Protein phosphatase CaPpz1 is involved in cation homeostasis, cell wall integrity and virulence of Candida albicans

Running title: C. albicans protein phosphatase Z1

Content Category: Cell and Molecular Biology of Microbes

Csaba Ádám¹, Éva Erdei², Carlos Casado³, László Kovács¹, Asier González³, László Majoros⁴, Katalin Petrényi¹, Péter Bagossi¹, Ilona Farkas¹, Monika Molnar⁵, István Pócsi², Joaquín Ariño³, Viktor Dombrádi¹,⁶*

¹Department of Medical Chemistry, Faculty of Medicine, Research Centre for Molecular Medicine, University of Debrecen, Debrecen, Hungary,
²Department of Microbial Biotechnology and Cell Biology, Faculty of Science, University of Debrecen, Debrecen, Hungary
³Institut de Biotecnología i Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma Barcelona, Cerdanyola del Vallès, Spain
⁴Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary,
⁵Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary,
⁶Cell Biology and Signalling Research Group of the Hungarian Academy of Sciences, University of Debrecen, Debrecen, Hungary

With sadness we note that our colleague and co-author passed away on 22. 07. 2011.

‡Present address: Institute of Environmental Sciences, Faculty of Science and Informatics, College of Nyiregyhaza, Nyiregyhaza, Hungary

*Corresponding author: Phone: + 36 52 412 345, Fax: + 36 52 412 566
E-mail: dombradi@med.unideb.hu

Word count abstract: 249

Word count main text: 5776
Abstract

The opportunistic pathogen *Candida albicans* has a single protein phosphatase Z candidate gene termed *CaPPZ1* which shows significant allele variability. We demonstrate here that bacterially expressed CaPpz1 protein exhibits phosphatase activity which can be inhibited by recombinant Hal3, a known inhibitor of *S. cerevisiae* Ppz1. Site-directed mutagenesis experiments based on natural polymorphisms allowed the identification of three amino acid residues affecting enzyme activity or stability. The expression of *CaPPZ1* in *ppz1* *S. cerevisiae* and *pzh1* *S. pombe* cells partially rescued the salt and caffeine phenotypes of the deletion mutants. CaPpz1 also complemented the *shl2* *S. cerevisiae* mutant that is crippled in the MAP kinase mediating the cell wall integrity signalling pathway. Collectively, our results suggest that the orthologous PPZ enzymes have similar but not identical functions in different fungi. The deletion of the *CaPPZ1* gene in *C. albicans* resulted in a mutant that was sensitive to salts like LiCl and KCl, to caffeine, and to agents affecting cell wall biogenesis like Calcofluor White and Congo Red, but was tolerant against spermine and hygromycin B. Reintegration of the *CaPPZ1* gene into the deletion mutant alleviated all of the mutant phenotypes tested. Thus CaPpz1 is involved in cation homeostasis, cell wall integrity and the regulation of the membrane potential of *C. albicans*. In addition, the germ tube growth rate and the virulence in the BALB/c mice model was reduced in the null mutant, suggesting a novel function for CaPpz1 in the yeast to hypha transition that may have a medical relevance.
INTRODUCTION

The Ppz Ser/Thr protein phosphatases constitute a family of enzymes that are structurally related to the type-1 protein phosphatases, and are restricted to fungal species (Arino, 2002). In *Saccharomyces cerevisiae*, where these proteins were discovered (Lee et al., 1993; Posas et al., 1992; Posas et al., 1993), there exist two genes, namely *PPZ1* and *PPZ2*. To avoid confusion, these two phosphatase genes will be referred to *ScPPZ1* and *ScPPZ2* in the present paper. The encoded proteins contain C-terminal catalytic domains, which are highly similar to each other, while their N-terminal moieties are much less related (Fig. 1a). Deletion of *ScPPZ2* does not result in a detectable phenotype. However, strains lacking ScPpz1 exhibit increased tolerance to NaCl and LiCl (Posas et al., 1995), altered K⁺ influx, and hypersensitivity to caffeine (Posas et al., 1993; Yenush et al., 2002). On the other hand, overexpression of *ScPPZ1* results in slow growth and cell cycle blockage at the G1-S transition (Clotet et al., 1999). The effect of the *scppz1* mutation on cation homeostasis is due to the elevated expression of the Na⁺-ATPase *ENA1* gene (Posas et al., 1995; Ruiz et al., 2003) and to the increased influx of potassium ions mediated by the high-affinity K⁺-transporter Trk1 (Yenush et al., 2002). *ScPPZ1* exhibits genetic interactions with *SLT2*, encoding a MAP kinase required for signalling in the cell wall integrity (CWI) pathway (reviewed in (Levin, 2005)). *slt2* cells are prone to lysis and are very sensitive to high temperature, caffeine, or cell wall damaging compounds. Overexpression of *ScPPZ1* suppresses the lytic phenotype of a *slt2* mutant, whereas deletion of the *ScPPZ1* gene, or inhibition of its phosphatase activity results in a phenotype additive to that of the *slt2* strain (de Nadal et al., 1998; Lee et al., 1993). The functional interaction between ScPpz1 and the CWI pathway has been explained on the basis of the combination of increased internal turgor pressure in Ppz-deficient strains and cell wall instability observed in strains lacking Slt2 (Merchan et al., 2004). Therefore, in budding yeast the Ppz proteins play key roles in cation homeostasis, which is likely to affect cell cycle regulation. The Hal3 and Vhs3 regulatory subunits bind to the catalytic domain of ScPpz1 and inhibit its activity (de Nadal et al., 1998; Ruiz et al., 2004). The overexpression of these inhibitors mimics the effects of the *scpplz1* mutation.

The PPZ phosphatases have been only partially characterized in other yeasts or fungi. *Schizosaccharomyces pombe* contains the *pzh1* gene, encoding a protein that is similar to budding yeast Ppz (Fig. 1a), but has a shorter and rather divergent N-terminal domain (Balcells et al., 1997). In *S. pombe*, the deletion of *pzh1* results in cells hypertolerant to Na⁺
and hypersensitive to K^+ (Balcells et al., 1997). However, the mechanisms of action of Pzh1 in fission yeast are probably different from that observed for ScPpz1 in budding yeast, since cells lacking Pzh1 have no altered sodium or lithium efflux, rather they display decreased influx for these cations, together with a reduced K^+ efflux (Balcells et al., 1999). A PPZ phosphatase gene from the filamentous fungus *Neurospora crassa*, named *Pzl-1*, has been identified by (Szoor et al., 1998). The PZL-1 protein (Fig. 1a) was expressed in *S. cerevisiae* and was shown to fulfil every known function carried out by its *S. cerevisiae* counterpart, despite the marked sequence divergence within their N-terminal moieties (Vissi et al., 2001). The expression of PZL-1 in the *pzh1* mutant *S. pombe* resulted in a less efficient complementation. Recently, a PPZ orthologous, termed DhPpz1, has been characterized in the extremely halotolerant yeast species *Debariomyces hansenii* (Minhas et al., 2012). This phosphatase also has a disordered N-terminal segment that includes a short conserved Ser/Arg rich motif which is important in salt tolerance but not in CWI. Interestingly, this fungus utilises a Na^+/H^+ antiporter to evade the toxic effects of cations. The comparison of known PPZ enzymes suggests that although their major functions are retained across fungi, the underlying mechanisms can be different.

Candida albicans is an opportunistic pathogen with considerable medical significance. This organism contains a single PPZ candidate gene, termed *CaPPZ1*, that has at least four distinct alleles (Kovacs et al., 2010). The allele combinations in the diploid organism together with individual point mutations result in a great genetic variability. The *CaPPZ1* gene codes for a protein whose primary structure is similar to the better characterized fungal counterparts (Figs. 1a and S1). Homologous modelling suggests that the three dimensional structure of the CaPpz1 catalytic domain is reminiscent to that of the protein phosphatase 1 catalytic subunit (Fig. 1b). The physiological significance of the *C. albicans* PPZ phosphatase has not been uncovered yet. The only available information extracted from large scale genetic screens tells that the disruption of either one (Xu et al., 2007) or both (Hanaoka et al., 2008) of the alleles is not detrimental. In the present work we characterize the function of this enzyme by biochemical assays of the recombinant protein, by expressing the *CaPPZ1* gene in Ppz-deficient *S. cerevisiae* and *S. pombe* strains, as well as by studying the relevant *C. albicans* mutant. Our work reveals that despite of structural similarities; CaPpz1 only partially complements the lack of its orthologs in other fungi and has a novel function in controlling the germ tube formation of *C. albicans*.
METHODS

DNA cloning. The cloning of *C. albicans* CaPPZ1 gene was described before (Kovacs *et al.*, 2010). The CaPPZ1-3 allele (accession number: GQ487308) was used to insert the ORF into a pET28a+ expression vector (Novagen) in two steps. The two halves of the coding region were amplified by PCR with the UPPZ-NdeI / LPPZ-NdeI and UPPZ-PstI- / LPPZ-XhoI primer pairs (Table S1a), and were ligated together resulting in the CaPPZ1-pET28a+ plasmid. In order to confirm the predicted gene structure, we also cloned the corresponding cDNA from the ATCC 10231 reference strain. Total RNA was prepared with SV Total RNA Isolation System (Promega), and the mRNA was reverse-transcribed with the 5'/3' RACE Kit (Roche). The cDNA was amplified by PCR using the 2U and 2L primers (Table S1a) and was placed into a pGEM-T Easy vector (Promega) to yield the CaPPZ1-pGEM-T plasmid whose sequence was deposited into the NCBI database under the accession number JF330253.

For the expression in *S. cerevisiae* under the control of the ScPPZ1 promoter, first the -525/-10 segment of the promoter region was amplified by PCR from *S. cerevisiae* FY1679 genomic DNA with ScPromSacI and ScPromXbaI primers (Table S1a) according to (Vissi *et al.*, 2001) and the amplicon was cloned into pGEM-T Easy plasmid. Next, the promoter region was released with SacI and XbaI and was cloned into the plasmids YCplac111 and YEplac181. Then the coding region of the CaPPZ1-3 allele was amplified from the CaPPZ1-pGEM-T cDNA clone by PCR with C1XbaI and C2HindIII primers (Table S1a) and was placed after the promoter to generate the YCp-CaPPZ1 and YEp-CaPPZ1 plasmids. The construction of the control plasmid YCp111-ScPPZ1 was described previously (Clotet *et al.*, 1996).

For the expression in *S. pombe*, the coding region of CaPPZ1-3 was amplified from the CaPPZ1-pGEM-T construct by PCR with C3BamHI and C4BamHI primers (Table S1a) and was inserted into the expression vector pREP41 (Basi *et al.*, 1993;Maundrell, 1993) producing the pREP41-CaPPZ1 plasmid. All of the vector constructs were confirmed by DNA sequencing.

In vitro mutagenesis. The positions of the mutated amino acids are shown in Figs. 1(b) and S1. The homologous model of the CaPpz1 catalytic domain was built on the crystal structure of rabbit muscle PP1 catalytic subunit fragment (amino acid residues 7-300; (Goldberg *et al.*, 1995); PDB accession number: 1FJM) using the Modeller7 program (Sali & Blundell, 1993). Sequence alignment was done by ClustalW (Thompson *et al.*, 1994). Mutations resulting in
single or double amino acid exchanges were introduced into the CaPPZ1-3 sequence with the aid of the QuikChange Lightning site-directed mutagenesis kit (Agilent Technologies). PCR of the CaPPZ1-pET28a+ plasmid target with the oligonucleotide primers described in Table S1(b) resulted in the R262L, D261N, G333E, and C337R mutations, while the double mutant encompassing both G333E and C337R replacements was generated from the G333E mutant by a second round of mutagenesis.

Expression of CaPPZ1 in E. coli. Wild type and mutated CaPpz1-3 was expressed in *E. coli BL21* (DE3)-RIL (Stratagene) after the addition of 0.4 mM isopropyl-β-D-thiogalactoside (IPTG) (Sigma-Aldrich) followed by 16 h incubation at 18 °C (Fig. S2a). The recombinant proteins were purified from the supernatant of the bacterial extract with Ni-NTA Agarose (Qiagen) affinity chromatography. The fractions eluted from the columns were analyzed by SDS-PAGE (Fig. S2b). The protein concentration of the fractions was assayed with the Bradford method (Bradford, 1976). The CaPpz1 content in the peak fractions was estimated by scanning of the electrophoretograms. The phosphatase activity of the fractions was assayed in triplicate samples containing 1 to 2 µg of recombinant phosphatase with p-nitrophenylphosphate (Sigma-Aldrich) substrate in the presence or in the absence of Hal3 as reported before (Munoz et al., 2004). Recombinant *S. cerevisiae* Hal3 was expressed in *E. coli* and was purified according to (Garcia-Gimeno et al., 2003).

Expression of CaPPZ1 in S. cerevisiae. The genotypes and origin of the *S. cerevisiae* strains used in this work are listed in Table 1. Single kanMX deletion mutants in the BY4741 background were generated in the context of the *Saccharomyces* Genome Deletion Project (Winzeler et al., 1999). The mutants were transformed with different rescue plasmids as in (Vissi et al., 2001). *S. cerevisiae* cells were grown at 28 °C in YPD medium (10 g/l yeast extract, 20 g/l peptone and 20 g/l dextrose) or, when carrying plasmids, in synthetic complete drop-out medium (lacking leucine).-Sensitivity of yeast cells to LiCl, NaCl, caffeine (Merck) or Calcofluor White (Sigma) was evaluated by growth on agar plates (drop tests) as previously described (Posas et al., 1995).

Expression of CaPPZ1 in S. pombe. The genotypes and origin of the *S. pombe* strains are summarized in Table 1. The *pzh1* control strain was isolated from a cross between the *S. pombe h* wild type strain and *S. pombe* 117 strain (*h* ade6-M210 leu 1-32 ura4-D18). For cultivation of *S. pombe* a standard complete medium: yeast extract agar (YEA), yeast extract
liquid (YEL) (Gutz et al., 1974) and Edinburgh minimal medium 2 (EMM2, US Biological) plates or liquid cultures were used with appropriate supplements (100 mg/l adenine, uracil, leucine). Fission yeast strains were transformed by the lithium-acetate method (Ito et al., 1983). Transformed cells grew on EMM2+ade medium which contained 400 µmol/l thiamine to repress the nmt1 (no message in thiamine) promoter of the vectors. In our assays first the transformants were grown in EMM2+ade (without thiamine) overnight (for the expression of pREP construct) and these pre-cultures were used to inoculate EMM2+ade liquid media supplemented with different salts or caffeine in the following concentrations: 300, 350, and 400 mM KCl; 150, 200, and 250 mM NaCl, 5, 8, and 10 mM LiCl, as well as 5, 10, and 15 mM caffeine. The starting OD values were set to 0.2 and cell growth was characterized by measuring the optical density of the cultures after 24 h incubations.

Disruption of the CaPPZ1 gene in C. albicans. The SN87 strain was used for gene disruption (Table 1). By cloning and sequencing of the CaPPZ1 gene according to (Kovacs et al., 2010) we proved that this strain was homozygous for the CaPPZ1-1 allele. C. albicans strains were cultivated in YPD medium at 37 ºC, while the transformants were selected and grown on SD solid medium (6.7 g/l yeast nitrogen base with ammonium sulphate, 20 g/l glucose, 15 g/l agar with or without the amino acids 100 mg/l leucine and 20 mg/l histidine, as needed).

The CaPPZ1-1 gene was deleted by using a PCR-based procedure with primers harbouring approximately 100-bp regions from the 5’- and 3’-flanking sequences of the target gene (Gola et al., 2003). The cappz1 strain was generated by successive transformations with two disruption cassettes containing the HIS1 and LEU2 auxotrophic markers. The cassettes were amplified from the pFA-CdHIS1 and pFA-CmLeu2 plasmids (Schaub et al., 2006) with the primers described in Table S1(c), and were transformed into the SN87 strain by electroporation in two steps (Noble & Johnson, 2005).

Characterization of the C. albicans strains. For the validation of gene disruption, genomic DNA was extracted from C. albicans as described (Lee et al., 1988). The integration of the disruption cassettes was tested by PCR using “diagnostic” primers (Table S1d, Figs. S3a and S3b). Southern hybridizations were performed with cassette specific probes generated by PCR (Table S1e) to verify the deletions and to exclude the possibility of the ectopic integration of disruption cassettes (Fig. S3c). The absence of CaPPZ1 transcripts from the cappz1 strain was confirmed by RT-PCR with the primers given in Table S1f (Fig. S3b).
One functional \textit{CaPPZ1} gene copy was reintegrated into the \textit{cappz1} mutant with the aid of the \textit{SAT1} flipper containing pSFS2A vector (Reuss et al., 2004) as described in Fig. S3d. The presence of the \textit{CaPPZ1} gene and either of the \textit{HIS1} or \textit{LEU2} cassettes in the heterozygous transformants was demonstrated by PCR. It was also shown that the \textit{CaPPZ1-HIS1} strain exhibited His$^+$ and Leu$^-$ phenotype, while the \textit{CaPPZ1-LEU2} strain was His$^-$ and Leu$^+$. The genotypes of the \textit{C. albicans} strains investigated in the present study are described in Table 1.

The sensitivity of the \textit{C. albicans} cells to salts (LiCl, NaCl, and KCl), toxic cations (spermine and hygromycin B), cell wall damaging agents (Calcofluor White, Congo Red) and caffeine, was evaluated in YPD medium. The relative growth of the liquid cultures was measured in 96 well plates using a Multiskan RC ELISA reader (Thermo Labsystems) at OD$_{620}$ after 18 h incubations at 37 °C. The starting OD$_{620}$ was 0.0005 in all experiments.

Hyphal growth was induced by the addition of 90% sheep serum and the germination capacity of the cells was determined microscopically (Gyetvai et al., 2007). More than 100 cells were counted in each experiment. For the better visualisation of hyphae the fungal samples were stained with Calcofluor White (CFW) according to the manufacturer’s recommendation
(http://www.sigmaaldrich.com/etc/medialib/docs/Fluka/Datasheet/18909dat.Par.0001.File.tm p/18909dat.pdf), and were analysed under an Olympus BX40 immersion microscope.

The virulence of the \textit{C. albicans} strains was analyzed in immunocompetent female BALB/c mice essentially as in (Noble & Johnson, 2005) with the exception that less pathogen was used for inoculation. Higher doses of fungi led to 80-90 % lethality within 2-3 days. To prevent bacterial infections all mice received ceftazidime (5 mg/day subcutaneously) every day after infection. Ten mice/\textit{Candida} strains were inoculated through the lateral tail vein with 1.8-2.4 x 105 CFU/mouse in three independent experiments. Mice were followed up for 14 days and the survival rate was analyzed by Kaplan-Meyer test (GraphPad Prism v4.03 software). The animal experiments were approved by the Animal Care Committee of the University of Debrecen, Debrecen, Hungary (permission no. 12/2008).

\section*{RESULTS}

\subsection*{Biochemical characterization of the CaPpz1 protein}

First we tested the phosphatase activity of the \textit{CaPPZ1} gene product. We demonstrated that the bacterially expressed and purified recombinant CaPpz1-3
dephosphorylated p-nitrophenylphosphate, and that this phosphatase activity was inhibited by recombinant \textit{S. cerevisiae} Hal3 (Fig. 2). Thus the enzymatic properties of the wild type CaPpz1 are similar to those of ScPpz1.

Next the functional significance of four selected amino acid residues in the catalytic domain of CaPpz1 (Fig. 1b) was analyzed by site directed mutagenesis. Expression in \textit{E. coli} and purification of the mutated proteins were accomplished with the same efficiency as the control wild type enzyme (Fig. S1), suggesting that the mutations did not affect either the production or the solubility of the phosphatase. As a proof of the principle we replaced an essential amino acid in the catalytic cleft and found that the R262L mutation resulted in an inactive protein (Fig. 2), as expected from a previous publication (Clotet \textit{et al.}, 1996), reporting that an analogous point mutation in \textit{S. cerevisiae} ScPpz1 eliminated phosphatase activity. Then the effects of naturally occurring polymorphisms (Kovacs \textit{et al.}, 2010) were investigated in the same way. The D261N mutation caused a moderate reduction in the phosphatase activity. When G333 was modified to E the phosphatase reaction rate doubled. On the other hand, the C337R replacement completely eradicated the catalytic reaction. Likewise, the G333E/C337R double mutation rendered the recombinant phosphatase inactive.

Complementation of the phenotypes of mutant yeasts by the expression of CaPPZ1

Based on the structural and biochemical similarities between CaPpz1 and the ScPpz1 (Figs. 1a, 2, and S1), we examined if the \textit{C. albicans} protein was able to complement the phenotypes of the \textit{S. cerevisiae scppz1} deletion mutant. CaPpz1-3 was expressed in the mutant budding yeast cells under the control of the \textit{ScPPZ1} promoter from either a low copy number centromeric YCp-CaPPZ1, or a high copy number episomal YEp-CaPPZ1 plasmid (Fig. 3a). The heterologous \textit{C. albicans} phosphatase partially normalized the tolerance to LiCl of the \textit{S. cerevisiae scppz1} mutant, but was rather ineffective when cells were challenged with 1 M NaCl. In contrast, the \textit{CaPPZ1} markedly rescued the growth defect of the \textit{ppz1} mutant in the presence of caffeine and, when in high copy, resulted in a near wild type phenotype.

A strain lacking the \textit{SLT2} MAP kinase gene shows strong hypersensitivity to compounds that affect cell wall synthesis, such as caffeine or CFW. Overexpression of \textit{ScPPZ1} in the \textit{S. cerevisiae slt2} mutant is known to attenuate these defects. As shown in Fig. 3b, high-copy number expression of \textit{CaPPZ1} was able to markedly improve tolerance of the \textit{slt2} mutant when cells were grown in the presence of caffeine or CFW. Therefore, CaPpz1 is able to reproduce the genetic interaction with the \textit{SLT2} MAP kinase.
Since the primary structures of CaPpz1 and Pzh1 proteins are similar to each other (Figs. 1a and S1), the functional competence of CaPpz1-3 was analyzed in the genetically distant fission yeast. The *C. albicans* phosphatase was expressed from the pREP41 plasmids in the *S. pombe pzh1* deletion mutant cells (Fig. 4). The *C. albicans* protein rescued, at least in part, the salt and caffeine sensitivity of the mutant. Similar results were obtained at three different LiCl, NaCl, KCl, and caffeine concentrations (data not shown). Thus, CaPpz1 can perform similar but not completely identical physiological functions as its *S. cerevisiae* and *S. pombe* counterparts.

Dissection of CaPpz1 functions in *C. albicans* by gene inactivation

In order to identify the physiological functions of CaPpz1 in *C. albicans*, we disrupted both copies of the corresponding gene in the diploid organism. The efficiency and specificity of the gene deletion were proven by PCR, RT-PCR, and Southern blot experiments (Figs. S3a-c). The mutant *C. albicans* did not exhibit any easily recognizable phenotype when cultivated in YPD medium. Therefore, the viability of the ∆CaPPZ1 strain was compared to that of the parental SN87 strain under different stress conditions. There was practically no difference between the two strains in the presence of NaCl, however, the disrupted strain was more tolerant against LiCl, spermine and hygromycin B and was more sensitive to KCl, caffeine, CFW and Congo Red treatments (Fig. 5). In order to verify that these phenotypes were indeed related to the absence of the target gene, we reintegrated one functional CaPPZ1 copy into its original locus. Both of the heterozygous transformants that carried a single copy of CaPPZ1 in a different genetic background behaved more similarly to the parental SN87 strain under selected stress conditions (Fig. 5e-h). Reintegation partially compensated sensitivity to CFW and Congo Red, and complemented spermine as well as hygromycin B tolerance. Our biochemical and genetic data collectively suggest that CaPpz1 has similar but not identical functions as the well characterized ScPpz1.

Beside the typical stress treatments, we also analyzed the germ tube formation, a biological process that is supposed to be related to the virulence of this pathogenic fungus. The germination frequency was determined for the parental as well as for the homozygous and heterozygous mutant strains (Table 2). At 30 min after the addition of sheep serum a significant delay was detected in the germ tube formation of the *C. albicans* that had no functional CaPPZ1. The difference between the null mutant and the other strains gradually diminished with the time of incubation and disappeared after 90 minutes. CFW staining of the
cells demonstrated that all of the tested strains produced regular hyphae (Sudbery et al., 2004) during the incubation period.

The virulence of the disrupted strain was directly tested in BALB/c mice (Fig. 6). It turned out that the cappz1 mutant was a less effective pathogen than the parental SN87 strain, while both of the heterozygous strains were more virulent than the null mutant. The Kaplan-Meyer analysis of the combined survival data proved that the virulence of the four strains analyzed was significantly different (p=0.0115). Pair-wise comparisons revealed that the SN87 and the CaPPZ1-LEU2 strains were significantly more pathogenic than the null mutant (p=0.078 and p=0.0343, respectively), but the difference between the CaPPZ1-HIS1 and cappz1 cells did not reach the level of significance. In fact, CaPPZ1-LEU2 was even more pathogenic than SN87, probably because it grew somewhat faster than the other strains. The reversion to the more pathogenic phenotype by gene reintegration suggests that the disruption of the CaPPZ1 was responsible for the reduced virulence.

DISCUSSION

The heterogeneity of the CaPPZ1 gene is an inherent property of *C. albicans* (Kovacs et al., 2010) that has some impact on the structure-function investigations. The natural alleles used in the present study (CaPPZ1-1 and CaPPZ1-3) encode the same amino acid sequence in the catalytic domain (Fig. S1) and are expected to have the same catalytic properties. In addition, due to the different codon usage of *C. albicans* vs. other organisms (Omaha et al., 1993) five CUG triplets were translated as Leu instead of Ser in *S. cerevisiae*, *S. pombe*, and *E. coli* (Fig. S1). Only one of these (L452) is in the catalytic domain, where it is found in an external loop (Fig. 1b). We suppose that these surplus mutations (that are present in all of the recombinant enzymes tested) have no significant effect on the enzyme activity. We proved in biochemical assays that, in agreement with the structural conservation of its catalytic domain the CaPpz1 protein exhibits phosphatase activity. This activity was inhibited by the ScHal3 protein that is a specific inhibitor of PPZ phosphatases and, at the same time, one of the putative subunits of the phosphopantothenoylcysteine decarboxylase (Ruiz et al., 2009). It should be noted that in *C. albicans* there are two distantly related Hal3 orthologs (orf19.7378 and orf19.3260). Interestingly, in orf19.7378, all of the known amino acid residues required for Ppz1 binding and phosphatase inhibition (Munoz et al., 2004) have been conserved. Therefore, it is likely that orf19.7378 encodes the inhibitory component of the *C. albicans* Ppz1/Hal3 system.
With the help of the inactivating R262L mutagenesis we proved the validity of the phosphatase assay. According to our structural model, the conserved R262 residue is essential for activity because it is coordinating the metal ions which are indispensable for the catalytic reaction (Fig. 1b). After proving the principle we investigated the effects of allele-specific amino acid polymorphisms on the enzymatic activity (Figs. 1b and 2). Despite of its proximity to the essential R262, the D261N replacement, characteristic to the CaPPZ1-4 allele of the C. albicans WO-1 strain, had only a moderate effect. Obviously, N fits well into the place of D and the loss of a negative charge has no dramatic effect as the D side chain is pointing outwards from the active site. Unexpectedly, the G333E exchange (that is present in the CaPPZ1-2 allele) significantly activated the phosphatase. The homologous modelling of the catalytic domain predicts that G333 is at the surface of the protein and is not supposed to influence the structure of the catalytic cleft. The C337R polymorphism (that is also found in the CaPPZ1-2 allele) caused the inactivation of the enzyme. C337 is in the middle of the central beta sheet and may have important functions in the stability of the catalytic domain. Its replacement with a bulky charged residue can interfere with the proper folding of the tertiary structure. Indeed, the C337R mutation eliminated the activating effect of the G333E exchange and resulted in an inactive double mutant (Fig. 2). Previously we identified these two amino acid exchanges together in the heterozygous ATCC 10231 strain harbouring alleles CaPPZ1-2 and CaPPZ1-3 (Kovacs et al., 2010). In addition, we isolated several clinical samples that were homozygous for the CaPPZ1-2 allele according to the RFLP of the PCR fragment encompassing the hypervariable 3’-noncoding region (Kovacs et al., 2010). We tested one of them (number 10934) under several stress conditions and found that it did not show the characteristic phenotypes of the null mutant. In order to reveal the molecular bases of this unexpected behaviour we amplified and sequenced the CaPPZ1 gene from the clinical sample. It turned out that both copies of the gene exhibited the typical characteristic DNA sequence of the CaPPZ1-2 allele, but in both alleles the triplets GAG and TGT coding for E333 and R337, respectively, reverted to GGG and CGU coding for the G333 and C337, that is for the amino acids of the active CaPpz1 isoenzymes! Our finding indicates that the destabilizing C337R replacement is not tolerated in a homozygous organism, and indirectly supports the notion that the phosphatase activity is important for the survival of this pathogenic fungus in its natural habitat.

The functions of CaPpz1 were first tested in complementation experiments. If CaPpz1 was expressed in S. cerevisiae ppz1 cells it partially complemented the salt sensitivity and rescued the caffeine sensitivity of the mutant. In addition, the caffeine and CFW sensitivity of
a strain lacking the Slt2 MAP kinase were also alleviated. The observation that the presence of the CaPpz1 protein can, at least in part, reverse the effects of the absence of ScPpz1 or mimic its overexpression in both cation homeostasis and cell wall integrity is coherent, since it was shown that these two phenotypes are interrelated (Merchan et al., 2004). The partial complementation of the S. pombe pzh1 deletion mutant by the expression of CaPPZ1 revealed that, albeit the heterologous protein can replace the authentic S. pombe enzyme, it is clearly less efficient. Similar conclusions were previously drawn from the functional study of N. crassa Pzl-1 (Vissi et al., 2001).

The functions of CaPpz1 were directly assessed by the disruption of the gene in the C. albicans SN87 strain. In accord with earlier reports (Hanaoka et al., 2008; Xu et al., 2007) the deletion of the gene was not lethal, thus it has no essential roles under the common cultivation conditions. However, when the C. albicans cells were challenged by various stress treatments, the lack of the phosphatase became detectable. We also demonstrated that the reintegation of CaPPZ1 into the deletion mutant alleviated the typical mutant phenotypes. We found that the null mutant was tolerant against LiCl, and was sensitive to KCl. According to these properties it behaves like the S. cerevisiae ppz1 mutant (Posas et al., 1995; Ruiz et al., 2003; Yenush et al., 2002). However, there was a clear-cut difference between the two mutants when the sensitivity against NaCl was tested. It is known that S. cerevisiae ppz1 tolerates this saline treatment, but we found no significant differences between the parental and mutated C. albicans strains in the presence of NaCl. It was previously suggested that the tolerance against NaCl (and LiCl) of the S. cerevisiae mutant can be explained by the overexpression of the ENA1 sodium transporter (Posas et al., 1995; Ruiz et al., 2003). Sequence comparisons revealed that in C. albicans the orf19.6070 protein is an ENA1 ortholog, however its function and regulation is not known at the moment. On the other hand, in the highly salt-tolerant fungus, D. hansenii the hypertolerance to toxic cations caused by deletion of DhPPZ1 is not due to the increased expression of the DhENA1 Na\(^+\)-ATPase, but of the DhEHA1 Na\(^+\)/H\(^+\)-antiporter, which appears as the likely functional target for the phosphatase in this organism (Minhas et al., 2012). Consequently, different fungi may utilize distinct molecular mechanisms to elicit similar physiological responses.

As the cappz1 mutant was sensitive against cell wall damaging agents like caffeine, CFW, and Congo Red, we suggest that CaPpz1 interacts with the CWI pathway, like its S. cerevisiae counterpart. Furthermore, the C. albicans mutant was tolerant against toxic cations (spermine and hygromycin B) indicating that the absence of CaPpz1 resulted in cell membrane potential depolarization that decreased uptake of the toxic agents, as previously
found for budding yeast ppz mutants (Yenush et al., 2002). These experiments underline again the similarity between the C. albicans and S. cerevisiae PPZ phosphatases. In conclusion, our data collectively indicate that PPZ phosphatases have similar but not identical functions in different yeasts.

In addition, we identified a novel function for this enzyme that operates in the filamentous form of C. albicans. We observed that after serum stimulation the onset of germ tube growth was significantly reduced in the cappz1 mutant relative to the parental SN87 strain or to the heterozygous mutants that had one reintegrated CaPPZ1 copy. The size and the shape of the tubes were similar in all of the strains tested (Fig. S4), suggesting that the phosphatase affected the initiation and not the rate of hyphal outgrowth in liquid cultures. Previously, we reported that two phosphatase inhibitors, cantharidin and calyculin A, hindered the hyphal growth in the filamentous fungus N. crassa (Yatzkan et al., 1998). Genetic evidence indicated that protein phosphatase 2A (pph-1) was involved in the process; however the role of additional phosphatases was not excluded. Now we found that 220 μM cantharidin completely blocked, while 250 nM calyculin A significantly reduced the phosphatase activity of recombinant CaPpz1 (data not shown). The genetic and biochemical data together support the hypothesis that (besides PP2A) CaPpz1 can also contribute to the regulation of hypha formation. Since filament formation is considered as a critical element of C. albicans pathogenesis we tested the virulence of the mutated C. albicans in BALB/c mice, and we found that the cappz1 mutant was somewhat less virulent than its parental strain. This result differs from those reported in a previous paper (Hanaoka et al., 2008) indicating that a cappz1 strain displays wild type virulence in a silkworm infection model. It is conceivable that the difference in the model employed could explain the contradictory results. The rescue of the less virulent phenotype with the reintegration of a single copy of the CaPPZ1 gene indicates that the phosphatase gene is involved in the virulence of the pathogen. The finding that the absence of CaPpz1 function moderately reduces virulence in a mammalian model may be of importance since Ppz phosphatases are fungi-specific. Therefore, CaPpz1 could be considered as a possible target for antifungal treatments and CaPpz1-specific inhibitors may act as antifungal drugs.

ACKNOWLEDGEMENTS

Thanks are due to Dr. Susanne Noble (Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, California, USA) for the SN87 C.
We thank Dr. Jürgen Wendland (Carlsberg Laboratory, Yeast Biology, Denmark) for providing the pFA-CdHIS1 and pFA-CmLeu2 plasmids, and Dr. Jesus Pla (Department of Microbiology II, Universidad Complutense de Madrid, Spain) for the pSFS2A plasmid. The authors are grateful to Mr. Imre Pócsi, Mrs. Ágota Kelemenné Szántó, Mrs. Andrea Tankáné Farkas, Ms. Enikő Boros, and Ms. Montse Robledo for their technical assistance. The help of Dr. Rudolf Gesztelyi (Department of Pharmacology, University of Debrecen, Hungary) in the statistical calculations is acknowledged. We are grateful for Dr. Ida Miklós and Mr. László Papp (Department of Genetics, University of Debrecen, Hungary) for the microscopic images. This work was supported by the Hungarian Research Fund (OTKA K 68765) grant and the TÁMOP 4.2.1/B-09/1/KONV-2010-0007 project to VD, by the grants BFU2008-04188-C03-01 and BFU2011-30197-C3-01 to JA (Ministry of Science and Innovation, Spain and FEDER), and by bilateral Hungarian-Spanish research grants HH2008-0026 and ES-22/2008 to JA and VD. JA is the recipient of an ‘Ajut 2009SGR-1091’ and an ICREA Academia Award (Generalitat de Catalunya).

REFERENCES

FIGURE LEGENDS

Fig. 1. The structure of the CaPpz1 protein. (a) The scheme represents the amino acid sequence of CaPpz1 as compared to that of S. cerevisiae, N. crassa, and S. pombe orthologs. The N-terminal moiety including a myristoylation site (asterisk) is green, the conserved catalytic domain is red and the variable, disordered segments are represented by white boxes. (b) The homologous model of the CaPpz1 catalytic domain. Alpha helices are red, beta sheets are blue, and loops are yellow. Two essential metal ions in the catalytic centre are gray and the amino acid side chains involved in catalysis are in violet. Three amino acid residues that are affected by natural polymorphisms are highlighted in light brown and one replacement caused by the specific codon usage of C. albicans is yellow. The amino acid exchanges analyzed in the present study are labelled with arrows.

Fig. 2. Biochemical properties of C. albicans CaPpz1. The specific activity of wild-type and mutated CaPpz1 phosphatases was determined with p-nitrophenylphosphate. S. cerevisiae Hal3 protein was added to the wild-type enzyme in a 1:1 molar ratio (+Hal3). The means and standard deviations of 3 to 5 independent experiments performed with two independent preparations are shown.

Fig. 3. Expression of C. albicans CaPpz1 protein in S. cerevisiae. (a) Wild-type BY4741 (ScPPZ1) strain and its isogenic derivative BY4741 Scppz1 were transformed with the indicated plasmids. Cells (two dilutions of approx. 3×10^3 and 3×10^2 cells) were spotted on YPD plates containing the indicated concentrations of lithium chloride, sodium chloride or caffeine and growth was monitored after 48 h of incubation at 28 °C (except for cells growing in 15 mM caffeine which were scored for growth after 60 h). (b) The strains BY4741 (SLT2) and BY4741 slt2 were transformed with the indicated plasmids and cultures were spotted on YPD plates containing the indicated concentrations of the drugs. Growth was monitored after 72 h while the plate containing 20 mM caffeine was incubated for 96 h.

Fig. 4. Expression of C. albicans CaPpz1 protein in S. pombe. The relative growth rate of the pzh1+ control cells transformed with the empty pREP1 vector (filled bars), the pzh1 disrupted LB2 cells transformed with the empty pREP1 vector (open bars), and with the CaPPZ1-pREP41 (horizontally stripped bars) was compared in the presence of (a) 8 mM LiCl, (b) 150 mM NaCl, (c) 300 mM KCl, and (d) 5 mM caffeine. The relative growth rate of
the cells was determined after 24 h incubations in the liquid cultures, and was expressed as the percentage to the growth of the same strain without additions. The means and SD of 9 experiments are shown. The significances of the changes relative to the LB2 control cell are given according to the T-test analysis (***, p < 0.0005).

Fig. 5. Comparison of relative growth of the parental SN87 (●), the homozygous null mutant *cappz1* (Δ), as well as the heterozygous *CaPPZ1-LEU2* (■) and *CaPPZ1-HIS1* (◇) reintegrant *C. albicans* strains under various stress conditions. The effects of (a) LiCl, (b) NaCl, (c) KCl, (d) caffeine, (e) Calcofluor White (CFW), (f) Congo Red (CR), (g) spermine, and (h) hygromycin B (Hyg. B) were tested after 18 h incubations at 37 ºC. The means and standard deviations of three independent experiments are shown.

Fig. 6. The role of *CaPPz1* in the virulence of *C. albicans*. The survival of BALB/c mice was tested after the administration of 1.8-2.0x10⁵ SN87 (●), *cappz1* (Δ), *CaPPZ1-LEU2* (■) and *CaPPZ1-HIS1* (◇) *C. albicans* cells. Representative results of one out of three experiments are shown.
<table>
<thead>
<tr>
<th>Strain</th>
<th>Genotype</th>
<th>Origin/reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saccharomyces cerevisiae</td>
<td>MATαura3-52/ura3-52 trp1Δ63/TRP1 leu2Δ1/LEU2 his3Δ200/HIS3 GAL2/GAL2</td>
<td>(Winston et al., 1995)</td>
</tr>
<tr>
<td>FY1679</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saccharomyces cerevisiae</td>
<td>MATαhis3Δ1 leu2Δ met15Δ ura3Δ</td>
<td>(Winzeler et al., 1999)</td>
</tr>
<tr>
<td>BY4741</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saccharomyces cerevisiae</td>
<td>MATαhis3Δ1 leu2Δ met15Δ ura3Δ ppz1::kanMX4</td>
<td>(Winzeler et al., 1999)</td>
</tr>
<tr>
<td>BY4741 ppz1::KanMX4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saccharomyces cerevisiae</td>
<td>MATαhis3Δ1 leu2Δ met15Δ ura3Δ slt2::kanMX4</td>
<td>(Winzeler et al., 1999)</td>
</tr>
<tr>
<td>BY4741 slt2::KanMX4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schizosaccharomyces pombe</td>
<td>*h− ade6-M210 leu1-32 pzh1::ura4− ura-D18</td>
<td>(Balcells et al., 1997)</td>
</tr>
<tr>
<td>LB2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schizosaccharomyces pombe</td>
<td>*h− ade6-M210 leu1-32</td>
<td>This study</td>
</tr>
<tr>
<td>pzh1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candida albicans</td>
<td>*ura3Δ-iro1Δ::imm434/URA3-IRO1, his1Δ/his1Δ, leu2Δ/leu2Δ</td>
<td>(Noble & Johnson, 2005)</td>
</tr>
<tr>
<td>SN87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candida albicans</td>
<td>*ura3Δ-iro1Δ::imm434/URA3-IRO1, his1Δ/his1Δ, leu2Δ/leu2Δ ppz1Δ::HIS1/ppz1Δ::LEU2</td>
<td>This study</td>
</tr>
<tr>
<td>cappz1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candida albicans</td>
<td>*ura3Δ-iro1Δ::imm434/URA3-IRO1, his1Δ/his1Δ, leu2Δ/leu2Δ ppz1Δ::HIS1/ppz1Δ::LEU2::PPZ1</td>
<td>This study</td>
</tr>
<tr>
<td>CaPPZ1-HIS1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candida albicans</td>
<td>*ura3Δ-iro1Δ::imm434/URA3-IRO1, his1Δ/his1Δ, leu2Δ/leu2Δ ppz1Δ::LEU2/ppz1Δ::HIS1::PPZ1</td>
<td>This study</td>
</tr>
<tr>
<td>CaPPZ1-LEU2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. The role of CaPpz1 in the germination of *C. albicans*

<table>
<thead>
<tr>
<th>Strain/Time</th>
<th>30 min</th>
<th>60 min</th>
<th>90 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN87</td>
<td>23.5 ± 3.1</td>
<td>63.3 ± 4.4</td>
<td>96.1 ± 3.2</td>
</tr>
<tr>
<td>cappz1</td>
<td>6.0 ± 2.1***</td>
<td>42.6 ± 3.6**</td>
<td>95.7 ± 2.5</td>
</tr>
<tr>
<td>CaPPZ1-LEU2</td>
<td>25.6 ± 6.2</td>
<td>64.0 ± 2.1</td>
<td>97.9 ± 1.2</td>
</tr>
<tr>
<td>CaPPZ1-HIS1</td>
<td>23.8 ± 5.4</td>
<td>59.2 ± 5.6</td>
<td>97.2 ± 1.7</td>
</tr>
</tbody>
</table>

The ratio of cells producing germ tubes in sheep serum is given as % of all cells. The averages of three independent experiments ± standard deviations are shown. The significance of the changes relative to SN87 were calculated by T-test (**, p < 0.01; ***, p < 0.001).
Figure 1(a)

- **S. cerevisiae**
 - Ppz1/Ppz2
 - (692/710 aa)

- **N. crassa**
 - PZL-1
 - (531 aa)

- **S. pombe**
 - Pzh1
 - (515 aa)

- **C. albicans**
 - CaPpz1
 - (485 aa)
Figure 2

Specific activity (U/μg)

Wild type
Wild type + Hal3
D261N
R262L
G333E
C337R
G333E C337R
Figure 3

(a)

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Strain</th>
<th>YPD</th>
<th>LiCl (mM)</th>
<th>NaCl (M)</th>
<th>Caffeine (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>YCp111</td>
<td>PPZ1</td>
<td></td>
<td>100</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>YCp111</td>
<td>ppz1</td>
<td></td>
<td>150</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>YCp-ScPPZ1</td>
<td>ppz1</td>
<td></td>
<td>300</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>YCp-CaPPZ1</td>
<td>ppz1</td>
<td></td>
<td>400</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>YEp-CaPPZ1</td>
<td>ppz1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(b)

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Strain</th>
<th>YPD</th>
<th>Caffeine (mM)</th>
<th>CFW 10 μg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>YEp181</td>
<td>SLT2</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>YEp181</td>
<td>slt2</td>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>YEp181</td>
<td>slt2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YCp-CaPPZ1</td>
<td>slt2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YEp-CaPPZ1</td>
<td>slt2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 4

(a) LiCl (8 mM)
(b) NaCl (150 mM)
(c) KCl (300 mM)
(d) Caffeine (5 mM)
Figure 5

(a) LiCl (mM)
(b) NaCl (M)
(c) KCl (M)
(d) Caffeine (mM)
(e) CFW (μg/ml)
(f) CR (μg/ml)
(g) Spermine (μg/ml)
(h) Hyg. B (μg/ml)