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Abstract 

Agricultural intensification threatens grasslands worldwide and the restoration of 

grasslands from arable lands can at least partially counter this threat. We studied 

grassland restoration by following early successional changes of arthropod assemblages 

(spiders – Araneae, true bugs – Heteroptera, orthopterans – Orthoptera and ground 

beetles – Carabidae) on one- and two-year-old restorations using arable lands and native 

grasslands as two ends of the succession timescale. To examine the changes in species 

composition among the habitat types, we used habitat affinity indices based on fidelity 

and/or specificity of the species. We found that the number of species did not differ 

between habitat types, while species composition changed markedly with time. Species 

richness was thus not adequate to detect favorable changes after grassland restoration. 

Habitat affinity indices, on the other hand, were useful to detect compositional changes 

caused by the increasing numbers of species characteristic of target grasslands as early 

as the second year after restoration. Habitat affinity indices are easy-to-use, easy-to-

interpret measures of restoration success; therefore, we recommend their use as 

measures complementary to species richness and simple similarity. Our results show 

that sowing low-diversity seed mixture followed by mowing and grazing can be 

particularly successful in grassland restoration in time periods as short as two years. 

 

 

Key words: 

Arthropods, fidelity, large-scale restoration, low-diversity seed mixture, specificity. 
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Introduction 

 

Agricultural intensification threatens grasslands worldwide and is one of the main 

reasons for grassland restoration in Europe (Bakker & Berendse 1999; Muller 2002; 

Pywell et al. 2002; Walker et al. 2004). Intensive agriculture often causes habitat loss 

and degradation, decreases the number of specialist species and increases the number of 

generalists, which results in biotic homogenization (McKinney & Lockwood 1999). To 

address the loss of biodiversity in agro-ecosystems, many EU countries have introduced 

agri-environmental schemes (Kleijn & Sutherland 2003; Muller 2002; Walker et al. 

2004). Furthermore, because the small number and restricted area of remaining 

grasslands apparently limit our ability to preserve grassland biodiversity (Shepherd & 

Debinski 2005; Billeter et al. 2008), the restoration of grasslands has come into focus in 

many countries (Cramer et al. 2008). The abandonment of fields currently ongoing in 

some countries provides good opportunities for the conversion of arable lands to 

grasslands to create new grassland patches, enlarge existing patches or to enhance 

connectivity between patches (Hobbs & Cramer 2007). 

Conservation actions treated as experiments and followed up by monitoring help us to 

gain a better understanding of the ecological processes induced by restoration 

(Lindenmayer et al. 2008). The most commonly used measures to follow habitat 

changes after restoration are species richness and diversity indices of selected taxa 

(Perner & Malt 2003; Piper et al. 2007). However, species richness can be misleading 

because it does not always correlate with conservation objectives or ecological function 

(Borrwall & Ebenman 2008). A strongly disturbed, early-successional habitat, for 

example, can host a large number of pioneer and disturbance tolerant species, while 

successional processes often involve a decrease in total species richness together with 

an increase in the richness of the taxa characteristic to the target habitats (e.g. Paquin 

2008; Török et al. 2008). In such cases, the changes in species composition cannot be 

detected with overall species richness and other measures need to be used. 

Local- or small-scale restorations are over-represented in the literature (Henry et al. 

2008; Wagner et al. 2008). Existing large-scale restorations are rarely monitored 

(Petersen et al. 2003; Wagner et al. 2008). Furthermore, multi-taxon monitoring is also 

uncommon (Ruiz-Jaen & Aide 2005; Woodcock et al. 2008). Conservation actions 

affect a wide range of animal taxa (e.g. Perner & Malt 2003; Purtauf et al. 2004; Kardol 

et al. 2005; Piper et al. 2007; Woodcock et al. 2008), and the joint monitoring of plants 
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and animals is essential to measure the general success of restoration (George & Zack 

2001; Legg & Nagy 2006; Miller & Hobbs 2007; Lengyel et al. 2008). Vegetation 

monitoring is suggested to perform better on long-term assessments, while invertebrates 

can be useful to detect short-term effects of restoration because they respond quickly to 

microclimatic changes (Kremen et al. 1993; Mattoni et al. 2000; Perner & Malt 2003). 

The aim of our study was to follow short-term changes in arthropod assemblages 

after landscape-scale grassland restoration and to examine the effectiveness of habitat 

affinity indices in detecting these changes. The success of converting arable land to 

grassland is often limited by seed dispersal or high soil fertility (Pywell et al. 2002; 

Walker et al. 2004; Kardol et al. 2008). Therefore, different methods are used in 

grassland restoration to counteract those effects. Here we applied the most frequently 

used practice by sowing seed mixtures of target grass species after soil preparation and 

by mowing and grazing the fields from the first year after restoration. However, in 

contrast to most previous restorations that used seed mixtures of 10-40 species, we used 

low-diversity seed mixtures (two or three species), which provided more room for 

natural colonization processes. To measure the short-term effectiveness of grassland 

restoration, we chose several groups of vegetation-dwelling and ground-dwelling 

arthropods (spiders, true bugs, orthopterans and ground beetles). In addition to changes 

in species richness, we also assessed changes in species composition, by using 

nonmetric multidimensional scaling ordination and recently developed habitat affinity 

indices (Tóthmérész & Magura 2005; Magura et al. 2006). We expected that all the used 

statistical methods (species richness, ordination and habitat affinity indices) would 

converge to show that the arthropod assemblages of the restored grasslands are moving 

towards those of the target native grasslands with succession. The modified habitat 

affinity indices were more effective than species richness and ordination in assessing the 

early successional changes of arthropod assemblages because they take into account the 

identity of the species and their affinities to certain habitats, including the habitats 

targeted by restoration. 

 

Methods 

 

Study area and sampling 

The study was carried out in the Egyek-Pusztakócs marsh and grassland system (N 

47°33', E 20°54'), a 50 km2 unit of Hortobágy National Park, the oldest (1973-) and 
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largest (17,000 km2) national park in Hungary. The ongoing landscape-scale restoration 

project implements several different conservation actions (e.g. grassland restoration, 

grazing, fire management) to protect and restore two Natura 2000 priority habitat types 

(Pannonic alkali steppes and marshes, Pannonic loess steppic grasslands). Grassland 

restoration by sowing low-diversity seed mixtures (two or three grass species for alkali 

and loess grasslands, respectively) has taken place on ca. 5 km2 arable land in 2005-

2007. We surveyed four different habitat types in 2007: (i) arable lands, which were 

either grain or alfalfa fields; (ii) one-year-old restored grasslands (fields sown in 2006), 

representing a pioneer successional stage; (iii) two-year-old restored grasslands (sown 

in 2005), representing a latter stage of succession; and (iv) native grasslands, either 

alkali or loess steppic grasslands that were designated as the targets of the restoration.  

One-year-old grasslands were dominated mostly by herbaceous, short-lived weedy 

plants (e.g. Capsella bursa-pastoris, Matricaria inodora), and some weedy grasses (e.g. 

Bromus arvensis, Bromus mollis) to a lesser extent. On two-year-old grasslands, weeds 

were replaced by perennial graminoid species (e.g. Festuca pratensis, Elymus hispidus) 

and some species characteristic of target grasslands also appeared (e.g. Achillea collina, 

Convolvulus arvensis). The target, species-poor alkali grasslands (Festucion 

pseudovinae) are dominated by the grass Festuca pseudovina, while Poa angustifolia, 

Elymus hispidus, Carex stenophylla are subordinate graminoid species. Other typical 

herbaceous species include Achillea setacea, A. collina, and Trifolium species. The 

target loess steppic grasslands (Festucion rupicolae) are dominated by several grasses 

(e.g. Festuca rupicola, F. valesiaca, Poa angustifolia, Bromus inermis), and are rich in 

herbaceous species including Salvia nemorosa, Galium verum, Dianthus pontederae, 

and Euphorbia cyparassias with some rare and protected plants, including Phlomis 

tuberosa, Thalictrum minus, and Ornithogalum pyramidale (Török et al. in press). 

In total, 39 plots were studied (5 arable lands, 10 one-year-old, 11 two-year-old and 13 

native grasslands) between May and September in 2007. Plot area was between 

0.04 km2 and 0.36 km2 (mean: 0.16 km2). The plots were at least 200 meters away from 

each other. We surveyed vegetation- and ground-dwelling spiders (Araneae), true bugs 

(Heteroptera), orthopterans (Orthoptera) and ground beetles (Carabidae) using identical 

methods on each plot. We have selected these arthropod groups to include both 

herbivore and predator trophic levels and to include both vegetation-dwelling and 

ground-dwelling life-forms. Ground-dwelling invertebrates were sampled by pitfall 

traps installed in two randomly selected locations within every plot in May. Traps were 
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0.5 L plastic cups with 100 ml ethylene-glycol (75%) as killing liquid, and were 

covered by fiberboard to keep out vertebrates, and to avoid contamination by litter or 

rain. Pitfall traps were placed at least 50 meters from each other and from the edges of 

the plots. Vegetation-dwelling invertebrates were sampled by standardized sweepnetting 

consisting of 200 strokes in 150-m-long transects that started from the pitfall traps and 

progressed in randomly selected directions. Invertebrates were collected once every 

three weeks, on a total of six occasions during the vegetation period (May – September) 

to account for phenological changes in arthropod assemblages. Specimens were 

identified to species in the lab. For all analyses, we pooled samples from the six 

occasions. Changes in vegetation were monitored by botanists, who collected data on 

plant species richness and diversity, plant cover and phytomass. Details on the changes 

of vegetation are discussed elsewhere (Deák et al. 2008, Török et al. in press). 

 

Data analyses  

 

We studied whether arthropod assemblages have changed with secondary succession 

after restoration. Allegro and Sciaky (2002) proposed the forest affinity index to assess 

the relative quality of a given habitat compared to another habitat using species 

frequencies. Based on their work, Magura et al. (2006) developed three new habitat 

affinity indices based on habitat specificity and/or fidelity because they found that an 

affinity index using only relative frequencies is biased towards assemblages containing 

few, highly abundant ‘less-specialized’ species. Habitat affinity indices based on fidelity 

and/or specificity emphasize commonness and rarity (Tóthmérész & Magura 2003). The 

newly developed indices proved to be useful in comparing different types of forests 

(Magura et al. 2006), therefore, we have adapted them to grasslands. Here we used 

affinity indices based on specificity (HAS), fidelity (HAF) and both specificity and 

fidelity combined (HAFS). 

We defined the species’ affinity values (Ai) in a four-step procedure. First we classified 

the plots by hierarchical cluster analysis (Bray-Curtis dissimilarity index and Ward 

fusion method). The cluster analysis classified the plots in well-defined habitat groups 

(Fig. 1). Second we assigned values ranging from –1 to +1 to each habitat type and to 

groups of habitat types (Fig. 1). Third, we performed an indicator value analysis 

(IndVal) as proposed by Dufrêne and Legendre (1997), which assigned species to 

habitats that they are characteristic of based on the observed patterns of occurrence and 
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abundance. Finally, we determined the affinity values of the species based on IndVal. 

Affinity values for species could thus take the following seven values: 

      +1: species characteristic of target grasslands, 

 +0.75: species related to two-year-old restored grasslands and target grasslands, 

   +0.5: species characteristic of two-year-old restored grasslands,  

        0: species indifferent to habitat type (habitat generalists), 

   –0.5: species related to one-year-old restored grasslands, 

 –0.75: species characteristic of one-year-old restored grasslands and arable 

 lands, 

      –1: species characteristic of arable lands. 

The exact values of affinity do not affect the results as long as the ordinal nature of 

affinities (most favorable species receiving highest score) is maintained. We have 

repeated all analyses presented in the paper by using different arbitrary values of the 

ordinal affinity variable and the results were qualitatively similar to those presented 

here. We present results by using 0 for those species which have no particular habitat 

preference and positive values for species of conservation importance and species 

identified by IndVal as characteristic of the target habitats. This logic follows the 

original suggestions of Allegro and Sciaky (2002). 

When all species were given an affinity value, we calculated the affinity indices of the 

sampling plots. The habitat affinity index based on fidelity (HAF) was calculated as 

follows:  

(eqn 1) 
1

( )
S

r ir i i

i

HAF I Aπ
=

= ⋅ ⋅∑ , 

where S is the total number of species; Iir is the indicator function, which is either 0 or 1 

depending on whether the species is present in plot r or not; πi is the relative frequency 

of plots where species i is present in a given habitat type; and Ai is the value of habitat 

affinity of species i. 

The habitat affinity index based on specificity (HAS) was calculated as follows: 

(eqn 2) 
1

( )
S

r ir i i

i

HAS I e A⋅

=

= ⋅∑ , 

where ei is the specificity of the species i. Specificity is defined as the ratio of the 

average number of individuals in the given habitat type compared to the average 

number of individuals across all habitats.  
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Finally, the habitat affinity index based on both fidelity and specificity (HAFS) is 

calculated as follows: 

(eqn 3) 
1

( )
S

r ir i i i

i

HAFS I e Aπ
=

= ⋅ ⋅ ⋅∑ , 

with notations the same as above. The values of the indices are higher if more species 

characteristic of the target habitat are present in the habitat. 

Analyses of variance (ANOVA) were performed to detect the differences in the mean 

value of the habitat affinity indices among habitat types (arable lands, one-year-old, 

two-year-old, native grasslands). If there were significant differences among habitat 

types, Tukey’s HSD were used to compare means. Data were checked to meet the 

assumptions of ANOVA. We used two-sided tests and α = 0.05 significance-levels in 

statistical tests. Nonmetric multidimensional scaling ordination (with Bray-Curtis 

dissimilarity index) based on abundance data of the collected species was used to 

display changes in arthropod species composition after grassland restoration (Legendre 

& Legendre 1998). All statistical analyses were performed using R version 2.5.1 (R 

Development Core Team 2007). 

 

Results 

 

A total of 341 species (with 17,199 individuals) were collected, identified and given 

affinity (Ai) values. Most species belonged to true bugs (96 species, 7,424 individuals) 

and vegetation-dwelling spiders (82 species, 1,498 individuals), followed by ground 

beetles and ground-dwelling spiders (67 and 66 species, 6,305 and 1,492 individuals 

respectively), and orthopterans were the least speciose (30 species, 480 individuals) 

taxon. 

The average number of species was roughly similar in the three grassland habitats 

(Table 1, Fig. 2). However, native grasslands had higher habitat affinity values than all 

restored sites indicating the high number of species characteristic to the target habitats. 

Two-year-old grasslands had higher values than the group of one-year-old grasslands 

and arable lands, which did not differ from each other (Fig. 3, Table 1). Both arable 

lands and one-year-old grasslands were dominated by disturbance-tolerant species. 

Although the HAS index (which takes into account the specificity of the species) 

appeared most sensitive to differences among habitat types, the differences were robust 

regardless of which index was used (Fig. 3). One-year-old grasslands had proportionally 
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more species receiving higher Ai values than arable lands and two-year-old grasslands 

had proportionally more of these species than did one-year-old grasslands. 

The nonmetric multidimensional scaling ordination showed that species composition 

changed with time. Arthropod assemblages of restored grasslands became progressively 

more similar to those of native grasslands (Fig. 4), indicating the increasing abundance 

of species characteristic of grasslands. The disturbed, pioneer environment in the first 

year favoured mostly disturbance-tolerant arthropods (e.g. Dictyna arundinacea 

(Dictynidae, Araneae); Pardosa agrestis (Lycosidae, Araneae); Trigonotylus ruficornis 

(Miridae, Heteroptera); Chorthippus biguttulus (Acrididae, Orthoptera); Pseudoophonus 

rufipes (Carabidae, Coleoptera)). The changes in species composition between the first 

and the second year after restoration were striking. The appearance of arthropods typical 

of grasslands (e.g. Nesticus cellulans (Nesticidae, Araneae); Titanoeca veteranica 

(Titanoecidae, Araneae); Chorosoma schillingi (Rhopalidae, Heteroptera); 

Euchorthippus pulvinatus (Acrididae, Orthoptera); Amara fulvipes (Carabidae, 

Coleoptera)), caused a change in species composition as early as the second year after 

restoration. A detailed list of the species identified by the IndVal analysis as 

characteristic of a habitat type is given in the Appendix. 

 

Discussion 

 

The changes in arthropods detected here correspond well to changes in the vegetation of 

the sites following restoration. Similar to other grassland restoration projects (Van der 

Putten et al. 2000; Pywell et al. 2002, Camill et al. 2004), a vegetation composed almost 

entirely of weed plant species (e.g. Capsella bursa-pastoris, Matricaria inodora) 

appeared in the first year in our restored sites (Deák et al. 2008, Török et al. in press). 

Weeds might have facilitated germination and early development of the target grassland 

species (Callaway & Walker 1997, Pywell et al. 2002, Pueyo et al. in press). Mowing 

favors the sown grasses that became superior competitors following the facilitative 

interaction (Callaway & Walker 1997). As a result, our sites had a strong grassland 

character as early as the second year after restoration (Deák et al. 2008, Török et al. in 

press).  

The changes in vegetation were followed quickly by changes in the arthropod 

assemblages. The composition of arthropod assemblages of the restored sites was 

quickly approaching that of native grasslands. The changes in species composition 
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between the first and the second year after restoration were striking and we initially 

expected these changes to occur later based on other restoration studies (Mortimer et al. 

2002, Purtauf et al. 2004) We believe that former alfalfa fields and native grasslands 

near to the restorations were the sources of the rapid arthropod re-colonization (e.g. 

Shepherd & Debinski 2005). In our study, quick appearance of several species 

characteristic of the target grasslands in the two-year-old restorations suggested that 

alfalfa fields, which are not ploughed for 3-4 years, might provide refuges for grassland 

species and can thus serve as sources of colonization in restorations. 

Our results are similar to those of other studies that use species richness 

integrated with some measure of species composition (e.g. diversity, evenness, 

similarity) to compare successional stages of grassland ecosystems (plants and 

butterflies: Steffan-Dewenter & Tscharntke 1997; springtails: Brand & Dunn 1998; 

plants, spiders and beetles: Perner & Malt 2003; carabid beetles: Purtauf et al. 2004; 

Shepherd & Debinski 2005).We found that arthropod species richness did not change in 

the first two years following grassland restoration and did not differ significantly among 

successional stages. The increase of the values of the affinity indices with time showed 

that arthropod assemblages had changed due to the replacement of species indifferent to 

habitat type with species characteristic of target grasslands. Our results from using the 

indices corresponded with those of Magura et al. (2006) who examined ground beetle 

assemblages in Norway spruce (Picea abies) plantations. Magura et al. (2006) found 

that beech forests (natural ecosystem) had significantly higher affinity values than 

spruce plantations of different ages using the indices based on fidelity and/or specificity 

indices. Habitat affinity indices, although rarely used, are useful complementary 

estimates to the most common diversity measures. We encourage restoration ecologists 

to apply these indices in monitoring as they are easy to use and are easy to interpret.  

Usually, more than a decade is necessary until the biodiversity of restored fields reaches 

that of the reference ecosystem (Brand & Dunn 1998; Purtauf et al. 2004). This process 

is particularly slow in the case of dry grasslands (Stadler et al. 2007) such as those 

targeted by our restoration. We believe that the rapid changes we observed may have 

occurred due to the proximity of propagule sources and/or the high availability of 

propagules. Our study suggests that the recovery of the restored fields can be 

accelerated by sowing foundation species only (Hutchings & Booth 1996a; Walker et 

al. 2004; Piper et al. 2007) or by applying different management actions (e.g. grazing, 

mowing, burning) after restoration (Hutchings & Booth 1996b). Although we agree that 
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restoration is a long-term process and further monitoring is needed to follow subsequent 

changes, the quicker-than-expected positive changes in the arthropod assemblages 

observed here argue against views that restoration takes too much time to produce any 

results and that it is a waste of money to invest in ecological restoration projects 

(Aronson et al. 2006). Based on our study and several others (e.g. McCoy & Mushinsky 

2002, Wilsey et al. 2005, Ruiz-Jaen & Aide 2005), we suggest that the use of multiple 

measurements (affinity indices, multivariate statistics, etc.) alongside with species 

richness is an effective way to asses the value of habitat restoration. 
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Implications for Practice 

• Habitat affinity indices are good measures of restoration success. They take 

into account the identity of species, such that changes in species composition 

can be readily interpreted. 

• Dense weed cover in the first year after restoration with low-diversity seed 

mixtures can provide a diverse habitat for arthropods. After mowing, rapid 

changes in the vegetation occur that produce changes in arthropod 

assemblages. The composition of restored assemblages approaches that of 

native grasslands as early as the second year after restoration. 

• Proximity of semi-natural or native grasslands to restored fields can facilitate 

recolonization of arthropods.  
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Tables and Legends 

Table 1. Results of ANOVA analyses testing differences in the number of species and 

the three habitat affinity indices based on fidelity (HAF), specificity (HAS) and both 

(HAFS) among arable lands (n = 5 plots), one-year-old (n = 10), two-year-old (n = 11) 

restored grasslands and native grasslands (n = 13). Species richness did not differ by 

habitat types, while habitat affinity values were significantly higher in two-year-old 

grasslands than on arable lands or one-year-old grasslands, and native grasslands had 

the highest habitat affinity value. n.s. = not significant; *** p<0.001 

Variable f-values (df = 3,38) Tukey HSD 

Species richness 1.92 n.s. Arable=1 year=2 years=native 

HAF (fidelity) 148.32*** (Arable=1 year)<2 years<native 

HAS (specificity) 104.01*** (Arable=1 year)<2 years<native 

HAFS (both) 142.60*** (Arable=1 year)<2 years<native 
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Fig. 1. Dendrogram obtained in a hierarchical cluster analysis of surveyed plots with 

habitat affinity values assigned to each habitat type and groups of habitat types. Labels: 

1: one-year-old restored grasslands; 2: two-year-old restored grasslands; A: arable 

lands; N: native grasslands. Affinity values given are shown on the dendrogram: –1: 

species characteristic to arable lands, –0.75: species characteristic to one-year-old 

restored grasslands and arable lands, –0.5: species characteristic to one-year-old 

restored grasslands, 0: species indifferent to habitat type (habitat generalists), +0.5: 

species characteristic to two-year-old restored grasslands, +0.75: species related to two-

year-old restored grasslands and target grasslands, +1: species characteristic to target 

grasslands. 

 

Fig. 2. Mean (± SD) of species richness in the studied habitats. No significant 

differences were found between habitat types. 

 

Fig. 3. Mean (± SD) of habitat affinity indices based on fidelity (HAF), specificity 

(HAS), and both (HAFS). Legend: filled bars: arable lands; cross striped bars: one-year-

old restored grasslands; vertical striped bars: two-year-old restored grasslands; open 

bars: native grasslands. Different letters indicate significant differences (p<0.05). 

 

Fig. 4. Changes in arthropod species composition after grassland restoration from arable 

lands (upward triangles) through one-year-old (circles) and two-year-old (squares) 

grasslands. Native grasslands are shown for reference (downward triangles).  
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Appendix. List of significant (p<0.05) character species of habitat types based on 

IndVal analysis. The affinity value (Ai) and the indicator value of the species, and the 

habitat types they are characteristic of are shown in the table. Indicator value is 100%, if 

the species occurs in every samples of a particular habitat type and it occurs only in that 

habitat type. 

Species name Ai value Habitat type IndVal (%) 

Araneae (collected with sweep-nets)    

Alopecosa pulverulenta 1 native grasslands 61.54 

Drassyllus praeficus 1 native grasslands 34.50 

Hogna radiata 1 native grasslands 30.77 

Micaria albovittata 1 native grasslands 23.08 

Oedothorax apicatus -0.5 one-year-old grasslands 44.76 

Pardosa agrestis 0 habitat indifferent 84.62 

Pardosa prativaga 1 native grasslands 40.67 

Tibellus maritimus 0.5 two-year-old grasslands 39.51 

Tibellus oblongus 0.75 two-year-old & native grasslands 46.58 

Trochosa robusta 1 native grasslands 38.46 

Zelotes hermani 1 native grasslands 23.08 

Zelotes latreillei 1 native grasslands 30.77 

Zelotes longipes 1 native grasslands 48.62 

Araneae (collected with pitfall traps)    

Enoplognatha mordax 0.75 two-year-old & native grasslands 39.09 

Erigone dentipalpis -1 Arable lands 62.51 

Hypsosinga heri 1 native grasslands 38.46 

Hypsosinga pygmaea -1 Arable lands 46.42 

Larinioides suspicax 0.75 two-year-old & native grasslands 36.36 

Nematogmus sanguinolentus -1 Arable lands 40.00 

Neoscona adianta 0.5 two-year-old grasslands 67.34 

Neottiura bimaculata 0.5 two-year-old grasslands 37.31 

Neriene radiata -1 Arable lands 33.49 

Pardosa palustris 1 native grasslands 23.08 

Tetragnatha extensa -1 Arable lands 50.42 

Xysticus kochi 0.75 two-year-old & native grasslands 56.34 

Xysticus striatipes 1 native grasslands 41.07 

Heteroptera    

Acetropis carinata 0.5 two-year-old grasslands 87.23 

Aelia acuminata 0.75 two-year-old & native grasslands 51.92 

Agramma articapillum 1 native grasslands 30.77 

Agramma confusum 1 native grasslands 76.92 

Camptobrochis punctulatus -0.5 one-year-old grasslands 52.91 

Capsodes gothicus -1 Arable lands 40.00 

Cymus glandicolor -0.5 one-year-old grasslands 58.96 

Emblethis verbasci -0.5 one-year-old grasslands 41.70 

Eurydema oleraceum -0.5 one-year-old grasslands 48.89 

Henestaris halophilus -0.5 one-year-old grasslands 67.26 

Heterogaster affinis -0.5 one-year-old grasslands 63.93 

Ischnodemus sabuleti 1 native grasslands 44.86 

Liocoris tripustulatus -0.75 arable lands & 1-year-old grasslands 64.97 

Megalocerea recticornis 0.5 two-year-old grasslands 31.47 

Nabis ferus -1 Arable lands 75.53 

Notostira erratica 0.5 two-year-old grasslands 64.61 

Nysius senecionis -0.5 one-year-old grasslands 30.00 
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Orius minutus -0.5 one-year-old grasslands 38.87 

Orthotylus flavosparsus 0.75 two-year-old & native grasslands 56.02 

Piesma maculatum 0.5 two-year-old grasslands 60.00 

Polymerus cognatus -0.5 one-year-old grasslands 72.18 

Polymerus unifasciatus -0.5 one-year-old grasslands 45.64 

Rhopalus parumpunctatus -0.5 one-year-old grasslands 53.09 

Stenodema calcaratum 0.75 two-year-old & native grasslands 90.91 

Stenodema laevigatum -1 Arable lands 35.72 

Stictopleurus abutilon -0.5 one-year-old grasslands 64.66 

Stictopleurus punctatonervosus 0.75 two-year-old & native grasslands 36.41 

Syromastes rhombeus 0.75 two-year-old & native grasslands 36.36 

Xanthochilus quadratus 1 native grasslands 30.77 

Zicroma caerulea -0.5 one-year-old grasslands 58.63 

Orthoptera    

Chorthippus oschei 0.5 two-year-old grasslands 68.83 

Chorthippus parallelus 0.5 two-year-old grasslands 20.00 

Conocephalus discolor 1 native grasslands 48.83 

Decticus verrucivorus 0.5 two-year-old grasslands 45.83 

Euchorthippus declivus 1 native grasslands 78.70 

Omocestus haemorrhoidalis 1 native grasslands 30.77 

Omocestus rufipes 1 native grasslands 92.00 

Stenobothrus crassipes 1 native grasslands 46.15 

Tetrix subulata 1 native grasslands 30.77 

Mantis religiosa (Ordo: Dictyoptera) 1 native grasslands 30.77 

Carabidae    

Amara similata  -0.5 one-year-old grasslands 49.14 

Anchomenus dorsalis  -0.75 arable lands & 1-year-old grasslands 40.00 

Anisodactylus signatus -0.75 arable lands & 1-year-old grasslands 66.67 

Brachinus crepitans  -0.5 one-year-old grasslands 71.55 

Brachinus explodens  -0.75 arable lands & 1-year-old grasslands 33.47 

Brachinus ganglbaueri advena -0.5 one-year-old grasslands 48.06 

Brachinus psophia -0.5 one-year-old grasslands 36.64 

Calosoma auropunctatum  -0.5 one-year-old grasslands 30.00 

Cicindela germanica  -1 Arable lands 49.96 

Dolichus halensis  -0.75 arable lands & 1-year-old grasslands 40.00 

Harpalus distinguendus 0.75 two-year-old & native grasslands 64.67 

Harpalus pygmaeus -0.75 arable lands & 1-year-old grasslands 26.67 

Ophonus azureus  -0.5 one-year-old grasslands 50.00 

Poecilus cupreus -0.75 arable lands & 1-year-old grasslands 62.59 

Poecilus punctulatus -1 Arable lands 35.56 

Pseudoophonus calceatus -1 Arable lands 40.93 

Pseudoophonus rufipes  -0.75 arable lands & 1-year-old grasslands 95.55 

Pterostichus macer 1 native grasslands 53.95 

Pterostichus melanarius  -0.75 arable lands & 1-year-old grasslands 20.00 

Pterostichus ovoideus  1 native grasslands 28.32 
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