a szerkezeti felépítését.

---

5.2 Késleltetés-ingadozás

Késleltetés-ingadozás (jitter) több okból is felléphet. Egyrészt a hálózati eszközök (soros interfészeihez tartozó) kimeneti soraikban fellépő változó sorbanállási késleltetések jelentősen hozzájárulnak a jitter kialakulásához. Másrészt a hálózaton keresztül gyakran több útvonalon, több routeren áthaladva továbbítódkik a csomag, így eltérő lehet azok vételi sorrendje, valamint a beérkezésük között eltelt idők jó eséllyel különbözővéhetek a küldési időközöktől. Általánosságban elmondható, hogy minél több forgalomirányító vesz részt a kommunikációban, annál nagyobb a késleltetés-ingadozás mértékének növekedése. Ez annak köszönhető, hogy a különböző beállítások hatására a routerek más prioritással kezelik az eltérő típusú forgalmakat, illetve gyakran terhelésselosztást (load balancing) alkalmaznak, aminek hatására a csomagok akár teljesen más útvonalon is megérkezhetnek a címzetthez, szintén jelentős jitter előidézése mellett.

A jelenségből adódó problémát a végberendezésekben orvosolják, ún. dejitter pufferek 10 segítségével. A változó késleltetéssel beérkező csomagok ideiglenesen ebben a pufferben tárolódnak, ami az időközöket rögzített időtartamú váltakozás mellett. A jelesíthető, hogy a különböző beállítások hatására a routerek más prioritással kezelik az eltérő típusú forgalmakat, illetve gyakran terhelésselosztást (load balancing) alkalmaznak, aminek hatására a csomagok akár teljesen más útvonalon is megérkezhetnek a címzetthez, szintén jelentős jitter előidézése mellett.

A valós idejű kommunikációban elfogadhatatlan a számottevő kimaradás, a csomagok elvesztése nagyobb mennyiségben már nem tolerálható, mert jelentős minőségromlást eredményez, újraküldésre pedig nincs lehetőség. A kisebb mértékű veszteségek korrigálására több technika is létezik, például az utolsó hanginformáció újra megismételhető, így az ember számára szinte észrevehetetlen a hiba, mivel ezredmásodperces nagyságrendekről beszélünk.

5.3 Csomagvesztés

Minden adathálózatban jelentkező általános probléma a csomagvesztés. Számtalan ok miatt keveredhetnek el keretek és csomagok a hálózat szegmensein (pl. forgalomtorlódás tapasztalásakor a csomagokat nem képesek fogadni a köztes csomópontok, így eldobják azokat a véges puffermért miatt, a gyenge jeltovábbítási szintből adódóan szintén veszteség észlelhető, felléphetnek különböző hálózati hibák stb.).

A valós idejű kommunikációban elfogadhatatlan a számottevő kimaradás, a csomagok elvesztése nagyobb mennyiségben már nem tolerálható, mert jelentős minőségromlást eredményez, újraküldésre pedig nincs lehetőség. A kisebb mértékű veszteségek korrigálására több technika is létezik, például az utolsó hanginformáció újra megismételhető, így az ember számára szinte észrevehetetlen a hiba, mivel ezredmásodperces nagyságrendekről beszélünk.

5.4 Szolgáltatásminőség

A valós-idejű alkalmazások szükségszerűen megkövetelik egy bizonyos szintű szolgáltatásminőség (Quality of Service – QoS) garantálását az Internet „best effort” (legjobb szándék) kézbesítési elvétől következően. A csomagkapcsolt hálózaton továbbított multimédiás adatfolyam különösen érzékeny ebből a szempontból, így a QoS fontos tényezővé válik, az IMS pedig kiemelt figyelmet szentel ennek implementálására. A következő két modellt alkották meg a szóban forgó feladatra: integrált szolgáltatások (Integrated Services – IntServ) és megkülönböztetett szolgáltatások (Differentiated Services – DiffServ).

5.4.1 Integrált szolgáltatások


5.4.1.1 Szabályozott terhelési szolgáltatás

A „Controlled Load Service” használata mellett a csomagkezelés úgy történik, mintha a hálózat közepes terhelés alatt állna, így a torlódások nincsenek kihatással az adatfolyamra. Hátránya, hogy nincs biztosítva egy megadott sávszélesség vagy késleltetés. Eredményesebb az egyszerű best effort típusú továbbításnál.

5.4.1.2 Garantált szolgáltatás

A „Guaranteed Service” meghatároz egy minimális sávszélességet és egy maximális késleltetési küszöböt. A paraméterek garantálása mellett kerül sor a kommunikációra. A gyakorlatban ritkán találkozni ezzel a megoldással, mivel a szabályozott terhelési szolgáltatás használata megfelelőnek bizonyul, valamint könnyebb kezelni is.

5.4.1.3 RSVP

(amennyiben nem utasítják vissza a foglalási szándékot), valamint értelemszerűen az érintett forgalomirányítók által kijelölt útvonalon kell történne az adattovábbításnak – az RSVP feladata megoldani ezt.

A foglalás folyamata kétutasa kézfogással történik: az egyik végpont PATH üzenetet küld a távoli félnek, ez a csomag valamilyen útvonalon eljut a célzettéhez, miközben eltárolja a keresztezett routerek címét. A válasz RESV üzenet formájában érkezik, a PATH által kijelölt úton visszafelé továbbítódik, valójában ilyenkor történik az erőforrások lefoglalása.

A hálózati topológia megváltozása esetén sincs probléma, mivel a PATH foglalási állapotokat készít, melyeket a routerek tárolnak. A periodikus üzenetváltásoknak köszönhetően ezek az állapotok gyakran frissülnek, tehát ha egy forgalomirányító már nem része az útvonalnak, akkor egy meghatározott időkorlát lejárta után törlődik a foglalásra vonatkozó információja, és tovább nem vesz részt a kapcsolatban.

Amint kiderült, az integrált szolgáltatások legnagyobb hátránya, hogy minden résztvevő forgalomirányítónak tárolnia kell kiegészítő állapotinformációkat, az ellenőrzések miatt a csomagok feldolgozása lelassul, nagyobb számítási kapacitás szükséges.

5.4.2 Megkülönböztetett szolgáltatások

Egy teljesen más megközelítésből foglalkozik a DiffServ a szolgáltatás minőségével. Megoldást nyújt az IntServ néhány problémájára, mindezt minimális állapotinformáció tárolása mellett teszi.

A DiffServ routerek minden átmenő csomagról tudják, hogy milyen módon kell kezelni őket az ún. csomóponti viselkedés (Per-hop behavior – PHB) alapján. Az alkalmas forgalomirányítók viselkedésmódját 8 bites azonosító, a DiffServ kódpontok (Differentiated Services Codepoints – DSCP) határozzák meg. A DSCP a következőképpen tárolódik a csomagok fejrészében:

- IPv4 esetén a szolgáltatás típusa (Type of Service) mező tartalmazza,
- IPv6 csomagoknál pedig a forgalmi osztály (Traffic Class) mezőben helyezkedik el.

A csomóponti viselkedés három szolgáltatási szintet foglal magában.\[11\]

- Sűrgetett továbbítás (Expedited Forwarding – EF): a lehető legkisebb késleltetéssel és késleltetés-ingadozással (jitter) próbálja meg garantálni a helyes készenlést minimális csomagvesztés mellett, meghatározott sávszélesség biztosításával. Ennél a szintnél a

\[11\] Gómez, G., Sánchez, r. (2005): Quality of Service over Cellular Networks: Data Services Performance and Optimization in 2G/3G, John Wiley & Sons, Chichester (UK), p111
végpontok szemszögéből úgy tűnhet, hogy pont-pont kapcsolat vagy „virtuális bérelt vonal” van közöttük.12 Leggyakrabban valós idejű adatfolyamokra alkalmazzák, így nagy befolyása van a VoIP forgalmakra, ezáltal pedig egyik meghatározója a PTT szolgáltatásminőségének.

- Legjobb szándék (Best Effort – BE): a csomagokhoz nincs társítva prioritás, közvetlenül a hálózat állapotától függ a szolgáltatás minősége.

5.4.3 PTT szolgáltatásminőség

Push-to-Talk kommunikációnál a QoS az IMS architektúrának megfelelően zajlik, az imént említett modellek alkalmazása mellett. Lényege, hogy a felhasználó készüléke és az illetékes GGSN közötti forgalom a PDP kontextus alapján zajlik, a GGSN pedig kódpontokat rendel a kiküldendő csomagokhoz. Alapértelmezett esetben a GGSN előre beállított szabályok alapján rendel DSCP-ket a csomagokhoz. RSVP használata esetén viszont a foglalási információknak megfelelően történik az összerendelés. A GGSN közvetlen kapcsolatban áll egy DiffServ-képes hálózattal, amelynek továbbítja a megfelelő adatfolyamat (amennyiben DiffServ alapon kezeljük).

A legfontosabb azonban, hogy hiába próbáljuk különféle módszerek használataival elérni, hogy megfelelő QoS-t biztosítsunk, ha nem végezzük el helyesen a paraméterek beállítását. Ezért különös gondot kell fordítani a helyes konfigurációk létrehozására, például DiffServ modell implementálásánál a PTT forgalom PHB értéke mindenképpen EF szintű (sürgetett továbbítás) besorolást igényel.

6. A PTT meghatározó protokolljai és technológiái

A Push-to-Talk működési mechanizmusát legegyszerűbben úgy érthetjük meg, ha vizsgáljuk a szolgáltatás technikai hátterét. Ehhez célszerű részegységekben gondolkodnunk: a továbbiakban az ISO jól ismert OSI referencia modelljének felsőbb rétegeiben található, a PTT üzemeltetéséhez feltétlenül szükséges komponensek (protokollok, technológiák, eljárások stb.) bemutatásával fogom ismertetni a rendszert. Természetesen az egyes rétegekben csak a fontosabb részletekre kiterjedően jellemzem a részegységeket, amelyek a PTT-hez közvetlenül társíthatók.

6.1 Datagram típusú adattovábbítás: UDP

A User Datagram Protocol (UDP) egy egyszerű felépítésű, csomagkapcsolt hálózatokon működő, szállítási rétegbeli protokoll, melyet az esetek többségében (így a PTT-nél is) az Internet Protocol felett alkalmazunk, az RFC 768-ban részletezik. Az UDP által használt protokoll-adataelem (Protocol Data Unit – PDU) helyes megnevezése a datagram, nem összetévesztendő a TCP szegmensével.

A TCP-vel ellentétben az UDP összekötetés-mentes, nem megbízható szállítási protokoll, nincs kapcsolat-felépítés a kommunikáció előtt, ezért tranzakció alapúnak ill. datagram-orientáltak is nevezik. A datagramok best effort alapon kerülnek továbbításra. Így kisebb overhead mellett gyorsabban továbbítható a típikusan valós idejű forgalom. Ebből fakadóan viszont nincs biztosítva a datagramok beérkezésének sorrendhelyessége, valamint azok újraküldésére sincs lehetőség (ha elvesznének). Ezeket, és egyéb hiányosságokat más rétegekben kell megoldani igény szerint (például helyes sorrend meghatározása RTP segítségével). AZ UDP datagram felépítése:

<table>
<thead>
<tr>
<th>Source Port</th>
<th>Destination Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>Checksum</td>
</tr>
<tr>
<td>Data</td>
<td></td>
</tr>
</tbody>
</table>

1. kép: UDP datagram (forrás: saját készítésű ábra)
- Source port (16 bit): opcionális mező, a küldő folyamat portszáma. Ha nincs használatban, értéke 0.
- Destination port (16 bit): a cél portszáma.
- Length (16 bit): az aktuális datagram hossza bájtokban megadva, beleértve a fejlécet és az adatmezőt is – a minimum értéke logikusan 8 (bájt).
- Checksum (16 bit): ellenőrző összeg a fejrész és a hasznos teher integritásának ellenőrzésére.
- Data: a szállítandó adat; nem tartozik a fejrészhez.

6.2 Valós idejű kommunikáció: RTP

A Real-time Transport Protocol (RTP) nehezen sorolható be egyértelműen az OSI modell egy adott rétegébe, mivel ellát szállítási rétegbeli feladatokat (de mégsem teljes értékű transzport protokoll); a viszony rétegben van olyan funkciója, miszerint több munkafolyamatot képes egyetlen adatfolyammá egyesíteni, majd megkülönböztetni azokat a célállomásnál; ezenkívül a megjelenítési rétegben is tevékenykedik.13 (A TCP/IP modellben általában az UDP kiterjesztéseként szokták ábrázolni).

Valós idejű forgalmak hatékony továbbítására hivatott, jellemzően tehát UDP felett használatos, értelemszerűen PTT esetén is. Bár kapcsolatorientált módú működésre szintén képes a TCP-vel együttműködve, de nyilvánvalóan nem előnyös a szállítandó tartalom jellegéből fakadóan (ezzel nem foglalkozunk). Az RFC 3550 definiálja részletesen a protokollt.

Specifikáció szerint az UDP datagram cél portszámának párosnak kell lennie RTP esetében, a hozzá tartozó RTCP folyammak pedig a következő nagyobb páratlan számot kell cél portként használnia. A használt portszámok nem egyezhetnek meg, mert a demultiplexelést az RTP ezek alapján végzi el.

---

Mezők az RTP fejrészben:

<table>
<thead>
<tr>
<th>V</th>
<th>P</th>
<th>X</th>
<th>CC</th>
<th>M</th>
<th>PT</th>
<th>Sequence number</th>
</tr>
</thead>
</table>

- **Timestamp**
- **SSRC identifier**
- **CSRC identifiers**

2. kép: RTP fejrész (forrás: saját készítésű ábra)

- **V** (Version) – Verzió (2 bit): az RTP verziója, a jelenlegi specifikáció szerint ennek értéke 2.
- **P** (Padding) – Helykitöltés (1 bit): ha be van állítva, akkor jelzi, hogy további kitöltő bitek szerepelnek a csomag végén (például néhány titkosító algoritmus alkalmazása esetén szükség lehet rögzített méretű blokkokra).
- **X** (Extension) – Kibővítés (1 bit): ha ez a bit be van billentve, akkor a rögzített fejrész után pontosan egy bővítmény kapcsolódik, amivel egyedi megoldásokat lehet implementálni.
- **CC** (CSRC Count) – CSRC számláló (4 bit): értéke megadja, hogy hány CSRC azonosító követi a fejrészt (ezek a CSRC listában helyezkednek el).
- **M** (Marker) – Jelölő (1 bit): segítségével a csomagok áramlása közben megkülönböztethetünk vele lényeges „eseményeket”, jelölhetjük például a keretek határait.
- **PT** (Payload Type) – Payload típusa (7 bit): meghatározza az RTP hasznos terhének típusát. Push-to-Talk esetén ez az AMR kodek számkódja lesz.
- **Sequence number** - Sorszám (16 bit): kezdeti értéke véletlenszerűen alakul (az ismert nyílt szövegű támadások megnehezítése céljából), minden egyes újabb RTP adatcsomagnál inkrementálódik. A célállomás így észlelheti a csomagvesztéseket, valamint helyreállíthatja a sorrendet.
- SSRC (Synchronization Source) identifier – Szinkronizációs forrás azonosítója (32 bit): szintén véletlen értéket kap, ennek célja, hogy több SSRC ne kaphassa ugyanazt az azonosítót ugyanazon RTP kapcsolaton belül.
- CSRC (Contributing Sources) identifiers – Közreműködő források azonosítói (32 bit * [0, 15]): egy lista azokról a forrásokról, amelyek hozzájárulnak az aktuális RTP hasznos terhéhez. Maximum 15 darab azonosítható, egyenként 32 biten.

6.3 Kapcsolat minőségének felügyelete: RTCP

Az RTP Control Protocol (RTCP) elválaszthatatlan kapcsolatban van az RTP protokollal, ezt bizonyítja az is, hogy azonos RFC-ben (3550) vannak definiálva.

Az alábbi négy funkciót látja el, melyekből az első három minden esetben alapvető:
- Elsődleges feladata, hogy statisztikai adatokat nyújtson a szolgáltatás minőségéről, visszajelzést adjon a küldött, fogadott és elveszett csomagok számáról, a késleltetéséről, valamint a fellépő késleltetés-ingadozásról.
- Szállítási szinten állandó, úgynevezett kanonikus neveket (CNAME – canonical name) továbbít, melyeket RTP forrásokhoz rendel. Ennek köszönhetően a címzettek nyomon követhetik a küldött, ugyanis könnyen megeshet, hogy egy multimédiás kapcsolatban megváltozik a forrás SSRC azonosítója (a forrás folyamat újrainszinkronizálása, vagy hiba észlelése következtében). Továbbá a CNAME szükséges a fogadó számára, hogy több adatfolyamot társíthasson össze (például audio és video stream szinkronizálása egy munkafolyamaton belül).
- Mivel az első két funkció minden RTP résztvevőtől megköveteli az RTCP csomagok küldését, így hamar megnöhet a sávszélesség-igény nagyszámú címzett esetében, amit kezelni kell. A felek számának tudatában minden végpont megfelelő gyakorisággal küldi a saját kontrollüzeneteit, a hálózat terheltségének függvényében. Előírás szerint egy session sávszélességének maximum 5 százalékát teheti ki az RTCP forgalom, aminek további 25 százalékát fenn kell tartani a források számára.¹⁴

Opcionális feladatként szállíthat minimális vezérlőinformációt a multimédiás kapcsolaton belül.

6.3.1 RTCP csomagok
A hordozott vezérlőinformációktól függően a következő RTCP üzenettípusokat különböztetjük meg:
- SR (Sender Report) – Küldő jelentés: adási és vételi statisztikák az aktív küldőktől.
- SDES (Source Description) – Forrásleírás: forrásléíró adatok, pl. kanonikus név.
- BYE: a részvétel végét jelzi.
- APP: alkalmazás által meghatározott funkciók.

Az RTCP csomag szintén rendelkezik egy rögzített fejrészsel, mely hasonló az RTP fejrészéhez, ezt követően pedig az üzenettípusnak megfelelően, rendezett tételeket találunk.

6.3.2 Az RTCP fejrész szerkezeti felépítése:

3. kép: RTCP fejrész (forrás: saját készítésű ábra)


P (Padding) – Kitöltés (1 bit): ha értéke 1, akkor jelzi, hogy a csomag végén további kitöltő oktettek szerepelnek még (amik nem vezérlő információk, de beleszámítanak a hosszúság mező értékébe).

RC (Reception Report Count) – Vételi jelentés számlálója (5 bit): az aktuális csomag által tartalmazott vételi jelentésblokkok száma.

PT (Packet Type) – Csomagtípus (8 bit): egy konstanssal jelöli az RTCP csomag típusát, ezek a következők lehetnek:
  - ha PT = 200, akkor küldő jelentés (SR),
  - ha PT = 201, akkor vevő jelentés (RR),
  - ha PT = 202, akkor forrásléírás (SDES),
  - ha PT = 203, akkor részvétel vége üzenet (BYE),
ha PT = 204, akkor pedig alkalmazás által definiált üzenet (APP).

- Length – Hosszúság (16 bit): az RTCP csomag hossza (32 bites szavakban, egyfelől dekrementálva az értéket), beleértve a fejrészt és az esetleges kitöltést is.
- Küldő- és vevő jelentés esetén a fejrész kiegészül még egy 32 bites mezővel, amely az előbbi esetben a küldő saját SSRC azonosítóját tartalmazza, utóbbinál pedig a csomag küldőjének az SSRC azonosítója szerepel benne.

6.4 Fél-duplex üzemmód megvalósítása: TBCP

A Talk Burst Control Protocol (TBCP) nem egy közismert IETF szabvány, az OMA definiálta kifejezetten a Push-to-Talk rendszerek fontos eszközeiként. Mivel fél-duplex üzemmódról beszélünk, így nyilván nem megengedett, hogy a csatornán több résztevő is adjon egy időben. Ennek szabályozására készült a TBCP protokoll: segítségével eldönthető, hogy a szerver engedélyezi, vagy visszautasítja a felhasználóknak a felhasználók adással való kérelmét a kommunikáció függvényében (floor control). A floor egyéni ideiglenes hozzáférési- vagy kezelési engedélyt jelent meghatározott osztott erőforráshoz vagy erőforrások egy csoportjához.\(^\text{15}\)

A technika az RTCP azon sajátosságát használja fel, miszerint lehetőség van alkalmazás-specifikus kiegészítésekre az RTCP üzeneteken belül. Név szerint az RTCP APP csomag jelenti a megoldást, ezt kísérleti célokra találták ki, ezt használja ki a tárgyalt protokoll (ekkor a már ismertetett RTCP fejrészében a PT mező értéke 204). Egy TBCP üzenet egyetlen RTCP APP csomagot jelent, amik nem továbbíthatók összetett RTCP csomagban, viszont egy IP csomag tartalmazhat több TBCP üzenetet is.

Mivel a TBCP kulcsfontosságú feladatot lát el, ebből adódóan szükséges, hogy az üzenetek biztosan célba érjenek. Az UDP/RTP/RTCP protokollok jellegéből adódóan ez nem garantált, így a protokoll kérés-válasz sémát alkalmaz, ahol az újraküldés az alkalmazási réteg bevonásával történik egyedi időzítők használatával. Továbbá azonnali visszaigazolást igényelhetnek a küldők, így megbízható módon továbbíthatók az üzenetek.

6.4.1 Priorizálás

Lehetőség van a kérések prioritási szintjeinek megadására, amennyiben a PoC szerver és a kliensek megállapodnak, hogy támogatják a Talk Burst kérések nem sorrendhelyes

feldolgozását várakozási sorok segítségével. Egy forgalmazni kívánó fél a következő eljárásmodban részesül az eltérő szinteknek megfelelően:

- Normál prioritás: ha egy résztvevő sem beszél, és nincs magasabb szintű kérés a sorban, akkor megkapja a jogot.
- Magas prioritás: a legközelebbi adás nélküli időszakban előnyt élvez a normál prioritási kérésekkel szemben.
- Preemptív prioritás: azonnal megkapja az adás lehetőségét, még akkor is, ha éppen valaki más beszél (kivéve abban az esetben, ha a forrás szintén preemptív szintet használ).
- Listen-only: csak hallgathatja a csatornát; az ilyen szintű kéréseket automatikusan elutasítja a szerver.

6.4.2 TBCP üzenet

Az alábbi TBCP üzeneteket definiálhatjuk:

- **TB_Request** – a beszélő szándékozó kliens küldi ezt az igényt, jellemezően akkor generálódik ez az üzenet, amikor a küldő megnyomja a kitüntetett PTT gombot. Eltérő prioritás igénylése esetén ebben az üzenetben jelzi a választott szintet.
- **TB_Granted** – a PoC szerver küldi a kliensnek, értesíti, hogy megkapta a jogot a forgalmazásra, erről a többi résztvevő is tudomást szerez.
- **TB_Deny** – a szerver megtagadja a kérést, mert valószínűsíthetőleg másnak van éppen lehetősége adásra.
- **TB_Release** – a kliens ezzel jelzi a szerver számára, hogy befejezte a küldést.
- **TB_Taken** – a szerver kiküldi ezt az üzenetet minden résztvevő számára, melyben jelzi, hogy valaki megkapta a jogot az adásra, és jelenleg folyamatban van a hangforgalmazás.
- **TB_Revoke** – a szerver visszavonja a beszédre való jogot, az üzenet tartalmazhatja ennek okát is (például túlságosan hosszú forgalmazási időtartam).
- **TB_Idle** – a szerver ezzel jelzi, hogy éppen senki nem használja a csatornát, azaz lehetőség van TB_Request igények küldésére.
- **TB_Ack** – a kliens küldi a szervernek, melyben visszaigazolja, hogy megkapta a TBCP üzenetet.

---

16 The IMS – IP Multimedia Concepts and Services, John Wiley & Sons, Chichester (UK), p190
TB_Queue – a szerver értesíti a küldő klienst, hogy az adásigénye várakozási sorba került.

TB_Position – a kliens ezzel kéri le a várakozási sorban lévő aktuális helyzetét.

Connect – előre felépített session esetén a szerver ezzel értesíti a résztvevőket, hogy a kapcsolat él.

Disconnect – előre felépített session bontásáról értesíti a szerver a klienseket.

A Talk Burst Control Protocol az egyetlen jelenleg elfogadott forgalmazási jogra vonatkozó vezérlési protokoll, ez a későbbi OMA szabványokban változhat.17

6.5 Kapcsolat leírása: SDP

A Session Description Protocol (SDP) a viszony rétegbe tartozó protokoll, amely egy általános formátumot biztosít multimédiás kapcsolatok leírására. Több változaton is átesett, az IETF a jelenlegi változatot az RFC 4566-ban specifikálja. Maga az SDP nem tartalmaz átvitelű protokollt, éppen arra tervezték, hogy többfélét is használhasson. Szorosan együttműködik a Session Initiation Protocol alkalmazásrétegbeli jelzésprotokollal.

A következő fogalmak ismerete szükséges az SDP tárgyalásához:

- Konferencia: két vagy több kommunikáló felhasználó, valamint a használt szoftverék együttese.
- Session: egy multimédiás kapcsolatban a küldő, a fogadót és a köztük lévő adatfolyamot értjük session (munkafolyamat, kommunikációs viszony) alatt.
- Session-leírás: egy jól meghatározott formátum, amelynek segítségével azonosítható egy session, így lehetőség nyílik a részvételre.

Egy SDP üzenet tisztán szöveges, UTF-8 kódolást használ, melynek az US-ASCII karakterkészletéből építkezhetünk, viszont néhány szabad szövegű mezőnél (session-név és háttér-információk) megengedett a teljes ISO 10646 készlet felhasználása a nemzetköziesítsés jegyében.

Az SDP session-leírás több szöveges sorból áll, melyek formátuma a következő: TÍPUS=ÉRTÉK, ahol a TÍPUS egyetlen karakter, az érték pedig a típusnak megfelelően

alakul, amely több mezőből állhat (elhatároló karakterekkel). Az egyenlőséggel két oldalán nem használhatunk whitespace karaktert.

Egyes sorok használata kötelező, mások választhatók. A sorrendjük azonban mindig megegyezik, megkönnyítve ezzel a feldolgozást és a hibák őszlélését.

Magá a leírás három részre van tagolva: session-, idő- és médialeírás. Az utóbbi kettőből több is előfordulhat egy SDP üzeneten belül. A szállított tartalmat a mezők rövid jellemzésével mutatom be:

- **Session-leírás**
  - v (protokoll verziója): az SDP verzióját jelöli, definíció szerint v=0;
  - o (létrehozó és session azonosító): a session létrehozójának adatairól és magáról a kiépült kapcsolatról szolgáltat néhány információt (felhasználónév, cím, azonosító, verzió);
  - s (session neve): leírásonként kötelezően egy ilyen mezőnek kell szerepelnie, ami nem lehet üres;
  - i (session információ): szöveges információt biztosít a session-ről.;
  - u (URI): hagyományos Uniform Resource Identifier (egységes erőforrás-azonosító), ami további információkra mutat, megadása opcionális;
  - e (email cím): a konferenciáért felelős személy kapcsolattartási email címe (opcionális);
  - p (telefonszám): a konferenciáért felelős személy kapcsolattartási telefonszáma (szintén opcionális);
  - c (kapcsolat adatai): három almezőre tagolódik: hálózat típusa, cím típusa és kapcsolódási cím;
  - b (sávszélesség): opcionális, a munkafolyamat által javasolt sávszélesség meghatározására használt mező;
  - z (időzóna beállítása): ütemezéskor fontos a megfelelő időzóna kiválasztása, ezt itt lehet megadni;
  - k (titkosító kulcs): az SDP használható titkosító kulcsok szállítására biztonságos csatornán (de nem ajánlott erre alkalmazni), itt részletezhetők a kulcs adatai;
  - a (attribútumok): ezek a fő eszközei az SDP bővítésének;

- **Időleírás**
o t (időzítés): két paraméter segítségével megadható a kezdeti- és végződő időpont a session számára, NTP protokoll szerinti ábrázolásban;
o r (ismétlések idejei): három attribútum beállításával (ismétlési időköz, aktív futási idő, eltolás a kezdeti időponttól) ismétléseket határozhatunk meg;

- Médialeírás
  o m (médialeírások): a média megnevezése (ez jelenleg csak „audio”, „video”, „text”, „application” és „message” lehet), a port, szállítási protokoll, valamint a média formátumának leírása itt történik. A Push-to-Talk TBCP kapcsolatának leírásához ezt a mezőt használjuk, a média megnevezése „application”, a port a TBCP-hez tartozó portszám, a szállítási protokoll „UDP”, míg a formátum leírása „TBCP” (MIME típus).

A felsorolt mezőkön kívül vannak még további opcionálisak, amelyek nagy része megegyezik a session leírásban tagoltaknak jellemzőivel.
SIP alkalmazása mellett az SDP üzenet az INVITE metódus után kerül továbbításra.

6.6 Beszéd digitalizálása: AMR
Az Adaptive Multi-Rate (AMR) egy széles körben elterjedt, veszteséges tömörítést alkalmazó (adaptív és többsebességű) beszédkódek. 1998-ban a 3GPP elfogadta, mint alapvető hangtömörítő kódek, ma már szinte minden mobilkommunikációs rendszerben találkozhatunk vele (GSM, UMTS). Adaptív, mert az esetleges mobilhálózati interferenciánövekedés észlelésekor képes a kódolás bitsebességét megváltoztatni, ezáltal alkalmazkodik a körülményekhez. Többsebességű, mert nyolc különböző bitsebesség (8 kódek) áll rendelkezésre (4,75 kbps és 12,2 kbps közötti tartományban), amikre AMR módokként hivatkozunk. Az emberi beszéd hatékony leképezéséhez elegendő egy kis frekvenciatartomány feldolgozása, az AMR esetében ez az intervallum 200 Hz – 3400 Hz. A mintavételezési frekvencia pedig a távközlésben általánosan használt 8 kHz (beszédhangra megfelelő), 13 bites bitmélység mellett.
Hatékonysága abban rejlik, hogy zajos csatorna esetén a bitsebességet automatikusan csökkenti, így nagyobb hibajavítás mellett tudunk forgalmazni, nyilván a hangminőség kismértékű romlása ekkor elkerülhetetlen.
Az AMR három kiemelendő technológiával működik együtt:
- **VAD (Voice Activity Detection)** – Beszédérzékelés: az emberi beszéd felismerésére alkalmazzák, felesleges számításokat és hálózati sávszélességet (VoIP) spórolhatunk meg a használatával.

- **CNG (Comfort Noise Generation)** – Komfortzaj-generálás: mint tudjuk, a VAD által kiszürt hangok mellett totális csend lenne észlelhető beszéd hiánya esetén. Ilyen csendes periódusok alatt mesterséges zaj keltésére van szükség (komfortzaj), ami nélkül zavaró jelenségek adódhatnak, például a szünet ideje alatt azt hihetni valamelyik kommunikáló fél, hogy a kapcsolat megszakadt, illetve a beszéd nehezen érhetővé válhat, idegesítő lehet a hangerőszint nagymértékű és gyakori változása, stb.

- **DTX (Discontinuous Transmission)** – Szakaszos adásmód: adásszünetekben nem kerül sor szükségtelen jelek küldésére, fő cél az energiatakarékosság, ami mobil eszközökének fontos szempont. Amennyiben a VAD modul háttérzajt vagy csendet érzel, a DTX ún. SID (Silence Insertion Descriptor) keretet küld periodikusan, ennek hatására a vevő oldalon komfortzaj generálódik. ¹⁸

A beszédszint értékelésére az ITU-T bevezette a MOS pontrendszt (Mean Opinion Score – Átlagos véleménypont), amellyel subjektív tapasztalatok alapján pontozható a különböző kodekek által elért hangminőség 1-től 5-ig (ahol 1 a legrosszabb adható érték, 5 a legjobb). Ezen a skálán az AMR közelít a 4,0 értékhöz (a többféle mód átlaga alapján). Objektív mérésre a jel-zaj viszony mutatója használható (Signal-to-Noise Ratio).

Az AMR-nek vannak vokóder és hullámforma kódoló tulajdonságai egyaránt, azaz hibrid kódolóról beszélhetünk, melynek az ACELP (Algebraic Code Excited Linear Prediction) algoritmus képezi az alapját.

Megjegyzés: AMR alatt valójában az AMR-NB kodeket értjük, ahol az NB a keskenysávra utal (Narrowband), ezt használja a PoC. Ennek továbbfejlesztése az AMR-WB (Wideband), amelynél a szűrés 50 Hz és 7000 Hz közötti frekvenciáakra értendő, így az alap kodekhez képest szélessávú tartományban végez jelfeldolgozást, valamint nagyobb bitsebességeket alkalmaz. Továbbá érdemes megemlíteni, hogy egy fájlkiterjesztés is ezt a nevet viseli (.amr), amelyben többek közt AMR-rel kódolt információk is tárolhatók.

6.7 Kapcsolat felépítése: SIP

A Session Initiation Protocol (SIP) az IETF (MMUSIC csoportja) által megalkotott alkalmazási rétegbeli jelzőprotokoll, melyet multimédiai kapcsolatok vezérlésére (felépítés, módosítás és lebontás) terveztek (RFC 3261). A H.323 szabványcsalád konkurense, a SIP azonban univerzalitása, hatékonysága és viszonylagos puritánsága miatt egyre nagyobb térhódításra tesz szert napjainkban. Szöveges alapú protokoll (hasonlóan a HTTP/1.1-hez), éppen ezért könnyen kibővíthető, a feldolgozás és a hibakeresés is lényegesen leegyszerűsödik. Napjainkban a VoIP implementálásához az egyik legfontosabb protokoll. Kliens-szerver architektúrára épül, melyben a kérés-válasz párok tranzakciókat alkotnak.

6.7.1 SIP hálózati elemek

Az alábbi SIP hálózati komponenseket definiáljuk:

- **SUA (SIP User Agent)** – SIP felhasználói ügynök: lehet telefonkészülék, softphone, webphone, vagy akár üzenetküldő kliens, PSTN átjáró stb. Kétféle logikai egységgént funkcionálhat, a tranzakció ideje alatt vagy az egyik, vagy a másik szerepkört töltetheti be, majd újabb tranzakció lebonyolításánál szerepcsere történhet. Név szerint ezek az alábbiak:

  - **UAC (User Agent Client)** – Felhasználói ügynök kliens: új kéréseket készít, valamint fogadja rájuk a választ.
  - **UAS (User Agent Server)** – Felhasználói ügynök szerver: ha választ generál egy kérésre, akkor logikailag szerverként működik,

- **SIP Server**: a szerver az a köztes hálózati elem, ami bizonyos szolgáltatásokra vonatkozó kéréseket kap, és ezekre válaszol. Funkció szerint négyet különböztetünk meg, amik ugyan jól meghatározott feladatot látnak el, azonban gyakori, hogy egyetlen fizikai szerveren több logikai szerver is helyet kap, ezek a következők:

  - **Proxy Server** – Proxy szerver: egyik legfontosabb feladata a kérések továbbítása a megfelelő hely irányába (tulajdonképpen SIP routerként is felfogható), majd e kérésekre a válaszok ugyanezen az útvonalon (a megegyező proxy szervereken keresztül) kerülnek vissza a forráshoz. Ebből következik, hogy tevékenykedhet kliens és szerver nevében is. Biztonsági feladatokat is ellát, kikényszeríthető vele az egyéni házirendszabályok
betartása, hozzáférések korlátozása. Számos szolgáltatást is implementálhatunk egy proxy szerveren. Működése két módban lehetséges:

- Stateless: az útvonalra vonatkozó döntés meghozatalát követően az üzenetet egyszerűen továbbítja a címzett felé, a kapcsolódó állapotinformációkat a küldés után nem tartja meg.

- Stateful: a tranzakció ideje alatt státuszinformációkat tárol el a kérésekkel kapcsolatosan, az így szerzett ismereteket felhasználva dolgozza fel a továbbiakat. Egy kérést elágaztathat (fork), több cél felé is továbbküldheti azt.

  - Redirect Server – Átirányító szerver: 3xx állapotkódú üzeneteket generál a kérésekre, így a kliens más címen található szerverekkel fog a továbbiakban kommunikálni az átirányító szerver által kapott URI-k alapján. A mobilitás támogatása szempontjából kiemelt figyelmet kap.

  - Registrar Server – Regisztrációs szerver: fogadja a felhasználók által küldött regisztrációs kéréseket, így az új helyzetüket lehet nyilvántartani. Erre a célra egy külön kiszolgálót (Location Server) tartanak fel, használatával könnyen karbantarthatók az ideiglenes címek.

6.7.2 SIP üzenetek

Kétféle SIP üzenetet különböztetünk meg: lehet kérés (request) klienstől szerver felé, vagy válasz (response) a fordított irányban. Egy általános üzenet tartalmaz egy kezdősor (start-line), ezt követően egy vagy több üzenetfejrész mezőt, majd ezek elhatárolására egy üres sort, amely a CLRF karakteresorozzattal valósítható meg (carriage return, line-feed – kocsi vissza, soremelés), amely után opcionálisan következhet még szöveg üzenetfoltnek. Még ha jelen sincs ez utóbbi, az üres sor akkor is kötelezően megjelenik. A két üzenettípus formátuma csak a kezdősorban tér el egymástól.

6.7.2.1 SIP kérés

A kérés üzenet kezdősora, a request-line a következőből tevődik össze: metódusnév, kérés-URI, a SIP verziója majd CLRF szekvencia; ezek szóközöklkel vannak elhatárolva egymástól.

  - Metódus: hat kérésfajtáit különböztetünk meg az alábbi eltérő metódusok segítségével:

    - REGISTER: a felhasználó bejegyeztetésére szolgál, cím hozzárendelése történik a résztvevőhöz a helyzetétől függően.
INVITE: új kapcsolat kezdeményezése, meghívás egy felépített session felhasználói közé vagy a kapcsolat módosítása. A forrás információt nyújt magáról.

ACK: megerősíti a kapcsolat létrejöttét, csak az INVITE üzenettel együtt használható.

CANCEL: függőben lévő kapcsolatkezdeményezés érvénytelenítésére szolgál.

BYE: kapcsolat bontására irányuló kérelem.

OPTIONS: a szerver képességeiről és szolgáltatásairól történő lekérdezés.

- Kérés-URI (request-URI): arra a felhasználóra vagy szolgáltatásra mutat, amelyhez a kérés címzve van. Lehet általános-, SIP-, illetve Secure SIP (SIPS) URI is.
- SIP verzió: egyebek mellett a kompatibilitási problémák elkerülése végett is szükség van rá, szöveges formátumú („SIP/2.0”).

6.7.2.2 SIP válasz

A választ az különbözteti meg a kérés üzenetektől, hogy a kezdősora egy ún. állapotsor (status-line), mely tartalmazza a protokoll verzióját, az állapotkódot, szöveges magyarázatot és végül a CRLF karaktersorozatot, ezek szintén szóközökkel vannak elválasztva.

- SIP verzió: megegyezik a kérés üzenetnél tárgyalttal.
- Állapotkód: háromjegyű egész szám, egy próbálkozás eredményét jelzi (megegyeznek a HTTP/1.1 válaszkódokkal). Az első számjegy a kód osztályáról informál, míg a másik két számjegynek nincs kategorizáló szerepe. A SIP/2.0 hat különböző osztályt enged meg:
  - 1xx (Provisional – Ideiglenes): Ideiglenes válasz, informáló válaszként is hivatkoznak rá. Azt jelzi, hogy a szerver, amellyel kapcsolatba léptünk, még további műveleteket hajt végre, és nincs még végleges válasz.
  - 2xx (Success – Siker): A kérés sikeres volt.
  - 3xx (Redirection – Átirányítás): Az ilyen válaszok tájékoztatnak a felhasználó új helyzetéről, vagy informálhat további szolgáltatásokról, amelyek eleget tehetnek a hívásnak.
  - 4xx (Client Error – Kliens hiba): Egyértelműen hibát jelez egy konkrét szervertől, ez azt jelenti, hogy a kliensnek módosítania kell a kérést, különben ugyanúgy negatív választ fog kapni (ennek ellenére egy másik szervernél sikeres lehet).
o 5xx (Server Error – Szerver hiba): Magának a szervernek a meghibásodását jelzi.

o 6xx (Global Failure – Általános hiba): A szervernek határozott információja van egy adott felhasználóról (és nem csak a kérés-URI által mutatott ról).

  - Szöveges magyarázat (reason-phase): a kódohoz tartozó szöveges leírást takarja. Míg az állapotkód tipikusan gépi feldolgozásra szánt adat, addig ez a felhasználó számára nyújt érthető magyarázatot.

6.7.3 Egységes erőforrás-azonosító

A SIP a felhasználókat egységes erőforrás-azonosítókkal (Uniform Resource Identifier – URI) különbözteti meg. Egy személyhez több URI köthető, ugyanis más helyszínről történő bejelentkezés esetén eltérő azonosítóval fog megjelenni. Ahhoz, hogy egy nyilvános URI mindig ugyanazt az embert hivatkozza, a felhasználónak regisztráltatnia kell magát a publikus azonosítójának tartományában működő registrar szervernél (mivel a tartománybeli szerver tárolja a társított URI-kat), így megtörténik az összerendelés a többi azonosítóval.

Az egységes erőforrás-azonosító formátuma némileg hasonlít az email címekéhez, a következőképpen alakul: 19

„sip:felhasználónév[jelszó]@hoszt[:port][;URI-paraméterek][;fejlécek]”,

ahol a dölt betűvel szedett szavak a szerepkörre utalnak, a szögletes zárójelek az opcionális mezőket jelölik, a többi részegység pedig kötelezően megjelenik a szintaxis szerint. A komponensek magyarázata:

  - Felhasználónév: a megcímzett forrás azonosítója a kijelölt tartományban.
  - Jelszó: a felhasználóhoz kapcsolódó jelszó. Ugyan támogatja a SIP és a SIPS, de használata nem ajánlott, mivel ezek az üzenetek nyílt szöveg formájában kerülnek továbbításra a hálózaton, azaz biztonsági kockázatot jelent mindenféle titkos jelszó megadása.
  - Hoszt: a forrást tartalmazza. Megadása történhet decimális számformátumban IPv4 ill. IPv6 címekkel, vagy teljes tartománynévvel (Fully Qualified Domain Name - FQDM), ez utóbbi javasolt.
  - Port: a kérés célpontjának száma.
  - URI-paraméterek: kiegészítő információk, pl. azonosító típusa (telefonszám URI).

- Fejlécek: a tárgyat, médiatípust stb. jelölhetjük megadásával.

7. PTT használata a gyakorlatban

Jelen fejezetben bemutatom a megcélzott felhasználói kört, megvizsgálok a szolgáltatás által elérhető funkciókat a gyakorlatban, végül ismertetem az akadályokat képző tényezőket.

7.1 Felhasználási lehetőségek

Nagy létszámú munkaerőt foglalkoztató cégeknek rendkívül hatékony megoldást jelenthet a PTT bevezetése, mellyel könnyedén összehangolható, koordinálható a dolgozók tevékenysége. A CB rádiózás (27 MHz körüli tartomány) és az analóg PMR adó-vevő rendszerek (446 MHz-es sáv) digitális alternatívájaként szolgálhat a Push-to-Talk. Használatával a távolsági korlátok gyakorlatilag megszűnének, további extra PTT szolgáltatásokkal kiegészülve pedig egy robosztus távközlői hálózat alakítható ki előfizetői csoportokon belül.

Egy példán keresztül mutatom be a PTT hasznos képességeit (vállalati szempontból).

Tételezzük fel, hogy egy fővárosi taxi társaság lecseréli az analóg adó-vevő rendszerét a fejlettebb PTT-re. Ehhez csupán egy alkalmas mobilkészülék szükségeltetik a sofőrök részéről, irányításukra pedig egy PTT diszpécserközpontot alakítanak ki. Beépített GPS használata mellett a központból nyomon követhető a taxisok helyzete, így a befutó hívásoknak megfelelően a legközelebbi taxi küldhető az adott helyszínre. Mivel a lefedettség közel teljes, így nem jelent problémát a több km-es távolságból történő kommunikáció sem (központ és sofőr, ill. sofőrök között). Az azonnali információcsere hatékony együttműködést tesz lehetővé.

A rendszernek a taxitársaságokhoz hasonlóan nagy hasznát veszik a polgárság tagjai, biztonsági szolgálatok, építőipari vállalkozások, futárszolgálatok és egyéb csoportok igénylő csoportok.  

Egyéni felhasználók számára is praktikus megoldást nyújt a Push-to-Talk. Megkönnyítheti a távoli családtárgyakkal és barátokkal való kapcsolattartást, kírandulások, vadászatok alkalmával nagyszerű segítség lehet a társakkal való információcsereben, ezeken felül még számtalan alkalmazási területet lehetne találni, ahol kiválóan hasznosítható a modernkori walkie-talkie funkció.

Forrás: PTTSystems Kft.
7.2 PTT funkciók


Lehetőségünk van saját csoportok létrehozására, illetve más csoportokhoz való csatlakozásra. Adott csoporton belül bárki részt vehet a kommunikációban, aki tagja annak. Egyszerre csak egy felhasználó forgalmazhat (mivel fél-duplex szolgáltatásról beszélünk), miközben a többi meghívott fél csak hallgathatja a csatornát.

A kapcsolatlistában szereplő személyek elérhetőségi állapotáról is információkat kaphatunk. A különböző PTT szabványok eltérő státuszokat definiálhatnak, jó példa erre a Nokia – OMA ellentét: míg előbbi csak két állapotot jelöl (online és offline), addig az OMA szabványa változatos jelenlét adatokat közöl a felhasználóról (ezeket képes megfeleltetni a többi szabvány által használtaknak).

Amennyiben valaki nem elérhető, akkor visszahívást kérő riasztást (call me alert), vagy éppen hangüzenetet (voice mail) küldhetünk számára. Gyorsaság tekintetében a Push-to-Talk valamivel elmarad az analóg adó-vevő rendszerek fürgeségétől. A kitüntetett PTT gomb első megnyomása után átlagosan 2-4 másodperces késéssel vételezhető a beszéd, míg a további adásoknál ez az idő lecsökken, mivel nem kell a kapcsolat-felépítéssel erőforrásokat lefoglalni.

PTT használata közben beérkezhet hagyományos hívás, ami minden esetben prioritást élvez az adó-vevő funkcióval szemben, ezért a hívás ideje alatt blokkolja azt.

7.3 Korlátozások

A Push-to-Talk szolgáltatás a legtöbb országban (így nálunk is) csak előfizetéses díjesomaggal rendelkező felhasználók számára érhető el a mobilhálózatokból. A feltöltőkártyás megoldást azért nem preferálják a szolgáltatók, mert így a PTT havidíja nem vonható le minden esetben, valamint a forgalom elszámolása is nehézkesebb, sokkal több adminisztrációra lenne szükség.

21 Forrás: PTTSystems Kft.
Hazánkban a mobilszolgáltatók közötti átjárás biztosítása jogi akadályokba ütközik, ugyanis interkommunikációknak számítana a PTT kapcsolat közöttük, így kapcsolási díjat számolnának fel annak ellenére, hogy a VoIP miatt egyszerű adatforgalomról van szó. Az említett két probléma valójában csak elvi, a gyakorlatban az ügyfelek már valamilyen közös (elfizetéses) flottában vannak, ami egyébként is egy szolgáltatóhoz köti őket, azaz minden további nélkül igénybe vehetik a szolgáltatást. Általában megfelelően működik a PTT szolgáltatás külföldről is, ilyenkor a generált adatforgalomra roaming díjat számolnak fel. Azonban néhány országban a helyi szolgáltató blokkolhat bizonyos SIP csomagokat (pl. a németországi T-Mobile szüri a VoIP-ot), ami jelentős kommunikációs problémákhoz vezet.
8. PoC üzemeltetéséhez szükséges hálózati komponensek

A Push-to-Talk üzemeltetőjének – legyen szó akár mobilszolgáltatóról, akár harmadik (kívüllálló) félről – gondosan ki kell építenie belső hálózatát, hogy eleget tegyen a szolgáltatás biztosításával járó technikai követelményeknek és elvárásoknak. A helyi LAN hálózati csomópontjainak kiválasztásakor figyelembe kell venni, hogy inkább magas rendelkezésre állású eszközök szükségesek, mintsem nagy kapacitással bírók, hiszen kulcsfontosságú a zökkenőmentes, folytonos működés.

A különböző típusú kiszolgálók hálózatbeli funkciója minden egyes szolgáltatónál más, egyedi megoldásokat figyelhetünk meg. Ugyanis a PTT működéséhez több logikai egységre van szükség, amelyek mind saját feladatkört látnak el. Egyetlen fizikai szerver is képes elvégezni az összes részfeladatot, a gyakorlatban azonban hatékonyabb feldolgozást tesz lehetővé az a szerkezeti felépítés, ahol dedikált kiszolgálók foglalkoznak azokkal. Tehát konkrét architektúrát nem lehet megadni, bár ajánlások léteznek. A szerkezeti változatosság legfőbb okai, hogy a PTT mellett általában egyéb extra szolgáltatásokat nyújtanak a vállalatok, amelyek kezeléséhez további alkotóelemeik telepítése szükséges, illetve lényeges tényező a kiszolgálóval felhasználók száma, ami tervezésnél közvetlenül befolyásolja a szerverek számát és a sávszélesség-igényt.

Érdemes megemlíteni, hogy manapság egyre elterjedtebben használják ki a (szerver) virtualizációs technológiák adta lehetőségeket. Ez egyrészt gyorsabb reagálást tesz lehetővé az esetleges meghibásodások bekövetkezésekor, megkönnyít a karbantartási munkálatokat, illetve egyszerű módon ellenőrizhető a rendszer állapota.

8.1 PoC szerver

Általánosságban elmondható, hogy PTT üzemeltetéséhez minden esetben kötelező egy központi kiszolgálót telepíteni, ez lesz a PoC szerver. Felhasználási lehetőségei igen széleskörűek, a legtöbb ellátandó feladattal ez áll közvetlen kapcsolatban. Egy kommunikációs session alatt két szerepkört töltethet be: vezérlő (controlling) és résztvevő (participating) PoC funkciót. Míg utóbbiból bármennyi előfordulhat a kapcsolat alatt, vezérlő
csak egy lehet, ami összehangolja a többi kiszolgáló munkáját (egyébként bármelyik szerepkört betölthetik).

Csak hogy néhány példát említsünk a PoC szerver funkcióival kapcsolatban:

- alapvető feladata a (SIP) kapcsolat felépítése a PoC kliensekkel (azaz a PTT-alkalmazás végberendezésekkel),
- érvényre juttatja a felhasználói csoportok által definiált szabályokat, korlátozza a hozzáféréseket, jogokat oszt az előfizetőknek,
- információkat nyújt a kapcsolódó személyekről (jelenlét, elérhetőség),
- központi szerepe van a fél-dulex kapcsolat megvalósításában, a floor control meghatározó komponense: eldönti, hogy melyik kliensnek van éppen joga forgalmazni (TBCP), vezérlí az egész kommunikációs folyamatot,
- amennyiben nincs külön kijelölt szerver bizonyos feladatokra, akkor elláthat egyéb funkciókat is (pl. adminisztráció, számlázás, értesítés, üzenetkezelés stb.).

Mivel a PTT szolgáltatások nem igényelnek folyamatos összekötetést, ezért a PoC szervernek képesnek kell lennie meghatározni, hogy jelen van-e még a felhasználó. Erre egy speciális mechanizmust alkalmaz a rendszer: 300 másodpercnél tétlenség után a kliens úgynevezett heartbeat (szívdobbanás) csomagot küld a szervernek, ezzel jelezve, hogy még további adatokra vár.

8.2 Kiegészítő szerverek

A PoC szerver tehermentesítésének érdekében gyakran több kiszolgálót is üzembe helyeznek a kiegészítő szolgáltatások biztosításának céljából.

A Provisioning szerver javarész adminisztrációs feladatokat lát el, az új előfizetők csatlakozási ügyeit intézi (szinte teljesen automatizáltan). További kiszolgálókra támaszkodhat, melyekkel együtt kezeli például az információs e-mailek generálását és továbbítását, vagy éppen a konfigurációs SMS üzenetek küldését a megfelelő címzettekhez (ugyanis gyakran ezeken keresztül állítják be a felhasználó készülékének a szolgáltatás igénybevételéhez szükséges azonosítókat, jelszavakat és egyéb paramétereket).

---

24 Forrás: PTTSystems Kft.
OMA specifikáció szerint különálló jelenlét (presence) szervert is ajánlott alkalmazni, ami összegyűjti, tárolja és szétosztja a felhasználók állapotinformációit. Kezeli a kommunikáció résztvevőinek láthatóságát és elérhetőségi adatait.

Gyakran tartanak fenn egy XDM szervert is a csoportkezelési műveletek végrehajtására, ezzel a következő fejezet foglalkozik.

További kiszolgálók vehetnek részt a PTT szolgáltató belső hálózatában, a megvalósítások csak az adott vállalat egyedi koncepcióitól függenek.
9. Csoportkezelés

A Push-to-Talk alapú kommunikáció kisebb-nagyobb felhasználói csoportokon belül zajlik, ezeket pedig több okból nyilván kell tartani. Ezek az adatok egy központi szerveren tárolandók XML formátumú dokumentumokban, amik biztosítják az alkalmazás-független hozzáférést. OMA ajánlás szerint maga a szerver lehet egy dedikált kiszolgáló (XDMS – XML Data Management Server), illetve a PoC szerver is elláthatja ezt a feladatkört, amelyre XML adatkezelésként (XDM – XML Data Management) hivatkozunk.

A végfelhasználó szemszögéből azért is fontos egy centralizált helyen tartani a csoportinformációkat, mert a következő események következhetnek be:

- módosítani szeretne a listáján (törleni vagy meghívni egy személyt), ehhez letölti azt a szerverről,
- új készüléket vásárol, ilyenkor nem kell újra elkészítenie a listáit,
- másik eszközről jelentkezik be, de ugyanúgy látni kívánja a csoporttagokat.

Az XDMS kliens oldali megfelelője az XDMC (XML Data Management Client), amely egy logikai modul a PTT felhasználó készülékében, csoportkarbantartásra és saját hozzáférési korlátozások beállítására hivatott.

A csoportkapcsolatokban két módon lehet részt venni:

- Egyetlen személy meghív más résztvevőket, ezáltal kialakítva egy csoportot (dial-out mód). Ilyen esetben négy kapcsolattípust különböztetünk meg:
  - 1-1 kapcsolat: egy adott fél egyetlen másik felhasználót hív meg a PTT kapcsolatba.
  - Ad hoc csoportkapcsolat: alkalmi kapcsolat, melyet a kezdeményező résztvevő alakít ki, egyszerűen kiválasztja egyesével a kívánt személyeket a kapcsolatlistájából.
  - Előre kialakított (pre-arranged) csoportkapcsolat: az ilyen jellegű csoportokhoz csak az előre definiált felhasználóknak van hozzáférési joga. Kiemelt tagnak számít a csoport létrehozója, ő a kapcsolat tulajdonosa, így ő aktivizálhatja a session-t. A kapcsolat-felépítés akkor sikeres, ha legalább egy fél (a tulajdonoson kívül) elfogadja a meghívást. A kapcsolat bomlik, amennyiben a tulaj elhagyja azt, vagy ha a csatornán egyetlen személy marad, illetve tevékenység nélküli időtúllépés következik be.
1-több-1 csoportkapcsolat: speciális típus, melyre leginkább vállalatok fizetnek elő, hogy központosítottan irányíthassák dolgozóikat. Megkülönböztetett- és általános résztvevőket definiálunk: a megkülönböztetett fél küldhet adatokat az általános feleknek, valamint fogadhat bármelyiküktől; az általános résztvevők pedig csak a megkülönböztetettel kommunikálhatnak, aki így tulajdonképpen diszpécseri szerepkört lát el.

- Másik részvételi mód, ha a felhasználó csatlakozik egy már meglévő csatornához (dial-in mód). Két variáció lehetséges:
  - Nyílt chat csoportkapcsolat: bárki bekapcsolódhat a kommunikációba, csupán ismerni kell a csoport azonosítóját (ami nevezetesen egy SIP URI).
  - Korlátozott chat csoportkapcsolat: csak korlátozott csatlakozási lehetőség adott, előre meghatározott felek számára.

Hozzáférhetőség szempontjából egy csoport lehet nyílt és zárt. A nyílt mindenki számára elérhető, bárki kialakíthatja. Zárt csoportok esetén a tulajdonos lehet szintén egy felhasználó, de a PTT szolgáltatóra is háríthatnak létrehozói szerepkört, így megvalósul a jogosultságok páratlan kezelése, független fél tartja karban a kommunikációs csoportot, és kizárólag ő vehet fel további tagokat az adott csoportba.25

25 Forrás: PTTSystems Kft.
10. Digitális adó-vevő rendszerek

Természetesen a Push-to-Talk over Cellular nem az egyetlen választási lehetőség, ami adó-vevő szolgáltatást kínál. A digitális PMR (Professional/Private Mobile Radio) rendszerek alternatívájaként működhet, illetve kiszolgálhatja a hasonló igényekkel jelentkező egyéni felhasználókat. Hazánkban jelenleg elérhető a készenléti- és rendvédelmi szervek számára egy saját hálózat, melyet az Egységes Digitális Rádió-távközlő Rendszer testesít meg. 2006-ban fejezték be az EDR kiépítését, alapját a TETRA technológia adja.

10.1 TETRA


Magyarországon közel teljes lefedettséggel rendelkezik a TETRA, emellett 99,9%-os évi rendelkezésre állást kell biztosítania (vállalás szerint), ami legfeljebb 8 óra kisesést jelenthet évente. A TETRA az URH rádiózáshoz képest magas fokú biztonságot nyújt, a hatékony titkosításnak köszönhetően lehallgathatatlan információcserét tesz lehetővé. Zárt célú mobilhálózat, csak törvényben meghatározott csoportok vehetik igénybe. Nem jelentett különösebb problémát a frekvenciasáv használatba vétele országunkban, hiszen a kilencvenes években felszámolták a 450 MHz körüli frekvenciákat kiaknázó első generációs (még analóg) mobilhálózatot.

A TETRA az URH rádiózáshoz képest magas fokú biztonságot nyújt, a hatékony titkosításnak köszönhetően lehallgathatatlan információcserét tesz lehetővé. Zárt időjárási körülmények között is megállja a helyt az eddigi tapasztalatok alapján, ez pedig létfontosságú, hiszen olyan szervek kommunikálnak segítségével, amelyeken emberéletek műlhatnak.

Hátránya a PTT-vel szemben, hogy saját hálózat kiépítését igényli, emellett használata nem elérhető mindenki számára.

További jelentős PMR megoldások is széles körben jelen vannak, így a TETRAPOL Európa több országában, valamint a P25 (Project 25, APCO-25) Észak-Amerikában.

10.2 PTT és TETRA

Néhány lényeges szempontot figyelembe véve érdemes összehasonlítani a Push-to-Talk over Cellular és a TETRA technológiát, hogy átfogó képet kapjunk az előnyeikről és hátrányaikról. Első lépésként megvizsgáljuk, hogy mik az elvárások a két rendszertől. Az igényeket pedig természetesen a felhasználói csoportok alakítják ki, ezért fontos tisztázní, hogy kik használják az adott szolgáltatást. A PoC esetén leggyakrabban magánszemélyek és kisebb céges csoportok tartoznak az előfizetők közé, míg a TETRA (és általában minden PMR) célközönségének nagy részét a készenléti- és közbiztonsági szervek teszik ki (sőt, Magyarországon csak és kizárólag az ilyen jellegű szervek használhatják). Ezek alapján látható, hogy bizonyos kritériumoknak eltérő súlytal kell megfelelniük a két esetben.

A PTT szolgáltatás viszonylag minimális ráfordítással implementálható a meglévő mobilhálózatot kihasználva, míg a TETRA kiépítése jelentős hálózatfejlesztéssel jár együtt. Manapság tengernyi olyan mobilkészülék van használatban, ami valamilyen adatátviteli technikával képes kapcsolódni csomagkapcsolt hálózatokhoz (mobilinternet-elérés biztosított), így széles közönséghez juthat el a VoIP alapú PTT szolgáltatás (amennyiben az eszköz támogatja azt). A TETRA használatához viszont rendelkezniük kell külön erre a célra tervezett végberendezésekkel.

A rendelkezésre állás mértéke kritikus a TETRA szemszögéből, a legnagyobb kihívást ez jelenti, aminek meg kell felelnie. A magyarországi EDR kiépítettségéből adódóan ennek a feltételek maximálisan eleget tesz a rendszer. Míg a legtöbb hálózat túlterhelt állapotban nem képes újabb résztvevőket kiszolgálni és esetleg összeomlik, addig a TETRA több módon is lehetőséget biztosít a kommunikációra szélsőséges helyzetekben. Ha a PTT-képes eszközök elveszítik a kapcsolatot a bázisállomással, akkor egyáltalán nem tudnak kommunikálni egymással (viszont minimális térérő mellett is fenntartható a csatorna), ezzel szemben az említett technológiával képesek vagyunk közvetlen rádió-rádió összeköttetést kialakítani (Direct Mode Operation – DMO), illetve a járművekbe szerelt (nagyobb adóteljesítményű) rádiók ismétlő üzemmódban is működhetnek a hosszabb távolságok áthidalása érdekében.28

---

Katasztrófa bekövetkezéskor a hívások száma ugrásszerűen nő, ilyenkor még szükségesebb a mentőcsapatok közötti elérhetőség biztosítása munkájuk összehangolásához – ez más típusú mobilhálózatokban nem garantált. (A helyzetet bonyolíthatja, ha vidéki helyszínen vagy hegyvidékes tájon adódik vész helyzet.) Végyük példának a 2006. augusztus 20-i budapesti vihart. Hivatalos források szerint a TETRA megfelelően kiszolgálta a helyszínén tevékenykedő szerveket, bár többek szerint nem volt teljesen zökkenőmentes a rendszer működése, akadtak fennakadások. Érdemes megemlíteni a PoC robosztusságát is: míg a hagyományos GSM hívások túlterheltté tették a hálózatot, addig a PTT-t éppen használók szerint a rendszer továbbra is üzemképes maradt (nyilván nem 100 százalékosan), ez pedig annak köszönhető, hogy a végberendezések egyszerre csak olyan kis adatmennyiséget küldenek, amiknek a forgalmát még tudják többé-kevésbé kezelni a bázisállomások.

Haszonló okok miatt rendkívül fontos még a kapcsolat felépítésének ideje, ugyanis néhány másodperces késés olykor élet-halál kérdésében is dönthet. A TETRA elvárása szerint fél szekundum alatt kell lennie a válaszidőnek, míg PTT-nél ez az érték több másodpercre is nyúlhat, így nem teljesíti az alapvető biztonsági előírásokra vonatkozó követelményeket.

Funkcionalitásban haszonló a két rendszer, egyaránt támogatják a csoportos- és egyéni kommunikációt. A TETRA is képes adatkapcsolat kiépítésére, ezáltal lehetővé válik szöveges üzenetek, állapotjelzések, jelentések és egyéb kiegészítő információk küldése. A PMR célkészülékek pontosan arra lettek tervezve, amire ténylegesen használják azokat. Ebből adódóan több olyan művelet és feladat elvégezhető azokkal, amik a PoC esetében nem elérhetők. Mivel a PTT hozzáadott értékű szolgáltatás, ezért nem is célja minden ilyen extra funkció ellátása, valamint a megcélzott előfizetői réteg nem is használna ezeket, mert legtöbbjük szükségtelen vagy túlságosan bonyolult.

---


30 Forrás: PTTSystems Kft.
11. Összefoglalás

Jelen dolgozat készítése során számos új ismeretanyagra tettem szert, mivel a tárgyalt technológia több szerteágazó témakört ölel fel. Egy rövid áttekintéssel foglalom össze az érintett témákat.

Eleinte a kifejlesztett zárt szabványokon alapuló digitális adó-vevő rendszerek nem voltak képesek együttműködni, ezért a legnagyobb gyártók az OMA szövetségén keresztül megalkották a nyílt Push-to-Talk over Cellular technológiát. Az IMS architektúrának köszönhetően megvalósulhatott a mobilhálózatok és az Internet összekapcsolása különböző adatátviteli technikák használatával, így a PTT szolgáltatás elérhetővé vált mobiltelefonokra, méghozzá IP alapon. A Voice over IP kemény kihívások elé állította a fejlesztőket, megfelelő szolgáltatásminőséget kellett biztosítani a modern walkie-talkie sikeréhez.

Munkám egy részében ezzel a problémakörrel foglalkozom. A kutatásaim arra engednek következtetni, hogy a PTT kinőtt kezdeti gyermekbetegségekért. A szolgáltatás egyre nagyobb népszerűségnek örvend, ami nem véletlen, tekintve a szerteágazó felhasználási területeit.

Megvizsgáltam a rendszer funkcionális hátterét: a kommunikációban részt vevő létfontosságú protokolloknak, valamint az alkalmazott beszédkódolási technikának a bemutatásával áttekintést adtam az Push-to-Talk működési mechanizmusáról. Ennek kapcsán kijelenthetem, hogy a kor követelményeihez mért egy modern technológiáról beszélhetünk, amire érdemes odafigyelni, hiszen könnyen meglehet, hogy néhány éven belül már egy általánosabb távközlési eszközrendszer alapját fogja képezni.

Több gyakorlati témát is feldolgoztam, ismertettem a hétkoznapi felhasználási lehetőségeket, rávilágítottam az elvi korlátokra a hazai szolgáltatás vonatkozásában, bemutattam a rendszer üzemeltetéséhez szükséges belső hálózatot és annak összetevőit, a szolgáltatók közötti kapcsolatokat, valamint az együttműködéshez szükséges tényezőket. Arra a következtetésre jutottam, hogy Magyarországon olykor jogi akadályokba ütközik a PTT zavartalan működése, és itt elsősorban a mobilszolgáltatók interkommunikációs problémáira gondolok.

A szolgáltatást összehasonlítottam a hasonló elven működő, de más célokra tervezett hálózatokkal. Fontos megjegyezni, hogy ezek a rendszerek nem a másik helyettesítésére törekednek, hanem egymást kiegészítve működnek, meglehetősen sikeres eredményeket
felmutatva. Az összevetés alapján egyértelműen megállapíthatom, hogy van létjogosultsága a PTT szolgáltatásnak, én rengeteg lehetőséget látok még benne.

Roppant kevés hazai irodalom tárgyalja (csak érintőlegesen) a Push-to-Talk over Cellular rendszerét, ezért is tartottam célszerűnek a téma alapos, sok részletre kiterjedő feldolgozását. Amint az irodalomjegyzékből is kitűnik, szinte csak idegen nyelvű forrásokra hagyatkozhattam. Gyakorlati tapasztalatokat a hazai PTTSystems Kft. segítségével szereztem, lehetőségem volt élesben is teszteni a szolgáltatást, így a saját tapasztalataim birtokában írhattam le a következtetéseimet. Az eredeti célkitűzéseimet maradéktalanul sikerült teljesítenem.

Bízom benne, hogy a dolgozatommal olyan minőségi anyagot nyújthatok át, ami a tisztelet Olvasó számára hasznos ismeretekkel szolgál.
13. Köszönetnyilvánítás

Elsősorban szüleimnek szeretném megköszönni, hogy minden téren támogattak az egyetemi éveim alatt is.

Ezúton köszönöm Dr. Szabó Istvánnak, hogy témavezetőként segítette munkámat remek ötleteivel és tanácsaival.

Továbbá külön köszönettel tartozom a magyarországi PTTSystems Kft. részéről Szy Gábor ügyvezető igazgatónak és Szabó Bencének, hogy személyesen is fogadtak, és gyakorlati tapasztalataikkal hozzájárultak a dolgozatom színvonalának emeléséhez.
14. Irodalomjegyzék

Könyvek


RFC dokumentumok

46


http://tools.ietf.org/search/rfc4376


Oktatási anyagok, tanulmányok, weboldalak


[23] Eberhard Karls Universität Tübingen: TETRA – Terrestrial Trunked Radio,


