RTICLE IN PRESS BIOCHI3424 proof **2**2 September 2010 **1**/11

Biochimie xxx (2010) 1-11

Contents lists available at ScienceDirect

Biochimie

journal homepage: www.elsevier.com/locate/biochi

Research paper

1

2 3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53 54

55

PKCdelta is a positive regulator of chondrogenesis in chicken high density micromass cell cultures

Csaba Matta^{a,1}, Tamás Juhász^{a,1}, Zsolt Szíjgyártó^b, Bernadett Kolozsvári^b, Csilla Somogyi^a, Georgina Nagy^c, Pál Gergely^b, Róza Zákány^{a,*}

^a Department of Anatomy, Histology and Embryology, Medical and Health Science Centre, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary ^b Cell Biology and Signaling Research Group of the Hungarian Academy of Sciences, Department of Medical Chemistry, Research Centre for Molecular Medicine, Medical and Health

Science Centre, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary

^c Department of Dermatology, Medical and Health Science Centre, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary

ARTICLE INFO

Article history: Received 28 June 2010 Accepted 3 September 2010 Available online xxx

Keywords: Rottlerin MEK-ERK Sox9 shRNA Cartilage formation

ABSTRACT

We aimed to elucidate the role of the Ca-independent PKC isoenzyme PKCdelta in the regulation of spontaneous in vitro chondrogenesis occurring in a 6-day-long culturing period in chicken limb budderived high density cell cultures (HDC). PKCdelta expression and activity were detectable throughout the entire culturing period with a peak on days 2 and 3, when most of the chondroblasts differentiate. To inhibit the activity of PKCdelta, either the natural compound rottlerin was transiently applied to the culture medium of HDC in 2.5, 5 or 10 µM concentrations, or gene silencing was performed by using PKCdelta shRNA. Rottlerin significantly reduced the overall PKC activity in enzyme activity assays of cell-free samples of untreated control HDC, probably via the inhibition of PKCdelta. On the contrary, we were unable to detect any consistent change of PKC enzyme activity assayed in samples of HDC treated with rottlerin during culturing. PKCdelta gene silencing resulted in a significantly lower PKC activity. Both rottlerin and PKCdelta shRNA caused a severe reduction in cartilage formation, further more protein and phospho-protein levels of Sox9, the key transcription factor of chondrogenesis, were also significantly decreased. Rottlerin lowered, while PKCdelta gene silencing elevated the phosphorylation status of ERK1/2. Our data suggest that PKCdelta stimulates chondrogenesis via influencing Sox9 and ERK1/2 phosphorylation, but the inhibition of cartilage formation in the rottlerin-treated HDC is probably PKCdelta independent and rottlerin might have different effects when applied to cells or to an *in vitro* enzyme activity assay.

© 2010 Elsevier Masson SAS. All rights reserved.

1. Introduction

During vertebrate limb development, at the onset of the multistep process of endochondral bone formation, undifferentiated

0300-9084/\$ - see front matter © 2010 Elsevier Masson SAS. All rights reserved. doi:10.1016/j.biochi.2010.09.005

chondroprogenitor mesenchymal cells first undergo a condensation phase characterised by rapid proliferation of cells. As a result, chondrogenic mesenchymal cells become closely packed, which initiates a complex and a yet not fully understood signalling mechanism that governs differentiation of cells within these condensations into chondroblasts and then mature chondrocytes [1]. Among a number of signalling molecules, members of the phospholipid-dependent serine/threonine protein kinase C (PKC) family are known regulators of *in vitro* chondrogenesis [2,3].

PKCs, present in almost all cell types, are involved in the regulation of various cellular processes. All known 11 PKC isoforms are divided into three subgroups based on their N-terminal regulatory domains and mechanism of activation: classical PKCs (cPKC; PKCalpha, betaI, betaII and gamma), novel PKCs (nPKC; PKCdelta, epsilon, eta and theta) and atypical PKCs (aPKC; PKCzeta, iota/ lambda and mu or PKD) [4]. The activation of PKCdelta also requires lipid second messengers (e.g. DAG) or tumour-promoting phorbol esters (e.g. PMA) without the requirement of Ca^{2+} . Moreover, PKCdelta exhibits tyrosine-phosphorylation sites, which are targets

108

109

110

56

Abbreviations: BMP, bone morphogenic protein; BSA, bovine serum albumin; CaM-KIII, calcium/calmodulin dependent protein kinase III; CMF-PBS, calcium/ magnesium free PBS; DAG, diacyl-glycerol; DMMB, dimethyl-methylene blue; dNTP, deoxy nucleotide triphosphate; DTT, 1,4-dithio-threitol; ERK, extracellular signalregulated kinase; FGF, fibroblast growth factor; HDC, high density culture; MAPK, mitogen-activated protein kinase; MAPKAP, mitogen-activated protein kinaseactivated protein kinase; PAGE, polyacrilamide gel electrophoresis; PBS, phosphate buffered saline; PBST, phosphate buffered saline and Tween-20; PI, propidium iodide; PKB, protein kinase B; PKC, protein kinase C; PMA, phorbol-12-myristate-13-acetate; PMSF, phenylmethylsulphonyl-fluoride; PRAK, p38-regulated/activated protein kinase; RT, reverse transcription; SDS, sodium-dodecyl-sulphate; TAE, TRISacetate-EDTA buffer.

Corresponding author. Fax: +36 52 255 115.

E-mail address: roza@anat.med.unideb.hu (R. Zákány).

Csaba Matta and Tamás Juhász contributed equally to the work.

111 for Src family kinases. Upon phosphorylation on tyrosine residues, 112 PKCdelta can act as a lipid-independent enzyme [5]. One of its 113 distinguishing characteristics is that unlike other PKC isoforms, 114 PKCdelta activity is also involved in negative regulation of various 115 cellular processes, e.g. suppression of proliferation and survival [6]. 116 PKCdelta is also a crucial component of the cellular stress response, 117 since it is required for apoptotic processes, however, some data 118 suggest that it can also negatively influence apoptosis [7].

119 To identify the physiological substrates and multiple roles of 120 various PKC isoenzymes in cellular processes, several protein kinase 121 inhibitors have been developed with a variable specificity for 122 individual kinases. The bisindolylmaleimide GF109203X is 123 a general PKC inhibitor with a more potent effect on cPKC. The 124 indolocarbazole Gö6976 inhibits both cPKC and nPKC [8]. However, 125 the specificity of these pharmacological inhibitors is a rather 126 controversial issue [9]. Some protein kinase inhibitors exhibit 127 variable degrees of specificity for different enzymes at distinct 128 concentrations. A polyphenolic compound [5,7-dihydroxy-2,2-129 dimethyl-6-(2,4,6-trihydroxy-3-methyl-5-acetylbenzyl)-8-cinna-130 moyl-1,2-chromene], rottlerin, isolated from a common Indian rain 131 forest tree, Mallotus philippinensis, is reported to inhibit several PKC 132 isoforms, and is thought to selectively inhibit PKCdelta 5-30-fold 133 stronger than other PKCs at 3–6 µM concentration [4]. However, 134 according to the findings of an in vitro enzyme activity measure-135 ment campaign conducted by the group of Davies [9], in which the 136 specificity of various protein kinase inhibitors were assayed, rot-137 tlerin was found to inhibit many protein kinases (e.g. PRAK, MAP-138 KAP-2) much more potently than PKCdelta, and in fact it failed to 139 inhibit in vitro PKCdelta activity. Rottlerin was also described to 140 inhibit some other kinases as Akt/PKB and CaM-KIII at 500 nM [10]. 141 Moreover, in a recent review analysing data of publications 142 describing controversial results gained by the application of rot-143 tlerin in order to inhibit PKCdelta, it is concluded that rottlerin can 144 be considered as a mitochondrial uncoupler rather than a direct 145 inhibitor of this enzyme [11].

146 Rottlerin modulates a great variety of cellular processes in both 147 malignant and non-malignant cells, including apoptosis in lung 148 cancer, breast cancer, leukaemia and myeloma cells, proliferation in 149 glioma cells, secretory activity of pancreatic acinar cells [12–14], 150 and it is also known to regulate tumour cell migration [15]. Rot-151 tlerin has also been described to interfere with the differentiation 152 process of various cell types of mesenchymal origin, exerting its 153 effects at least partially by inhibiting the activity of PKCdelta 154 [16–18]. In a recent study, Choi and his co-workers reported that 155 rottlerin altered the migration of prechondrogenic mesenchymal 156 cells in chicken limb bud high density cultures by modulating 157 integrin β1-signalling at focal adhesion complexes via a PKCdelta-158 independent mechanism [10].

159 In this study we applied the same in vitro chondrogenesis 160 model, in which high density cell cultures are established from 161 chondrogenic mesenchymal cells isolated from limb buds of 162 chicken embryos. In HDC, formation of cartilage starts with the 163 condensation of chondroprogenitor mesenchymal cells on the first 164 day, that after nodule formation differentiate into chondroblasts 165 and chondrocytes predominantly on the second and third days of 166 culturing [19]. Steps of this differentiation process are regulated by 167 numerous growth factors and other soluble morphogens [20] and 168 differentiating cells start to secrete cartilage-specific extracellular 169 matrix components, such as collagen type II and aggrecan on the 170 third day of culturing [21]. Expression of cartilage-specific matrix 171 molecules is regulated by Sox9, a high-mobility-group domain 172 containing transcription factor, which is started to be expressed as 173 soon as mesenchymal cells become committed toward the chon-174 drogenic lineage [22]. Detection of the mRNA and protein expres-175 sion level and the phosphorylation status of Sox9, as well as monitoring the expression of the core protein of aggrecan and collagen type II are reliable markers of *in vitro* chondrogenesis.

Here we provide evidence that PKCdelta is expressed by cells of chondrifying chicken limb bud high density cultures throughout their entire differentiation process. Administration of rottlerin to cells of HDC resulted in a time and concentration dependent inhibition of metachromatic cartilage matrix production and caused a marked decrease in the phosphorylation of both Sox9 and ERK1/2. but we failed to unambiguously demonstrate inhibition of PKCdelta activity with this compound. PKCdelta gene silencing significantly lowered the activity of PKC, abolished cartilage matrix production and decreased the level of phosphorylated Sox9, but elevated the phosphorylation of ERK1/2. Our results indicate that PKCdelta acts as a positive regulator of in vitro chondrogenesis via modulation of the ERK1/2 and Sox9 pathways. Nevertheless, the chondrogenesisinhibiting effect of rottlerin is probably exerted via a PKCdeltaindependent manner, therefore we do not recommend administration of rottlerin for PKCdelta inhibition in high density cell culture systems.

2. Materials and methods

2.1. Cell culturing

Distal parts of the limb buds of Ross hybrid chicken embryos (Hamburger–Hamilton stages 22–24) were removed and primary micromass cultures of chondrifying mesenchymal cells were established from cell suspensions with a density of 1.5×10^7 cells/mL 100–100 µL droplets of the suspension were inoculated into plastic Petri dishes (Orange Scientifique, Braine-l'Alleud, Belgium). Day of inoculation is considered as day 0. After 2 h, colonies were nourished with Ham's F12 medium (Sigma, St. Louis, MO, USA), supplemented with 10% fetal calf serum (Gibco, Gaithersburg, MD, USA) and were kept at 37 °C in the presence of 5% CO₂ and 80% humidity in a CO₂ incubator. The medium was changed on every second day.

2.2. Transient gene silencing and pharmacologic inhibition of PKCdelta

PKCdelta shRNA (GenScript USA Inc., Piscataway, NJ, USA) was cloned into GeneSwitch™, the inducible protein expression system from Invitrogen (Invitrogen, Carlsbad, CA, USA). Plasmids were amplified using competent E. coli bacteria from One Shot chemical transformation kit (Invitrogen). Ampicillin or hygromycin resistant bacteria were grown on LB agar, and plasmids were isolated using MaxiPrep kit (QIAGEN, Valencia, CA, USA) according to the protocol of the manufacturer. Plasmids were delivered into cells of chondrifying cell cultures by using Lipofectamine 2000 (Invitrogen) transfection reagent. Lipofection delivery system protocol was performed on freshly isolated cell suspensions with a density of 1.5×10^7 cells/mL by decreasing the volume of the transfection reagent by 25%. 100 or 30 µL mixtures of the transfection reagent and cell suspension were inoculated into Petri dishes and into 24-well plates, respectively. After 2 h of transfection colonies were nourished with Ham's F12 medium supplemented with 10% fetal calf serum. On day 2 of culturing, 1 µM mifepristone was added to the culture medium for 24 h for the induction of GeneSwitch™ System. Activity of PKCdelta was inhibited by applications of 2.5, 5 or 10 µM rottlerin (Sigma) for 4 h on different days of culturing.

2.3. Light microscopic morphology

High-density cultures established from $30 \ \mu L$ droplets of chondrogenic limb bud mesenchymal cells of different experimental

240

Please cite this article in press as: C. Matta, et al., PKCdelta is a positive regulator of chondrogenesis in chicken high density micromass cell cultures, Biochimie (2010), doi:10.1016/j.biochi.2010.09.005

C. Matta et al. / Biochimie xxx (2010) 1-11

241 groups were cultured on the surface of round coverglasses (Men-242 zel-Gläser, Menzel GmbH, Braunschweig, Germany) placed into 243 wells of 24-well culture plates. Cell cultures were fixed in a 4:1 244 mixture of absolute ethanol and 40% formaldehyde on day 6 of 245 culturing and were stained with 0.1% dimethyl-methylene blue 246 (DMMB, Aldrich, Germany) dissolved in 3% acetic acid, washed in 247 acetic acid and were mounted in gum arabic. The amount of 248 sulphated matrix components was determined with a semi-quan-249 titative method, by measuring the optical density of extracted 250 toluidine blue (Reanal, Budapest, Hungary) bound to glycosami-251 noglycans in mature HDC as described previously [23]. Briefly, 252 6-day-old cell cultures were fixed in a solution containing 28% 253 ethanol, 4% formalin and 2% acetic acid, stained with 0.1% toluidine 254 blue dissolved in glycine-HCl buffer (pH 1.8) for 15 min, and the dye 255 bound to highly sulphated proteoglycans and glucosaminoglycans 256 was extracted in 3% HCl dissolved in absolute ethanol. Absorbance 257 of samples containing extracted toluidine blue was measured at the 258 wavelength of 625 nm on a microplate reader (Chameleon, Hidex 259 Ltd., Turku, Finland). Optical density was measured in samples from 260 3 cultures of each experimental group in 3 independent experi-261 ments. Data were statistically analysed with Student's t-test. 262

2.4. Measurement of cell proliferation with ³H-thymidine labelling and mitochondrial activity with MTT-assay

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

291

293

294

295

297

301

303

15 µL droplets of cell suspension were inoculated into wells of 96-well Wallac LSC microtiter plates (PerkinElmer Life and Analytical Sciences, Shelton, CT, USA) and cells were treated similarly to those cultured in Petri dishes. Medium containing 1 uCi/mL ³H-thymidine (185 GBq/mM ³H-thymidine, Amersham Biosciences, Budapest, Hungary) was added to the wells for 16 h on day 3. After washing with PBS, proteins were precipitated with ice-cold 5% trichloroacetic acid, and washed with PBS again. Colonies were airdried for 2 weeks at room temperature and radioactivity was counted by Chameleon liquid scintillation counter (Hidex). Measurements were carried out in 10 samples of each experimental group in 4 independent experiments. For investigation of cellular viability, cells cultured in wells of 96-well microtiter plates were used. 10 µL MTT reagent [3-(4,5-dimethyl-thiazolyl-2)-2,5-diphenyltetrazolium bromide; 25 mg MTT in 5 mL PBS] was pipetted into each well on day 3. Cells were incubated for 2 h at 37 °C and following addition of 100 µL of MTT solubilizing solution the absorption was detected at 570 nm using a Chameleon microplate reader (Hidex).

2.5. Measurement of apoptosis and necrosis by flow cytometry

After 24 h of transfection or treatments with rottlerin, rate of 289 apoptosis was measured by using AnnexinV DY 647 kit (Central 290 European Biosystems, Budapest, Hungary). Mock-transfected cells (cultures treated only with the transfection reagent) or untreated 292 cultures were used as control. After washing twice in CMF-PBS (calcium and magnesium free phosphate buffered saline), cells were incubated with 10 µL AnnexinV DY 647 at room temperature for 10 min. Before harvesting with 0.25% trypsin (Sigma) cells were 296 washed with Annexin binding buffer. Necrosis was measured by using propidium-iodide (PI, Invitrogen). Cells were washed in 298 CMF–PBS and 2 µL PI was added at room temperature for 10 min in 299 a dark chamber. Cell pellets were resuspended in 500 µL FACS 300 buffer (PBS supplemented with 1% BSA and 0.05% NaN₃) and measured on a CyFlow[®] space Flow Cytometer (Partec GmbH, 302 Münster, Germany). PI was monitored at 617 nm and Annexin DY647 at 670 nm. Measurement lower threshold was set on cell-304 size particles. Analysis was performed with WinMDI 2.8 freeware 305 (Joseph Trotter; http://facs.scripps.edu/).

2.6. Preparation of cell extracts

Chondrifying cell cultures were washed with physiological NaCl solution and were harvested on different days of culturing. After centrifugation cell pellets were suspended in 100 µL of a homogenization buffer containing 50 mM Tris-HCl buffer (pH 7.0), 0.5 mM 1,4-dithio-threitol (DTT), 10 µg/mL Gordox, 10 µg/mL leupeptin. 1 mM phenvlmethylsulphonyl-fluoride (PMSF), 5 mM benzamidine, 10 µg/mL trypsin inhibitor as protease inhibitors, and 0.5% Triton X-100. Samples were snap-frozen in liquid nitrogen, then stored at -70 °C. Suspensions were sonicated by pulsing burst for three times 30 s by 50 cycles (Cole Palmer Ultrasonic distributor, Illinois, USA). For Western blotting and for PKCdelta activity assays, total cell lysates were used. For RT-PCR analysis, cartilage colonies were washed three times with RNase-free physiological NaCl, then the cultures were stored at -70 °C.

2.7. RT-PCR analysis

Cell cultures were dissolved in Trizol (Applied BioSystems), 20% RNase-free chloroform was added and the samples were centrifuged at 4 °C at 10,000 \times g for 15 min. Samples were incubated in 500 µL of RNase-free 2-propanol in -20 °C for 1 h, total RNA was harvested in RNase-free water and stored at -20 °C. The assay mixture for reverse transcriptase reaction contained 2 µg RNA, 0.112 μ M oligo(dT), 0.5 mM dNTP, 200 units M-MLV RT in 1 \times RT buffer. The sequences of primer pairs for polymerase chain reaction were as follows: for chicken PKCdelta (accession number: NM 001006133): 5'-CTG AGG TGA CCG TGG GTG T-3' and 5'-TTG TGG ATG GCA GCG TTA-3'; for chicken aggrecan (accession number: XM_001232949): 5'-CAA TGC AGA GTA CAG AGA-3' and 5'-TCT GTC TCA CGG ACA CCG-3'; for chicken Sox9 (accession number: AB012236): 5'-CCC CAA CGC CAT CTT CAA-3' and 5'-CTG CTG ATG CCG TAG GTA-3'; for chicken ERK1/2 (accession number: NM_204150): 5'-CAC CTC AGC AAC GAC CAC-3' and 5'-AGG AGC CCT GTA CCA ACG-3'; and for chicken GAPDH (accession number: NM_204305): 5'-GAG AAC GGG AAA CTT GTC AT-3' and 5'-GGC AGG TCA GGT CAA CAA-3'. Amplifications were performed in a programmable thermocycler (PCR Express Temperature Cycling System, Hybaid, UK) as follows: 94 °C, 1 min, followed by 30 cycles (94 °C, 30 s, 54 °C, 30 s, 72 °C, 30 s) and then 72 °C, 5 min. After the addition of 1/5 volume of fivefold concentrated DNA sample buffer (0.41% bromophenol blue, 66.6% sucrose in TAE buffer containing 0.016 M EDTA, 0.19 M acetic acid and 0.4 M Tris-HCl; pH 8.5) PCR products were analysed by electrophoresis in 1.2% agarose gel containing ethidium bromide. Optical density of signals was measured by using ImageJ 1.40 g freeware and results were normalised to the optical density of untreated control cultures.

2.8. Western blot analysis

Total cell lysates were examined by Western blot. Samples for SDS-PAGE were prepared by adding 1/5 volume of fivefold concentrated electrophoresis sample buffer (310 mM Tris-HCl pH 6.8, 10% SDS, 50% glycerol, 100 mM DTT, 0.01% bromophenol blue) to cell lysates and boiled for 10 min. About 70–80 µg of protein was separated by 10% SDS-PAGE gel for detection of PKCdelta, Sox9, p-Sox9, ERK1/2 and p-ERK1/2. Proteins were transferred electrophoretically to nitrocellulose membranes. After blocking in 5% non-fat dry milk in PBST (phosphate buffered saline with 0.1% Tween 20; 20 mM Na₂HPO₄, 115 mM NaCl; pH 7.4), membranes were washed and exposed to the primary antibodies overnight at 4 °C. Polyclonal anti-PKCdelta antibody (Santa Cruz Inc., CA, USA) in 1:100, polyclonal anti-Sox9 antibody (Abcam, Cambridge, UK)

3

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328 329

330

331

332

333

334

335

336

337

338

339

340

341

342

343 344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

306

Please cite this article in press as: C. Matta, et al., PKCdelta is a positive regulator of chondrogenesis in chicken high density micromass cell cultures, Biochimie (2010), doi:10.1016/j.biochi.2010.09.005

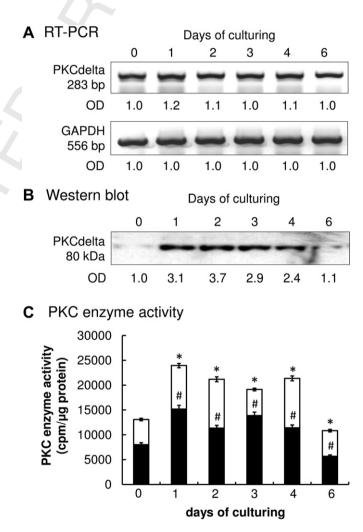
C. Matta et al. / Biochimie xxx (2010) 1-11

in 1:600, polyclonal anti-p-Sox9 antibody (Sigma) in 1:600, poly-clonal anti-ERK1/2 antibody (Sigma) in 1:1000, and polyclonal anti-MAP kinase (diphosphorylated ERK1/2 on Thr and Tyr residues; Sigma) in 1:600 dilution were used. After washing three times for 10 min with PBST, membranes were incubated with the secondary antibody, anti-rabbit IgG (Bio-Rad Laboratories, CA, USA) in 1:1000 dilution in PBST containing 1% non-fat dry milk for 2 h at room temperature. Signals were detected by enhanced chem-iluminescence (Millipore, Billerica, MA, USA) according to the instructions of the manufacturer. Optical density of signals was measured by using ImageJ 1.40 g freeware (downloaded from: http://rsb.info.nih.gov/ij/) and results were normalised to the optical density of untreated control cultures.

385 2.9. Total PKC and PKCdelta enzyme activity measurements

For PKC activity assays, cells were harvested and after centri-fugation at 10,000 \times g for 10 min at 4 °C, supernatants were used for enzyme activity measurements. PKC activity was assayed by measuring the incorporation of ³²P from $[\gamma$ -³²P]-ATP (MP Biomedicals, Solon, OH, USA) into histone IIIS (Sigma). The reaction mixture (40 µL) contained 50 mM Tris HCl buffer (pH 7.5), 1 mg/mL histone IIIS, 0.8 mM CaCl₂, 0.5 mM DTT, 1 µg/mL Gordox, 1 µg/mL leupeptin, 0.1 mM PMSF, 0.5 mM benzamidine, 1 µg/mL trypsin inhibitor as protease inhibitors, 100 µg/mL phosphatidylserine, 4 µg/mL PMA (Sigma), 0.12 mM ATP, 6 mM Mg-acetate and $[\gamma^{-32}P]$ -ATP adjusted to approximately 1 million cpm/reaction mixture and appropriate amount of cell extract (2.0–2.5 mg/mL protein). Activity measurements were performed at 30 °C. Determination of ³²P incorporation into histone IIIS were carried out by pipetting 30 µL of the reaction mixture on filter paper squares (Whatman P81, 2×2 cm) after 20 min reaction time. All papers were washed three times in 0.5% phosphoric acid, dried and counted for radio-activity in a liquid scintillation counter. For measurements of PKCdelta activity, rottlerin (10 µM) was administered to the reac-tion mixtures, and the difference caused by this compound in the total PKC activity was considered to be the contribution of PKCdelta to the overall PKC activity.

410 2.10. Data processing and statistical analysis


To determine the metachromatic cartilage matrix production, optical density of toluidine blue-stained cultures (OD_{625 nm}) was measured in samples from 3 cultures of each experimental group in 3 independent experiments. For the detection of cellular prolifer-ation rate (³H-thymidine incorporation assay) or mitochondrial activity (MTT assay), measurements were carried out in 10 samples of each experimental group in 4 independent experiments. Data are mean values \pm standard error of the mean and were statistically analysed with Student's t-test (P < 0.01). Data analysis of FACS measurement results was performed with WinMDI 2.8 freeware (Joseph Trotter; http://facs.scripps.edu/). For RT-PCR reactions and Western blot analyses, optical density of signals was measured by using ImageJ 1.40 g freeware and results were normalised to the optical density of untreated control cultures. Data of PKC enzyme activity measurements were statistically analysed with Student's *t*-test (*P* < 0.01).

429 3. Results

431 3.1. PKCdelta expression and activity in cells of HDC

To identify the mRNA and protein expression pattern of PKCdelta during *in vitro* chondrogenic differentiation of chicken mesenchymal cells, RT-PCR reactions and Western blot analyses were performed, respectively. The mRNA sequence of chicken PKCdelta was downloaded from GenBank and a specific primer pair was designed for amplification.

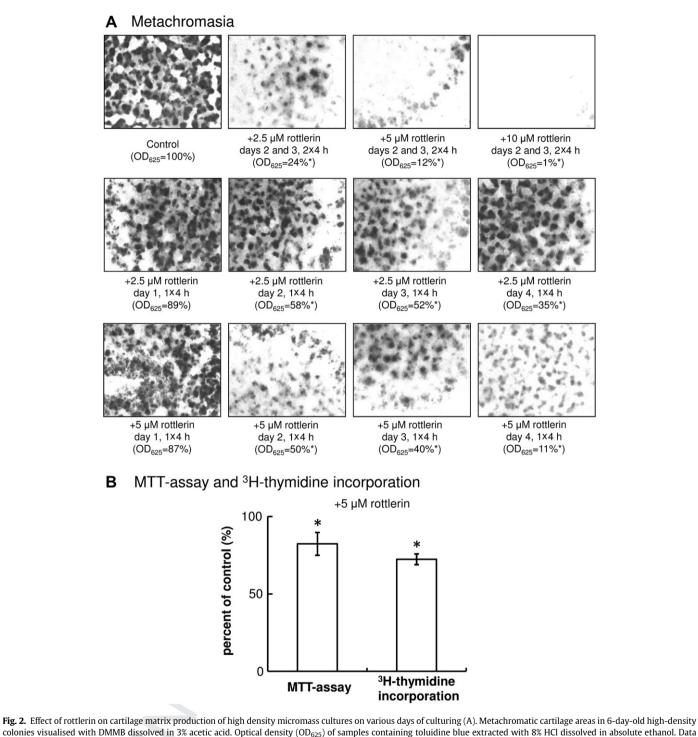

mRNA expression of chicken PKCdelta in cells of HDC followed an unchanged pattern during differentiation from day 0, with only slightly higher expression levels on days 1 and 2 (Fig. 1A). The protein expression profile of chicken PKCdelta, however, followed a peak-like pattern and showed an almost four-fold elevation by days 2 and 3 compared to day 0, as revealed by Western blot analyses (Fig. 1B). Under control conditions, the enzyme activity of PKCdelta in cells of HCD exhibited a pattern that is closely correlated with the protein expression, *i.e.* the enzyme activity was higher on days 1–4 compared to day 0. Activity of PKCdelta then decreased toward the end of the culturing period (Fig. 1C).

Fig. 1. mRNA (A) and protein (B) expression of PKCdelta in cells of chondrifying micromass cultures on various days of culturing. For RT-PCR reactions, GAPDH was used as a control. Optical density of signals was measured and results were normalised to the optical density of 0-day-old cultures. Representative data of 3 independent experiments, Total PKC and PKCdelta enzyme activity (C) in cells of HDC on various days of culturing. The white upper part of each bar represents the contribution of PKCdelta enzyme activity (*i.e.* difference caused by rottlerin in cell-free extracts) to total PKC enzyme activity, whereas the black lower parts represent the activity of other PKC isoforms. Significant changes are indicated by * and (P < 0.01) as an increase or decrease in total PKC ([#]) and PKCdelta (*) enzyme activity as compared to the respective control (day 0). Representative data of 3 independent experiments.

Please cite this article in press as: C. Matta, et al., PKCdelta is a positive regulator of chondrogenesis in chicken high density micromass cell cultures, Biochimie (2010), doi:10.1016/j.biochi.2010.09.005

C. Matta et al. / Biochimie xxx (2010) 1-11

Fig. 2. Effect of rottlerin on cartilage matrix production of high density micromass cultures on various days of culturing (A). Metachromatic cartilage areas in 6-day-old high-density colonies visualised with DMMB dissolved in 3% acetic acid. Optical density (OD_{625}) of samples containing toluidine blue extracted with 8% HCl dissolved in about ethanol. Data are mean values \pm standard error of the mean ($\pm 6\%$) of each experimental group out of 10 measurements. Effects of rottlerin treatment (5 μ M) on the mitochondrial activity and cellular proliferation (B) of cells in 3-day-old HDC. Mitochondrial activity was measured by using MTT assay and cell proliferation was assessed by ³H-thymidine incorporation. Assays were carried out immediately after rottlerin treatments. Asterisks indicate significant ($^{P} < 0.01$) decrease in metachromatic cartilage matrix production, mitochondrial activity or cellular proliferation rate as compared to the respective control (day 3). Representative data of 3 independent experiments.

3.2. Rottlerin inhibits in vitro chondrogenesis in a time and concentration-dependent manner

To identify the effects of rottlerin on cartilage differentiation *in vitro*, rottlerin at concentrations of 2.5 and 5 μ M was administered to cells of HDC on various days of culturing. Cartilage matrix production was analysed by metachromatic staining procedures with dimethyl-methylene blue and toluidine blue on day 6 of

culturing. As seen in Figs. 2A and 5 μ M rottlerin inhibited *in vitro* chondrogenesis in a time- and concentration-dependent manner with the strongest inhibition on days 2 and 3 (12% of untreated control cultures). When rottlerin was administered in 10 μ M or higher concentrations on either day of culturing, cartilage matrix production was completely blocked as demonstrated by the complete loss of metachromatic staining. Because treatments by either 2.5 or 5 μ M rottlerin resulted in similar qualitative results, in

Please cite this article in press as: C. Matta, et al., PKCdelta is a positive regulator of chondrogenesis in chicken high density micromass cell cultures, Biochimie (2010), doi:10.1016/j.biochi.2010.09.005

651

652

653

654

655

656

657

C. Matta et al. / Biochimie xxx (2010) 1-11

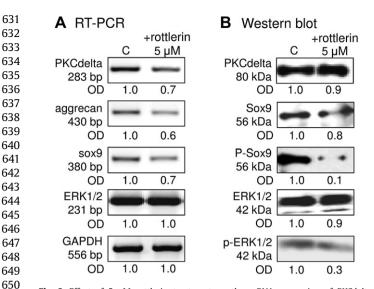


Fig. 3. Effect of 5 μ M rottlerin treatment on the mRNA expression of PKCdelta, aggrecan, Sox9 transcription factor and ERK1/2 (A); the protein expression of PKCdelta and ERK1/2; the protein expression and phosphorylation of Sox9 (B) in HDC on day 3 of culturing. For RT-PCR reactions GAPDH was used as a control. Optical density of signals was measured and results were normalised to the optical density of respective control cultures. Representative data of 3 independent experiments.

the following set of experiments we only used the concentration of 559 5 μ M.

660 Since the observed decrease in metachromatic staining could 661 have been caused by cytotoxic and/or anti-proliferative effects of 662 rottlerin, mitochondrial activity and cellular proliferation assays 663 were performed, respectively. Rottlerin administered on days 2 and 664 3 for 4 h in 5 µM concentration caused a slight, but significant 665 decrease in metabolic activity in cells of HDC and it also caused 666 a significant decrease in proliferation rate as revealed by MTT and 667 radioactively labelled thymidine incorporation assays, respectively 668 (Fig. 2B). Rottlerin treatments did not result in the elevation of 669 apoptotic or necrotic rate in cells of HDC in either concentration 670 according to FACS analyses (data are shown in the Supporting 671 information).

672 To evaluate the role of rottlerin in the molecular regulation of *in* 673 vitro chondrogenesis, mRNA and protein levels of PKCdelta, 674 aggrecan core protein and Sox9, the major cartilage-specific tran-675 scription factor, were detected by RT-PCR and Western blot reactions, respectively. Exposure to rottlerin resulted in a marked 676 677 decrease in the mRNA expression of PKCdelta (Fig. 3A), however, 678 only a slight reduction was observed in its protein expression level 679 when rottlerin was applied at a concentration of 5 μ M (Fig. 3B). A 680 significant decrease in the mRNA levels of both aggrecan core 681 protein and Sox9 was detected under the effect of rottlerin treat-682 ments (Fig. 3A). Western blot analyses showed that exposure to 683 5 µM rottlerin only slightly reduced the protein level of Sox9, 684 whereas a significant decrease was observed in its phosphorylation 685 level after the administration of the inhibitor (Fig. 3B). These 686 findings demonstrate that rottlerin decreases cartilage formation, 687 at least partly, via inhibition of cartilage differentiation.

688 Since MAP-kinases, particularly ERK1/2 is one of the key regu-689 lators that influence in vitro chondrogenesis, we examined whether 690 the observed decrease in cartilage matrix production was regulated 691 by an ERK1/2 dependent pathway. Although administration of 692 rottlerin did not alter the mRNA expression level of ERK1/2 and 693 protein expression was also only slightly modified, exposure to 694 5 µM rottlerin significantly reduced the level of phosphorylated 695 ERK1/2 (Fig. 3A–B). Furthermore, administration of 5 µM rottlerin to cells on days 2 and 3 caused alterations in the activity of PKCdelta measured on day 3 of culturing in cell-free extracts of HDC, but the direction of these changes was completely inconsistent (data not shown). These findings suggest that the aforementioned effects of rottlerin on cartilage differentiation could have mostly been caused by its aspecific, non-PKCdelta-dependent effects.

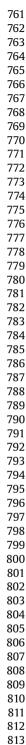
3.3. Inhibition of PKCdelta by shRNA transfection inhibits in vitro chondrogenesis

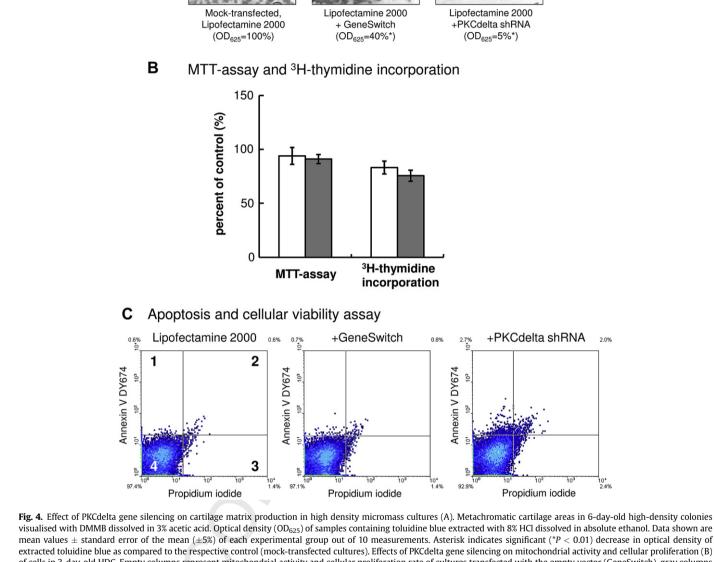
Although rottlerin is widely known as a selective inhibitor of PKCdelta, some data are available on its PKCdelta-independent effects [24] and our results also suggested such a possibility. Therefore, we selectively inhibited PKCdelta expression using specifically designed shRNA to clarify the role of PKCdelta in chondrogenesis. The PKCdelta shRNA sequence was cloned into GeneSwitch, the inducible protein expression system from Invitrogen, and transfected into primary chondroprogenitor mesenchymal cells on day 0, prior to their attachment by using Lipofectamine 2000 transfection reagent. On day 2 of culturing, 1 μ M mifepristone was added to the culture medium for 24 h for the induction of GeneSwitch System. Mifepristone at the applied concentration did not alter the amount of *in vitro* cartilage matrix production by culturing day 6 (data are shown in the Supporting information).

Introduction of empty GeneSwitch vector alone into cells of HDC resulted in a significant decrease of metachromatic cartilage matrix production (40% of mock-transfected control cultures) as revealed by dimethyl-methylene blue and toluidine blue staining procedures on day 6 of culturing (Fig. 4A). Introduction of PKCdelta shRNA-containing GeneSwitch resulted in an even stronger inhibition (5% of mock-transfected control cultures), and the complete loss of the metachromatic cartilage matrix (Fig. 4A).

In spite of the pronounced inhibition of cartilage matrix production, mitochondrial activity of cells transfected with either empty or PKCdelta shRNA-containing GeneSwitch constructs remained unchanged compared to mock-transfected control cells as revealed by MTT assays, and the rate of cellular proliferation also did not show any alterations in either case (Fig. 4B). Cellular viability and apoptosis assays performed by measuring the ratio of propidium iodide and Annexin V DY647 stained cells using FACS analysis revealed that transfection with the empty vector did not cause any change in these parameters, whereas introduction of the PKCdelta shRNA vector resulted in a very slight elevation of apoptotic (2%) and necrotic (1%) cell death (Fig. 4C). These findings demonstrate that the observed decrease in cartilage matrix production was not caused by altered cellular viability, mitochondrial activity, proliferation or apoptotic rate.

We also wanted to examine the signalling mechanism underlying the aforementioned alterations of *in vitro* cartilage matrix production. To evaluate the efficiency of gene silencing, RT-PCR and Western blot analyses were performed. Although mRNA expression of PKCdelta decreased only to a lesser extent as a result of shRNA expression (Fig. 5A), however, at the protein level it exhibited a marked inhibition (30% of cultures transfected with the empty vector) reflecting on the efficiency of PKCdelta gene silencing (Fig. 5B). While PKCdelta gene silencing did not change the mRNA expression of Sox9, and the mRNA level of aggrecan core protein only exhibited slight alterations, the protein level of Sox9 showed a marked decrease as a result of introduction of PKCdelta shRNA, as revealed by RT-PCR and Western blot analyses, respectively (Fig. 5A–B). Although PKCdelta gene silencing did not affect either the mRNA or the protein expression of ERK1/2, a significant (twofold) increase in its phosphorylated form was observed, implicating the involvement of this pathway in the signal transduction


759


760

696

ARTICLE IN PRESS

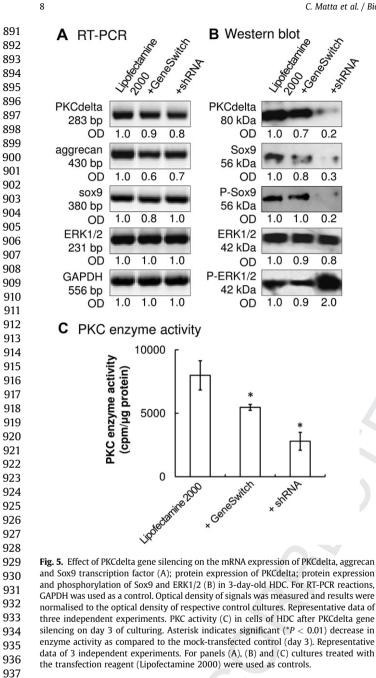
C. Matta et al. / Biochimie xxx (2010) 1-11

Fig. 4. Effect of PKCdelta gene silencing on cartilage matrix production in high density micromass cultures (A). Metachromatic cartilage areas in 6-day-old high-density colonies visualised with DMMB dissolved in 3% acetic acid. Optical density (OD_{625}) of samples containing toluidine blue extracted with 8% HCl dissolved in absolute ethanol. Data shown are mean values \pm standard error of the mean (\pm 5%) of each experimental group out of 10 measurements. Asterisk indicates significant (**P* < 0.01) decrease in optical density of extracted toluidine blue as compared to the respective control (mock-transfected cultures). Effects of PKCdelta gene silencing on mitochondrial activity and cellular proliferation (B) of cells in 3-day-old HDC. Empty columns represent mitochondrial activity and cellular proliferation rate of cultures transfected with the empty vector (GeneSwitch), gray columns represent mitochondrial activity and cellular proliferation of HDC transfected with the PKCdelta shRNA-containing vector. Mitochondrial activity was measured by MTT assay and cell proliferation was assessed by ³H-thymidine incorporation. Effect of PKCdelta gene silencing on apoptotic rate and cellular viability of cells in 3-day-old HDC (C). Cellular viability was determined by FACS analysis. Quadrants 1 and 2 represent cells stained by Annexin V DY 647 (*i.e.* cells undergoing apoptosis), whereas quadrants 2 and 3 represent cells containing propidium-iodide (*i.e.* dead cells) of various sizes. For panels (A), (B) and (C) cultures treated with the transfection reagent (Lipofectamine 2000) were used as controls.

mechanism of PKCdelta in cells of chondrifying micromass cultures. Administration of either the empty or the PKCdelta shRNA-containing vector resulted in a significant decrease in PKC activity of cells in HDC, with a more than 50% reduction in cultures transfected with PKCdelta shRNA (Fig. 5C) as compared to mock-transfected cultures.

Α

Metachromasia


3.4. Protein expression and phosphorylation status profiles of Sox9 and ERK1/2 exhibit a time-dependent pattern in differentiating HDC

Since both the cartilage-specific transcription factor Sox9 and the dual-specificity MAPK ERK1/2 are key regulators of *in vitro*

chondrogenesis, and their activity can be modified by reversible phosphorylation, we examined their protein expression as well as the phosphorylation status pattern in untreated control cultures during the 6-day-long culturing period. As shown in Fig. 6, the protein expression profiles of ERK1/2 and its dual phosphorylated (fully active) form demonstrate that the activity of ERK1/2 is the highest in young chondroblasts (*i.e.* in cells of 3-day-old HDC) and becomes lower in differentiated chondrocytes (6-day-old HDC). Although Sox9 is readily expressed in chondroprogenitor mesenchymal cells (0-day-old HDC), we detected a 5-fold elevation in 2-day-old cultures, when the cells start their differentiation programme. In differentiated cultures, Sox9 expression shows

Please cite this article in press as: C. Matta, et al., PKCdelta is a positive regulator of chondrogenesis in chicken high density micromass cell cultures, Biochimie (2010), doi:10.1016/j.biochi.2010.09.005

C. Matta et al. / Biochimie xxx (2010) 1-11

a decrease, but it does not reach the baseline level again. Changes in 940 the phosphorylation level of Sox9 are not significant, nonetheless, it exhibits a similar pattern (Fig. 6).

4. Discussion

938

939

941

942

943

944

945 It has long been known that various PKC isoenzymes are 946 involved in the chondrogenic differentiation of chicken limb 947 micromass cultures. PKC enzyme activity proved to be detectable in 948 cells of HDC with characteristic changes during differentiation, and 949 conversely, exposure of cultures to long-term phorbol-12-myr-950 istate-13-acetate (PMA) treatments blocked the differentiation 951 process and abolished in vitro cartilage matrix production [25]. In 952 a study conducted by Choi and his colleagues the expression 953 profiles of classic (PKCalpha and gamma), novel (PKCepsilon) and 954 atypical (PKCzeta, lambda and iota) protein kinase C isoenzymes have been described during the differentiation of chicken 955

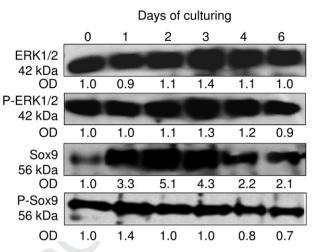


Fig. 6. Protein expression profile and phosphorylation status of Sox9 transcription factor and ERK1/2 in HDC during the 6-day-long culturing period. Optical density of signals was measured and results were normalised to the optical density of 0-day-old cultures. Representative data of 3 independent experiments.

micromass cultures and they showed that expression of various cPKC and nPKC isoforms is mostly required at the early stages of in vitro cartilage formation [3]. However, Choi and his group failed to detect PKCdelta expression in cells of HDC with the antibodies employed [3]. It has also been reported that protein kinase A signalling regulates in vitro chondrogenesis of chicken mesenchymal cells via the PKCalpha pathway [26]. PKCdelta expression in cells of HDC was reported for the first time by Grill and his colleagues, who confirmed its protein expression by immunochemical and immunocytochemical approaches [27]. Recently, Choi and his colleagues demonstrated the protein expression of PKCdelta by Western blot analyses in cells of HDC [10], when they investigated the involvement of this signal molecule in the regulation of the formation of prechondrogenic nodules. Consistent with their data, our results also showed a marked increase in PKCdelta protein expression at the beginning of the 6-day-long culturing period, followed by a decrease in its expression level. We also confirmed these findings by PKCdelta enzyme activity assays, with the maximum levels of activity corresponding to the highest levels of protein expression on culturing days 1-4. Correspondence of these patterns to the onset of chondrogenic differentiation of cells in HDC supports our idea that PKCdelta is a good candidate among PKC isoforms to be involved in the regulation of signalling mechanisms leading to in vitro cartilage formation.

In the subsequent set of experiments rottlerin (mallotoxin), described as an inhibitor of PKCdelta activity in some publications [28–30], was administered to cells of HDC. Rottlerin treatments resulted in a decrease of cartilage matrix production in a concentration and time dependent manner, including days 1 or 2 of culturing, when condensation and nodule formation of chondrogenic mesenchymal cells take place. These results are in agreement with the findings of Choi and his colleagues, who reported that rottlerin, via modulation of Akt-signalling and integrin β1-mediated pathways, might be negatively involved in the regulation of the migratory potential of chondroprogenitor cells in chicken limb bud-derived HDC, but in a PKCdelta-independent manner [10].

Since the decrease in metachromatic cartilage matrix production we observed might have resulted from the reduced cellular viability and/or decreased cellular proliferation rate, mitochondrial oxidase activity (MTT) and proliferation (radioactively labelled thymidine incorporation) assays were performed. While the cellular viability was only lowered to a lesser, but still significant extent, a more pronounced decrease in the rate of proliferation was

1019

1088

C. Matta et al. / Biochimie xxx (2010) 1-11

1021 observed. The latter result is consistent with the anti-proliferative 1022 effect of rottlerin on HaCaT keratinocytes [24]. Administration of 1023 rottlerin did not induce either apoptosis or necrosis in cells of HDC. 1024 As rottlerin is described as a mitochondrial uncoupler of different 1025 mammalian cell types rather than a direct PKCdelta inhibitor in 1026 some recent publications [11,31], these findings may reflect on 1027 a difference in mitochondrial sensitivity to rottlerin of chicken 1028 compared to mammalian cells. mRNA and protein expression of 1029 Sox9, the key chondrogenic transcription factor decreased after 1030 rottlerin treatments, moreover, phosphorylation of Sox9 (resulting 1031 in a more active form of this transcription factor) was almost 1032 completely abolished. The observed decrease in the phosphory-1033 lated form of Sox9 protein could be, at least partially, accounted for 1034 the reduced cartilage matrix production after the administration of 1035 rottlerin.

1036 The ERK pathway, also known as the MEK-ERK kinase cascade, 1037 is one of the key cytoplasmic signal transduction pathways gov-1038 erning proliferation, survival and differentiation of eukaryotic 1039 cells. The role of this crucial signal pathway in the regulation of 1040 chondrogenesis is rather controversial and probably depends 1041 either on the experimental model or/and the methods applied. 1042 ERK1/2 was reported as a negative regulator of chondrogenesis in 1043 both HDC [32,33] and C3H10T mouse embryonic mesenchymal cells [34]. In these experiments the function of ERK1/2 was 1044 1045 assessed by the application of pharmacological inhibitors 1046 PD098059 or U0126 [35]. On the contrary, it seemed to promote 1047 chondrogenesis in adult human bone marrow derived multipotent 1048 progenitor cells when the gene silencing technique was the 1049 approach [36]. Nonetheless, we found that the protein expression 1050 profiles of ERK1/2 and its dual phosphorylated (fully active) form 1051 show that the activity of ERK1/2 is the highest in young chon-1052 droblasts (i.e. in cells of 3-day-old HDC) and becomes lower in 1053 differentiated chondrocytes (i.e. 6-day-old HDC) (Fig. 6). In our 1054 current experiments neither the mRNA, nor the protein expression 1055 of ERK1/2 was altered after treatments with rottlerin, but its 1056 phosphorylated form was almost completely diminished. Our 1057 results correspond with that of another study conducted by Tapia 1058 and his colleagues on pancreatic acinar cells, where rottlerin also 1059 proved to inhibit MAPK-activation [14].

1060 Since rottlerin has been described as a factor having both 1061 PKCdelta dependent and independent effects often leading to 1062 contradictory results on various tissue and cell types [14,24], we 1063 were prompted to apply targeted PKCdelta mRNA silencing to 1064 clarify the role of PKCdelta activity during the differentiation of 1065 chondrogenic mesenchymal cells. Transfection with PKCdelta 1066 shRNA and subsequent transient gene silencing of cellular PKCdelta 1067 almost completely blocked in vitro chondrogenesis. Neither mito-1068 chondrial activity, nor cellular proliferation rate were significantly 1069 affected by the introduction of either the empty or the PKCdelta 1070 shRNA-containing vectors into cells of HDC, furthermore, PKCdelta 1071 gene silencing did not induce significant apoptotic and/or necrotic 1072 cell death rate of chondrogenic cells. In contrast to our results, 1073 PKCdelta has been reported as an accelerator of proliferation in 1074 cultured human skeletal muscle cells and C2C12 myoblast cells 1075 during myogenic differentiation, although the authors applied 1076 rottlerin to investigate the effects of the inhibition of PKCdelta in 1077 these experiments [37]. In our experiments, administration of 1078 either the empty or the PKCdelta shRNA-containing vector into 1079 cells of HDC caused a significant decrease in PKC activity assayed on 1080 day 3. The approximately 70% decrease in PKC activity values 1081 detected in HDC transfected with the shRNA-containing vector may 1082 reflect on the fact that reduction of the efficacy of chondrogenesis 1083 itself could have led to an inhibition of PKC activity. Another 1084 possibility is that PKCdelta might be involved in the regulation of 1085 the activity of other members of the PKC family. This idea is based

1086 on the theory of Toker, who proposed that some PKC isoenzymes can activate other PKCs via phosphorylation in a cascade-like manner [38].

Since PKCdelta gene silencing effectively decreased PKC 1089 1090 enzymatic activity and led to an almost complete inhibition of in vitro cartilage matrix production, the expression of the molec-1091 1092 ular regulators of chondrogenesis was also investigated. While the 1093 mRNA expression of Sox9 was not affected, its protein expression and phosphorylation were markedly reduced as a result of the 1094 1095 introduction of PKCdelta shRNA, and this reduction can partially be 1096 accounted for the observed effects on metachromatic cartilage 1097 matrix production. Inhibition of PKCdelta activity in osteoblasts by 1098 using siRNA has led to a decrease in the phosphorylation and 1099 activity of ERK1/2, which in turn has suppressed the differentia-1100 tion of diosmetin-induced differentiation of these cells [39]. On 1101 the contrary, activation of PKCdelta was found to decrease the 1102 activity of ERK1/2 in keratinocytes [40]. Moreover, PKCdelta 1103 altered differently the phosphorylation of ERK1/2 in human 1104 primary skeletal muscle cells and C2C12 rat myogenic cells [37]. 1105 Although neither the mRNA nor the protein expression of ERK1/2 1106 showed any alterations as a result of PKCdelta gene silencing in 1107 our experimental system, the level of its phosphorylated form 1108 exhibited a two-fold increase. If the observation that younger 1109 chondroblasts have the highest ERK activity in HDC is taken into 1110 consideration, it seems to be plausible to conclude that the 1111 persistently elevated ERK1/2 activity may block further differentiation of chondroblasts and in this way could be a factor involved 1112 1113 in the complete inhibition of *in vitro* cartilage matrix production following PKCdelta gene silencing. However, application of gene 1114 1115 silencing of PKCdelta had variable effects on MEK-ERK1/2 signal-1116 ling pathway in different systems [39,41,42], but the majority of 1117 the investigations describes PKCdelta as a negative regulator of MEK-ERK1/2 pathway [43]. As we failed to detect any elevation in 1118 1119 the phosphorylation of ERK1/2, instead, we found a decreasing 1120 pattern following the application of rottlerin, therefore we 1121 suppose that this compound is probably not a PKCdelta inhibitor 1122 in HDC. This idea is further supported by the fact that we 1123 were unable to detect any consistent change of PKCdelta enzyme 1124 activity in our experiments when rottlerin was applied to the 1125 culture medium of cells for 4–4 h on days 2 and 3. However, when 1126 rottlerin was added to the reaction mixtures of total PKC enzyme 1127 activity assays performed in cell free samples prepared from untreated HDC, it resulted in significantly lower enzyme activities. 1128 1129 Nonetheless, the contradiction can be resolved if we hypothesise 1130 that rottlerin might have different effects when applied to cells or to an *in vitro* enzyme activity assay. As we have already mentioned, 1131 rottlerin has been described as a mitochondrial uncoupler in 1132 different cells [11], and a wide range of its effects (including 1133 1134 indirect inhibition of PKCdelta) can be regarded as a consequence 1135 of this phenomenon.

1136 Taken together, our results suggest that PKCdelta is a positive 1137 regulator of in vitro chondrogenesis upstream to the protein 1138 expression and phosphorylation of Sox9. Since the activity of 1139 ERK1/2 was increased by PKCdelta gene silencing, PKCdelta could also be a negative regulator of the ERK1/2 kinase pathway in HDC. 1140 1141 However, our results concerning the involvement of PKCdelta in the 1142 MAPK pathway seem to be controversial, as inhibition of PKCdelta activity by rottlerin and PKCdelta gene silencing has led to opposing 1143 1144 results. Nevertheless, the apparent confusion can be resolved if the 1145 PKCdelta-independent effects of rottlerin are also taken into 1146 consideration: rottlerin is reported to inhibit other PKC isoforms as 1147 well as other kinases, such as p38-regulated kinase, MAPK-acti-1148 vated protein kinase 2, PKA or CaM-KIII and it can also modulate mitochondrial metabolic processes [11,14]. Because of its diverse 1149 1150 and probably non-PKCdelta-specific effects, we do not recommend

Please cite this article in press as: C. Matta, et al., PKCdelta is a positive regulator of chondrogenesis in chicken high density micromass cell cultures, Biochimie (2010), doi:10.1016/j.biochi.2010.09.005

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

C. Matta et al. / Biochimie xxx (2010) 1-11

1151 application of rottlerin as an approach for investigating the role of 1152 PKCdelta in chondrifying high density micromass cultures. 1153

1154 5. Conclusions

1155 1156

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

The main findings of this work can be summarised as follows. 1157 The continuously detectable PKCdelta expression and activity 1158 exhibited a peak on days 2 and 3, when chondrogenic cells 1159 differentiate into chondroblasts in HDC. Rottlerin decreased PKC 1160 activity in a cell-free assay system, but failed to inhibit PKC activity 1161 when it was applied to HDC during culturing. Gene silencing 1162 resulted in a significantly lower PKC activity. Both rottlerin and 1163 PKCdelta shRNA caused a severe reduction in cartilage formation 1164 as well as in the protein and phospho-protein levels of Sox9. 1165 Rottlerin reduced, while PKCdelta gene silencing elevated the 1166 phosphorylation status of ERK1/2. On the basis of our results, we 1167 concluded that PKCdelta stimulates in vitro chondrogenesis via 1168 influencing Sox9 and ERK1/2 phosphorylation, but inhibition of 1169 cartilage formation in the rottlerin-treated HDC is presumably 1170 a PKCdelta-independent process. 1171

Acknowledgements

The authors thank Mrs. Krisztina Bíró and Mrs. Júlia Bárány at the Department of Anatomy for their skilful and excellent technical assistance. This work was supported by grants from the Hungarian Science Research Fund (OTKA CNK 80709) and the Hungarian Ministry of Health (ETT 022/09).

Appendix. Supplementary material

Supplementary material associated with this paper can be found, in the online version, at doi:10.1016/j.biochi.2010.09.005.

References

- [1] H.M. Kronenberg, Developmental regulation of the growth plate, Nature 423 (2003) 332-336.
- S.H. Chang, C.D. Oh, M.S. Yang, S.S. Kang, Y.S. Lee, J.K. Sonn, J.S. Chun, Protein [2] kinase C regulates chondrogenesis of mesenchymes via mitogen-activated protein kinase signaling, J. Biol. Chem. 273 (1998) 19213-19219.
- [3] B. Choi, J.S. Chun, Y.S. Lee, J.K. Sonn, S.S. Kang, Expression of protein kinase C isozymes that are required for chondrogenesis of chick limb bud mesenchymal cells, Biochem. Biophys. Res. Commun. 216 (1995) 1034-1040
- G.X. Shen, Selective protein kinase C inhibitors and their applications, Curr. [4] Drug Targets Cardiovasc, Haematol, Disord, 3 (2003) 301-307.
- [5] S.F. Steinberg, Distinctive activation mechanisms and functions for protein kinase Cdelta, Biochem. J. 384 (2004) 449–459. G. Gorelik, J.Y. Fang, A. Wu, A.H. Sawalha, B. Richardson, Impaired T cell
- [6] protein kinase Cdelta activation decreases ERK pathway signaling in idiopathic and hydralazine-induced lupus, J. Immunol. 179 (2007) 5553-5563.
- [7] D.N. Jackson, D.A. Foster, The enigmatic protein kinase Cdelta: complex roles in cell proliferation and survival, FASEB J. 18 (2004) 627–636.
- [8] H.J. Mackay, C.J. Twelves, Targeting the protein kinase C family: are we there yet? Nat. Rev. Cancer 7 (2007) 554–562.
- 1202 S.P. Davies, H. Reddy, M. Caivano, P. Cohen, Specificity and mechanism of [9] 1203 action of some commonly used protein kinase inhibitors, Biochem. J. 351 (2000) 95 - 105.
- 1204 [10] Y.A. Choi, D.K. Kim, S.S. Kang, J.K. Sonn, E.J. Jin, Integrin signaling and cell 1205 spreading alterations by rottlerin treatment of chick limb bud mesenchymal 1206 cells, Biochimie 91 (2009) 624-631. 1207
 - S.P. Soltoff, Rottlerin: an inappropriate and ineffective inhibitor of PKCdelta, [11] Trends Pharmacol. Sci. 28 (2007) 453-458. [12]
- 1208 M. Gschwendt, Protein kinase Cdelta, Eur. J. Biochem. 259 (1999) 555-564.
- 1209 [13] U. Kikkawa, H. Matsuzaki, T. Yamamoto, Protein kinase Cdelta (PKCdelta):
 - activation mechanisms and functions, J. Biochem. 132 (2002) 831-839.
- 1210 [14] J.A. Tapia, R.T. Jensen, L.J. Garcia-Marin, Rottlerin inhibits stimulated enzy-1211 matic secretion and several intracellular signaling transduction pathways in 1212 pancreatic acinar cells by a non-PKC-delta-dependent mechanism, Biochim. Biophys. Acta 1763 (2006) 25-38. 1213
- [15] K. Masur, K. Lang, B. Niggemann, K.S. Zanker, F. Entschladen, High PKC alpha 1214 and low E-cadherin expression contribute to high migratory activity of colon 1215 carcinoma cells, Mol. Biol. Cell 12 (2001) 1973-1982.

- [16] Y. Zhou, D. Wang, F. Li, J. Shi, J. Song, Different roles of protein kinase C-betal and -delta in the regulation of adipocyte differentiation, Int. J. Biochem. Cell Biol. 38 (2006) 2151-2163
- [17] M. Koyanagi, M. Iwasaki, J. Haendeler, M. Leitges, A.M. Zeiher, S. Dimmeler, Wnt5a increases cardiac gene expressions of cultured human circulating progenitor cells via a PKCdelta activation, PLoS. One 4 (2009) e5765.
- [18] Q.J. Wang, P. Acs, J. Goodnight, T. Giese, P.M. Blumberg, H. Mischak, J.F. Mushinski, The catalytic domain of protein kinase Cdelta in reciprocal delta and epsilon chimeras mediates phorbol ester-induced macrophage differentiation of mouse promyelocytes, J. Biol. Chem. 272 (1997) 76-82.
- [19] P.B. Ahrens, M. Solursh, R.S. Reiter, Stage-related capacity for limb chondrogenesis in cell culture, Dev. Biol. 60 (1977) 69–82.
- [20] V. Lefebvre, W. Huang, V.R. Harley, P.N. Goodfellow, C.B. de Crombrugghe, Sox9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1(II) collagen gene, Mol. Cell Biol. 17 (1997) 2336-2346.
- [21] W. Dessau, M.H. von der Mark, M.K. von der Mark, S. Fischer, Changes in the patterns of collagens and fibronectin during limb-bud chondrogenesis, J. Embryol. Exp. Morphol. 57 (1980) 51-60.
- [22] W.M. Kulyk, J.L. Franklin, L.M. Hoffman, Sox9 expression during chondrogenesis in micromass cultures of embryonic limb mesenchyme, Exp. Cell Res. 255 (2000) 327-332.
- [23] C. Matta, J. Fodor, Z. Szijgyarto, T. Juhasz, P. Gergely, L. Csernoch, R. Zakany, Cytosolic free Ca2+ concentration exhibits a characteristic temporal pattern during in vitro cartilage differentiation: a possible regulatory role of calcineurin in Ca-signalling of chondrogenic cells, Cell Calcium 44 (2008) 310 - 323
- [24] G. Valacchi, A. Pecorelli, M. Mencarelli, P. Carbotti, V. Fortino, M. Muscettola, E. Maioli, Rottlerin: a multifaced regulator of keratinocyte cell cycle, Exp. Dermatol. 18 (2009) 516-521.
- [25] J.K. Sonn, M. Solursh, Activity of protein kinase C during the differentiation of chick limb bud mesenchymal cells, Differentiation 53 (1993) 155-162.
- [26] Y.M. Yoon, C.D. Oh, S.S. Kang, J.S. Chun, Protein kinase A regulates chondrogenesis of mesenchymal cells at the post-precartilage condensation stage via protein kinase C-alpha signaling, J. Bone Miner. Res. 15 (2000) 2197-2205.
- V. Grill, M.A. Sandrucci, M. Basa, V. Nicolin, P. Narducci, R. Bareggi, [27] A.M. Martelli, Immunochemical and immunocytochemical expression of protein kinase C isoenzymes alpha, delta, epsilon and zeta in primary adherent cultures of chick chondrocytes, Ital. J. Anat. Embryol. 107 (2002) 73 - 84
- [28] Y. Fan, Y.Q. Zhang, D.J. Sun, Y.N. Zhang, X.W. Wu, J. Li, Rottlerin protected dopaminergic cell line from cytotoxicity of 6-hydroxydopamine by inhibiting PKCdelta phosphorylation, Neurosci. Bull. 25 (2009) 187-195.
- S. Kim, J. Hwang, W.H. Lee, D.Y. Hwang, K. Suk, Role of protein kinase [29] Cdelta in paraquat-induced glial cell death, J. Neurosci. Res. 86 (2008) 2062-2070.
- [30] J.R. Klinger, J.D. Murray, B. Casserly, D.F. Alvarez, J.A. King, S.S. An, G. Choudhary, A.N. Owusu-Sarfo, R. Warburton, E.O. Harrington, Rottlerin causes pulmonary edema in vivo: a possible role for PKCdelta, J. Appl. Physiol. 103 (2007) 2084-2094.
- [31] T. Kurosu, K. Tsuji, A. Kida, T. Koyama, M. Yamamoto, O. Miura, Rottlerin synergistically enhances imatinib-induced apoptosis of BCR/ABL-expressing cells through its mitochondrial uncoupling effect independent of protein kinase Cdelta, Oncogene 26 (2007) 2975-2987.
- [32] B.E. Bobick, W.M. Kulyk, The MEK-ERK signaling pathway is a negative regulator of cartilage-specific gene expression in embryonic limb mesenchyme, J. Biol. Chem. 279 (2004) 4588-4595.
- [33] R. Zakany, Z. Szijgyarto, C. Matta, T. Juhasz, C. Csortos, K. Szucs, G. Czifra, T. Biro, L. Modis, P. Gergely, Hydrogen peroxide inhibits formation of cartilage in chicken micromass cultures and decreases the activity of calcineurin: implication of ERK1/2 and Sox9 pathways, Exp. Cell Res. 305 (2005) 190 - 199.
- [34] M.R. Seghatoleslami, J.A. Roman-Blas, A.M. Rainville, R. Modaressi, K.G. Danielson, R.S. Tuan, Progression of chondrogenesis in C3H10T1/2 cells is associated with prolonged and tight regulation of ERK1/2, J. Cell Biochem. 88 (2003) 1129-1144.
- [35] R. Tuli, S. Tuli, S. Nandi, X. Huang, P.A. Manner, W.J. Hozack, K.G. Danielson, D.J. Hall, R.S. Tuan, Transforming growth factor-beta-mediated chondrogenesis of human mesenchymal progenitor cells involves N-cadherin and mitogen-activated protein kinase and Wnt signaling cross-talk, J. Biol. Chem. 278 (2003) 41227-41236.
- [36] B.E. Bobick, A.I. Matsche, F.H. Chen, R.S. Tuan, The ERK5 and ERK1/2 signaling pathways play opposing regulatory roles during chondrogenesis of adult human bone marrow-derived multipotent progenitor cells, J. Cell Physiol. 224 (2010) 178-186.
- [37] G. Czifra, I.B. Toth, R. Marincsak, I. Juhasz, I. Kovacs, P. Acs, L. Kovacs, P.M. Blumberg, T. Biro, Insulin-like growth factor-I-coupled mitogenic signaling in primary cultured human skeletal muscle cells and in C2C12 myoblasts. A central role of protein kinase Cdelta, Cell Signal. 18 (2006) 1461-1472.
- [38] A. Toker, Signaling through protein kinase C, Front. Biosci. 3 (1998) D1134-D1147.
- Y.L. Hsu, P.L. Kuo, Diosmetin induces human osteoblastic differentiation [39] through the protein kinase C/p38 and extracellular signal-regulated kinase 1/2 pathway, J. Bone Miner. Res. 23 (2008) 949-960.

Please cite this article in press as: C. Matta, et al., PKCdelta is a positive regulator of chondrogenesis in chicken high density micromass cell cultures, Biochimie (2010), doi:10.1016/j.biochi.2010.09.005

C. Matta et al. / Biochimie xxx (2010) 1–11

11

1291

1292

- 1281 1282
- 1283
- 1284
- a p38delta-extracellular signal-regulated kinase 1/2 complex, Mol. Cell Biol. 24 (2004) 8167-8183. [41] Y.M. Lee, W.H. Li, Y.K. Kim, K.H. Kim, J.H. Chung, Heat-induced MMP-1 expression is mediated by TRPV1 through PKCalpha signaling in HaCaT cells,

[40] T. Efimova, A.M. Broome, R.L. Eckert, Protein kinase Cdelta regulates kerati-

nocyte death and survival by regulating activity and subcellular localization of

- 1285 1286
 - Exp. Dermatol. 17 (2008) 864-870.
- 1287 [42] B. Liu, E.J. Ryer, R. Kundi, K. Kamiya, H. Itoh, P.L. Faries, K. Sakakibara, K.C. Kent, Protein kinase Cdelta regulates migration and proliferation of 1288 vascular smooth muscle cells through the extracellular signal-regulated 1289 kinase 1/2, J. Vasc. Surg. 45 (2007) 160-168. 1290
- [43] G.K. Lonne, K.C. Masoumi, J. Lennartsson, C. Larsson, Protein kinase Cdelta supports survival of MDA-MB-231 breast cancer cells by suppressing the ERK1/2 pathway, J. Biol. Chem. 284 (2009) 33456–33465.