Exact stripe, checkerboard, and droplet ground states in two dimensions

Zsolt Gulácsi 1 and Miklos Gulácsi 2

1Department of Theoretical Physics, University of Debrecen, H-4010 Debrecen, Hungary
2Department of Theoretical Physics, Institute of Advanced Studies, Australian National University, ACT 0200 Canberra, Australia

(Received 4 April 2005; revised manuscript received 31 October 2005; published 25 January 2006)

Exact static nondegenerate stripe and checkerboard ground states are obtained in a two-dimensional generalized periodic Anderson model, for a broad concentration range below quarter filling. The random droplet states, also present in the degenerate ground state, are eliminated by extending the Hamiltonian with terms of different physical origin such as dimerization, periodic charge displacements, density waves, or distortion lines.

I. INTRODUCTION

Quasi-one-dimensional intrinsic inhomogeneities called stripes 1 represent the most challenging problems in understanding self-organized structures ever since the discovery of high T_c cuprates. 2 Such textures have been observed in other than superconducting cuprates, most notably in manganites, 3 nickelates, 4 and rare-earth compounds. 5 Most recently it has been shown that all cuprates exhibit intrinsic inhomogeneities in some form or another: checkerboard structures have been identified in lightly hole-doped copper oxides, 6 while it has been identified in lightly hole-doped copper oxides, 6 while long-range forces are present. But when such forces are absent, depending on doping, local inhomogeneities appear in the form of stripes or other forms of clustering, e.g., droplets. 7,8

Even though stripes had been known to exist much before high T_c were discovered, 12 their theoretical understanding lacks rigorous description. Hereafter we want to fill this gap. Hence we present an exact solution of a generalized periodic Anderson model (PAM) with ground states exhibiting intrinsic inhomogeneities of the stripe, checkerboard, and droplets types. Using a two-band model as a starting point of our analyses renders the obtained results to be more generally applicable, since real materials are mostly of multiband type. These models are usually addressed by projecting the multiband structure into a few band picture, 13 which we stop for mathematical convenience, at a two-band level. However, our study is not a simple two-band model but rather an extended PAM which contains the added feature of strong correlation effects originating from the on-site Coulomb repulsion U present in the correlated (f) band, an arbitrary U_d > 0 extra Hubbard interaction in the free (d) band, leaves our results unchanged.

Since stripes and checkerboards are observed in a broad spectrum of materials, we are primarily focusing on ground states which exhibit these inhomogeneities, being less interested in the properties of the homogeneous phases in which they appear.

Our exact results can be summarized as follows. Below quarter filling, two stripe ground states emerge. One (I) with insulating and paramagnetic stripes, while the second one (II) with itinerant and ferromagnetic stripe lines. This second solution allows checkerboard structures as well. In both cases, i.e., I and II, the interstripe line regions contain empty sites, hence are insulating. The obtained ground states are in general degenerate. The degeneracy is provided by a random blob structure corresponding to the same energy, the blobs (random shape clusters) possessing the same properties as the stripe lines in cases I and II. The degeneracy of the ground state can, however, be lifted, the resulting nondegenerate ground state remaining of pure stripe or checkerboard character. The lifting factor we find may have different physical origin as distortion lines, dimerization, or periodic charge displacement (density waves). The obtained stripe formation processes are generic and are less sensitive to the properties of the homogenous phases present at quarter filling. We further note that marginal to the stripe problem, but interesting for the PAM itself, we were able to prove rigorously that the studied two-dimensional (2D) PAM is ferromagnetic at quarter filling in a restricted region of its parameter space. Similar result has been recently reported for three-dimensional (3D) PAM as well. 14

The remaining part of the paper is structured as follows. Sec. II presents the exact transformation of the Hamiltonian in a positive semidefinite form, Sec. III describes the obtained ground state solutions, Sec. IV presents a discussion of the obtained results, and Sec. V, concluding the paper, closes the presentation.

II. THE TRANSFORMATION OF THE HAMILTONIAN

Our starting Hamiltonian is thus, \(\hat{H} = \hat{H}_0 + \hat{U} \), written for a free (d) and a correlated (f) band, where we allow for hopping in both bands,

\[
\begin{align*}
\hat{H}_0 &= \sum_{\mathbf{r}, \sigma} \left(\sum_{\alpha=\pm} \sum_{\mathbf{r}+\mathbf{r}_d} t_{\alpha}^{\mathbf{r}\mathbf{r}_d} \hat{c}_{\mathbf{r}\alpha \uparrow} \hat{c}_{\mathbf{r}_d \uparrow} + V_d \left(\hat{d}_{\mathbf{r}\alpha \uparrow} \hat{c}_{\mathbf{r}\uparrow} + \hat{d}_{\mathbf{r}\alpha \uparrow} \hat{c}_{\mathbf{r}\uparrow} \right) \right) + H.c. \\
&+ V_0 \left(\hat{d}_{\mathbf{r}\alpha \uparrow} \hat{c}_{\mathbf{r}\uparrow} + \hat{d}_{\mathbf{r}\alpha \uparrow} \hat{c}_{\mathbf{r}\uparrow} \right) + E \hat{d}_{\mathbf{r}\uparrow}^\dagger \hat{d}_{\mathbf{r}\uparrow} \right) .
\end{align*}
\]
nonlocal and on-site hybridization, and the local
operators acting on the corners of an elementary plaquette; see
Fig. 1. We further note that the method is described in
detail in Ref. 14 and has been previously used to solve gen-
eralized PAM type models at $\frac{1}{3}$ filling in 2D (Ref. 17) and
even in 3D.18 In the present case the transformation is per-
duced and described in 2D at a lower filling region.

The transformation proceeds in the following way: first
we transform exactly the starting Hamiltonian in a positive
semidefinite form. This is accomplished with the use of the
operators

$$
\hat{A}_{l,o} = \sum_{a,b=1}^{\beta} \sum_{p=d,f} a_{a,b}^{*} p_{l+r_{a,b},o}^{p},
$$

which are linear combination of the original fermionic op-
erators acting on the corners of an elementary plaquette; see
Fig. 1(a). It can be easily seen that $\hat{P} = \sum_{l,o} \hat{A}_{l,o}^{\dagger} \hat{A}_{l,o}$ contains
exactly the same operators from Eq. (1). Hence, properly
choosing the coefficients $a_{a,b}^{*}$, $n=n(\alpha, \beta)$, \hat{H}_0 from Eq. (1)
can be written as $\hat{H}_0 = \hat{P} + E_g$, where E_g is a constant. The
proper mapping is

$$
\sum_{j=1}^{l_M} a_{m,p}^{*} a_{n,p^\prime} = T_{p}^{p^\prime} (\hat{\rho}_r, \hat{\rho}_r^{\dagger}, V_r, E_g),
$$

where for the $r = \alpha x_1 + \alpha x_2$, values allowed by (1), and
$p, p^\prime = d, f$, $T_{p}^{p^\prime}$ is given by

$$
T_{p}^{p^\prime} (\hat{\rho}_r, \hat{\rho}_r^{\dagger}, V_r, E_g) = \left(\delta_{p,0} \hat{\rho}_r^{\dagger} \hat{\rho}_r + (1 - \delta_{p,0}) V_r \right)
+ \delta_{p,0} \left(\delta_{p,p^\prime} (\hat{\rho}_r^{\dagger} \hat{\rho}_r + \hat{\rho}_r \hat{\rho}_r^{\dagger}) + (1 - \delta_{p,p^\prime}) V_0 \right),
$$

$$
m_j - n_j = 2\delta_{c,2} + \delta_{r_1,2} \left[7 - 4j + (6j - 10) | \alpha_1 | + (6j - 8) | \alpha_2 | \right],
$$

$$
2l_M = 8 - 5 \rho + \rho^2,
\rho = (| \alpha_1 | + | \alpha_2 |).
$$

Furthermore, $E_g = -KN$, where N is the number of ele-
ments, and $K = \sum_{a=1}^{2} | \alpha_{a,d} |^2$. Consequently, the starting Hamiltonian,
\hat{H}, becomes positive semidefinite

$$
\hat{H} = \hat{P} + \hat{U} + E_g,
$$

except the additive constant E_g. The transformation of the
starting Hamiltonian based on the plaquette operators from
Eq. (2) into Eq. (5) is possible only if Eq. (3), containing 19
nonlinear coupled equations, allows solutions for the $a_{n,p}$ pa-
rameters. The different type of solutions of these nonlinear
equations are presented in the following sections.

III. GROUND STATE SOLUTIONS

We found that there are two types of solutions which satis-
fy the system of nonlinear equations (3). These two types
of solutions will be denoted by $R=f$ and $R=\bar{f}$. In f, for
$a_{n,df}^{*} a_{n,df^2} = q_n = q$ real for all n, $\hat{A}_{l,s}$ reduces to one-site form
$\hat{A}_{l,s} = \sum_{n=1}^{N_{\Lambda}} a_{n,df}^{\dagger} \hat{A}_{l,s}^{\dagger} \hat{A}_{l,s}$ for all l. While in \bar{f},
$q_n = q = $ real, and such a reduction of $\hat{A}_{l,s}$ into $\hat{A}_{l,s}$ is not
possible.

In the following we will analyze in details the ground
state corresponding to the solutions I and II: (a) We first
determine the homogeneous phases at quarter filling ($N
= N_{\Lambda}$, N_{Λ} being the number of lattice sites); (b) by decreasing
N we find degenerated droplet, stripe, and checkerboard
ground states which we will present in detail, and (c) exten-
sions of \hat{H} are identified to lift the degeneracy leading to pure,
non-degenerate stripe and checkerboard ground states.

A. Ground states at quarter filling

To find the ground state at quarter filling, a complement-
ary unit cell operator14 $\hat{B}_{l,o}$ is defined by

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1}
\caption{(a) Unit cell (I) and (b) the $\hat{B}_{l,o}$ operator defined at an
arbitrary site i, x_i are the primitive vectors, and n is the i
independent notation of the sites in I. For (a) arrows indicate hopping
and hybridization matrix elements ($J=1, V$). In (b), the $B_{n,p}$
$p = d, f$ coefficients are shown together in horizontal components
$\hat{B}_{l,o} = \hat{B}_{l,o}^{11} + \hat{B}_{l,o}^{22}$.}
\end{figure}
\[
\langle \hat{A}_{\lambda,\sigma}, \hat{B}_{\mu,\sigma'}^\dagger \rangle = 0, \quad \forall i, i', \sigma, \sigma'.
\]

For case II, \(\hat{B}_{\lambda,\sigma} = \sum_{\alpha, \beta = 0, 1} \sum_{\lambda, \mu, \sigma, \sigma'} b_{\lambda, \mu, \sigma} \hat{b}_{\lambda, \mu, \sigma}^\dagger \) as shown in Fig. 1(b), and defining \(n' = (\alpha, \beta) = 3 + \alpha - \beta - 2 \alpha \beta \), and taking \(w = b_{2,1} / a_{3,1} f \) one finds

\[
b_{n,\sigma} = -w a_{n',\sigma}, \quad b_{n,\sigma} = +w a_{n',\sigma}\]

While, for case I, \(\hat{B}_{\lambda,\sigma} = \sum_{n=1}^4 b_{n,\sigma} \hat{b}_{n,\sigma}^\dagger \), and \(\langle \hat{A}_{\lambda,\sigma}, \hat{B}_{\mu,\sigma'}^\dagger \rangle = 0 \), \(\hat{B}_{\lambda,\sigma} = \hat{d}_{\lambda,\sigma} - \hat{f}_{\lambda,\sigma} \) holds.

Introducing \(\hat{D}_{\lambda,\sigma}(R) = (\hat{c}_{\lambda,\sigma} \delta_{R,1} + \hat{b}_{\lambda,\sigma} \delta_{R,2} + \hat{b}_{\lambda,\sigma}^\dagger \delta_{R,3} + \hat{b}_{\lambda,\sigma}^\dagger \delta_{R,4}) \), where \(\hat{c}_{\lambda,\sigma} = (\hat{b}_{\lambda,\sigma} + \hat{v}_i \hat{b}_{\lambda,\sigma}^\dagger) \) and \(v_i \) are arbitrary coefficients, the exact ground state at quarter filling becomes

\[
|\Psi_{g,R,1/4}\rangle = \prod_{i=1}^{N_A} \hat{D}_{\lambda,\sigma}(R) |0\rangle, \quad R = I, II,
\]

where \(|0\rangle \) is the bare vacuum. This is the ground state wave function, i.e., \((\hat{P} + \hat{U}) |\Psi_{g,R,1/4}\rangle = 0 \). Here \(\hat{U} |\Psi_{g,R,1/4}\rangle = 0 \) since, for \(R = I \) the electrons with arbitrary spins are introduced on different sites, and for \(R = II \) all \(\hat{B}_{\lambda,\sigma} \) in (8) have the same fixed spin \(\sigma \), so the double occupancy for both \(p \) is excluded. Besides, based on (6), further we have \(\hat{P} |\Psi_{g,R,1/4}\rangle = 0 \). Since the minimum eigenvalue of \(\hat{P} + \hat{U} \) is zero, thus \(|\Psi_{g,R,1/4}\rangle \) is the ground state for nonzero, positive, although arbitrary \(U \). The ground state for case I is degenerate and globally paramagnetic, with one electron on each site, i.e., the state is localized. While in case II the ground state is nondegenerate, is a saturated ferromagnet, with 0, 1, or 2 electrons on any site, e.g., the state is itinerant.

B. Ground states below quarter filling

1. Random droplet ground states

Decreasing the number of \(\hat{D}_{\lambda,\sigma}^\dagger \) operators in the product of the exact ground state below quarter filling can be written as well. In case I, for \(N < N_A \), we obtain

\[
|\Psi_{g,I,1/4 \approx N>0}| = \prod_{i=1}^{N} \hat{c}_{i,\sigma}(0),
\]

where sites \(i \) can be arbitrarily chosen. With empty sites present, the ground state is an itinerant paramagnetic phase. In case II, the ground state is reached only if touching \(\hat{B}_{\lambda,\sigma}^\dagger \) operators defined on different sites [for example, \(\hat{B}_{19,\sigma}^\dagger \) or \(\hat{B}_{25,\sigma}^\dagger \) in Fig. 2(a)] have the same spin in order to maintain the \(\hat{U} |\Psi_{g}\rangle = 0 \) condition. These neighboring \(\hat{B}_{\lambda,\sigma}^\dagger \) operators with fixed spin build up different blocks (droplets) \(B_I \) containing \(N_{Bl} \) particles. Two different blocks have no common lattice sites, and their spin is noncorrelated. If we denote by \(N_{Bl} \) the number of blocks, then the ground state wave function becomes

\[
|\Psi_{g,R,I/4 \approx N>0}| = \prod_{j=1}^{N_{Bl}} \hat{D}_{\lambda,\sigma}(0),
\]

where \(\Sigma_{j=1}^{N_{Bl}} \hat{D}_{\lambda,\sigma}(0) \) is always a possibility for a new block to appear on the lattice, in a way that is not in contact with other blocks and as such it can have opposite spin. For example, in Fig. 2(a), the middle block \(B_{15,\sigma} \) is isolated and has opposite spin compared to the big block surrounding it. Hence, for \(N_{Bl} < N_A \) the ground state is no longer fully saturated. Further decreasing \(N \), the ground state remains ferromagnetic until two disjoint blocks with the same number of sites but opposite spins can be constructed. This happens at \(N_{p} = N_A - 2L \), where \(N_A = L \times L \). Thus, for \(N < N_{p} \), the ground state is globally paramagnetic.

2. Degenerated stripe ground state solutions

Decreasing \(N \) below \(N_{p} \), stripes emerge in the ground state in both Eqs. (9) and (10) as vertical stripes (Fig. 3) or diag-
along periodic vertical lines. The ground state wave function containing vertical stripe lines is
\[|\Psi_{g,R,t,S_j}\rangle = \prod_{i=1}^{N_{St}} \left(\prod_{j=1}^{I_{St,j}} \hat{D}_{i,j}^{t} \right) |0\rangle, \]
where \(I_{St,j} \) in case \(I \) \(II \) represents the stripe line \(j \) (plaquette stripe column \(j \)), and \(I_{St} = \sum I_{St,j} \). For example, from (11), the vertical stripes are obtained in case \(I \) \(II \) by a displacement along periodic vertical lines (vertically constructed plaquette columns) of \(\hat{C}_{i,j}^{t} \left(\hat{B}_{i,j}^{t} \right) \) operators. In Fig. 3(a) case \(I \) is shown with column stripes, while Fig. 3(b) depicts case \(II \) with plaquette columns. For diagonal stripes, the vertical displacement must be changed to diagonal one, as shown in Fig. 4. In the case \(II \) at \(d_1 = d_2 \), see Fig. 5; the stripe structure turns into a checkerboard one. The stripe lines for case \(I \) are paramagnetic and insulating, while they are itinerant and ferromagnetic for case \(II \). Different stripe lines which are not in contact have noncorrelated spin.

C. Non-degenerate stripe and checkerboard ground states

For \(N < N_p \), droplet [see Fig. 2(b)] and stripe solutions coexist as the ground state is degenerate. However, the droplet contributions can be eliminated in exact terms from the ground state by adding new Hamiltonian contributions to \(\hat{H} \). For example, let us consider \(\hat{H}_A = -|W_1| \sum_{i=1}^{N} \hat{n}_i \), where \(\hat{n}_i = \sum_{p} \hat{B}_{i,p}^{\dagger} \hat{B}_{i,p} \). If \(I_{St} \) contains all lattice sites from \(\hat{D}_{i,j}^{t} \) \(\sum_{j=1}^{I_{St,j}} \hat{D}_{i,j}^{t} \) \(I_{St} \) holds, then \(\sum_{i=1}^{N} \hat{n}_i \) \(N \) \(\sum_{i=1}^{N} \hat{n}_i \) provides the minimum possible eigenvalue for \(\hat{H}_A \). If however, \(I_{St} \neq I_{St} \) for example, if \(j_2 \) moves to the \(j_1 \) position, Fig. 3(a)], then \(|\Psi_{g,R,t,S_j}\rangle \) is no longer an eigenstate of \(\hat{H}_A \). Consequently, \(|\Psi_{g,R,t,S_j}\rangle \) becomes the unique, nondegenerate ground state of \(\hat{H} + \hat{H}_A \). If we add to \(\hat{H}_A \) the term \(\hat{H}_A = |W_2| \sum_{i=1}^{N} \hat{n}_i \), as well, the results remain unchanged. A Hamiltonian term of the form \(\hat{H}_A \) is motivated in case of cuprates by low temperature tetragonal fluctuations.\(^{20}\) The potential \(W \) in \(\hat{H}_A = \hat{H}_A + \hat{H}_A \) can be generated by a periodic charge displacement or charge density wave (see Fig. 6), which is able to stabilize a stripe phase. Such a behavior has been already seen\(^{22}\) in cuprates. Similarly, the checkerboard state also can be made stable.\(^{21}\)

A checkerboard is obtained, for example, in Fig. 4(b), if we take \(d_1 = d_2 = 2 \), see Fig. 5. This is stabilized by a Hamiltonian term \(\hat{H}_A \), which has a set of lattice sites \(I_{St} \) in such a way that it contains only next-nearest-neighbor sites on each second diagonal.

Furthermore, the vertical stripes from Fig. 3(b) will be stabilized by a dimerization term of the form \(\hat{H}_B = \sum_{i=1}^{N} \hat{E}_{i} + \hat{E}_{i,1}^{t} \), where \(\hat{E}_{i} = \sum_{p,d} \epsilon_{1,2} \hat{B}_{i,p}^{\dagger} \hat{B}_{i,p} \), and \(\hat{E}_{i,1}^{t} = \sum_{p,d} \epsilon_{1,2} \hat{B}_{i,p}^{\dagger} \hat{B}_{i,p} \), where \(\hat{E}_{i} \) contains only each second site of horizontal lattice rows \(N_0 \); see Fig. 7. For \(\hat{H}_B \) described in Ref. 23, the stable stripe phase occurs above the surface presented in Fig. 8. Modifying \(I_{St} \), other stripes can be addressed as well. The important effect of dimerization on stripe stabilization has been recently shown using numerical simulations.\(^{24}\)

FIG. 6. \(\hat{H}_0 \) parameters for case \(I \) vs \(t=\epsilon_{1,i}^{t}/\epsilon_{2,i}^{t} \) at \(\langle \epsilon_{1,i}^{t} \rangle^2 \langle \epsilon_{2,i}^{t} \rangle^2 \approx 4\epsilon_{1,i}^{t}\epsilon_{2,i}^{t} \). The inset shows the potential \(W \) created by \(\hat{H}_A \) acting on the charge degrees of freedom in \(x \) direction stabilizing the stripes from Fig. 3(a).

FIG. 7. Bond alternation in \(x \) direction to stabilize the stripes from Fig. 3(b), \(J_x = \epsilon_{1,i}^{t}, V_x \).

FIG. 5. Checkerboard originating from diagonal stripes at \(d_1 = d_2 \), see also Fig. 4(b). For the meaning of shaded plaquettes see Fig. 3(b).

FIG. 4. Example of diagonal stripe solutions for case \(I \) shown in (a) and case \(II \) in (b). Notations are as in Fig. 3.
IV. DISCUSSION OF THE RESULTS

The obtained inhomogeneities are not connected in principle either to certain special values of the parameters or to special properties of the homogeneous phases present at quarter filling. In the following we present several remarks to support this and, in closing, the obtained stripe formation process is summarized.

Firstly, for a given Hamiltonian, a given decomposition in positive semidefinite operators at a given filling factor is not unique.14,25,26 The decomposition itself can be done in several different ways, leading to different $\hat{A}_{k,\sigma}$ operators, different matching conditions, hence different interdependencies between microscopic parameters obtained during the solution of the matching conditions \[\text{i.e., equations of the type (3)},\] providing similar solutions, and similar characteristics in different regions of the parameter space. For example, as shown in Ref. 25, instead of plaquettes, rhombi can also be used in defining $\hat{A}_{k,\sigma}$, obtaining the same type of solutions, but in other regions of the parameter space. Other possibilities are to simply tilt the unit cell14 or to decompose in $\Sigma\hat{A}_{k,\sigma}^\dagger\hat{A}_{k}$, where $\hat{A}_{k} = \Sigma_{\sigma}\hat{A}_{k,\sigma}$, as described in Ref. 26, etc.

Secondly, the different solutions of the matching conditions all give homogeneous phases at quarter filling. Stripes will appear from each of these homogeneous phases with (hole) doping. This can be easily understood from the observation that the $\hat{B}_{k,\sigma}$ (or $\hat{B}_{k,\sigma}^\dagger$) operators which are characteristic of the stripe ground state \[\text{see e.g., Eqs. (6) or (7)}\] can appear for arbitrary $\hat{A}_{k,\sigma}$. Consequently, the obtained stripe formation process is weakly dependent on the properties of the homogeneous phase from which the stripes emerge.

Thirdly, each homogeneous phase (and hence each stripe structure originating from it) appears for different, well-defined conditions. For example, see also Ref. 19, stripes with ferromagnetic and itinerant stripe lines can be obtained from the itinerant ferromagnetic homogeneous phase when the one particle part of the Hamiltonian in (1) has such parameters that \hat{H}_B will have a diagonalized partially filled lower flat band. One the other hand, insulating paramagnetic stripe lines are obtained in a different parameter space region, where localized homogeneous phase can occur, etc.

Fourthly, an additional repulsive Hubbard term acting in the d band will not change the obtained results. Consequently, the obtained ground states and inhomogeneities are valid not only in the 2D two-band Hubbard model, but also in a more general 2D Hubbard model as well.

Lastly, in our rigorous description we obtained a nondegenerate ground state exhibiting stripe structure in the following steps: we doped the homogeneous phase at quarter filling. This resulted in a degenerate ground state to appear, which contained both random droplets and stripe solutions. In the last step we lifted the degeneracy by adding a so-called stabilization term to the Hamiltonian. By doing this we eliminated the random droplets from the degenerated ground state, obtaining a nondegenerated stripe ground state solution.

V. CONCLUSIONS

In conclusion, providing exact results for stripe, checkerboard, vs droplet interplay, we show how such intrinsic inhomogeneities appear in a 2D Hamiltonian as nondegenerate ground states. For this, (1) a generalized PAM is used and cast in a positive semidefinite form, (2) the ground states are explicitly constructed at and below quarter filling, and (3) the ground state degeneracy provided by random droplets is eliminated using extension terms representing, e.g., distortion lines, dimerization, or density waves. The inhomogeneities were shown to exist in a broad concentration range below quarter filling and they are either (case I) paramagnetic and localized, or (case II) itinerant and ferromagnetic. In both of these cases the interstripe lines are insulating. As has been emphasized, stripes can emerge from different homogeneous phases so are less sensitive to microscopic parameters of \hat{H}. As marginal for the stripes, but important for PAM, we derive an exact ferromagnetic ground state, as well, in 2D at quarter filling. An extra Hubbard interaction in the d band, $U_d > 0$ leaves the above results unchanged. The presented positive semidefinite decomposition is not unique, and can be effectuated in several ways, leading to similar results also in other regions of the parameter space.

ACKNOWLEDGMENTS

We acknowledge valuable discussions with D. Vollhardt and J. Zaanen. For Zs. G. research supported by Grants No. OTKA-T037212 and No. K60066 of Hungarian Scientific Research Fund, and Alexander von Humboldt Foundation at the Institute for Theoretical Physics III, University of Augsburg.
In special cases called “integrable” (i.e., the number of degrees of freedom is equal to the number of constants of motion), the whole spectrum can be deduced using methods as Bethe Ansatz. In our case, only the ground state is obtained.

Equation (3) shows that when ferromagnetism emerges, the diagonalized \hat{H}_0 has a partially filled lower flat band.

We must consider $\hat{H}_l=\hat{H}^{l,1}_l+\hat{H}^{l,2}_l$, where $\hat{H}^{l,1}_l=\sum_{\sigma \alpha \beta} \{b_{l,\sigma}^{\dagger} b_{l+1,\alpha \beta} \}$, as shown in Fig. 1(b), and $\{\hat{E}_{l,\sigma}^{\alpha,\beta}, \hat{E}^{\alpha,\beta}_l\} = 0$, for all even l in every lattice row with arbitrary $e_{\text{even},\alpha} = e_\alpha$ and $e_{\text{odd},\alpha} = 0$.

In our case, only the ground state is obtained.

Equation (3) shows that when ferromagnetism emerges, the diagonalized \hat{H}_0 has a partially filled lower flat band.

We must consider $\hat{H}_l=\hat{H}^{l,1}_l+\hat{H}^{l,2}_l$, where $\hat{H}^{l,1}_l=\sum_{\sigma \alpha \beta} \{b_{l,\sigma}^{\dagger} b_{l+1,\alpha \beta} \}$, as shown in Fig. 1(b), and $\{\hat{E}_{l,\sigma}^{\alpha,\beta}, \hat{E}^{\alpha,\beta}_l\} = 0$, for all even l in every lattice row with arbitrary $e_{\text{even},\alpha} = e_\alpha$ and $e_{\text{odd},\alpha} = 0$.

In our case, only the ground state is obtained.