SAFETY REGULATIONS FOR OPERATING PROCEDURES WITH UNSEALED RADIONUCLIDES

L. Ballay1, T. Sér1
1National Research Institute for Radiobiology and Radiophysics, Budapest, Hungary
2Department of Nuclear Medicine, University of Szeged, Szeged, Hungary

The Hungarian radiation protection regulatory system is quite complete at the level of act, ministerial and governmental orders, standards, but at the lower level namely the set of operational guidance, safety regulation, is deficient. The basic safety standards for the application of ionizing radiations are found in the Decree No. 16/2000 (VI. 8.) EUM of the Minister of Health, while the recently revised MSZ 62-7 standard contains the information on how to design radiation safety of radioscope laboratories, at the same time there is no guidance on what is considered as good practice working with radioactive materials. In the seventies and eighties the effectively used radioscope and X-ray safety guides described good practice but these had become invalidated, and not considering some paragraphs of the Decree No 16/2000 (VI. 8.) there are no safety guides which would have replaced these. The aim of the presentation is to raise attention, to the safety regulations for operating procedures with unsealed radionuclides and to review its aim, scope of applicability and delineate its general contents. The main goal of the safety guide is to become the guide of good practice for working with unsealed radioactive sources, intended to be used by those who work at radioscope laboratories, primarily at nuclear medicine departments. The first version of the document was developed with the support of the HAEA (Hungarian Atomic Energy Authority) (OAH ANI/ABA 01/03). The presented version was updated in collaboration with HSNM (Hungarian Society of Nuclear Medicine).

RADIATION PROTECTION OF PERSONNEL WORKING IN A NUCLEAR MEDICINE DEPARTMENT

E. Szucs1, I. Garai1, O. Sántha1, J. Varga2
1ScannoMed Ltd, Debrecen, Hungary
2University of Debrecen. Institute of Nuclear Medicine, Debrecen, Hungary

Background: The aim of this study was to identify the factors having a significant influence on the measured radiation doses, including the scope of activity and individual style of work, by processing the personal dosimeter data of an institute with extensive "in vivo" nuclear medicine profile. We compared the data of film and digital dosimeters in cases of radionuclides with different gamma energies, and tested the effect of using automatic FDG infusion system on the staff dose.

Material and methods: The exposure of personnel was measured by film dosimeters evaluated by the National Personal Dosimeter Service, and Thermo Scientific EPD Mk2+ digital personal dosimeters read out locally. Exposure data measured by film dosimeters were collected over a 10 years' period in three divisions, including gamma camera imaging and PET. 27 persons were enrolled in this study. Inactive periods and end of employment were noted. A total of 950 film dosimetry and 75 digital dosimetry data were analyzed. We classified film dosimetry data into 9 categories by the scope of activity. Digital dosimeters were utilized by PET/CT personnel (13 people) and in gamma camera hot lab (1 person). Since film data refer to 2 months' periods, digital dosimetry data were summarized for 2 month intervals as well. The normality of the distribution of data groups was checked by Shapiro-Wilk test. Because of the lack of normality, non-parametric tests were used to compare the groups: Mann-Whitney for two groups, and Kruskal-Wallis test for several groups. Since the differences between film and digital readings showed Gaussian distribution, Student's paired t-test was used for their comparison. The significance of various factors was tested using the general linear model.

Results: 85% of the doses were under 0.6 mSv/month. No significant difference was found between data obtained by film and digital dosimetry. However, there was a significant difference between the values of personnel having different scopes of activity (Kruskal-Wallis test: p < 0.0001). The highest doses were measured in the PET/CT department and the hot lab. Using the automatic infusion system significantly reduced the doses: digital dosimetry data showed an average reduction of the effective doses by 0.16 mSv (2 sample t-test, p = 0.006). Exposures of people doing the same job showed high variances.

Conclusion: Our results suggest that the rotation of the staff between working places is justified to equalize radiation exposure. The individual variances of exposure point out the importance of regular theoretical and practical education, and the skilled usage of protection devices available.

SEMIVARIOGRAPHIC METHODS OF MYOCARDIAL PERFUSION AND ECG-GATED SCINTIGRAMS USING TWO SOFTWARE PACKAGES.

A. Radacsi1, Z. Oltvai1, I. Balogh2, K. Bor1, A. Rónánszki2
1European Diagnostics Hungary Ltd., Budapest, Hungary
2Department of Cardiology Péterfy Sándor Hospital, Budapest, Hungary

Background: The aim of this study was to compare the diagnostic value of ischemia, wall thickening and wall motion of the Corridor4DM (4DM) and Cedars-Sinai (GPS/QGS) software packages for semiquantification of myocardial perfusion (MPS) and EKG-gated (MIS) scintigrams.

Material and methods: We studied 123 (52 males with a mean age of 62.9 years, 71 females with a mean age of 64.1 years) consecutive patients who underwent two-day stress/rest (99mTc)-tetrofosmin MPS and MGS studies. All patients had pharmacological stress-test with Dobutamine. The reference classification for MPS and MGS studies regarding presence or absence...