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a b s t r a c t

Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC)
through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could
be propagated without changes in morphological or functional characteristics for more than 15 passages.
These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the
growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express
the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133,
HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs
(CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adi-
pogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation,
and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly
model human MSCs and be applied as efficient feeders in hESC cultures.

� 2011 Published by Elsevier Inc.
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1. Introduction of MSCs from donors is an invasive procedure and several reports
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Mesenchymal stem (stromal) cells (MSCs), originally isolated
from bone marrow [1], provide a supportive microenvironment for
hematopoietic stem cells. Moreover, MSCs show multipotent stem
cell characteristics [2] and special immunological features [3]. MSCs
can also be obtained from various tissues including peripheral blood,
umbilical cord, placenta, vein wall, muscle, adipose and connective
tissues [4]. MSCs can be differentiated into canonical mesodermal
tissues, e.g. bone, fat and cartilage, but may also retain a wider differ-
entiation capacity [5]. MSCs play a role in tissue repair due to their
differentiation potential and immunosuppressive activities [6], as
well as by trophic effects mediated by growth factors and cytokines
they produce [7].

These features initiated the use of MSCs in various cell-based
therapies and by now more than 50 clinical trials related to this cell
type have been reported (see http://www.clinicaltrials.gov) [8].
However, there are several limitations of large scale, reproducible,
and well characterized production of human MSCs. The aspiration
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have demonstrated donor- and tissue-dependent variability of hu-
man bone-marrow-derived MSCs [4,9–13]. Isolation and enrich-
ment of tissue-derived MSCs usually results in heterogeneous
cell populations, and a long term ex vivo expansion of human MSCs
has been shown to reduce replicative capacity, impair differentia-
tion potential, alter gene expression profiles, and lead to karyotype
instability [9,10].

In contrast to MSCs, pluripotent human embryonic stem cell
(hESCs) lines have the capacity of unlimited growth and self-re-
newal [14] and can differentiate into all cell types of the human
body [15]. There are numerous studies investigating the differenti-
ation of hESCs, especially to yield the clinically most relevant cell
types, including cardiomyocytes, hemopoietic cells, neuronal or
pancreatic cells (for a recent review see [16]).

Recent publications have also reported the derivation of MSC-like
cells from hESC lines [17–20], by using various protocols and pro-
ducing MSCs with different characteristics. In the present study
we have established a method to derive MSCl cell lines from hESCs
with well defined gene and protein expression patterns and immu-
nological features, examined their differentiation potential, sup-
portive role for culturing hESCs, and produced genetically
modified MSCl cell clones stably expressing fluorescent marker pro-
teins. This work may significantly help our understanding of human
MSC characteristics and the use of these cells in biotechnology
applications.
SCl) cells generated from human embryonic stem cells support pluripotent
09.089

http://www.clinicaltrials.gov
http://dx.doi.org/10.1016/j.bbrc.2011.09.089
mailto:apati@kkk.org.hu
http://dx.doi.org/10.1016/j.bbrc.2011.09.089
http://www.sciencedirect.com/science/journal/0006291X
http://www.elsevier.com/locate/ybbrc
http://dx.doi.org/10.1016/j.bbrc.2011.09.089


81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

2 N. Varga et al. / Biochemical and Biophysical Research Communications xxx (2011) xxx–xxx

YBBRC 27406 No. of Pages 7, Model 5G

30 September 2011
2. Materials and methods

2.1. HuES, MSCl cells, HFF-1 and bmMSC cultures

The human embryonic stem cell lines (HUES9 and HUES1 orig-
inally provided by Dr. Douglas Melton, Harvard University) were
cultured on mitotically inactivated mouse embryonic fibroblasts
(MEF) [21]. Spontaneous differentiation of the hESCs were per-
formed via embryoid body (EB) formation as described previously
[21]. The cells were trypsinized at day 80 and were further cul-
tured in DMEM supplemented with 10% fetal bovine serum (FBS;
Invitrogen) on a gelatinized 10-cm plate. The cells were trypsinized
when confluent and split to 1:3 ratio. After two passages most of
the cultured cells presented fibroblast-like morphology. The
hESC-derived fibroblast-like cells were designated as hESC-derived
mesenchymal stem cell like (MSCl) cells. All MSCl cells used in this
study were of polyclonal origin.

HFF-1 cells were obtained from ATCC and were cultured according
to the manufacturer’s instructions (http://www.stemcells.atcc.org).

Collection of bone marrow samples from patients with hemato-
logical diseases was approved by the Regional and Institutional
ethical review board of the Medical and Health Science Center of
the University of Debrecen (protocol No.: UD-MHSC REC/IEC
2754-2008). Bone marrow samples were harvested from the iliac
crest under medical examination. bmMSC isolated and cultured
as described earlier [22]. The cells were used for phenotypic and
functional analysis after P5.
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2.2. Characterization of MSCl, HFF-1 and bmMSC cells

Cell surface expression of MSC marker proteins on the surface of
MSCl, HFF-1 and bmMSC cells was analyzed by three-color flow
cytometry using FITC-, APC- or PE-conjugated monoclonal antibod-
ies (mAb) with isotype-matched control mAbs; specific against
hematopoietic-, MSC related-, endothelial markers, cell adhesion
molecules and integrins as well (see Supplementary Table I for full
list). Fluorescence intensities were measured by FACS Calibur flow
cytometer and the data were analyzed by using the WinMDI free-
ware (Joseph Trotter, La Jolla, CA). Results were expressed as
means of positive cells (%) ± SD. Pluripotency markers of MSCs
were tested by immunostaining (Oct4, SSEA4, PODXL) and by real
time PCR (Nanog, ABCG2) performed as described previously [21].
The differentiation potential of MSCs was performed by using the
Fig. 1. Pluripotency markers of HUES9 cells cultured on different feeder layers, HUES9 ce
chambers for confocal microscopy. Co-culture of HUES and feeder cells were fixed and s
(red). Antibodies specific for undifferentiated cell markers stained only the HUES9 clump
Nuclei were counterstained with DAPI (blue). (For interpretation of the references to co

Please cite this article in press as: N. Varga et al., Mesenchymal stem cell like (M
cell growth, Biochem. Biophys. Res. Commun. (2011), doi:10.1016/j.bbrc.2011.
Gibco’s StemPro� Adipogenesis, Osteogenesis and Chondrogenesis
Differentiation Kits according to the manufacturer’s guide.

2.3. Lentiviral transduction of MSCl cells

For viral-based gene delivery, a third generation lentiviral vec-
tor system was used, as described in [23]. Determination of virus
titers and the transduction procedures were performed as de-
scribed previously [24]. The MSCl-2 cells were transduced by a
MOI of 2–5, with an eGFP encoding lentiviral vector and further
handling was the same as for the parental cell line.

2.4. Mitogen-induced cell proliferation and cytokine secretion

Peripheral blood mononuclear cells (PBMCs) were isolated by
Ficoll gradient centrifugation (Amersham Biosciences, Uppsala,
Sweden). Mitogen-activated T lymphocyte proliferation was in-
duced by concanavalin A (ConA) or phytohaemagglutinin (PHA)
used at a final concentration of 10 lg/ml (Amersham Pharmacia
Biotech) and 1 lg/ml (Sigma–Aldrich), respectively added to
1 � 106 PBMCs. MSCs were added to 1 � 106 PBMCs at 103 and
104 cell numbers and co-cultured for 3 days. On day three prolifer-
ation was detected by the BrDU colorimetric assay directly in the
culture plate according to the manufacturer’s instructions (Roche).
IL-6, IL-10 and IFN-c cytokine secretion was quantitated by en-
zyme linked immunosorbent (ELISA) assay (OptEIA, BD Pharmin-
gen) following the supplier’s instruction. All experiments were
performed in triplicates.

2.5. Statistical analysis

Each experiment was performed at least three times and each
sample was tested in triplicates. Data are expressed as mean + SD.
Statistically significant differences were determined by two-way
ANOVA or paired student-t tests. ⁄p < 0.05, ⁄⁄p < 0.01, ⁄⁄⁄p < 0.001.

3. Results and discussion

3.1. Generation of HUES9-derived MSCl cells – application as feeder
cells

Pluripotent HUES9 cells were spontaneously differentiated via
EB formation (6 days), and then the differentiation process was
lls were grown on MEF (A) or MSCl-2-GFP (B) feeder cells for two days in eight-well
tained with the antibodies recognizing the following proteins: Oct4, SSEA4, PODXL
s, while the MEF or MSCl-2-GFP cells did not show any staining with these markers.
lor in this figure legend, the reader is referred to the web version of this article.)

SCl) cells generated from human embryonic stem cells support pluripotent
09.089
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Fig. 2. Differentiation of MSCl-2, HFF-1 and bmMSC cells. Adipogenic differentiation is demonstrated by intracellular lipid vacuoles stained in red by Oil Red O (red) and with
nuclei counterstained with DAPI (blue) (A). Osteogenic differentiation of MSCs is demonstrated by the formation of calcium-hydroxyapatite-positive areas stained in red by
Alizarin Red (B). High density cultures showed the development of chondrogenic phenotype when cultured in micromass; pink extracellular matrix staining marks
proteoglycans stained with toluidine blue (C). Magnification: 200�. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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completed by further cell culturing on adherent surface in the
presence of 10% FBS for 80 days. The differentiated fibroblast-like
cells were separated from the other cell types by short trypsiniza-
tion. After 2–3 passages on adherent surface the cells achieved uni-
form, fibroblast like morphology, and these cells (termed MSCl
cells) could be propagated at least for 15 passages without mor-
phological or kariotypical changes (Supplementary Fig. 1). By using
the same protocol, more than five polyclonal MSCl cultures were
independently generated from the HUES9 cell line.

In the following experiments we tested the capacity of the MSCl
cells as autogenic feeder cells for maintaining pluripotency of hESCs.
When undifferentiated HUES1 or HUES9 cells were passaged to
mitomycin treated MSCl cultures, each MSCl cell line supported
the growth of these pluripotent hESCs without any change in the
expression of pluripotency markers or the rate of cell growth, as
compared to those seen with cells growing on MEF (Supplementary
Fig. 2). Recent publications have already described various methods
for the establishment of autogenic feeder cells from hESC [25–27].
Our present method provides means to create applicable feeders
for hESC without cell sorting or mechanical separation, and the de-
rived feeder cells demonstrate the capacity to promote hESC
expansion.

In order to allow a fast separation of hESCs from the human
MSCl cells, we have generated eGFP expressing MSCl cells by using
a lentiviral gene delivery method. The MSCl-GFP cells were sorted
for eGFP positivity, treated with mitomycin and used as feeder for
hESCs. As documented in Fig. 1, the MSCl-GFP cells promoted the
growth of HUES9 cells in an undifferentiated state. This Figure also
Please cite this article in press as: N. Varga et al., Mesenchymal stem cell like (M
cell growth, Biochem. Biophys. Res. Commun. (2011), doi:10.1016/j.bbrc.2011.
documents that the pluripotency markers Oct4, SSEA4 and PODXL
were expressed in the pluripotent HUES9 cells, while these mark-
ers were absent in the MSCl-GFP feeder cells.

We also extended these studies with RT-PCR measurements of
pluripotency markers expression in the undifferentiated hESC
and in the MSCl cells. The transcription factors Oct4 and Nanog
and the ABCG2 cell surface protein showed high levels of gene
expression in the HUES9 cells, while they were close to detection
levels in the MSCl cells (data not shown).

3.2. Multi-lineage differentiation potential

MSCs should fit the functional and phenotypic criteria defined
by the Mesenchymal and Tissue Stem Cell Committee of the Inter-
national Society for Cellular Therapy [28]. We first tested whether
the MSCl cells could be differentiated toward the canonical meso-
dermal (osteoblastic, chondrogenic, adipogenic) directions. We
found that all four established MSCl cell lines exhibited the
potential to differentiate to at least one direction, but one of them
(MSCl-2) showed robust differentiation potential toward all three
directions (Supplementary Fig. 3). To complete a more detailed
characterization we next compared the differentiation capacity of
MSCl cells with the commercially available human foreskin fibro-
blast cells (HFF-1) widely used as a feeder cell line for hESC cul-
tures, and that of MSCs isolated from human bone marrow. All
these MSCs of different origin could be differentiated in vitro to
adipogenic, oesteogenic and chondrogenic directions. Followed
by a three-week adipogenic induction period, a large number of
SCl) cells generated from human embryonic stem cells support pluripotent
09.089
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Fig. 3. Expression of common MSC markers in different MSCl cell lines. Flow cytometry measurements of cell surface marker expression of HUES9-derived MSCl cells. Single
cell suspensions from MSCl-2, MSCl-3 and MSCl-4 cells were obtained by gentle trypsinization. Non-viable cells were excluded by Topro3 or 7AAD staining. Monoclonal
antibodies specific for CD44 (conjugated to FITC), CD73 and CD90 (conjugated to PE) were used to detect MSC markers. Anti CD34-PE was used to demonstrate the absence of
hematopoietic cells in the MSCl cultures. Dashed lines show staining with the relevant isotype-matched control mAbs.
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MSCl-2 and bmMSC cells showed oil red positive staining, charac-
teristic for adipocytes (Fig. 2A), while only a small number of HFF-1
cells became oil red positive. Similarly, when differentiation was
induced by osteogenic induction medium for 2–3 weeks, MSCl-2
and bmMSC cells showed dense calcium deposits stained with aliz-
arin red, while the HFF-1 cells exhibited weak osteogenic potential
(Fig. 2B). After 3 weeks of differentiation sections made from chon-
drogenic mass cultures showed metachromazy upon toluidin-blue
staining indicating chondrocyte formation from all three cell types
(Fig. 2C). Based on these data we suggest that MSCl-2 cells
Please cite this article in press as: N. Varga et al., Mesenchymal stem cell like (M
cell growth, Biochem. Biophys. Res. Commun. (2011), doi:10.1016/j.bbrc.2011.
generated from HUES9 cells retained their multilineage differenti-
ation potential, similar to that found in bmMSCs [4,29], whereas
HFF-1 cells possessed reduced differentiation capacity.

3.2.1. Cell surface markers of MSCl cells
In the first set of experiments summarized in Fig. 3 we com-

pared the phenotypic characteristics of three different HUES9-de-
rived polyclonal MSCl cell lines: MSCl-2, MSCl-3 and MSCl-4,
which could be cultured for a long period of time, for the expres-
sion of the key cell surface molecules of MSCs. As shown by flow
SCl) cells generated from human embryonic stem cells support pluripotent
09.089
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Table 1
Expression of common phenotypic markers by MSCs of various origins.

MSCl-2 HFF-1 bmMSC

CD44/H-CAM 96.97 ± 2.81 93.23 ± 9.44 89.69 ± 10.04
CD105/Endoglin 89.61 ± 3.95 95.73 ± 6.19 86.08 ± 8.85
CD73/NT5E 99.51 ± 0.25 99.21 ± 0.22 93.57 ± 6.44
CD90/Thy-1 96.24 ± 2.41 87.38 ± 7.87 89.78 ± 7.67
CD34 0.00 1.24 ± 2.49 0.00
CD14 1.04 ± 1.88 85.27 ± 10.47 0.09 ± 0.19
CD45/Protein tyrosine phosphatase receptor C 0.00 0.00 0.00
CD117/c-kit 0.00 0.00 0.00
CD133/Prominin 1 0.00 0.00 0.00
HLA-DR 0.00 0.00 0.00
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cytometry, the selected cell lines expressed similar high levels of
CD44, CD73, and CD90 with some variability in the magnitude of
CD90 expression and none of these cells expressed CD34, an early
hematopoietic stem cell marker (Fig. 3).

For a detailed characterization, we have compared the expression
of the cell surface markers in bmMSC, HFF-1 and MSCl-2 cells, by
using flow cytometry analysis. As documented in Table 1, all the
three cell types showed a uniformly high expression for all well
known MSC markers, e.g. CD44, CD73, CD90, and CD105. Because
none of these markers are considered as MSC specific, we further
analyzed the expression of integrins, cell adhesion molecules and
endothel-related surface proteins on MSCl-2 cells as compared to
that of the other cell types. No difference in the expression pattern
of these cell surface markers could be shown (Supplementary Table
II). Importantly, none of the MSCs showed measurable expression of
the hematopoietic markers CD14, CD34, CD45, CD117, CD133 or
HLA-R. The unique property of HFF-1 cells was their high cell surface
expression of CD14, which was undetectable in bmMSC or MSCl cells
(Table 1). Thus in line with previous publications [17,20,30], the de-
tailed phenotypic analysis of HUES9-derived MSCl-2 and adult
bmMSCs cells revealed close phenotypic similarity.

3.2.2. Immunosuppressive effects of MSCl-2, HFF-1 and bmMSCs
Due to their clinical utility, the immunosuppressive properties

of MSCs have extensively been studied and MSCs were shown to
suppress immune responses both in vitro and in vivo mediated by
multiple mechanisms [31–33] validating MSC as a therapeutically
relevant cell type. Numerous studies have demonstrated that hu-
man MSCs decrease alloreactive responses, interfere with dendritic
cell (DC) and T-cell functions, and are able to generate an immuno-
suppressive microenvironment. Under in vitro conditions bmMSCs
are capable to suppress various T-cell effector functions [33,34]
and inhibit mitogen-stimulated lymphocyte proliferation [35,36].

In the present study mitogen-induced T-cell proliferation was
used to compare the immunosuppressive properties of MSCl-2,
HFF-1 and bmMSC cells. Human PBMC of healthy donors was used
as responder cells, and ConA or PHA as mitogenic activators. We
found that all cell types responded to mitogenic activation and
had an effect on lymphocyte-proliferation induced by ConA or
PHA (Fig. 4). As shown in Fig. 4A, the presence of MSCls suppressed
the mitogenic response of lymphocytes in a dose-dependent man-
ner and the addition of both 103 and 104 MSCl-2 cells to 1 � 106

PBL efficiently reduced ConA-induced lymphocyte proliferation,
whereas the PHA-induced mitogenic response was significant in
the presence of 104 MSCl-2 cells, only (Fig. 4A). A similar effect
could be detected when using bmMSCs as suppressors (Fig. 4C).
Proliferation of lymphocytes could also be suppressed by HFF-1
cells when ConA but not PHA was used for stimulation (Fig. 4B).

In order to elicit their immunosuppressive function, MSCs
should acquire increased production of certain cytokines such as
IL-6, IL-10 and IFNc [37,38]. IL-6 was shown to increases PGE2 pro-
duction and thus plays a key role in the inhibition of DC maturation
and T-cell proliferation [31,39–42]. Dependent on local IFNc levels
Please cite this article in press as: N. Varga et al., Mesenchymal stem cell like (M
cell growth, Biochem. Biophys. Res. Commun. (2011), doi:10.1016/j.bbrc.2011.
MSC-mediated immunosuppression can be enhanced [43], and
bmMSCs can drive DC differentiation to IL-10 secreting cells [33],
which are potent inhibitors of T lymphocyte proliferation [44].

In the next set of experiments we sought to measure the concen-
tration of secreted IL-6, IL-10 and IFNc cytokines in the supernatant
of mitogen-activated PBMCs co-cultured with MSCl-2, HFF-1 and
bmMSC cells (Supplementary Fig. 4). Our results revealed that
bmMSCs induced significant increases in IL-6 (Supplementary
Fig. 4C), IFNc (Supplementary Fig. 4F) and IL-10 (Supplementary
Fig. 4I) cytokine levels, whereas MSCl-2 cells were unable to do so
even though they efficiently inhibited T lymphocyte proliferation
(Fig. 4A, D, and G). The presence of HFF-1 cells induced a slight
increase in IL-6 levels (Supplementary Fig. 4B), but the concentra-
tion of secreted IFNc and IL-10 did not change (Supplemantary
Fig. 4E and H). These results indicate that the production of the
functionally relevant cytokines is not an absolute requirement for
exerting the immunosuppressive effects of MSCs, and the MSCl-2
cells may use different means to inhibit T-lymphocyte associated
effector functions.

Although the detailed immunological characterization of HUES9-
derived MSCl-2 needs further investigations, our present results
indicate a strong immunosuppressive effect by the HUES9-derived
MSCl-2 cells. Our current experiments reinforce previous observa-
tions [20,30,45] demonstrating that MSCs derived from human
embryonic stem cells have the capacity to suppress peripheral blood
T lymphocyte proliferation and also extend them by demonstrating
the lack of MSCs-induced enhancement of cytokine secretion upon
their immunosuppressive action.

As a summary, we have prepared and characterized human MSCl
cells obtained from the human embryonic stem cell line, HUES9. In
previous studies various protocols have been applied to obtain MSCs
from hESC, including co-culture with mouse OP9 cells [46],
embryoid body differentiation [47], spontaneous differentiation in
monolayer [20], selection of cell populations by FACS [17], using
Rho-associated kinase inhibitor [30], over expression of HOXB4 gene
[18] and mechanical separation [19]. In the present study we have
developed a novel, simplified method to obtain phenotypically and
functionally homogeneous hESC-derived MSC populations. Our der-
ivation protocol required neither the use of xenogenic feeder cell,
nor selection (manual or FACS), nor chemical inducers. These MSCl
cells showed long term stability and could be maintained in culture
over 30 passages without detectable phenotypic or functional
changes. Cell surface markers, multipotent differentiation potential
and immunosuppressive effects of MSCl-2 proved to be similar to
bmMSCs but was different from that of HFF-1. Our data suggest that
MSCl-2 cells may be successfully applied as a model system for
studying human MSC features and may be used in biotechnology
applications.
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Fig. 4. Effect of MSCl-2, HFF-1 and bmMSC cells on mitogenic lymphocyte
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