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Abstract 

Calcium sparks and embers are localized intracellular events of calcium release in 

muscle cells studied frequently by confocal microscopy using line-scan imaging. 

The large quantity of images and large number of events require automatic 

detection procedures based on signal processing methods. In the past decades 

these methods were based on thresholding procedures. Although recently wavelet 

transforms were also introduced, they have not become widespread. We have 

implemented a set of algorithms based on one and two dimensional versions of 

the à trous wavelet transform. The algorithms were used to perform spike 

filtering, denoising and detection procedures. Due to the dependence of the 

algorithms on user adjustable parameters, their effect on the efficiency of the 

algorithm was studied in detail. We give methods to avoid false positive 

detections which are the consequence of the background noise in confocal images. 

In order to establish the efficiency and reliability of the algorithms, various tests 

were performed on artificial and experimental images. Spark parameters 

(amplitude, full width at half maximum) calculated using the traditional and the 

wavelet methods were compared. We found that the latter method is capable of 

identifying more events with better accuracy on experimental images. 

Furthermore, we extended the wavelet based transform from calcium sparks to 

long-lasting small-amplitude events as calcium embers. The method not only 

solved their automatic detection but enabled the identification of events with 
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small amplitude that otherwise escaped the eye, rendering the determination of 

their characteristic parameters more accurate. 

Keywords: calcium spark, ember, automatic detection, wavelet analysis 

Introduction 

The key step in excitation-contraction coupling of muscle cells is the increase in 

intracellular calcium concentration. In skeletal muscle calcium ions are released 

from their internal stores, the sarcoplasmic reticulum through calcium release 

channels (ryanodine receptors; RyR). The opening of one or a few RyR gives rise 

to localized calcium release events (LCRE; Cheng 1993; Schneider 1996) which 

are assumed to be the building blocks of the global calcium signal. To study these 

events confocal microscopy and calcium sensitive fluorescent dyes are used (e.g. 

Klein and Schneider 2006; Csernoch 2007; Cheng and Lederer 2008). 

Due to the spatial and temporal characteristics of the events seen in line-scan (x-t) 

images they have been termed calcium sparks (high amplitude and short duration 

events; Cheng et al. 1993; Schneider and Klein 1996) or embers (small amplitude 

and long lasting events; González et al. 2000) (for recent reviews see e.g. 

Csernoch 2007; Cheng and Lederer, 2008). In these studies large quantities of 

images are produced, hundreds or thousands of events are analyzed, and statistical 

methods are used because of the bias introduced in the imaging and calculation 

processes. 

Therefore, to detect calcium release events on confocal images, automatic 

detection methods have been developed. The goal of these algorithms is to detect 

and then isolate the area of each event from the noisy background, and, finally, to 

extract the characteristic parameters of the events. Most of these methods are 

based on a double threshold algorithm (this will be referred to as the conventional 

method) proposed by Cheng et al. (1999). Modified versions of the algorithm 
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were used in several studies (Ríos et al. 2001; Zhou et al. 2003; Sebille et al. 

2005; Picht et al. 2007). However, due to the unreliable detection caused by the 

large variety of event morphology – especially those of embers in images from 

mammalian muscles – and the presence of various noise patterns, emphasis has 

also been placed on interactive procedures (manual selection of regions of interest 

and removing false positive detections). 

To overcome these difficulties, methods based on wavelet transforms were also 

introduced in recent years for image enhancement and detection (Wegner et al. 

2006; 2007). Wavelet transforms are time-frequency signal decomposition 

methods, their theory has been developed starting from the mid 1980's. In 

biomedical image processing wavelets are used for image enhancement, noise 

reduction and object detection (Unser and Aldroubi 1996). Although the à trous 

wavelet transform has excellent image enhancing and object detection 

characteristics on noisy images, to achieve fully automatic detection for events 

with variable size, parameters of the algorithm have to be properly adjusted. For 

images burdened with photon or shot noise tuning of the algorithm to achieve 

reliable detection brings up further difficulties. 

Nevertheless, a fully automatic detection remains the main goal of these 

procedures. In case of sparks, current methods are able to detect events reliably 

enough to analyze data without manual intervention. However, in case of embers, 

previously described algorithms did not provide satisfactory results unless manual 

detection was also included. 

We have developed a program in MATLAB (The MathWorks Inc., Natick, USA) 

to have a Graphical User Interface to carry out calcium event detection. The 

program uses wavelet based analysis, utilizing the à trous transform with cubic B-

spline as scaling function. This transform has been proposed by Starck (1993) and 
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his coworker, Murtagh (1994) in astronomical image analysis and was first 

introduced by Wegner and coworkers (2006) for confocal images in calcium spark 

analysis. While using the conventional method manual user intervention was 

necessary to modify automatically selected events, with the wavelet based 

analysis developed here a fully automatic analysis has been achieved for sparks 

and an essentially automatic analysis has been achieved for embers. 

We designed procedures to test the algorithm and compared the results with 

previous works and the conventional method. Since experimental images may 

contain various noise patterns, derived mostly from shot noise produced by the 

detector, we give a method to use the algorithm on noisy experimental images. 

Moreover, we test the algorithm for simultaneous detection of high and low 

amplitude events, and thus propose procedures to detect embers, when both sparks 

and embers are present on the same experimental image. 

Methods 

The algorithm was tested on both experimental and simulated images. The latter, 

with noisy backgrounds generated by the computer, were used to establish the 

basic values for the parameters of the algorithm. Modified experimental images 

were then used to study the effects of real noise patterns especially that of shot 

noise, on the detection process. Finally, a set of experimental images were used to 

evaluate the detection methods for embers. 

Implementation of the traditional method 

The implementation of the traditional method is a modified version of the 

algorithm given in a previous work (Cheng et al. 1999). In brief, the original 

F(x,t) image is filtered with a 3x3 median filter. Pixels above CRImean  are 

excluded from the image. CRI is an adjustable parameter between 1.6 and 2.0; the 
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mean and standard deviation ( ) is calculated for each spatial position (pixels at 

a given location at different points in time). A binary mask is formed from the 

excluded pixels, and continuous regions are searched for to give a binary mask of 

potential events. Then the image is normalized to the mean of the baseline 

fluorescence for each spatial position. Values 2mean  and 2  are calculated for the 

normalized image (excluding regions of potential LCRE). A region is accepted as 

an LCRE, if pixel values above 2 2 2mean CRI    exist in the region. The 

criterion CRI2 is a number above 3, for best detection CRI2 between 3.4 and 3.7 is 

used. The test for pixels above CRI2 is a simple test for existence of pixels or 

might be a strict test for continuous regions also. 

Implementation of the à trous wavelet transform for spark detection 

The algorithm used here is an implementation of the à trous wavelet transform 

(Holschneider et al. 1989, Mallat 1999, Shensa 1992). We followed the 

implementation that Starck (1993; Starck and Murtagh 1994) used for denoising 

and object detection in astronomical images. As a scaling function the transform 

uses the B-spline of degree 3 (Starck 1993) utilizing its multi-resolution properties 

(Unser 1997). The details of the transform are presented in Appendix 1. To handle 

the boundaries when performing the convolution one can use either symmetric or 

circular continuity, it has little influence on the wavelet coefficients (not shown). 

In our implementation the circular convolution was used. We demonstrate the 

results of the application of the two-dimensional wavelet transform on a synthetic 

image containing sparks of various sizes in Fig. 1. 

Image denoising  

For denoising the multiresolution support (Starck and Murtagh 1998a) based on 

the à trous transform was used. Applying the transform for L successive levels 



6 

and then rebuilding the signal with the inverse transform from levels limited by a 

proper threshold, gives the denoised signal. Threshold selection is thus a vital step 

in this method. The selection of threshold values is derived from the standard 

deviation of the noise in the signal (Starck and Murtagh 1998a; Starck et al. 

1998b). The algorithm in detail is presented in Appendix 2, and contains a user 

adjustable parameter , to control the threshold level. 

Detection algorithm for sparks 

The same wavelet transform was used for the detection procedure, but now 

starting with the denoised image. A thresholding value TS is applied for each 

wavelet plane, 

Sj jT   
, (1) 

where j is the standard deviation of noise for level j (for details see Appendix 2), 

and  is a user adjustable parameter. This results in the construction of binary 

masks for each plane. Small sized (in terms of signal processing high frequency) 

events as sparks appear on planes 2 and 3, while larger sized (lower frequencies) 

events as embers, on higher level planes (see section Automatic ember detection 

in Results). In case of sparks, from the binary masks of level 2 and 3 (through a 

logical or operation) the connecting areas are formed, limiting the high frequency 

transition borders of sparks. For experimental images with less noise wavelet level 

4 might also be used (Fig. 1). 

Besides the areas containing LCRE, small areas may also be detected as events, 

due to specific noise patterns. These should, therefore, be discarded. When used 

for object detection, the à trous wavelet method is not robust enough in relation to 

false positive detections. High amplitude, stand-alone pixels together with noise 

patterns (2-3 neighboring pixels of higher value than background mean) can 
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disturb the detection process (Starck and Murtagh 2002). These appear frequently 

on fluorescence images with higher levels of shot noise. 

As a measure of the detected area the number of pixels forming the connected 

area is thus introduced, and is termed event size. When performing the detection, 

events with sizes below a user adjustable β are discarded; hence, β is the third 

parameter of the algorithm. 

Event parameter calculation 

Sparks 

For sparks, event parameters were calculated according to the usual procedure 

(Hollingworth et al. 2001). In case of the conventional method, the calculations 

were done on data extracted for sparks from the normalized image. In case of the 

wavelet method the normalized and denoised images were used for the 

calculations. In order to compare values obtained from the denoised data with 

values obtained from the normalized image in some tests the calculations were 

carried out for both. Event parameters, full width at half maximum (FWHM), full 

time at half maximum (FTHM) and amplitude, were calculated by averaging three 

neighboring lines in space and time, respectively, passing through the pixel within 

the spark mask having the highest value on the denoised image. 

Embers 

Before the analysis of the parameters of embers, background fluorescence 

estimates were updated for each spatial position from the mean fluorescence level 

of pixels not within a spark or ember mask. The raw image was then renormalized 

with the updated background level. This normalized image (Fne), now correctly 
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representing embers, was used to calculate the parameters as well as to recalculate 

the parameters of sparks. 

Within the ember mask, the beginning and the end of the plateau phase were 

marked by the positions where the pixel values reach 80% of the maximal 

amplitude. We consider the duration of the ember to be the temporal distance 

between these two marks. All pixel values of Fne between the two marks and not 

within a spark area were averaged in the spatial domain, showing the spatial 

distribution of fluorescence during the plateau phase of the ember. A Gaussian fit 

was applied to these mean values, from which the FWHM and amplitude 

parameters were derived (see e.g. Lukacs et al. 2008). 

Images used for the evaluation of the algorithms 

Experimental procedures for obtaining images containing sparks 

Skeletal muscle fibers isolated from frogs or rats were loaded with 0.1 mM Fluo-3 

to record LCRE. Images were captured using an LSM 510 META laser scanning 

confocal microscope (Zeiss, Oberkochen, Germany) as described earlier (Lukacs 

et al. 2008). In brief, line-scan images were taken at 1.54 ms/line and 512 

pixels/line (pixel size 0.142 μm) with a 63x water immersion objective (1.2 n.a., 

Zeiss). Fluo-3 was excited with an Argon ion laser (at 488 nm), emitted light was 

collected through a band-pass filter and digitized at 12 bit. 

The noise level of the image – expressed as the ratio of mean ( m ) and standard 

deviation ( ) of the background of the image – is an important parameter of 

algorithm testing. We will refer to it as signal-to-noise ratio of the background 

BSNR m  . For experimental images, this was calculated by excluding pixels 

containing the events. In our experiments (including 700 randomly selected 

images into the analysis) BSNR varied between 3.2 and 5.4. Consequently, we 
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will consider in our tests BSNR of 2.5 as the worst case, 3.5 as intermediate and 

4.5 as good experimental conditions. 

Artificial images 

We used two methods to construct the background for our simulated images. First, 

the background was approximated by a generated noise with Gaussian distribution 

(e.g. Cheng et al. 1999; Wegner et al. 2006). This is a good approximation for 

images with low levels of shot noise. Second, we used experimental images to 

reconstruct the heavy shot noise patterns. Images used to generate such a 

background were first tested for having no positive detection of LCRE. Moreover, 

the scan lines were shuffled randomly to eliminate the possibility of undetected 

sparks in the image. 

In order to test the accuracy of detecting sparks, synthetic model sparks were 

embedded in the background. The model spark (see e.g. Fig. 6 insets) was 

obtained by averaging the image of 10 experimental sparks (similar size in x and t 

directions) and smoothing the obtained image, and had a FWHM of ~1.7 µm, 

FTHM of ~9 ms and a duration of ~14 ms, values which correspond to sparks 

detected in our experimental images. It was then scaled to have various 

amplitudes. The sparks, six for each image, were distributed randomly in the 

image; no overlapping regions between sparks were permitted (see e.g. Fig. 1a). 

Images containing embers 

Since embers are more diverse in their morphology than sparks, we decided not to 

generate simulated images containing embers, but to evaluate the effectiveness of 

the detection method on a set of images from experiments containing embers. We 

have previously shown that the scorpion toxin maurocalcine causes frequent long 

lasting calcium release events (embers) on skeletal muscle fibers (see e.g. Lukacs 
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et al. 2008). A set of 74 images from these experiments were used to evaluate the 

detection algorithm. Images contain both sparks and embers (sometimes as 

combined events) with relatively high frequency and varying duration for embers 

made them ideal for the evaluation of the detection algorithm. Positions of the 

embers were manually determined by a person experienced in confocal image 

analysis. The result of the detection algorithm was compared to this manual 

selection on all images, minor differences in position were not considered as false 

detections since they do not affect the parameters of the ember. 

Methods used to test the algorithm 

To test the algorithm, 240 images with randomly embedded events (see above) 

were analyzed for a given set of parameters. During the repeated execution, 

parameters of the sparks were calculated and collected. In addition, true positive 

(TP; event found at the location where it was originally placed), false positive 

(FP; an event found at a location where originally no event was placed) and false 

negative (FN; an originally positioned event that was not found) detection counts 

were retained. To evaluate the performance and reliability of the algorithm the 

sensitivity (S; defined as )/( FNTPTP  ) and the positive predictive value (PPV, 

as defined in signal detection theory )/( FPTPTP  ) were calculated. To 

characterize the functions, the values S50 and PPV50, defined as the relative event 

amplitude where S and PPV reach 50% detection probability, were used (Wegner 

et al. 2006). Statistical analysis was made using the SigmaStat (Aspire Software 

International, Ashburn, USA) program. Mann-Whitney Rank Sum test was used 

to compare median values and Brown-Forsythe test was used to compare standard 

deviations. In both cases P-value 0.001 was defined as significant. 
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Results 

Artificial images 

First the performance of the traditional and the wavelet-based detection methods 

were compared on artificial images (Fig. 3) where the background was generated 

from experimental images (see Methods, Simulated images). The traditional 

method can be set to give satisfactory sensitivity in the 0.2-0.5 amplitude region 

(Fig. 3a), which is the region where sparks are most abundant in mammalian 

muscle. However, in the same amplitude region, using the same parameters the 

positive predictive value of the detection was extremely low (less than 0.2, see 

Fig. 3b), indicating that the traditional method requires an extensive manual post-

processing. 

While the sensitivity of the wavelet based detection method was essentially the 

same as that of the traditional method, it performed substantially better in the 

detection of similar amplitudes. The PPV50 value was lower by more than 0.3 

(0.287 vs. 0.592) relative fluorescence units as compared to the traditional method 

(Fig. 3b). The PPV curve was, however, less steep than in case of the traditional 

method and it also did not match the steepness previously described in case of a 

similar algorithm (Wegner et al 2006). After a close examination, it was found 

that most of this difference could be attributed to false positive events – termed 

“spikes” from hereon –, which are not present on simulated images with 

Gaussian-distributed background noise. The background noise profile of 

experimental images is not perfectly Gaussian- or even Poisson-like since high 

amplitude pixels are more abundant than predicted by those distributions 

(Fig. 2a). Spikes are created by the wavelet-based denoising procedure when two 

or three pixels with high amplitude are next to each other (Fig. 2b-c, f). These 
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areas are then detected as false positive events (Fig. 2d, h). We compared the 

detection statistics of the algorithm on images with different distributions of the 

background noise using the same parameters (Table 1). A difference of about 0.3 

units in PPV50 was found between images with typical experimental backgrounds 

(BSNR 3.24) and with Gaussian backgrounds with similar BSNR. In case of 

extremely noisy experimental backgrounds (BSNR < 2.5) the difference was even 

more pronounced (not shown). 

The threshold operator 

The selection of the threshold operator also has an influence on the detection of 

false positive events in noisy images. Of the three operators described in 

Appendix 2, soft thresholding produces the smoothest denoised images, but it 

modifies all coefficients, therefore substantially influences the calculated event 

parameters. The affine threshold operator produces a smoother denoised image 

than hard thresholding, but as an effect of inclusion of small wavelet coefficients, 

it is vulnerable to spikes (data not shown). Consequently, the hard threshold 

operator was used during the tests for image denoising. 

Event size 

Since spikes are generated by the denoising algorithm from a small number of 

neighboring pixels, they are generally smaller in time and space than detectable 

true events. Therefore, at first, it seemed feasible to eliminate spikes by setting a 

threshold – parameter β –for the size of the events during detection (Fig 2 h, i). 

We evaluated different settings of β between 2 and 40 (in Fig. 4 data for β=2, 10 

and 40 shown). We did not try β values lower than 2, since that would mean the 

inclusion of “events” containing only one pixel. Even if these hits were true 

positives, they would be indistinguishable from the background. With β=40 we 
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could already reach 100% PPV at all amplitudes where we could detect events, so 

any further increase in β would only shift PPV50 to the right, but not improve 

sensitivity. 

From the detailed evaluation of different β parameters, we concluded that size-

based event selection is not an efficient method of eliminating false positive hits 

caused by spikes. Its moderate increase only slightly improves one part of the 

PPV curve (Fig. 4b, compare curves for β = 2 and β = 10) while a β set high 

enough to improve PPV substantially worsens sensitivity (Fig. 4a). 

Spike filter 

As selecting higher β values did not prove useful for the exclusion of spike-

induced false positive events, we applied a filter, also based on the à trous wavelet 

transform to find and remove the high-amplitude pixels forming spikes. This 

“spike filter” was applied to the normalized image, which was obtained by the 

same procedure as described for the traditional method, except for the 

introductory median filtering and smoothing. Before denoising, the high 

frequency components of the image were selected (Koshino et al. 2002). The à 

trous transform was calculated for wavelet levels 1 and 2. For the ),( xtFn  image: 

2

2

1

( , ) ( , ) ( , )n i

i

F t x c t x w t x


   . (2) 

The backward transform was performed including only the wavelet coefficients 

(and excluding the background obtained for level 2):  

),(),(hf
2

1

xtwxt
i

i


  .  (3) 

Mean and standard deviation ( ,m ) of ),(hf xt  were calculated. A threshold was 

applied: 
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 Hmxthf ),(  (4) 

resulting in a binary image ),( yxB , revealing the high frequency pixels (edges, 

spikes). H is the parameter of tuning the threshold level; in case of our line-scan 

images the best results were obtained using values between 3.5 and 4.5. 

Connected regions of 2 or more pixels were discarded. This can be achieved by 

convolving the binary image B with the 
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kernel and discarding more than 2 connected pixels. This step prevented us from 

smoothing regions of pixels with high fluorescence values that appear in areas of 

sparks. Solitaire high amplitude pixels were replaced by the mean of their 8 

neighbors. The difference between results of the denoising procedure with and 

without spike filtering is shown in Fig. 2f-i. 

Spike filters are generally not perfect, i.e. they may attenuate real sparks with 

small areas that have similar morphology to spikes, therefore, the application of 

the spike filter will at least slightly influence the detection of small sized events. 

According to our results a minor decrease in sensitivity is indeed present, but 

definitely not as serious as when using high β values. We obtained the best PPV 

for H=3.5, and even at this setting the decrease in sensitivity was moderate (data 

not shown). 

These results could be further improved by applying the spike filter locally. Since 

spike-induced false positives are limited in event area, we can use the spike filter 

as an exclusion technique on events with small areas. In practice, the wavelet-

based detection procedure is run without spike filtering, and after the detection 

phase one tests the small sized events for spikes (in practice we limit the test to 
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events with areas below 50 pixel). The method is the same as described above, but 

the application area is limited to pixels within the detection mask of the event 

from the normalized image. After the test, small sized events identified as spikes 

are excluded, since the presence of pixels having high values in a small spark is 

improbable. This local test doesn't affect sparks with higher event size and 

amplitude. 

With this improved method we could reach good spike filtering with practically 

no loss in sensitivity (Fig. 3a). In conclusion, we found that on our system the 

optimal parameter set for mammalian spark detection is δ=4.0, τ=3, β=2, and the 

spike filter should be applied with H=4.5, since it produces marked gain in PPV 

with no visible loss in sensitivity. 

Parameters of the detected events 

To test the accuracy of the calculation of event parameters, we compared the 

calculated parameters of differently scaled events embedded in synthetic images 

(Fig. 6). We used three scaled versions of the model spark: the one used in all 

other tests (hereafter referred to as normal sized; FWHM=1.78 μm and 

FTHM=18.4 ms) together with its half and double sized versions. Scaling was 

performed in both spatial and temporal dimensions. For each scaled version we 

generated images containing sparks between amplitudes 0.2 and 0.9 ΔF/F0. 

We found that the calculated amplitude is a linear function of the generated 

amplitude at all FWHM values if the generated amplitude is at or above 0.4. Note 

that sparks with amplitudes higher than 0.4, could be detected with practically 

100% sensitivity. The non-linearity in amplitude values below 0.4 is caused by the 

fact that in the case of smaller amplitudes, a spark has greater chance to be 

detected if positive noise is added on it. Therefore, for sparks with small 
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amplitudes the calculated event amplitude is a biased estimate of the original 

event amplitude. Another interesting fact about the relationship between the 

generated and the calculated event amplitude is that the slope of the linear part of 

the function is itself a monotonically increasing function of FWHM (i.e. it was the 

smallest for the half sized and the largest for the double sized events). In case of 

the normal sized model spark, the slope was around unity (Fig. 6b). 

We also compared the calculated FWHM values to those of the different scaled 

model sparks. As a general finding, the calculated FWHM at most equals that of 

the model spark, usually the calculation underestimates the FWHM. In case of the 

half sized model spark, the calculated FWHM was smaller than the original 

FWHM at all tested amplitudes and was independent of event amplitude (Fig. 6a). 

In the other cases the detected FWHM definitely increased as the relative 

amplitude of events increased, and reached 90% of the generated value at 

amplitude levels 0.64 and 0.4 in the case of normal (Fig. 6b) and double sized 

(Fig. 6c) model sparks, respectively. 

Experimental images 

To compare data obtained by the new wavelet-based method to data obtained by 

the previously used traditional method, we evaluated the results of both methods 

on a set of experimental images. First, the wavelet-based detection identifies a 

number of events that are not found by the traditional method. In addition, both in 

case of the detected amplitude and in case of the detected FWHM, the mean from 

the wavelet-based method (0.490±0.005 ∆F/F0 and 1.90±0.01 µm) was 

significantly (p<0.001) lower than those of the traditional method 

(0.523±0.006 ∆F/F0 and 2.33±0.03 µm) (Fig. 5). In case of FWHM it is also 

apparent that the standard deviation is smaller (0.706 vs. 1.787 in the wavelet-
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based and in the traditional method, respectively), i.e. there are fewer events with 

FWHM much different from mean FWHM. This difference is also significant 

(p<0.001). 

We attribute these differences mainly to two factors. First, the wavelet-based 

method has better sensitivity and PPV at smaller amplitudes, therefore small 

sparks had higher probability to be detected by the wavelet transformation. 

Second, the denoising produces based on the wavelet transforms generate much 

cleaner images than the median filter used in the traditional method therefore 

curve fittings are more accurate. We visually compared several sparks where the 

result of fitting was different for the two algorithms and verified that the fitting on 

the wavelet-denoised image was better. 

Automatic ember detection 

Image preprocessing for ember detection 

Our ember detection method uses the raw fluorescence image as its input 

(Fig. 7a), but sparks are excised from it. This excision is achieved by the 

multiplication of the original image with the inverse of the spark mask generated 

in the final step of spark detection, containing 0 if a pixel is within a spark 

rectangle and 1 otherwise (Fig. 7a, rectangles). In order not to generate sharp 

amplitude steps causing undesired signals on lower frequency (i.e. higher) wavelet 

levels, pixels with zero values are filled with the values of a randomly positioned 

set of pixels from the same time line not within any spark rectangle. Let the image 

generated this way be denoted as Fe (Fig. 7c). Note that the described filling 

method also ensures that even if consecutive sparks are present in a column, they 

are filled with different background pixels. Without random sampling from the 

column, unwanted low frequency patterns may arise, significantly lowering the 
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positive predictive value of the algorithm. This image is further enhanced by spike 

filtering (see section Spike filter), eliminating shot noise patterns that can cause a 

significant signal even on high wavelet levels. In conclusion, Fe is suitable for use 

in all further steps of ember detection. 

Wavelet transform and ember detection 

We propose two slightly different methods for ember detection, both based on the 

á trous wavelet transform. Both algorithms have clear advantages over the other, 

so we provide a detailed analysis and comparison of the two. 

Method A – 2D wavelet transform 

Due to the characteristics of the wavelet transformation, lower frequency signal 

components, like those representing embers, are found on higher wavelet levels. 

We found in our preliminary studies that embers of typical duration (90 ms to 

1300 ms, i.e. 60 to 850 pixels under the condition used here) appear mostly on the 

fifth wavelet level ( 5w , Fig. 7d) if the above-described two dimensional wavelet 

transform is performed. To localize embers on this wavelet plane a double 

thresholding is applied: 

5

5

5

0, ( , ) ,

( , ) 1,  ( , )

2,  ( , ).

A

if w x y

M x y if w x y

if w x y

  


      
   

 , (6) 

where μ is the image mean, ε is the lower criterion and δ is the higher criterion. 

Connected areas of MA ≥ 1 containing at least ten pixels with MA = 1 are 

considered to be embers (Fig. 7e). For further analysis, their bounding rectangle is 

determined by adding 30 pixels in each temporal direction and 10 pixels in each 

spatial direction to the minimum bounding rectangle of the area (Fig. 7i; 

rectangles with short dashed lines). 
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Method B – 1D wavelet transform 

In contrast to the two-dimensional wavelet transform used for spark detection and 

in Method A, in Method B we apply a one-dimensional wavelet transform in the 

time dimension on each image line separately. This choice was made to account 

for the spatiotemporal characteristics of embers (i.e. their width in the space 

domain is on the order of 25 pixels whilst their length in the time domain can be 

more than ten times larger) and for the lack of uniform background level in the 

absence of normalization. 

Apart from the difference in the number of dimensions, we use the same wavelet 

transform and base function as described in section Implementation of the à trous 

wavelet transform for spark detection. Let the wavelet levels of the so 

decomposed signal be denoted as w’k, where k is the number of the level. As 

shown on Fig. 7f-g, embers of typical duration yield the most distinctive signal on 

levels 8 and 9. In case of longer embers, the signal on level 8 is more pronounced 

around the beginning and the end of the event and the signal on level 9 is more 

pronounced in the middle. We, therefore, perform double thresholding on the 

combined image generated by the following function from wavelet levels 8 and 9: 

8 9 8 9' max( ' , ' )w w w   . (7) 

The resulting mask of double thresholding (MB) is generated using the image 

mean (μ), lower (ε) and higher (γ) criteria: 

8 9

8 9

8 9

0, ' ( , ) ,

( , ) 1,  ' ( , )

2,  ' ( , ).

B

if w x y

M x y if w x y

if w x y







 


       
    

 . (8) 

Again, connected areas of MB ≥ 1 containing at least 10 pixels with MB = 1 are 

considered to be embers (Fig. 7h). For further analysis, their bounding rectangle is 

determined by adding 30 pixels in each temporal direction and 10 pixels in each 
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spatial direction to the minimum bounding rectangle of the area (Fig. 7i; 

rectangles with long dashed lines). 

Ember detection statistics 

Detailed analysis of the events detected as embers by our algorithms shows that 

both algorithms are generally capable for automatic ember detection. When tested 

on all 74 images method B based on the 1D wavelet transform always had higher 

positive predictive value for a given sensitivity than method A (Fig. 8). However, 

method A has characteristics that can yield better detection parameters in certain 

applications. First, it is able to find relatively shorter, but wider events (Fig. 7i). 

Second, it is capable of detecting events that span the entire image. In conclusion, 

we found that images similar to those analyzed here can be most effectively 

processed with method B, using parameters ε=0.015 and γ=0.035 (resulting in a 

PPV of 0.84 at 0.71 sensitivity). Under the same conditions method A reached 

0.64 PPV at 0.73 sensitivity (ε=0.015, ζ=0.055). 

We next compared the parameters of long lasting events identified by the wavelet 

transform to those identified by eye. First, it is important to stress that the 

wavelet-based method recognized more events (179 vs. 112 in the 140 images 

tested). It is clear from the distributions of event amplitudes presented in Fig. 9a 

that these extra events had smaller amplitudes. Noteworthy is the fact that the 

amplitude distribution, which had a shallow rising phase for the events identified 

by eye, became more exponential, as expected theoretically. This resulted in a 

clear change in the average amplitude to smaller values, from 0.231±0.013 to 

0.197±0.009, for events identified by eye and by the wavelet method, 

respectively. 
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On the other hand, the distributions of FWHM for the two methods (Fig. 9b) were 

not as different as for the amplitudes, indicating that the extra events found by the 

wavelet method indeed belong to the same group as the others. This observation 

was confirmed by the fact that only a small, albeit significant difference was 

detected in the average values of FWHM, 1.93±0.05 vs. 2.09±0.04 µm. 

Taken together, these observations not only confirm that the wavelet-based 

method is capable of identifying long lasting events as embers, but prove that it 

gives a more accurate detection than a simple identification by eye does. 

Discussion 

In this work the à trous wavelet transform was implemented to detect localized 

calcium release events in fluorescence images from skeletal muscle fibers. We 

used the transform to develop algorithms for denoising, event detection and spike 

filtering. The method proved to be a valuable tool in analyzing these two-

dimensional fluorescence signals (x-t images) embedded in a noisy background. 

Besides the use of the transform to detect calcium sparks – events with large 

amplitude and relatively short duration –, we established a procedure to isolate 

long lasting, low amplitude events, as embers. The results presented here imply 

that these multi-resolution methods are, on the one hand, adequate for analyzing 

confocal images and, on the other hand, indicate that they are a better choice than 

the traditionally applied thresholding algorithms. 

Wavelet based methods in biological data/image processing have been used 

extensively. Nevertheless, these algorithms in calcium imaging have not gained 

ground, and only a few reports are available for comparison (Wegner et al. 2006; 

2007). The important difference between the tests presented in those reports and 

the tests presented here is that we used backgrounds generated from experimental 
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images rather than backgrounds generated using mathematical distributions. This 

difference becomes significant if positive predictive values and sensitivities are 

compared since experimental images are burdened with shot noise. Clearly, the 

values of PPV50 and S50 reported by Wegner and coworkers (2006) are smaller 

than the values obtained here with the simple (without spike filter) wavelet 

method. We believe that this difference is due to the presence of pixels with high 

fluorescence intensity in experimental images. 

Importantly, therefore, if one uses the transform on experimental images from 

mammalian muscle images that are usually affected by high levels of shot noise , 

one must face the high sensitivity of the detection procedure, resulting in a large 

number of false positive detections (see Figs. 1-3). This renders the simple 

wavelet method inconvenient for event detection since an extensive manual post-

processing (removing of false positive events by an experienced person) would be 

required. This could explain why wavelet-based detection has not become 

widespread. As a result, we present here a procedure – the spike filter; also based 

on the wavelet method –, to avoid false positive detections. If the traditional 

technique for spark detection and the method based on the wavelet transform 

(including the spike filter) are compared, a higher sensitivity and better positive 

predictive values can be achieved by the latter (see Fig. 3). 

We thus used data from the denoised images for calculating the parameters of 

calcium sparks. This permitted better curve fitting and more accurate 

determination of the parameters. It should be emphasized here that the amplitude 

was only slightly affected by the denoising, while the signal-to-noise ratios in the 

analyzed images had been improved. Comparing the event parameters obtained 

with the wavelet method to data derived with the traditional method revealed 

significant differences. Most importantly, a number of events that were not 
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recognized by the traditional method - mostly events with small amplitudes (see 

Fig. 5a) - were clearly identified by the wavelet-based algorithms. In addition, the 

distribution of event parameters was more consistent for the latter, showing that 

the identified events are indeed derived from a single population. It is important to 

stress here that the distribution of FWHM obtained with the traditional method 

shows a slight increase at small FHWM values. This is clearly due to the fact that 

no manual selection of the events was permitted resulting in a number of false 

positive detections using the traditional method. In conclusion, the wavelet-based 

method provides better parameter estimation in the case of experimental images 

than the traditional method, because the cleaner denoised images result in better 

curve fitting. However, there is a significant difference in the distributions of 

event parameters; therefore images processed using the traditional method should 

be reprocessed before comparing their results to new data obtained with the 

wavelet-based detection algorithm. 

Previously published LCRE detection methods for x-t images rely on column-by-

column normalization of the raw image in order to eliminate the variation of 

background fluorescence and produce relative fluorescence signal. This 

normalization technique is suitable when the combined event duration is only a 

fraction of the total scan time. It will; however, not produce the desired result if 

this condition is not fulfilled, e.g. on images containing long embers. Embers are 

effectively smoothed into the background and, more importantly, darker areas 

may appear before and after the event, rendering them undetectable by the 

normalization (Fig. 7b). Therefore, using previously published methods for spark 

detection, embers usually have to be manually selected on raw images. Manual 

selection is not only impractical on large amount of data, but may also lead to bias 
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in ember parameters, similarly to the bias in case of spark amplitudes as described 

in previous studies (Song et al. 1997). 

The two, wavelet-based ember detection algorithms described here proved to be 

effective aids in analyzing images containing embers. Although their detection 

efficiency (sensitivity and positive predictive value) may not be as good as those 

of the spark detection algorithm (compare Figs. 3 and 7), it is evident that they 

can greatly reduce the human workload. Under favorable circumstances, they may 

even be capable of reliable and fully automatic ember detection. In addition, it is 

clear that the parameters derived from the events identified by the wavelet method 

represent a more accurate estimation of the actual values than those obtained with 

the traditional methods.  

If detection accuracy is analyzed in detail two problems with the wavelet-based 

detection can be identified. It is clear from the distributions presented in Fig. 9 

that there are events which were identified by eye and not by the wavelet method. 

Individually looking at these undetected events revealed that they either represent 

short embers trailing a spark or were events very closely following one another. In 

case of the former the ember was included into the spark by the automatic 

detection, while in case of the latter they were taken as a single event. The number 

of these events was, however, small, less than 10%, rendering the detection 

accuracy still quite acceptable. 

Despite these slight problems the methods presented here are an important step 

forward in automatic ember detection. Furthermore, these algorithms, especially 

the 1D wavelet transform based variant, can also be used as a basis for algorithms 

of spark detection on recently introduced high-speed line-scan images, since on 

those images the morphology of a spark is very similar to that of an ember if 

measured with a normal-speed confocal scanner. 
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Appendix 1 

The à trous transform is an undecimated discrete wavelet transform, consequently 

permits the exact temporal and spatial localization of various frequencies and 

signal intensities found in the analyzed data. Detailed mathematical description is 

given by Mallat (1999), Shensa (1992) and Bijaoui et al. (1994). We used both of 

the one and two dimensional à trous transform. 

According to Starck and Murtagh (1994), for the one dimensional transform, the 

wavelet function )(x is defined as: 
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where )(x is the scaling function, satisfying the dilation equation: 
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with h as a discrete low pass filter associated with the scaling function. 

For the one dimensional case the sampled data  Nkkc ..1,)(0  , is considered as 

the scalar product at pixels k of the function f(x) with the scaling function )(x , 

used as a low pass filter: 

 >k)-(x f(x),=<(k)c0   . (a3) 

The low pass filtered data at a resolution level i and position k is obtained by: 
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Computationally this is obtained by the convolution: 



26 

)2()((k)c 1

1i lkclh i

i

l



   . (a5) 

The wavelet coefficients are resulting from the signal difference between two 

successive convolution steps: 
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The wavelet function is defined by (a1). The calculations are reduced to the 

following algorithm (Starck and Murtagh 1994): 

1. i is set to 0, and the algorithm starts with the original data set {ci(k)}. 

2. i=i+1, and a discrete convolution is carried out using the filter h . 

3. the discrete wavelet transform is obtained after the convolution step from the 

difference: wi(k)=ci-1(k)-ci(k) 

4. If i < L, L being the level of resolution to compute, go to step 2. 

5 The set w1, w2, ..., wL, cL is the wavelet transform of the data. Lc is the low 

frequency background of the data. The algorithm is extensible to two dimensions. 

 

As convolution masks we used the values derived from cubic B-spline: 
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for the two dimensional case. 

The inverse à trous transform is defined by: 
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The set defined by )(w i k is called wavelet plane i. A wavelet plane contains the 

same number of pixels as the original data set . 

Appendix 2 

In the first phase of the denoising procedure we approximate the general noise 

level of the image (Starck and Murtagh 1998a). This approximation is performed 

iteratively in the following steps: 

1. Estimate the standard deviation of the noise in the original image: eliminate 

pixels above image 3mean and calculate the standard deviation of the 

remaining pixels; we have 
0I . 

2. Compute the wavelet transform of the image for L levels and obtain: 

),(),(),(
1

yxwyxcyxf
L

i

iL 


  . (a10) 

The noise in the low frequency background cL is negligible. 

3. Set n to 0. 

4. Compute multiresolution support M(j,x,t) , j=1,L resulted from wavelet 

coefficients and 
nI . Wavelet coefficients > j3 are considered significant, j is 

calculated according to (a11). 

5. A binary mask is formed. Pixels are set to 1 where M(j,x,t) is below threshold in 

each wavelet plane (insignificant wavelet coefficients that are considered 

belonging to noise). From pixels selected by this mask the background cL(x,y) is 

subtracted (the background is not included in the noise estimation. 

6. n=n+1, compute 
nI from the selected pixels. 
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7. If  
 nnn III /
1

, go to step 4. 

The method converges in a few steps, resulting in I  of the noise in the image. 

After that the standard deviation of the noise j  for level j is determined from the 

standard deviation of the noise in the original image: 

0jIj    , (a11) 

where Ljj ,1,0  , is the standard deviation of wavelet transform level j of a 

Gaussian noise with standard deviation 1, and I  is the estimate of the standard 

deviation of the noise in the original image. From this a threshold level for each 

wavelet level is determined: 

Dj jT     , (a12) 

where   is one of the user adjustable parameters of the algorithm. The last step of 

the denoising algorithm is to perform thresholding on each wavelet level using 

one of the following functions (Jin et all. 2005). 

Hard threshold: 
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Soft threshold: 
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Affine (firm) threshold: 
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Figure legends 

Fig. 1 A simulated image and its wavelet decomposition. a Simulated image with Gaussian noise 

pattern containing 6 sparks (arrows; with relative amplitudes of 0.33, 0.45, 0.57, 0.93, 1.0 and 1.2 

F0) and one single pixel set to shot noise level. b-f Wavelet decomposition levels 1 through 5 of 

the simulated image. On all panels, warmer colors indicate higher values. Scale bars on panel b 

apply for all images. 

Fig. 2 Spikes and the background noise distribution of a confocal line-scan image. a Histogram of 

a shot noise affected experimental image that does not contain sparks. Inset shows the histogram 

on an expanded y-scale to demonstrate the presence of pixels with high fluorescence. b-e 

Appearance of spikes following wavelet decomposition. b Shot noise pattern (a few neighboring 

pixels with high fluorescence intensity) from an experimental image. Brighter green indicates 

higher fluorescence intensity. c The shot noise pattern on the normalized image. d The shot noise 

pattern on the wavelet-denoised image. e Detection mask of the shot noise pattern obtained with 

the wavelet method. Scale bars in panel e apply for all images in b-e. f Denoised image of the 

simulated image of Fig. 1d without the spike filter. Arrow points to the spike caused by the shot 

noise. g Denoised image of the simulated image of Fig. 1d with the spike filter. h,i Detection 

masks obtained without and with spike filter for images in f and g, respectively. Scale bars in panel 

i apply for all images in f-i. Color scale in panel f applies for panel c, d, f and g. 

Fig. 3 Sensitivity (a) and positive predictive values (b) as a function of event amplitude for 

different detection algorithms. Simulated images with synthetic model sparks on backgrounds 

generated from experimental images were used to test the accuracy of the algorithms. Three 

different algorithms were tested, the traditional method (with CRI=3.6), the wavelet based method 

without and with spike filter (with H=4.5). Curves for each data set were drawn by eye with S50 

and PPV50 values of 0.315, 0.315, 0.325 and 0.595, 0.285, 0.21 for the traditional, wavelet without 

and with spike filter methods, respectively. 

Fig. 4 Sensitivity (a) and positive predictive values (b) as a function of event amplitude if the 

events below a predefined area (event size, parameter β) are excluded. The wavelet method 

without the spike filter was used for event detection. Images were generated as described for 

Fig. 3. Results are shown for three (2, 10 and 40) different β values. Curves for each data set were 

drawn by eye with S50 and PPV50 values of 0.37, 0.41, 0.585 and 0.583, 0.576, 0.325 for β = 2, 10 

and 40, respectively. (For further details, see text). 

Fig. 5 Distribution of spark parameters, amplitude and FWHM. Events were identified with the 

traditional and the wavelet based methods using the spike filter for the latter. 300 images were 

included into the analysis. Event parameters were calculated as described in Methods. All 

identified events, regardless of their parameters were included into the histograms. 

Fig. 6 Evaluation of how the detected event parameters – amplitude (●) and FWHM (∆) – depend 

on the original event parameters. Generated model sparks, shown in the insets, were scaled to have 
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different amplitudes and then embedded in images with backgrounds generated from experimental 

images. Horizontal short dashed lines in a-c give the FWHM of the original sparks. Long dashed 

lines are linear fits to data points obtained for sparks with amplitudes 0.4 and above with slopes of 

0.48, 0.76 and 1.02, respectively. Scale bars on panel b and the color scale in panel c apply for all 

images. 

Fig. 7 Detection of embers using the wavelet method. a Sparks and embers on an experimental 

image. As a first step sparks are identified (rectangles). b Normalized image, note the problem of 

normalization at the spatial position of the ember. c Image with excised sparks. d Wavelet 

transform – level 5 – of the image in panel c. e Mask obtained from the image in panel d with the 

double threshold method. f-g Wavelet transform levels 8 and 9 of the image in panel c. h Mask 

obtained with a simple threshold method from the images in panels f and g. i Identified sparks and 

embers, the latter are marked by dashed rectangles. For further details, see text. Scale bars and the 

color scale on panel c apply for panels a-c, i. 

Fig. 8 Accuracy of ember detection using one- and two-dimensional wavelet transforms. For 

testing 74 experimental images were used. Note that the 1D wavelet transform (method B) always 

had a higher positive predictive value for a given sensitivity than did the 2D based transform 

(method A). For details on methods A and B, see text. 

Fig. 9 Distribution of ember parameters, amplitude and FWHM. Events were identified with the 

traditional and the wavelet based methods using the spike filter for the latter. 140 images were 

included into the analysis. Event parameters were calculated as described in Methods. All 

identified events, regardless of their parameters were included into the histograms. 
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Table 1. Effect of background noise on detection* statistics. 

Background noise 

distribution 
BSNR S50 PPV50 

Gaussian 2.0 0.37 0.28 

Experimental 2.38 0.47 0.90 

Gaussian 2.5 0.37 0.28 

Experimental 3.24 0.35 0.58 

Gaussian 3.5 0.30 0.23 

*Parameters used in the wavelet-based detection were δ = 3.5; τ = 3.5. 
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