D4cpv-calsequestrin: a sensitive ratiometric biosensor accurately targeted to the calcium store of skeletal muscle

Monika Sztreyte, Jianxun Yi, Lourdes Figueroa, Jingsong Zhou, Leandro Royer, and Eduardo Ríos

Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612

Current fluorescent monitors of free [Ca$^{2+}$] in the sarcoplasmic reticulum (SR) of skeletal muscle cells are of limited quantitative value. They provide either a nonratio signal that is difficult to calibrate and is not specific or, in the case of Forster resonant energy transfer (FRET) biosensors, a signal of small dynamic range, which may be degraded further by imperfect targeting and interference from endogenous ligands of calsequestrin. We describe a novel tool that uses the cameleon D4cpv, which has a greater dynamic range and lower susceptibility to endogenous ligands than earlier cameleons. D4cpv was targeted to the SR by fusion with the cDNA of calsequestrin 1 or a variant that binds less Ca$^{2+}$. “D4cpv-Casq1,” expressed in adult mouse at concentrations up to 22 μmole/liter of muscle cell, displayed the accurate targeting of calsequestrin and stayed inside cells after permeabilization of surface and t system membranes, which confirmed its strict targeting. FRET ratio changes of D4cpv-Casq1 were calibrated inside cells, with an effective K_0 of 222 μM and a dynamic range [(R$_{max}$ - R$_{min}$)/R$_{min}$] of 2.5, which are improvements over comparable sensors. Both the maximal ratio, R$_{max}$, and its resting value were slightly lower in areas of high expression, a variation that was inversely correlated to distance from the sites of protein synthesis. The average [Ca$^{2+}$]$_{SR}$ in 74 viable cells at rest was 416 μM. The distribution of individual ratio values was Gaussian, but that of the calculated [Ca$^{2+}$]$_{SR}$ was skewed, with a tail of very large values, up to 6 mM. Model calculations reproduce this skewness as the consequence of quantifiably small variations in biosensor performance. Local variability, a perceived weakness of biosensors, thus becomes quantifiable. It is demonstrably small in D4cpv. D4cpv-Casq1 therefore provides substantial improvements in sensitivity, specificity, and reproducibility over existing monitors of SR free Ca$^{2+}$ concentration.

INTRODUCTION

The processes required for action potential–induced contraction of skeletal muscle cells include the release into the cytosol of ≥200 μmole of Ca$^{2+}$ per liter of myoplasm (Pape et al., 1993; Baylor and Hollingworth, 2003). This amounts to between 10 and 20% of the total Ca$^{2+}$ that can be released from the storage organelle (Pape et al., 1993; Pizarro and Ríos, 2004; Launikonis et al., 2006; Rudolf et al., 2006), which for fast-twitch fibers at rest (in a variety of preparations) is estimated at between 1 and 5 mmol per liter of myoplasm (e.g., Schneider et al., 1987; Jong et al., 1993; Fryer and Stephenson, 1996; Owen et al., 1997). In some cells at 37°C, the rise time of the Ca$^{2+}$ transient may be as little as 1 ms. The rise time is approximately equal to the time when Ca$^{2+}$ is being released. Therefore, a flux averaging ∼200 mM/s should operate during that time.

For such large flux to peak within 1 ms and then turn off equally rapidly, it is necessary to open and close large numbers of channels in a highly coordinated fashion. In skeletal muscle, the mechanisms for synchronously opening and closing channels include control by the voltage sensor of the transverse-tubular membrane, the dihydropyridine receptor (DHPR), but additionally must have other contributions. The need for extra mechanisms of release activation or termination is evident in the fact that the flux of Ca$^{2+}$ release elicited by voltage clamp pulse depolarization rises to an early peak and then spontaneously and rapidly decays, even though the voltage sensor remains in its fully activating condition, and, as stated above, only a fraction of the sarcoplasmic reticulum (SR) content has been released (e.g., Royer et al., 2008, 2010).

One prominent factor in cardiac myocytes is the terminating effect of depletion, which appears to take place when [Ca$^{2+}$]$_{SR}$ reaches threshold levels that are locally very well defined, and far removed from full depletion (see Zima et al., 2010). In skeletal muscle, however, a
similarly clear-cut inhibitory effect of depletion has not been unequivocally demonstrated (for review see Ríos et al., 2006). Evidence for such an effect will be considered in a companion paper (see Sztretye et al. in this issue).

The lack of a reliable technique to actually measure \([Ca^{2+}]_{\text{SR}}\) in skeletal muscle has hampered the elucidation of its putative regulatory roles. Until now, the most sensitive measurements have been done with the synthetic nonratiometric dye fluo-5N (Kabbara and Allen, 2001; Ziman et al., 2010), which loads the SR but also the cytosol and other organelles, making quantitative evaluations difficult. In principle, cameleon biosensors (reviewed by Palmer and Tsien, 2006) should not have the same problems, by virtue of their ratiometric cancellation of artifacts and their presumably specific targeting. But the actual results on skeletal SR obtained with the D1ER cameleon have not quite matched its promise. The three published studies (Rudolf et al., 2006; Canato et al., 2010; Jiménez-Moreno et al., 2010) obtained interesting results but found other problems, related to the cameleon’s low dynamic range, a high Ca2+ affinity that could result in its saturation, and apparent variations in performance in individual cells.

To circumvent the problems mentioned above, we adopted the biosensor approach, with two changes. Instead of the cameleon D1 we used D4, the product of a computational redesign aimed at removing interference by calmodulin (Palmer et al., 2006). D4 has the additional advantage of a substantially greater dynamic range when the acceptor fluorophore is circularly permuted Venus (hence D4cpv).

Additionally, and given the less than ideal features in the expression and targeting of D1ER (which will be demonstrated below), we chose a radically different strategy for SR targeting. SR targeting is accomplished in D1ER by placing the signal sequence of calreticulin at the N terminus and the KDEL ER retention and retrieval signal at the C terminus (Miyawaki et al., 1997). Our approach consists instead of fusing D4cpv with calsequestrin. This was done under the expectation that the fusion protein would retain the extraordinarily precise targeting of calsequestrin, which is restricted not just to the SR lumen, but within the SR resides in the terminal cisternae. Mindful of the fact that calsequestrin is the most important \(Ca^{2+}\)-binding protein of the SR, we repeated the measurements using a mutant of reduced binding ability. Additionally, we checked whether the monitor modified in any way the variable that it measures (Sztretye et al., 2011).

In this paper we describe the technique, evaluate targeting of the biosensor and compare it with that of D1ER, provide measures of expression density, and calibrate the biosensor in situ. We then use the technique for a determination of resting \([Ca^{2+}]_{\text{SR}}\).

In an accompanying paper we use the biosensor to measure \([Ca^{2+}]_{\text{SR}}\) dynamically, together with Ca2+ release flux on the same cells (Sztretye et al., 2011). These measurements, which to our knowledge are the first in the literature, were combined to derive Ca2+ release permeability and its changes when prolonged pulses cause depletion. Unexpected properties found for permeability in the wild type prompted us to then repeat the combined measurements in mice engineered for complete lack of calsequestrin 1 (Sztretye et al., 2011).

MATERIALS AND METHODS

Assembly of the biosensors

Here we use the term “Casq” to name the protein calsequestrin, its coding DNA, and its gene. Two D4cpv fusion plasmids were assembled: D4cpv-Casq1 and D4cpv-ΔAsp. D4cpv-X is used to designate either or both. Assembly of the D4cpv-X started from pEYFP-N1-dogCasq2 (Terentyev et al., 2003), provided by D. Terentyev (Ohio State University, Columbus, OH) and S. Gyorke (Ohio State University, Columbus, OH), which has the cytomegalovirus promoter, the Casq2 gene, and the code of enhanced yellow fluorescent protein (EYFP) added after a linking segment. The cDNA of mouse Casq1 (Shin et al., 2000), provided by D.-H. Kim (Kwangju Institute of Science and Technology, Bukgu, Gwangju, Korea), was amplified by PCR with oligonucleotide primers containing the restriction sites of NheI and BglII. pEYFP-N1-dogCasq2 was then digested with the same enzymes to remove the Casq2 coding region. Ligation to the Casq1 PCR product resulted in the plasmid pEYFP-N1-mouseCasq1. D4cpv was cut out from pBAD/D4cpv (a gift from R.Y. Tsien, University of California, San Diego, La Jolla, CA; and A.E. Palmer, University of Colorado at Boulder, Boulder, CO), using restriction sites of BamHI and EcoRI, and inserted at the 3’ end of the linking segment of pEYFP-N1-mouseCasq1, proximal to EYFP. In the final product, the sequence of the linking segment is RSPPRDNRRRMDP. A stop codon was introduced at the 3’ end of D4cpv, preventing the expression of EYFP. The same procedure was used with mouse Casq1-ΔAsp, a deletion variant lacking the last 17 Asp codons (also a gift from D.-H. Kim) to generate D4cpv-ΔAsp. The N-to-C terminal sequence in the final product is therefore Casq or its variant, linker, and cameleon.

The D1ER gene, inserted in pcDNA3 between HindIII and EcoRI was a gift of R.Y. Tsien.

Biosensor protein synthesis and purification

pBAD/D4cpv (Palmer et al., 2006) was transformed into TOP10 cells (Invitrogen). A single colony was grown overnight at 25°C. The culture was induced by 0.2% arabinose for 8 h. Total protein from 170–12-wk-old mice (Mus musculus; Black Swiss [BS] before 7 January 2010] or Swiss Webster [SW], afterward). The method of transfection is adapted from DiFranco et al. (2006). The ventral side of both hind paws of 2-mo-old mice anesthetized by isoflurane was cleaned with 75% ethanol. 10 µl of 2 mg/ml...
hyaluronidase in saline was injected into the center of each paw through a 29-gauge needle. 1 h later, 15 µl of plasmid solution (20 µg DNA in sterile saline) was injected subcutaneously. 10 min later, two sterilized gold plated stainless steel acupuncture needles were placed subcutaneously at the starting lines of paw and toes, separated ~5 mm. 20 pulses of 100 V/cm and 20 ms were applied at 1 Hz (ECM 830 Electro Square Porator; BTX). 4–7 d later, the animal was sacrificed by CO₂ inhalation, and FDB muscles were removed for imaging or functional studies. The methods of cell separation, voltage clamp recording, and cytosolic Ca²⁺ indicator and analysis were as described by Royer et al. (2008), where additional details can be found. Experiments were performed at 20–22°C in “external” solution.

Solutions

“External”: 140 mM TEA-CH₃SO₃, 1 mM CaCl₂, 3.5 mM MgCl₂, 10 mM Hepes, 1 mM 4-AP, 0.5 mM CdCl₂, 0.3 mM LaCl₃, 0.001 mM N-demethylglucamine; Sigma-Aldrich). pH was adjusted to 7.2 with TEA-OH and osmolality was adjusted to 320 mOsm with TEA methanesulphonate.

Internal solutions (in pipette) were either EGTA or 1,2-bis(o-aminophenoxo)ethane-N,N,N',N'-tetraacetic acid (BAPTA). EGTA: 110 mM N-methylglucamine, 110 mM t-glutamic acid, 10 mM EGTA, 10 mM Tris, 10 mM glucose, 5 mM Na ATP, 5 mM phosphocreatine Tris, 0.1 mM rhod-2 or 0.075 mM X-rhod-1, and 7.4 mM MgCl₂ were added for a nominal 1 mM [Mg²⁺] and 100 nM [Ca²⁺]. BAPTA: 110 mM N-methylglucamine, 110 mM t-glutamic acid, 5 mM BAPTA, 10 mM Tris, 10 mM glucose, 5 mM Na ATP, 5 mM PC Tris, 0.1 mM rhod-2 or 0.075 mM X-rhod-1, 1.81 mM CaCl₂, and 6.96 mM MgCl₂ for a nominal 1 mM [Mg²⁺] and 100 nM [Ca²⁺]. pH was set to 7.2 with NaOH and osmolality to 320 mOsm with N-methylglucamine. The amounts of added Ca²⁺ and Mg²⁺ were calculated using Ca²⁺ dissociation constants of 0.02 ± 0.01 mM for EGTA (Royer et al., 2008) and 200 nM for BAPTA.

Voltage clamp

The whole-cell patch clamp technique follows the implementation of Wang et al. (1999), with changes described by Royer et al. (2008). The clamped cells were stable in BAPTA, as ascertained by the stability of series resistance, linear capacitance (Cₘ), which averaged 1.8 nF in 119 cells, charging time constant, and holding current, which ranged from 1 to 10 nA in different cells. The Ca²⁺ transients elicited by depolarisation were fast, graded with membrane voltage Vₘ, and homogeneous, which is consistent with good membrane voltage control. The actual recording of Ca²⁺ transients was started in most cases after ~35 min of stable holding at ~80 mV, a time when the concentration of EGTA or BAPTA inside the cell was at a substantial fraction of the solution values, which along with the presence of BTS caused complete abolition of contractile responses. Command potentials were blunted with 0.6-ms duration ramps to avoid saturation of the headstage. Nonlinear capacitive (“charge movement”) currents I(t) obtained by conventional subtraction of scaled controls and baseline correction were integrated to calculate intramembranous charge transfers Qₑ, Qₓ and Qₘ as functions of Vₘ. The functional dependence was fitted with the “Boltzmann” function: Qₓ = Qₓmax /[1 + exp(- (Vₘ - Vₓ)/Kₓ)] to derive the amount of mobile charge Qₓmax transition voltage Vₓ and limiting logarithmic slope 1/Kₓ. The average values of these parameters were not statistically significantly different than in our previous works with this technique (Royer et al., 2008, 2010). Electrophysiological properties (Cₑ, holding current, and charge movement parameters) were evaluated in all cells and found to be within limits of normality in every cell included in the measurement of resting [Ca²⁺]ᵢ reported below.

Cytosolic Ca²⁺ measurements

Ca²⁺ transients and release flux are examined in parallel with [Ca²⁺]ᵢ in the companion paper (Sztretye et al., 2011), which describes the relevant methods. For the present paper, every cell that was studied under voltage clamp also had the high affinity, long wavelength Ca²⁺ monitor X-rhod-1 introduced via the pipette. This was done both to use cytosolic Ca²⁺ transients for evaluation of the cell’s functional state and in order not to introduce an additional variable by having cytosolic dye in some but not all experiments.

Membrane permeabilization

Both for calibration purposes and a test of retention of the biosensors inside organelles, some cells were membrane permeabilized. This was done by exposure of cells inside the experimental chamber, for 4 min, to 0.005% saponin in either EGTA or relaxing solution.

Confocal imaging of biosensor fluorescence and determination of free [Ca²⁺]

Fluorescence of the biosensors, either purified or expressed within cells, was imaged on a confocal microscope (SP2 acousto-optical beam splitter (AOBS); Leica) under excitation at 458 nm. For initial exploration of the location of the expressed biosensors, the collection technique optimized spatial resolution. Thus, for increased input of emitted light, fluorescence was collected in a single range, extending between 470 and 560, and at a long integration time at each pixel (5 ms per 512 pixel line), setting the confocal pinhole at 1 airy disk radius. The noise was reduced further by image averaging, and the resolution was improved further by acquiring z stacks, which could be later processed for deblurring. For determination of [Ca²⁺], we collected “forster resonant energy transfer (FRET) pairs,” namely, light of intensity F₁ from the ratio as derived concentration of biosensor (calculated using Eq. A6 in the Appendix).

The “FRET ratio” R was calculated as (F₁ - Background1)/(F₁ - Background2) without correction for non-FRET components in F₁ or F₂. F₁ and F₂ are derived from calibration experiments described in Results and Confocal imaging of biosensor fluorescence and determination of free [Ca²⁺].
Simulations presented in Discussion start from an assumed distribution of [Ca\(^{2+}\)]\(_{SR}\), from which a value of \(R\) is calculated by solving Eq. 1:

\[
R = \frac{R_{\text{min}}(\beta K_0)^n + R_{\text{max}}[\text{Ca}\(^{2+}\)]^n}{(\beta K_0)^n + [\text{Ca}\(^{2+}\)]^n}
\]

RESULTS

D4cpv-Casq1 expresses selectively inside terminal cisternae of the SR

50–70% of the cells separated enzymatically from FDB muscles of transfected mice were found to express two fusion variants of D4cpv, namely D4cpv-Casq1 and D4cpv-δAsp (collectively named D4cpv-X). The topography of expression is illustrated in Fig. 1 A for a cell expressing D4cpv-δAsp. In raw xy images, the fluorescence was found in bands, at sarcomeric spacing (~2.0 μm in these cells). Fig. 1 A is a 3-D reconstruction (or rendering) of a vertical stack of xy images, after deblurring (individual members of the raw stack are in Fig. S1). The rendering reveals within every band a double row of high expression density. The structure is similar to that found after the same image refinement in nontransfected FDB cells immunostained for calsequestrin 1 (Fig. 1 B), although an additional, faint area of biosensor expression is seen at the center of every double row (Fig. 1 A), and again as a small “bump” in alternating nadirs of the distribution profile plotted in Fig. 1 H. The similarity between the placement of biosensor and native calsequestrin indicates that the biosensor is targeted to terminal cisternae by the fused calsequestrin.

Additional evidence of targeting was found in cells expressing D4cpv-X that were stained by brief exposure to di-8-ANEPPS, which marks plasma membrane and t tubules upon brief exposure. An example is in Fig. 1. z stacks of fluorescence of biosensor and di-8-ANEPPS were acquired simultaneously and deblurred. Fig. 1 (C and D) shows corresponding individual frames of each stack after deblurring. Fig. 1 (E and F) shows separate 3-D renderings of the deblurred stacks. The qualitative features of Fig. 1 E are similar to those of the stack illustrated in Fig. 1 A.

In Fig. 1 G is a joint 3-D rendering of both stains. Note that the t tubular stain (in green) is visible on the cell surface, whereas in the cell interior it appears only in sparse pixel-size spots. The image in Fig. 1 G is not a standard overlay, but a display of both stacks by the SFP (Messerli et al., 1993). This algorithm is designed for a realistic view, with visual cues of volume and relative positioning, which in the present example reflect the fact that the biosensor, in red, surrounds the t tubules like a sheath, in agreement with the relative location of terminal cisternae and t tubules. An analogue rendering in a case where the expression of biosensor was more sparse (presented in Fig. S1) reveals more clearly the t tubules...
further evidence that the structure containing the biosensor surrounds the tubules, which is consistent with their relative location within the columns of biosensor. The relative location of sensor and tubules is clearly demonstrated (Fig. 1 H) in plots of fluorescence averaged perpendicularly to the fiber axis within the box marked in Fig. 1 D. Further evidence that the structure containing the biosensor surrounds the tubules, which is consistent with their...
identification with terminal cisternae, is presented in the supplemental materials section.

The present targeting strategy, which consists of fusion of the biosensor with calsequestrin, is different than that driving the biosensor used in previous work, D1ER. To decide whether the alternative strategy altered the cellular location of the biosensor, we obtained similar images in cells from mice transfected with D1ER using identical protocols. As demonstrated in the supplement materials (Figs. S2–S4), the pattern of expression of D1ER was clearly different from that of D4cpv-X. Moreover, we found two patterns in the expression of D1ER, with clearly different features at both the cell and the subsarcomeric level. The supplemental material presents initial attempts to put the regions of high D1ER expression in correspondence with structures of the sarcomere.

The concentration of biosensor can be accurately determined To quantify the probable perturbation of Ca^{2+} handling that the addition of extrinsic calsequestrin present in the biosensor might induce, we determined the biosensor concentration, S_T. This was done in every cell, based on a metric first introduced by Launikonis et al. (2005) for determining the concentration of Mag-Indo inside organelles.

An adaptation of this metric to its use with FRET biosensors is presented in the Appendix. According to Eq. A6, S_T is proportional to a linear combination of fluorescence intensities F_1 ("donor") and F_2 ("acceptor"). This linear combination was named the “invariant” (Launikonis et al., 2005) to stress its insensitivity to changes in [Ca^{2+}]. Fig. 2 demonstrates the defining property of the invariant using dynamic signals from the biosensor upon Ca^{2+} release in a voltage clamped cell. xy images F_1 and F_2 of the cell are shown in Fig. 2 (A and B). Shown in Fig. 2 (C and D) are line scans parallel to the axis of the cell, obtained with large pinhole and low laser intensity (to minimize bleaching). The cell was depolarized as shown from a holding potential of −80 mV. Represented in Fig. 2 E are line averages of the background-corrected fluorescence intensities. The black line in Fig. 2 E is S_T, calculated from the invariant by Eq. A6. It remains steady in spite of large intensity swings in the fluorescence. Fig. 2 F shows the result of combining images A and B according to the invariant formula (Eq. A6). Although the concentration of biosensor reported in the double bands is on average 8 µM, in-between the bands it is close to zero (put simply, both F_1 and F_2 are reduced close to background level). This topography of the calculated concentration is consistent with the localization demonstrated in the earlier figures. In our experience with sensors and dyes, including D1ER, other cameleons directed to mitochondria, as well as “hybrids” of small synthetic dyes and genetically encoded fusion proteins (Bannwarth et al., 2009), only the fusions with calsequestrin variants achieved such a level of topographic specificity.

Using this method, the concentration of D4cpv-X was averaged over a segment of the image comprising the whole width of the cell and 118 µm of its length. Histograms of segment-averaged concentrations are represented in Fig. 3 and summaries are presented in Table I. The histograms show that biosensor concentration varied widely. As demonstrated in Fig. 4 and elsewhere, individual cells could present steep gradients between perinuclear areas of active protein synthesis and areas away from nuclei, or feature long segments with relatively homogeneous concentrations of the protein. The heterogeneity of expression is used later to test for artifacts that could be attributed to the foreign protein.

Fig. 3 illustrates the relative efficiency of expression of the two biosensor variants used, as well as a dependence on two mouse strains. In white is the histogram of concentrations of D4cpv-Casq1, expressed in BS mice. The histograms in gray and black compare expression of D4cpv-Casq1 and D4cpv-δAsp. This was done in SW mice, as the BS strain became unavailable after 7 January 2010. Although no other aspects of the procedure were changed, there was a highly significant difference in the concentration of either expressed protein (1.2–1.5 pmole protein per liter of fiber) with respect to the concentration of D4cpv-Casq1 observed in BS mice (close to 3 µM). Although large for a biosensor, these concentrations will be shown to be trivial relative to the intrinsic concentration of calsequestrin.

Expression of the two biosensor variants could be compared in the SW mice (Table I); D4cpv-δAsp expressed somewhat better, although at levels still far from those observed for D4cpv-Casq1 in the BS strain.

Permeabilization of plasma membrane did not cause loss of biosensor The accuracy of biosensor targeting was tested by membrane permeabilization. Fig. 4 A shows the distribution of D4cpv-Casq1 in a cell with intact plasmalemma. In Fig. 4 B is the same cell, first exposed to a saponin-containing solution for 4 min, then immersed in a solution with 100 nM [Ca^{2+}] and measured 6 min later. The concentration of biosensor, calculated per unit of fiber volume, had decreased slightly (from an average of 3.11 µM in Fig. 4 A to 2.90 µM in Fig. 4 B). This decrease, however, was probably caused by the increase in cell volume. The total content, calculated by integrating the concentration in the volume, went down from 2.29 arbitrary units (au) in Fig. 4 A to 2.44 au in Fig. 4 B, an increase of 6%. On average, the biosensor content decreased, but not significantly so (average change: −7% of the initial value; SEM 8%; 14 cells, 10 with D4cpv-Casq1 and 4 with D4cpv-δAsp).
We conclude that little if any D4cpv was expressed outside organelles, but a substantial amount of D1ER was either in the cytosol or bound with low affinity to sites accessible from the cytosol.

Fig. 4 (C and D) shows fluorescence in an analogous experiment on a cell expressing D1ER. The content of the intact cell was 0.39 au, and it was reduced to 0.25 au 1 min after exposure to saponin for 4 min, a 38% reduction. On average, the content was reduced by 29% (SEM 8%; 7 cells). We conclude that little if any D4cpv was expressed outside organelles, but a substantial amount of D1ER was either in the cytosol or bound with low affinity to sites accessible from the cytosol.

Table 1

<table>
<thead>
<tr>
<th>Strain</th>
<th>Average</th>
<th>SEM</th>
<th>Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>μM</td>
<td>μM</td>
<td></td>
</tr>
<tr>
<td>D4cpv-Casq1 BS</td>
<td>2.9294</td>
<td>0.2551</td>
<td>39</td>
</tr>
<tr>
<td>D4cpv-Casq1 SW</td>
<td>1.2418</td>
<td>0.1969</td>
<td>34</td>
</tr>
<tr>
<td>D4cpv-ΔAsp SW</td>
<td>1.6472</td>
<td>0.1379</td>
<td>96</td>
</tr>
</tbody>
</table>

Biosensor concentration was calculated by first constructing the invariant images from F_1 and F_2 using Eq. A6 (as illustrated with Fig. 2), then calculating an image average. Numbers listed are equal weight averages of image averages over n cells. Units are micromoles/liter of fiber. The difference in expression of the two fusion variants, examined in the SW strain, was of moderate significance (P < 0.10).
Figure 3. The expression of biosensor under multiple conditions. Histograms of biosensor concentration (in terms of accessible cell volume) calculated by Eq. A6 for the two molecular variants used in this paper. White bars: distribution of concentrations of D4cpv-Casq1, in cells of BS mice. These experiments were done before 7 January 2010, when the deletion variant of the biosensor was not available. Black and gray bars: concentrations of D4cpv-Casq1 and D4cpv-δAsp, compared in the SW strain. Statistical features of the samples, given in Table I, demonstrate a significant difference between the samples in both murine strains. The deletion variant expressed somewhat better than the full clone, at a moderate significance level (P < 0.10).

Figure 4. D4cpv-Casq1 and D1ER leave permeabilized cells at different rates. (A) Biosensor concentration in a resting cell expressing D4cpv-Casq1, calculated pixel-by-pixel from images \(F_1(x,y) \) and \(F_2(x,y) \) by Eq. A6. The cell was exposed later to saponin-containing solution for 4 min. (B) [biosensor] 6 min after the end of the exposure. Image-averaged [biosensor] decreased from 3.11 µM in A to 2.90 µM in B. A calculation in the text shows that the decrease was probably not caused by loss of biosensor from the cell. ID: 062410c images 10 and 12. (C) Image of a cell expressing D1ER at rest. (D) The same cell after identical exposure to saponin. [biosensor] decreased from 0.35 to 0.18 µM. After integration in the volume of the cell, biosensor content decreased from 0.39 to 0.25 au. Note two areas with different concentration and sharp transition in C and D, in contrast with smooth gradient in A and B. ID: 020911d images 82 and 84.
Calibration of the biosensor signal in cells

Earlier attempts to calibrate cameleon D1ER in mouse muscle found a large variability in results (Rudolf et al., 2006; Canato et al., 2010; Jiménez-Moreno et al., 2010). Our attempts with D1ER, which consisted of the application of a "depletion cocktail" that should bring the FRET ratio of biosensor inside the SR close to \(R_{\text{min}} \), yielded decreases in \(R \) by up to 0.6, or \(\sim 30\% \) of the initial value in the cell at rest. One example is illustrated in Fig. S5. These changes were accompanied by variation in initial and final \(R \) values within a similar range, which made their quantitative interpretation difficult. By comparison, and as will be shown below with specific examples, the dynamic range of D4cpv and its fusions was three to four times greater. In view of these results, plus the problems reported in previous work with D1ER and the apparent presence of D1ER in the myoplasm, we concentrated our efforts on the use of D4cpv-X. Because reproducibility of results has been a concern with all cameleons, the calibration measurements with D4cpv-X were performed in multiple ways. A chief purpose in the design of D4cpv was to reduce interference by endogenous ligands of calmodulin (Palmer et al., 2006). In this regard, an additional goal of our study was to characterize variation in biosensor performance within or between cells.

A first set of calibrations was done by permeabilizing the SR membrane to Ca\(^{2+}\) in the presence of a solution within or between cells. One example is in Fig. 5, which shows ratio images \(R(x,y) = F_2(x,y)/F_1(x,y) \) of the cell in three stages of the process, and the corresponding distributions of \(R \) values in individual pixels. These distributions were well fit by Gaussian functions. In subsequent analysis, the Gaussian mean \(R_{\text{min}} \) or \(R \) when the meaning is clear) was used instead of the average, which can be skewed by small regions with large deviation.

\(R_{\text{min}} \) values, calculated in a large number of calibration experiments, are plotted versus applied cytosolic [Ca\(^{2+}\)] in Fig. 6 (closed black circles). The best fit with Eq. 2 and the stoichiometry parameter \(n = 1 \), represented by the dashed curve in black (Fig. 6), has parameter values given in the figure legend. With \(n = 1 \), Eq. 2 describes single-site one-to-one binding. When \(n \) was allowed to vary, the standard error of fit decreased. The standard error of estimate for \(n \), however, was large, and the improvement did not justify the additional parameter (according to the likelihood-ratio test; Bickel and Doksum, 1977).

Figure 7. Calibration of the biosensor in cells. (A) A cell expressing D4cpv-Casq1, membrane-permeabilized and immersed in an internal solution with 100 nM [Ca\(^{2+}\)]. The histogram of FRET ratio, calculated pixel by pixel from A, is curve a in D. \(R_{\text{min}} \), its mean in a Gaussian fit, is 1.40. (B) The same cell after permeabilization by saponin and exposure to ionomycin, in the presence of 100 µM [Ca\(^{2+}\)]. The histogram of \(R \) is curve b in D; \(R_{\text{min}} \) is 0.97. (C) The same fiber exposed to 10 mM [Ca\(^{2+}\)]. \(R_{\text{min}} \) (from curve c in D) increased to 1.73. The biosensor content calculated from the images was, respectively, 1.31, 1.40, and 1.53, which indicates no loss of biosensor after membrane permeabilization. ID: 08110c, images 24, 26 and 33.

Other calibration methods used are illustrated in Fig. 7. Fig. 7 (A and B) are \(R(x,y) \) of an intact cell expressing D4cpv-Casq1, before and after the application of a depleting cocktail. \(R_{\text{min}} \) of Fig. 7 B was 0.47, and in 10 similarly prepared cells it was consistently close to the parameter \(R_{\text{min}} \) fitted to the ionomycin data. Values obtained thus are represented by green circles in Fig. 6 at abscissa 0.1 µM. The inset in Fig. 7 B is a partial view of the image of biosensor concentration, derived as described for Fig. 2, in an expanded scale. The other insets are also partial images of biosensor concentration.

In a third approach, cells were induced to express the biosensor not fused to calsequestrin. D4cpv remained largely in the cytosol, as indicated by the lack of structure in the fluorescence image and a consistently
Ca²⁺ (the 7.5 mM abscissa is justified in the text). The dashed line in black represents the best fit by Eq. 2 obtained with the ionomycin technique. Its parameter values are $R_{\text{max}} = 1.74$, $R_{\text{min}} = 1.72$, $D = 200 \mu M$, $K_{\text{d}} = 222 \mu M$, and $n = 1$. The gray broken lines represent fits at the limit parameter values considered likely (as justified in the Discussion), namely $R_{\text{max}} = 1.91$, $R_{\text{min}} = 1.57$ (bottom curve).

Fig. 7 (E and F) illustrates an intervention that yielded large elevations of R_{min}, which is consistent with a saturating increase in $[\text{Ca}^{2+}]_{\text{SR}}$. Fig. 7 E has the R image of a resting cell transfected with D4cpv-Casq1. F shows R in the same cell after saponin permeabilization and exposure to an internal solution containing 0.5 mM tetracaine and 1 µM Ca²⁺. R_{m} in this example increased from 1.28 to 1.81 (a value greater than R_{max} of the best fit to all data). Mean ratios in cells exposed to tetracaine plus elevated $[\text{Ca}^{2+}]_{\text{cyto}}$ are represented in Fig. 6 by open blue circles, arbitrarily plotted at abscissa 7,500 µM (the actual $[\text{Ca}^{2+}]_{\text{SR}}$ being in the saturating range and therefore unknown).

The R values attained by these manipulations can be collectively described by a single dependence on $[\text{Ca}^{2+}]$. The solid curve in Fig. 6 represents the best fit of Eq. 2 to all points (excluding the data in tetracaine, for which the actual abscissa is unknown). The best fit parameters ($R_{\text{min}} = 0.505$, $R_{\text{max}} = 1.74$, and $K_{\text{d}} = 222 \mu M$) were used with Eq. 1 to calculate $[\text{Ca}^{2+}]_{\text{SR}}$ in subsequent analyses. In Fig. 6, the broken gray lines, generated as described in the figure legend and justified in the Discussion, represent confidence limits for the calibration. β was directly measured in two cells with SR permeabilized by ionomycin and exposed sequentially to 0 and 10 mM [Ca²⁺], and in one cell expressing D4cpv alone when it was intact and after membrane permeabilization and exposure to 10 mM [Ca²⁺], as the ratio of F_{i} in the two solutions (Materials and methods). The average of three determinations was 0.554 (SEM = 0.017).

An additional set of calibration measurements was conducted on D4cpv protein, biosynthesized and purified in our laboratory. The protein was shown to be pure by conventional chromatography and also because
the molarities of the two fluorophores, measured by absorption spectrometry, were within 10% of each other. Fluorescence F_1 and F_2 of solutions of 3 µM of this protein in the presence of 0 or 10 mM [Ca$^{2+}$] were imaged in small coverslip chambers, with the same confocal microscope settings used for cells. The average of R_m over 10 separate measurements, 0.3500 (SEM = 0.007) and 1.49 (SEM = 0.042) were significantly lower than R_{min} and R_{max} evaluated in cells. The dynamic range instead was similar to that determined in calibrations inside cells. We do not have a preferred explanation for this shift to lower values of R. That the solutions were made with the biosensor protein rather than its fusion with Casq1 does not explain the shift, because unfused D4cpv expressed in the cytosol had a similar response to Ca$^{2+}$ as calsequestrin-fused biosensor in the SR.

A limited evaluation of the response of D1ER in our setup was performed by applying the depletion cocktail to resting cells expressing D1ER. An example experiment is illustrated in the supplemental materials. In four cells of four mice, resting R was 1.79 (SEM = 0.10) and the depletion cocktail caused a reduction to 1.39 (SEM = 0.02) after Ca$^{2+}$ release.

High-expression areas had a lower FRET ratio

A slight spatial variation in R with biosensor concentration was observed in most cells. In 45 out of 68 cells
with D4cpv-X, areas of greater expression tended to have a slightly lower ratio value. Because this dependence could help explain some variability found in calibrations of D1ER and D4cpv, we explored it further.

A similar dependence of R with biosensor concentration was found for both biosensor variants. It applied to resting cells as well as cells with plasma membrane permeabilized, and in conditions that impose a high [Ca^{2+}]_{SR} (described above in the Calibration section). Images of three cells under such conditions are shown in Fig. 8. In Fig. 8, images labeled a are colorized by the concentration of biosensor and images labeled b are colorized by the R value. It can be seen that in the regions of higher [biosensor], the ratio was slightly lower for cell A but not substantially different for cell B.
We quantified this effect in 12 cells expressing D4cpv-Casq1 by dividing the image of the cell in three disjoint sectors of low, intermediate, and high biosensor concentration (the sector limits were determined individually for each cell, in terms of standard deviations from a mean value of biosensor concentration). Such sectorization is illustrated in the figure for cell C (Fig. 8). Fig. 8 C (a) presents [biosensor] in the full image, whereas Fig. 8 C (a1, a2, and a3) shows the three sectors in increasing order of biosensor concentration. The sector average of R is plotted versus the average [biosensor] for different cells in Fig. 8 D. A negative correlation between the variables was found in 9 of 12 cells. In those, the value of R was 3–15% less in the third than in the first sector. As can be seen by inspection of the graph, the correlation was equally present in cells with low or high average [biosensor]. When all cells were taken into account, there was no correlation between cell-averaged R and [biosensor] (the correlation coefficient ρ^2 was $\rho^2 = 0.03$ for all points in the graph).

Because the variation of R with [D4cpv] is present in conditions of biosensor saturation as well as in cells at rest, the differences must reflect local variations in performance of the biosensor, rather than changes in $[\text{Ca}^{2+}]_{\text{SR}}$. Because the heterogeneity is equally visible in cells with vastly different levels of expression, the greater R in regions where [D4cpv-X] is lower is probably not determined by the local [D4cpv-X]. In every case, the relative concentration of the biosensor decreases as the distance from actively transcribing nuclei (and perinuclear areas of protein synthesis) increases. Therefore (and as clearly seen in the illustration), the relative concentration of biosensor constitutes a proxy for distance from the site of synthesis (and time since synthesis). These features suggest a likely explanation for the observed gradient in FRET ratio: a posttranslational modification, a “maturation” of the biosensor, which takes time and progresses as the sensor migrates away from the sites of synthesis. The functional difference is small. It is, however, objectively demonstrated, and constitutes a likely cause of the relative dispersion in calibration measurements, as well as aspects of the resting $[\text{Ca}^{2+}]_{\text{SR}}$ described in the next section.

Resting SR calcium concentration

$[\text{Ca}^{2+}]_{\text{SR}}$ of resting cells, expressing D4cpv-Casq1 and quiescent in “external” solution, was derived from their R_{m} using Eq. 1 with the parameter values defined in the previous section. The functional response of all cells was later studied under patch voltage clamp, with X-rhod-1 in the pipette. Their cytosolic Ca^{2+} transients were recorded and analyzed as illustrated in the companion paper (Sztretye et al., 2011). To discard cells affected by the enzymatic dissociation, data were included only for cells that, visually, and by electrophysiological and other functional criteria, appeared not to be damaged.

This meant that they could be patched and held at -80 mV with limited holding current, assuming linear membrane capacitance did not increase significantly for at least 30 min, and yielded spatially homogeneous cytosolic Ca^{2+} transients (indicative of a fast and homogeneous voltage clamp). These criteria were purposely broad so that cells with variable SR loads could be included in the measurements. 74 cells from 25 mice satisfied the criteria; 61 expressed D4cpv-Casq1 and 13 expressed D4cpv-δAsp. The histogram of R_{m} measured in individual cells before patching is represented in Fig. 9 A. The histogram was consistent with a Gaussian distribution. Mean R_{m} was 1.31 (SEM = 0.02). The average did not depend on the biosensor variant: 1.32 (SEM = 0.03) for D4cpv-Casq1 and 1.28 (SEM = 0.04) for D4cpv-δAsp.

$[\text{Ca}^{2+}]_{\text{SR}}$ values were calculated from individual R_{m}; their histogram is plotted in Fig. 9 B. As shown, $[\text{Ca}^{2+}]_{\text{SR}}$ varied in a very wide range. The distribution of resting $[\text{Ca}^{2+}]_{\text{SR}}$ was skewed, including several cells with concentration >1 mM.

Figure 9. FRET ratio and $[\text{Ca}^{2+}]_{\text{SR}}$ in resting cells. (A) Histogram of R_{m} in 74 cells (61 expressing D4cpv-Casq1 and 13 expressing D4cpv-δAsp), immersed while intact in “external” solution and later vetted as described in the text. (B) Histogram of $[\text{Ca}^{2+}]_{\text{SR}}$ calculated individually from R_{m} values in A, using Eq. 1 with parameters determined in cells as illustrated in Fig. 6. Note the marked asymmetry of the distribution.
As elaborated in the Discussion, this asymmetry is satisfactorily explained by a small cell-to-cell variation of the biosensor parameters.

Because of the skewness of the distribution of concentrations, their average (614 µM) is a poor representation of the central tendency. More representative are [Ca^{2+}] calculated from the average R_{min} (415 µM), or the median, 374 µM.

DISCUSSION

The present results demonstrate the use of a novel biosensor targeted to the SR, made by fusion of calsequestrin 1 or a deletion variant of the same protein, and cameleon D4cpv (Palmer et al., 2006).

The novel biosensor exhibits a desirable localization at terminal cisternae

D4cpv-X expresses in a highly localized manner, residing in what is identified as SR terminal cisternae, based on the similarity of images of biosensor fluorescence and anti-Casq1 immunofluorescence. The distribution and retention of the biosensor were consistent with the expectations for a fusion protein that includes calsequestrin, which is highly specifically targeted to the SR.

DIER featured clear differences in the spatial patterns of expression, documented in the supplemental materials. Fully understanding the implications of these differences is well beyond the scope and purpose of the present work. In an initial evaluation, D4cpv fusions appear superior for several reasons. One is their clear placement at terminal cisternae, indicated by colocalization with t tubules, in contrast with the more widespread distribution of DIER. The presence of D4cpv in terminal cisternae confers it some kinetic advantage given the small but measurable delay in the evolution of [Ca^{2+}] expected between longitudinal SR and terminal cisternae (Palmer et al., 2006).

A more compelling reason to prefer the calsequestrin fused D4cpv to DIER is its superior retention in membrane-permeabilized cells. The average 29% loss of the DIER content after 10 minutes in cells exposed to saponin suggests that part of DIER is in the myoplasm, in solution or loosely bound to structures accessible from the cytosol. Considering that the targeting of DIER is accomplished by the retention/retrieval and signal sequences of calreticulin, the distribution of DIER is consistent with evidence of the presence of calreticulin in cytosol and nuclei of various types of cells (Holaska et al., 2001; Afshar et al., 2005), which was found in search of explanations for reported roles of calreticulin in cytosol and nuclei (e.g., Rojiani et al., 1991; Dedhar et al., 1994; for review see Dedhar, 1994).

Additional reasons to prefer D4cpv-X relate to its monitoring function, and are discussed in the next subsection.

The distribution of D4cpv-X within the cell varied widely. Expressed in terms of the cell volume, the concentration of biosensor reached up to 22 µM in perinuclear regions, but a typical cell-averaged value was 2 µM. Considering that the SR occupies 5.5% of cell volume in the mouse, the actual concentration of expressed biosensor might reach 22/0.055, or 400 µmoles/liter of SR. Assuming that every calsequestrin molecule provides 80 sites for Ca^{2+}, the biosensor would typically contribute 160 µmoles of additional Ca^{2+}-binding sites per liter of fiber. This amounts to ~4% of the maximal calcium content of rat muscle (3.85 mmoles per liter of fiber; Fryer and Stephenson 1996) or 5.5% of the calcium binding sites associated to calsequestrin in fast twitch rat muscle (Murphy et al., 2009).

The biosensor can be uniformly calibrated within cells. As illustrated in Fig. 6, the dependence $R([\text{Ca}^{2+}])$ observed under calibration conditions established by various methods was collectively fit by the conventional one-site binding function (Eq. 2). A crucial figure of merit is the dynamic range, defined here for ratiometric sensors as $DR = (R_{\text{max}} - R_{\text{min}})/R_{\text{min}}$. DR is proportional to the magnitude of the signal, which in turn determines the sensitivity and signal/noise ratio. For D4cpv-X, it was (1.74 – 0.505)/0.505, or 2.45, slightly less than the 3.0 measured for D4cpv alone in vitro (Palmer et al., 2006), which is probably because we used a different excitation wavelength and consequently had to collected emitted light over different wavelength ranges. The fitted value of βK_d, 222 µM, divided by the directly measured $K_d = 401$ µM. This is greater than the value reported for D4cpv in solution (65 µM; Palmer et al., 2006), a common observation with other monitors, including DIER (Rudolf et al., 2006). Considering that βK_d is equal to the $\text{[Ca}^{2+}\text{]}$ of half-signal, the sensitivity of D4cpv turns out to be excessive for the measurement of $\text{[Ca}^{2+}\text{]}_{\text{SR}}$. Monitors with this sensitivity cannot follow situations of calcium overload, as clearly demonstrated by the observations in cells exposed to elevated $\text{[Ca}^{2+}\text{]}_{\text{cyto}}$ and tetracaine, which yielded R values consistently close to R_{max}.

For evaluation of D4cpv, it is useful to compare its DR with that found for DIER. In a calibration in situ by Canato et al. (2010; Fig. S2), R decreased from 1.89 to 1.51 in a cell exposed to a depleting solution. Equating R_{max} to the highest R value recorded, 2.4, the calculated DR is 0.59. In the work of Rudolf et al. (2006; Fig. S2 C), R_{min} is 2.3 and R_{max} is 4.2, for a DR of 0.83. In our own limited testing, an example of which is in Fig. 5, R_{min} was 1.39 and the maximum value of R observed in 12 cells was 2.50, for a DR equal to 0.80. In these practical assessments, DR of D4cpv-Casq1 is therefore three to four times greater than that of DIER, which confirms the differences reported for the sensors in solution (Palmer et al., 2006). In agreement with the calibrations, examples
in the companion paper (Sztreyte et al., 2011) will show decreases of \(R \) in cells subjected to depolarizing pulses of magnitude \((R-R_{\text{min}})/R_{\text{max}}\) up to 1.8, a value much greater than comparative measures in the studies with D1ER.

Calibrations of D4cpv (not fused with calsequestrin) biosynthesized in the laboratory yielded significantly lower \(R_{\text{min}} \) and \(R_{\text{max}} \). Several reasons for this difference were ruled out. The presence of incomplete biosensor would result in an excess of donor fluorophore, which in turn would have reduced both \(R_{\text{max}} \) and \(R_{\text{min}} \). This is in agreement with the observations, but would also have reduced the dynamic range of the signal, which was not the case. An “immature” or imperfectly folded protein would have also had a lower dynamic range. Differences attributable to the fusion of calsequestrin were unlikely because unfused D4cpv expressed in the cytosol yielded approximately the same \(R \) values as the full biosensor. We conclude that unknown factors in the cellular environment may change the behavior of the protein in ways that cannot be justified simply, and therefore calibrations in solution cannot substitute for those performed in the cellular environment.

The resting \([Ca^{2+}]_{\text{SR}}\) is consistent with earlier estimates with D1ER and Fluo-5N

The value of \(R \), calculated in 74 cells at rest, was distributed approximately normally around a mean of 1.31, a value that translates to an SR calcium concentration of 415 \(\mu \)M. The median of the sample was 374 \(\mu \)M. These values, which were obtained in enzymatically dissociated fibers and therefore are not strictly physiological, are consistent with earlier estimates obtained with D1ER in muscles of live mice (308 \(\mu \)M; Rudolf et al., 2006) or Fluo-5N in enzymatically dissociated cells (391 \(\mu \)M; Ziman et al., 2010). Collectively, these estimates are similar to the average \([Ca^{2+}]_{\text{SR}}\) measured in frog muscle cells at \([Ca^{2+}]_{\text{cyto}}=100 \text{ nM}\) using shifted excitation and emission ratioing (SEER) of Mf mag-indo-1 (Launikonis et al., 2005). They are comparable with values obtained with fura-2 or targeted probes in the ER of various cells, which range from 100 to 600 \(\mu \)M (Golovina and Blaustein, 1997; Demaurex and Frieden, 2003), but lower than the 1–1.5 mM calculated from fluorine nuclear magnetic resonance (NMR) of TF-BAPTA in beating hearts (Chen et al., 1996).

For these various SR probes, the ratio of \([Ca^{2+}]_{\text{SR}}\) to \([Ca^{2+}]_{\text{cyto}}\) is \(\sim 3,000–4,000 \). These estimates are far from reaching the \(\sim 75,000\) fold maximum ratio predicted by the energetics of the SR \(Ca^{2+} \) pump under physiological conditions (e.g., Pickart and Jencks, 1984). An explanation for this difference is seen in Inesi (1994). It invokes a reduction in SR pump turnover rate by luminal \(Ca^{2+} \) (an allosteric inhibition, unrelated to the role of substrate) associated with the increase in \([Ca^{2+}]_{\text{SR}}\) beyond 1 or 2 mM. In the presence of leaks through open \(Ca^{2+} \) channels and through the pump itself, this inhibition results in stabilization of \([Ca^{2+}]_{\text{SR}}\) at values well below the thermodynamic limit. The present measurements therefore join a trend that puts the resting \([Ca^{2+}]_{\text{SR}}\) of skeletal muscle at or below 0.5 mM. This number is less than the value, 1 mM, most often assumed in quantitative analyses of currents and fluxes. For example, Kettlun et al. (2003) and Mejía-Alvarez et al. (1999) estimated unitary flux current under “physiologic” conditions as 0.35 to 0.5 pA, from bilayer currents driven by 1 mM \([Ca^{2+}]_{\text{cis}}\). With 0.5 mM \([Ca^{2+}]_{\text{cis}}\), the estimate would have been reduced approximately by half.

“Noise” in the biosensor skews the distribution of measured \([Ca^{2+}]_{\text{SR}}\)

As shown by the histogram in Fig. 9 A, the distribution of concentrations calculated from \(R \) values of individual cells is asymmetrical, with several individual values greater than 1 mM and one at 6.7 mM. Although it is thermodynamically possible to reach such values, the asymmetry of the distribution suggests an alternative explanation.

Before developing the alternative, an additional problem can be noted: the distribution of \(R \) values over multiple cells (Fig. 9 A) is symmetrical, well-fitted by a Gaussian function. The FRET ratio \(R \), however, is a derived quantity, generated by the operation represented by Eq. 2 acting on \([Ca^{2+}]_{\text{SR}}\), a random and presumably Gaussian variable.

We will show that both anomalies—the skewed distribution of \([Ca^{2+}]_{\text{SR}}\) and the symmetrical distribution of \(R \)—have a common explanation. Small errors, either in the measurement of \(R \) or the calibration parameters, will result in errors in calculated \([Ca^{2+}]\) that grow disproportionately as the sensor approaches saturation. The nonlinearity arises because according to Eq. 1, \(d[R]/d[Ca^{2+}] \) is inversely proportional to \((R_{\text{max}} - R)^2\). Errors therefore become severe when \(R \) approaches \(R_{\text{max}} \). As is often the case because D4cpv has a low \(K_d \). Because of the symmetrical role of \(R_{\text{max}} \) and \(R \) in \(d[R]/d[Ca^{2+}] \), similar errors in \([Ca^{2+}]\) will be caused by errors in the measurement of \(R \) and by changes in \(R_{\text{max}} \). This idea is used in a simple simulation to prove that a sample of \([Ca^{2+}]\) with normal distribution will be reported as skewed by a sensor of high affinity and minor variations (“noise”) in its parameter values.

The simulation starts by generating a set of 10,000 concentrations with normal distribution around a central value, 400 \(\mu \)M, which is high by comparison with the effective \(K_d \) of the hypothetical biosensor (assumed in the simulation to be 222 \(\mu \)M). The histogram of such a set is plotted in Fig. 10 A in full trace. Individual concentrations are then operated on by Eq. 2, representing the biosensor, but its three parameters are made to vary randomly, with normal distribution of standard deviation equal to 0.1 of the mean parameter value. Fig. 10 B is the histogram of the set of 10,000 \(R \) values generated.
in this way. Then the set of R values is operated by Eq. 1, this time with best-fit parameters, to calculate the “measured” or “reported” $[\text{Ca}^{2+}]$. The histogram of reported concentration is plotted back in Fig. 10 A (broken line). This histogram is similar, qualitatively and quantitatively, to the experimental histogram of $[\text{Ca}^{2+}]_{\text{SR}}$ plotted in Fig. 9 B. Clearly, the simulation reproduces the main features of the observation. We conclude that a small cell-to-cell variation in the properties of the biosensor results in a distribution of FRET ratios that will yield a skewed distribution of reported concentrations if the ratios are interpreted using single-valued parameters. A probable error of 10% in parameter values reproduces well the quantitative aspects of the observed distributions of R and $[\text{Ca}^{2+}]_{\text{SR}}$.

This analysis can also be used to estimate the errors of measurement derived from variations of the monitor as hypothesized in the simulation. Specifically, the average of the population of “measured” $[\text{Ca}^{2+}]$ (that is, the average of the histogram in Fig. 10 A, broken line) is 443 µM. An alternative, and somewhat better, use of this hypothetically “noisy” monitor is to calculate $[\text{Ca}^{2+}]$ by application of the operator (Eq. 1) to the average value of ratio, 1.281, which yields 376 µM. With either approach, the monitor recovers a value that is close to the true central value in the simulation, 400 µM.

Figure 10. Simulation of a monitor with variable parameters. (A) Continuous trace: histogram of 10,000 $[\text{Ca}^{2+}]$ values, randomly distributed according to a Gaussian of mean 400 µM and standard deviation 100 µM. Broken line: distribution of $[\text{Ca}^{2+}]$ derived from measurement by a model biosensor as described below. (B) Distribution of R values derived from the $[\text{Ca}^{2+}]$ values in A with the model biosensor. Individual R values were calculated by Eq. 2 operating on the 10,000 individual $[\text{Ca}^{2+}]$ using random biosensor parameter values with Gaussian distribution, with the mean equal to their best fit value ($\beta K_d = 222 \mu M, R_{\text{min}} = 0.505, R_{\text{max}} = 1.74$) and standard deviation equal to 0.1 of said value. The “measured” $[\text{Ca}^{2+}]$ values represented in A (broken line) were obtained using Eq. 1 with the best fit parameter values, operating on the R values in B. This is a realistic representation of features of the actual biosensor because the histogram of R values is similar to the experimental one (Fig. 9 A), and so is the simulated distribution of measured $[\text{Ca}^{2+}]_{\text{SR}}$ (compared with that in Fig. 9 B).
in isolated cells. D4cpv fused with calsequestrin is now found to improve on those monitors. It is expressed abundantly in adult mice. It targeted highly specifically to the terminal cisternae of the SR, at concentrations sufficient to provide a sensitive measure. Calibrated in muscle cells, it displayed a three-to-fourfold greater dynamic range than D1ER. It reported a resting [Ca\(^{2+}\)]\(_{SR}\) at \(\sim 400\) µM. Calmodulin-based biosensor properties may vary from cell to cell. This variation, however, appears to be minor in the case of D4cpv, and not affect substantially the central measures of concentration. The potential of D4cpv-Casq1 to refine measurements of dynamic changes in [Ca\(^{2+}\)]\(_{SR}\) is demonstrated in the companion paper (Sztr etye et al., 2011).

APPENDIX

A linear combination of fluorescence intensities proportional to biosensor concentration

The biosensor concentration, \(S_T\), was determined in every cell based on the “invariant” metric first introduced by Launikonis et al. (2005) for the SEER ratioing method. In this appendix, the metric is reintroduced, and adapted to its use to emission ratioing with FRET biosensors. The well-known advantage of ratiometric sensors is that they yield a number, the ratio, which is related to [Ca\(^{2+}\)] independently of \(S_T\). By simple symmetry of the dependence of fluorescence on the two reagents—sensor and Ca\(^{2+}\)—a fluorescence metric must exist that is related to \(S_T\) independently of [Ca\(^{2+}\)]. The simplest example is the fluorescence at the isosbestic, isoemission, or crossover wavelength, which is [Ca\(^{2+}\)] independent. Even in the absence of an isosbestic signal, a particular linear combination of intensities at two wavelengths exists, which is independent of [Ca\(^{2+}\)] and proportional to \(S_T\).

Let \(e_{D1}\) be the fluorescence \(F_1\) (collected in range 470–510 nm, the “donor” range) for unit excitation intensity and unit sensor concentration \(S_T\) at [Ca\(^{2+}\)] = 0, \(e_{C1}\) the corresponding value in saturating [Ca\(^{2+}\)], and \(e_{D2}\) and \(e_{C2}\) the corresponding \(F_2\) values (in the “acceptor” range 520–580 nm). Then at the [Ca\(^{2+}\)] that produces a concentration [CaS] of Ca\(^{2+}\)-bound sensor, the fluorescence intensities excited by light of intensity \(I\) (in regions far from donor saturation) will be, respectively,

\[
F_1 = I \left(S_T e_{D1} + \text{[CaS]} e_{C1} \right) \quad \text{and} \quad F_2 = I \left(S_T e_{D2} + \text{[CaS]} e_{C2} \right)
\]

(A1)

It is possible to find a factor \(M\) so that

\[
F_1 + MF_2 = \kappa I \left(S_T + \text{[CaS]} \right)
\]

(A2)

at any [Ca\(^{2+}\)] (\(\kappa\) is a constant). Launikonis et al. (2005) called \(F_1 + MF_2\) the “invariant linear combination.”

Eq. A2 can be solved for \(M\) by substituting \(F_1\) and \(F_2\) from Eq. 1:

\[
I \left(S_T e_{D1} + \text{[CaS]} e_{C1} + M S_T e_{D2} + M \text{[CaS]} e_{C2} \right) = \kappa \left(S_T + \text{[CaS]} \right).
\]

(A3)

\[
I \kappa \left(S_T + \text{[CaS]} \right).
\]

Eq. A5 can only be satisfied in general if it is separately true for \(S_T\) and [CaS]. From these equalities, two expressions for \(\kappa\) result, which yield

\[
M = \frac{e_{D1} - e_{C1}}{e_{C2} - e_{D2}}
\]

(A4)

\[
\kappa = \frac{e_{D1} e_{C2} - e_{D2} e_{C1}}{e_{C2} - e_{D2}}
\]

(A5)

\(M\) and \(\kappa\) can be determined from calibrations, and then total dye concentration can be calculated as

\[
S_T = \frac{F_1 + MF_2}{\kappa}.
\]

(A6)

The equations above are simpler than the corresponding equations for the SEER method (Launikonis et al., 2005) because only one excitation light is used with FRET monitors.

\(M\) is, essentially, a ratio of quantum yields. By Eq. A4, \(M\) is the ratio of loss of fluorescence in the donor range over gain of fluorescence in the acceptor range upon Ca binding. Because in the present configuration, there is little “cross talk” (little donor fluorescence in the acceptor range and vice-versa), the right hand side of Eq. A4 is approximately equal to the ratio caused by FRET of loss of donor fluorescence in the donor range to acceptor fluorescence in the acceptor range. This ratio is given in Gordon et al. (1998), where it is represented by \(G\), as:

\[
G = \frac{\Phi_D Q_A}{\Phi_A Q_D},
\]

(A7)

where \(Q_s\) are quantum yields of donor (D) or acceptor (A), and \(\Phi_s\) are fractions of the donor or acceptor fluorescence transmitted in the corresponding measurement ranges.

One last difficulty in the present case is that all \(\phi_s\) in the above expressions are fluorescence intensities normalized by sensor concentration. For calibration purposes, we first obtained \(M\) by applying Eq. A6 at two times \((t_1\) and \(t_2\)) in line-scan images of cells undergoing large deleting Ca release (for example, Fig. 3). Because \(S_T\) is constant:

\[
F_1 (t_1) + MF_2 (t_1) = F_1 (t_2) + MF_2 (t_2)
\]

and

\[
M = \frac{F_1 (t_2) - F_1 (t_1)}{F_2 (t_1) - F_2 (t_2)}.
\]

(A8)
With M known, κ was derived by applying Eq. A6 to a solution of known concentration of an equal mixture of ECFP and EYFP, obtained commercially. A similar value for κ was obtained using Eq. A6 with a solution of purified biosensor, concentration derived from donor or acceptor absorbance measurements (which were mutually consistent, as discussed in Materials and methods).

Eq. A6 was used to compute pixel-by-pixel $D_I(x,y)$ images like those shown in Fig. 2 E. Such images could then be used to establish regions with different expression densities, as described with Fig. 8, and calculate corresponding averages of R and $[Ca^{2+}]_{SR}$.

We are grateful to R.Y. Tsien and A.E. Palmer for the gift of D4cpv, to D.-H. Kim for Casq-1 and Casq1-â-Asp, and to D. Terentev and S. Gyorky for pEYFP-N1-dogCasq2. We thank P. D. Allen and S. Pouvreau for criticism of the manuscript and C. Franzini-Armstrong for advice in interpreting images of D1ER expression. We are especially grateful to C. Manno for help at several stages of preparation of the manuscript.

This work was supported by grants from the National Institute of Arthritis and Musculoskeletal and Skin Diseases (AR049184 and AR032808 to E. Ríos, and AR057404 to J. Zhou) and the Muscular Dystrophy Association of America (MDA-4351 to J. Zhou).

Richard L. Moss served as editor.

Submitted: 22 December 2010
Accepted: 28 June 2011

REFERENCES

SUPPLEMENTAL MATERIAL

Sztreye et al., http://www.jgp.org/cgi/content/full/jgp.201010591/DC1

Example cell with low density of biosensor

Fig. S1 illustrates a stack of images of an additional cell, with the same optical and acquisition parameters used for the dual-stain experiment in Fig. 1. The lower level and heterogeneity of expression of D4cpv-Δ3sp in this cell results in a clear view of the di-8-ANEPPS staining in the interior of the cell. The figure also shows, in panels A and B, a pair of raw images, near the center of the z stacks used in the 3D reconstruction. The plots in F confirm the colocalization of biosensor and t tubule stain. The first 4 μm of the profiles in F are plotted in G, rescaled, and vertically shifted to match both maxima and minima. Horizontal line a is traced at the average maximum and line b at one-half of that value. Half widths of the bands of both signals are measured on line b. Their averages for the three full bands shown are 0.400 μm for the biosensor (SEM = 0.0058) and 0.526 (SEM = 0.0067) for di-8-ANEPPS. The difference, 0.074 μm, is highly significantly different from 0, a result consistent with a location of the biosensor in the terminal cisternae of the SR.

Structural aspects of the expression of D1ER

Figs. S2–S5 illustrate features of D1ER, as seen in mice 4–7 d after transfection. Approximately 50% of the cells showed fluorescence with the emission spectrum of D1ER. In every case, the extrinsic fluorescence appeared throughout the length and width of the fiber, showing the structural pattern illustrated in Fig. S2 A. This “pattern I” is shown in a 3-D rendering (analogous to that used for Fig. 1) in Fig. 2 D. Pattern I was identified in all cells expressing D1ER examined at high magnification (46, from 6 transfected mice).

The cell illustrated in Fig. S2 A was costained with Mitotracker Deep Red. The simultaneously acquired image of this stain is shown in Fig. S2 B, showing the characteristic double row of mitochondria. In mammalian skeletal muscle, mitochondria are mostly transversal to the fiber and form a band that largely overlaps with but is narrower than the “I-Z-I” section of the SR. The center of the mitochondrial band therefore locates the z line. The overlap (Fig. S2 C) demonstrates that the transversal band of high D1ER expression colocates with the z line.

Nearly 30% of the cells expressing D1ER also presented areas with fluorescence of identical emission spectrum in a different spatial pattern, “pattern II.” The typical appearance of this pattern is illustrated with Figs. S3 and S4. The presentation of pattern II was always in segments or patches, usually <200 μm long, which often did not span the diameter of the fiber. As illustrated with the wide-field transmitted light image of Fig. S3 A, the region of the cell expressing pattern II was usually not deformed or altered perceptibly. As illustrated by the wide-field fluorescence image in Fig. S3 B, the intensity of fluorescence in these regions was much greater than in the rest of the cell (typically 10 times greater). The other areas of the fibers expressing pattern II always expressed D1ER fluorescence, and always with pattern I. This is illustrated with Fig. S3 C, in which fluorescence of the same cell, acquired with greater gain, is displayed using a color palette designed to visualize the areas of low fluorescence. A portion of those areas (in a box in Fig. S3 C) is displayed magnified in Fig. S3 D, and shows the characteristic transversal striation of pattern I.

The large difference of intensity between areas with different patterns of expression raised the concern that intrinsic (auto) fluorescence might be confusing the results. Specific measurements were done in unstained, untransfected cells, and showed that the levels of autofluorescence were at least 20 times lower than those typical for pattern I (probably because light of 458 nm is a poor exciter of autofluorescence). In addition, autofluorescence had different emission spectrum and structural pattern.

To clarify the locations in the sarcomere of the areas of high D1ER density, cells with dual pattern were costained with di-8-ANEPPS. An individual low-resolution image of the biosensor is shown in Fig. S4 A, and the simultaneously obtained image of di-8-ANEPPS is shown in B. Fig. S4 A shows the coexistence of the two patterns (pattern I is present in the lower-right corner) and illustrates the transition between the two, which was always sharp, usually occupying no more, and often much less, than 5 μm in every direction. Fig. S4 (C and D) shows 3-D renderings of z stacks of D1ER and di-8-ANEPPS fluorescence acquired simultaneously. The stacks cover a region of pattern I expression (bottom half of images) and one of pattern II (top). They also show clearly the sharp transition between patterns. The joint 3-D display (Fig. S4 E) shows that in the area of pattern I there is little overlap between biosensor and tubules. The overlap is greater where D1ER adopts pattern II. The plots in Fig. S4 F are “profiles” of expression in the x (longitudinal) direction, calculated within the box in Fig. 4 E. The profiles show substantial overlap of biosensor and t tubules, but they also reveal a subtle shift, systematically repeated in every sarcomere. Because of the shift, the t tubules, while partly covered, are still visible in the joint 3-D rendering of Fig. S4 E (compare with Fig. 1 E, where they are entirely covered by D4cpv).

In several cells, the sharp border between areas of different expression pattern featured a “Vernier shift” of the stack of t tubules. Such a shift is clear in the right half of Fig. S4 D, but is not present in the left half of the image, which suggests that discontinuity of the t tubule array is not the cause of the pattern transition.

FRET responses of D1ER in muscle cells

Initial tests consisted in the application of the release cocktail to quiescent cells. Fig. S5 illustrates an example. Fig. S5 (A and B) displays the images F_1 (donor) and F_2 (acceptor). Fig. S5 C plots the “invariant” combination of F_1 and F_2, which is proportional to the concentration of biosensor, as described in Materials and methods and the Appendix. Fig. S5 D is their ratio $R(x,y)$, which has an average value of 1.99. The cell was then exposed to the release cocktail (described in Materials and methods) and imaged after 5 min. The four lower panels document the changes. The biosensor concentration image evidenced some movement but little change otherwise. The $R(x,y)$ image, in Fig. S5 F, had an average value of 1.37. This change is representative of results in four cells (average at rest, 1.79; SEM, 0.10; average after release, 1.39; SEM, 0.02). The largest value of R found in 12 cells at rest was 2.50 (average, 1.93; SEM, 0.11). Assuming $R_{min} = 1.39$, $R_{max} = 2.50$, $DR((R_{max}-R_{min})/R_{min}) = 0.80$.
Figure S1. 3D reconstructions in a cell expressing a D4cpv fusion at low concentration. The figure illustrates two z stacks of 30 images each of a cell expressing D4cpv-ΔAsp, costained with di-8-ANEPPS. Successive images were obtained simultaneously for the two stacks. (A and B) Individual unprocessed images at position 13. (A) Biosensor. (B) di-8-ANEPPS. (C and D) Corresponding images after deblurring. (E) 3-D rendering by the SFP algorithm. Note that t tubules are visible, especially near the fiber axis, where biosensor concentration is lowest. (F) Fluorescence in C and D averaged over coordinate y in the boxed area. Note that the profiles of di-8-ANEPPS are visibly narrower than those of the colocalized biosensor. ID: 020411a series 138, slice 13.
Figure S2. The dominant pattern of expression of D1ER. (A) Single image of fluorescence in a cell expressing D1ER. Wavelengths of excitation and emission were the same as those used for D4cpv. (B) Simultaneously obtained image of Mitotracker Deep Red (Ex, 633 nm; Em, 650–750 nm). Note the double rows of mitochondria, which in mammalian muscle are near the center of the I band. (C) Overlay of images of A and B. Note the colocalization of the transversal band of high biosensor expression with mitochondria, which locates the biosensor band near the z line. ID: 042106a series 102. (D) 3-D rendering of a stack of images of D1ER fluorescence in a different cell, revealing the placement of the biosensor in irregular sacs arranged longitudinally, and a transversal band of high expression density, which is centered at the z line (as shown with C). ID: 020911c series 13.
Figure S3. D1ER expressed in two patterns; wide-field images. (A) Transmitted light wide-field image. (B) Fluorescence wide-field image. Both images were displayed unprocessed. (C) Wide-field image of fluorescence, displayed with amplified intensity, in a color scale chosen for optimal resolution of low-intensity fluorescence. (D) Magnified view of the boxed region in C, showing fluorescence with D1ER pattern I. The central area of high expression was found to have pattern II in images obtained with lower excitation intensity. ID: 021611f, camera 0, 2, 12.
Figure S4. D1ER expressed in two different patterns; confocal images. (A) Biosensor fluorescence. (B) di-8-ANEPPS fluorescence in a cell expressing D1ER, costained as described in the legend for Fig. S1. The images were obtained simultaneously at low magnification. Pattern I is present at the bottom and lower right. Pattern II is spatially different and of much greater intensity. (C and D) 3-D renderings of z stacks obtained in the same cell, at higher magnification. Processing was as described for Fig. 2 and Fig. S1, with the same display parameters. Note in C the sharp transition between patterns I, at the bottom, and II at the top of the panel. Note that part of the border between the areas of different patterns coincides with a “Vernier shift” in alignment of t tubules. This shift, however, is not present in the left half of the image, where the transition is sharpest. (E) Joint 3-D rendering of both stacks. Note that D1ER in pattern II colocalizes better with t tubules, but still colocalizes imperfectly. (F) Profiles of fluorescence, averaged transversally within the area marked by the box in E. Note the slight but systematic shift between peaks of biosensor expression and t tubules. ID: A and B, 020911d images 18; C–F, 020911d series 35.
Figure S5. Response of D1ER. (A and B) FRET pair of fluorescence images of a fiber expressing D1ER. (C) The ratio R of B over A, after background subtraction. (D) Image of biosensor concentration (scale is based on calibration described in the Appendix). (E) Image of biosensor concentration after application of the “release cocktail” (Materials and methods). (F) R after cocktail; calculation was restricted to areas where [biosensor] was greater than the mean minus 1 standard deviation of the distribution of [biosensor]. The average R went from 1.99 in C to 1.37 in F. ID: 021811b, images 14 and 22.