Date: 02-05-12 12:46:05

Pages: 10

DOI: 10.1002/ejoc.201200245

Decalactone Derivatives from *Corynespora cassiicola*, an Endophytic Fungus of 1 the Mangrove Plant Laguncularia racemosa

Weaam Ebrahim,^[a,b] Amal H. Aly,^[a] Attila Mándi,^[c] Frank Totzke,^[d] Michael H. G. Kubbutat,^[d] Victor Wray,^[e] Wen-Han Lin,^[f] Haofu Dai,^[g] Peter Proksch,^[a] Tibor Kurtán,^{*[c]} and Abdessamad Debbab*^[a]

Keywords: Natural products / Medicinal chemistry / Drug discovery / Fungi / Structure elucidation / Conformation analy-6 sis / Lactones

Chemical investigation of the ethyl acetate extract of Corynespora cassiicola, isolated from leaf tissues of the Chinese mangrove medicinal plant Laguncularia racemosa, yielded four new secondary metabolites, including three decalactones, xestodecalactones D-F (1-3) as well as corynesidone D (4), in addition to four known compounds. The structures of the new compounds were determined on the basis of oneand two-dimensional NMR spectroscopy as well as by high-

resolution mass spectrometry. Absolute configurations of the 16

optically active compounds 1-3 were determined by TDDFT ECD calculations of their solution conformers, proving that they belong to the (11S) series of xestodecalactones, opposite to the (11R) configuration of the known xestodecalactones A-C. All compounds were tested against a panel of human protein kinases. Among the isolated compounds, two inhibited several kinases such as IGF1-R and VEGF-R2 with IC_{50} values mostly in the low micromolar range.

Introduction

11

- Over the course of the last century, endophytic fungi 26 have become a promising source of new natural products and drug leads that are of great potential for medicinal and agricultural applications.^[1-5] Examples include the potent antimycotic cryptocandin A,^[6] the HIV-1 integrase inhibi-
- tors xanthoviridicatins E and F,^[7] and Helicobacter pylori 31 inhibiting rhizotonic acid.^[8] Furthermore, the detection of several important plant secondary metabolites in endophytic fungal cultures, such as taxol,^[9,10] camptothecin,^[11] and podophyllotoxin,^[12] suggested their possible use as al-
- ternative sources of these metabolites. 36
 - [a] Institut für Pharmazeutische Biologie und Biotechnologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, Geb. 26.23, 40225 Düsseldorf, Germany Fax: +49-(0)21-18111923 E-mail: abdessamad.debbab@uni-duesseldorf.de
 - [b] Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
 - [c] Department of Organic Chemistry, University of Debrecen, POB 20, 4010 Debrecen, Hungary Fax: +36-52453836 E-mail: kurtan.tibor@science.unideb.hu
 - [d] ProOinase GmbH.
 - Breisacher Strasse 117, 79106 Freiburg, Germany [e] Helmholtz Centre for Infection Research,

 - Inhoffenstraße 7, 38124 Braunschweig, Germany National Research Laboratories of Natural and Biomimetic [f] Drugs, Peking University, Health Science Center, 100083 Beijing, P. R. of China
 - [g] Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, P. R. of China

However, due to a reduced hit-rate of novel compounds from terrestrial endophytic fungi, the focus of drug discovery is shifting more in favor of endophytes from extreme and less investigated habitats. Such interesting biotopes are known to influence the fungal secondary metabolites and their respective host plants.^[2,4,13,14]

Mangrove forests, constituting a transition zone between terrestrial and marine habitats, are an example of such an environment. Plant species inhabiting this particular ecosystem are adapted to frequent and fluctuating environmental 46 changes, including high saline concentrations, adaptation to low oxygen, nutrient limitation, tidal flushing, high temperatures, excessively high light, drought, and an invigorated microbial community due to warm and damp conditions.^[15–17] In this context, endophytic fungi colonizing 51 mangrove plants have been suggested to contribute to their adaptation to harsh environmental factors,^[18] in many cases by the production of unique functional metabolites.^[3,19,20] which are also of considerable pharmaceutical and therapeutic potential.^[21] Fungi are well-known to produce a di-56 verse range of polyketide-derived secondary metabolites, from simple aromatic rings to complex, highly modified reduced-type compounds, such as macrolides.^[22,23] This wide variety of structures is initially formed from poly-β-keto chains (poly-β-keto esters) biosynthesized through a decar-61 boxylative condensation of malonyl-CoA units. Aromatic structures are then rationalized in terms of aldol and Claisen reactions.^[24] The biosynthesis of small macrolides such as curvularin, which is an octaketide macrolide produced by some Curvularia,^[25] Alternaria,^[26] and Penicil-

1

21

FULL PAPER_____

lium^[27] species, is well-studied.^[28,29] However, to the best of our knowledge, the biosynthesis of decalactone and octalactone derivatives has not been investigated.

During our ongoing search for new bioactive metabolites from plant-derived endophytes,^[30–33] we isolated an endophytic *Corynespora cassiicola* strain from leaf tissues of the mangrove plant *Laguncularia racemosa* (L) Gaertn. (Combretacaeae), collected at Hainan Island in China. *L. race*-

mosa is an evergreen tree that is common in mangrove for ests extending along the Pacific and Atlantic coasts and tropical southern Asia.^[34] A bark infusion is historically used as an astringent and tonic, and as a folk remedy for dysentery, aphthae, fever, and scurvy.^[35,36] Morton reported that the antitumor activity of this plant was attributed to its tannin content.^[37] and its leaves possess antibiotic prop-

81

71

erties against *Escherichia coli*.^[38] To date, the chemical constituents of fungi belonging to the genus *Corynespora* have received scant attention. A literature survey showed that an endolichenic *Corynespora* sp.

- 86 yielded ten secondary metabolites of polyketide origin: corynesporol, herbarin, 1-hydroxydehydroherbarin, 9-Omethylscytalol, scytalol, 7-desmethylherbarin, 8-hydroxyherbarin, 8-methylfusarubin, scorpinone, and 8-Omethylbostrycoidin.^[39,40] Furthermore, other metabolites of
- 91 depsidone origin, including depsidones A–C and diaryl ethers,^[41] 6-(3'-hydroxybutyl)-7-O-methylspinochrome B,^[42] as well as 2,5,7-trihydroxy-3-methoxynaphthalene-1,4-dione^[43] were likewise reported from different *Corynespora* strains. In the present study, we provide a comprehensive analysis of natural products produced by *Corynespora cassiicola* and report on four new, as well as four known, metab-

olites.

Results and Discussions

The crude ethyl acetate extract of *Corynespora cassiicola*, 101 cultured on solid rice medium, was taken to dryness and then partitioned between *n*-hexane and 90% methanol. The 90% methanol fraction was purified by chromatography over different stationary phases (silica gel and Sephadex LH-20). Final purification by preparative reversed-phase

106 HPLC afforded eight compounds, the structures of which were elucidated by high-resolution ESI mass spectrometry and NMR spectroscopy. This resulted in the identification of four new compounds, including three decalactones, xestodecalactones D-E (1–3) and the depsidone corynesidone

111 D (4), together with four known compounds, corynesidone A (5) and B (6),^[41] 2,5,7-trihydroxy-3-methoxynaphthalene-1,4-dione (7),^[43] and 6-(3'-hydroxybutyl)-7-*O*-methylspinochrome B (8).^[42]

Compound 1 was obtained as a yellowish-white amorph-

- 116 ous powder. Its molecular formula was determined as $C_{15}H_{18}O_7$ on the basis of the $[M + H]^+$ signal detected at m/z 311.1134 in the HRMS (ESI). Comparison of the NMR spectroscopic data of 1 with those reported for xesto-decalactones B and C, previously isolated from *Penicillium*
- 121 cf. montanense,^[44] indicated a close structural relationship

between the compounds. However, in comparison to xestodecalactones B and C,^[44] the ¹H NMR spectrum of 1 showed an additional aromatic methoxyl group ($\delta_{\rm H}$ = 3.68 ppm) and the absence of one aromatic proton Table 1. Inspection of the COSY correlations (Figure 1) revealed the 126 presence of a continuous spin system from CH₂-8 ($\delta_{\rm H}$ = 3.45 and 2.66 ppm) to 11-CH₃ ($\delta_{\rm H}$ = 1.16 ppm) in analogy to known xestodecalactones.[44] Moreover, a homonuclear long-range correlation was observed for CH₂-13 ($\delta_{\rm H}$ = 3.54 ppm) to H-4 ($\delta_{\rm H}$ = 6.22 ppm), suggesting their neigh-131 boring positions. The attachment of the methoxyl group to the aromatic ring at C-2 ($\delta_{\rm C}$ = 134.1 ppm) was established on the basis of its HMBC correlation (Figure 2). Moreover, diagnostic HMBC correlations of CH2-13 to C-4, C-5, C-6 and C-12, as well as of H-4 to C-2, C-3, C-6 and C-13 136 revealed the phenylacetic acid substructure of 1. The observed downfield chemical shift of CH2-8 and its HMBC correlation to the carbonyl carbon appearing at $\delta_{\rm C}$ = 204.5 ppm (C-7) indicated its a relationship to C-7. Additional correlations were observed for CH₂-8 with C-9, 141 CH_2 -10 (δ_H = 1.76 and 1.87 ppm) with C-8 and C-9, H-11 $(\delta_{\rm H} = 4.81 \text{ ppm})$ with C-9, and 11-CH₃ with C-10 and C-11, thus establishing the fragment $CH_2(8)CH(9)$ OHCH₂(10)CH(11)CH₃. The connection of C-7 to the aromatic ring was evident from the four-bond long-range ω -146 correlation of H-4 to C-7. Furthermore, correlation of H-11 to the ester carbonyl group at $\delta_{\rm C}$ = 169.1 ppm (C-12) indicated the linkage between C-12 and the oxygenated methine group CH-11 through an ester bond.

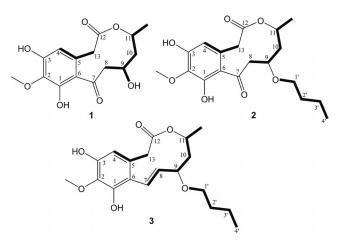


Figure 1. COSY correlations of the new decalactones.

The relative configuration of **1** was obtained from a careful analysis of the coupling constants observed in the wellresolved 1D ¹H NMR spectrum, as well as from ROESY correlations (**1** in Figure 6). The coupling constants of H-8, 9, and 10 were in accord with the lowest-energy computed conformation. The axial orientation of H-11 was evident from the large ${}^{3}J_{H-11ax,H-10ax}$ value (6.7 Hz) showing the *trans* diaxial relationships of H-11_{ax} and H-10_{ax}. The three ROESY correlations of **1** shown in Figure 6 and the coupling constants of H-9_{ax} in dimethyl sulfoxide (DMSO) (${}^{3}J_{H-8ax,H-9ax} = 9.4$, ${}^{3}J_{H-10ax,H-9ax} = 6.7$ Hz) agree well with 161 Dat

Date: 02-05-12 12:46:05

Pages: 10

Decalactone Derivatives

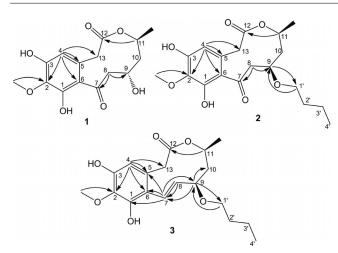


Figure 2. Key HMBC correlations of the new decalactones.

the computed conformation, indicating the axial arrangement. For the determination of the absolute configuration, ECD calculation of the solution conformers and comparison with the solution experimental ECD curve were carried

- 166 out, which was found previously to be a powerful and reliable tool for this purpose.^[45,46] The measured solution ECD spectrum of 1 exhibited three Cotton effects (CEs) above 225 nm; a negative one at 316 and positive ones at 268 and 238 nm. The initial MMFF conformational search of 1 af-
- 171 forded 49 conformers, the DFT reoptimization of which at the B3LYP/6-31G (d) level reduced this to three above 1% population (Figure 3). The three conformers showed minor differences in the orientation of the phenolic hydroxyl and methoxyl groups, whereas the fused heterocycle adopted ne-
- 176 arly the same conformation. Due to their similar conformations, the computed ECD spectra of the individual conformers were also quite similar. The Boltzmann-weighted average ECD spectra of (9R,11R)-1 obtained by various functionals (B3LYP, BH&HLYP, PBE0) and the TZVP ba-
- 181 sis set gave mirror image ECD curves of the experimental curve, which allowed the absolute configuration to be determined as (-)-(9*S*,11*S*)-1 (Figure 3). Hence, 1 was identified as a new natural product for which the name xestodecalactone D was proposed.
- 186 Compound **2** was obtained as a yellowish amorphous mass. HRMS (ESI) showed a prominent $[M + H]^+$ signal at m/z 367.1752, indicating a molecular formula of $C_{19}H_{26}O_7$, with an increase of 56 amu compared to **1**. ¹H NMR spectroscopic data of **2** (Table 1) were comparable to
- 191 those of **1**, thus indicating a structural resemblance between both compounds. Common signals were attributed to one aromatic proton ($\delta_{\rm H} = 6.21$ ppm, H-4), a methoxyl group ($\delta_{\rm H} = 3.69$ ppm, 2-OCH₃), two aromatic hydroxyl groups ($\delta_{\rm H} = 9.36$ and 9.73 ppm, assigned for 1- and 3-OH, respec-
- 196 tively), and a methylene group ($\delta_{\rm H} = 3.46$ and 3.78 ppm, CH₂-13). The COSY spectrum (Figure 1) revealed the presence of a similar spin system from CH₂-8 ($\delta_{\rm H} = 3.04$ and 2.93 ppm) to 11-CH₃ ($\delta_{\rm H} = 1.10$ ppm) as in 1, but lacking the signal corresponding to 9-OH. Further inspection of
- 201 the COSY spectrum indicated an additional spin system ex-

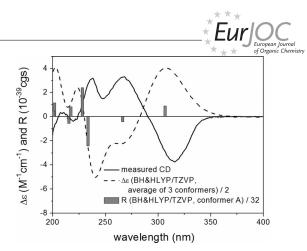


Figure 3. Experimental ECD spectrum of 1 in acetonitrile compared with the Boltzmann-weighted BH&HLYP/TZVP spectrum calculated for the three lowest-energy conformers of (9R,11R)-1. Bars represent rotatory strength of the lowest-energy conformer.

tending from CH₂-1' ($\delta_{\rm H}$ = 3.41 ppm) to CH₃-4' ($\delta_{\rm H}$ = 0.88 ppm), which was attributed to a *n*-butyl side chain, thus accounting for the difference in the molecular weight between 1 and 2 (56 amu). As in 1, a homonuclear longrange correlation of CH₂-13 to H-4 was detected. The 206 HMBC experiment confirmed the attachment of the methoxyl group at C-2, and established the phenylacetic acid substructure of 2 by diagnostic correlations of CH₂-13 and H-4 in analogy to 1. Further inspection of the HMBC spectrum (Figure 2) corroborated the attachment of CH₂-8 to 211 the carbonyl C signal appearing at $\delta_{\rm C} = 204.1$ ppm (C-7), and established the fragment CH₂(8)CH(9)CH₂(10)CH(11)-CH₃ through correlations of CH₂-8 to C-9, CH-9 ($\delta_{\rm H}$ = 3.68 ppm) to C-1' and C-11, CH₂-10 ($\delta_{\rm H}$ = 1.67 and 1.94 ppm) to C-8 and C-9, H-11 ($\delta_{\rm H}$ = 4.75 ppm) to C-9, 216 and 11-CH₃ to C-10 and C-11. The four-bond long-range ω -correlation of H-4 to C-7, and the correlation of H-11 to the ester carbonyl at C-12 ($\delta_{\rm C}$ = 168.8 ppm) established the connection of the detected substructures. Moreover, correlation of CH₂-1' ($\delta_{\rm H}$ = 3.41 ppm) to C-9 ($\delta_{\rm C}$ = 76.1 ppm) 221 indicated that the n-butyl moiety was attached to C-9 through an ether linkage.

Because the coupling constants extracted from ¹H NMR spectrum of 2 and the ROESY correlations (see the Supporting Information, Figure S1) were similar to those of 226 xestodecalactone B,^[44] the relative configuration of 2 was assigned as cis. H-9 and H-11 were found to have an axial orientation from their large vicinal coupling constants $({}^{3}J_{H-8ax,H-9ax} = 10.1 \text{ Hz}, {}^{3}J_{H-10ax,H-11ax} = 11.5 \text{ Hz}).$ Furthermore, a diagnostic ROESY correlation was ob-231 served for H-9 to H-11, indicating their 1,3-cis orientation and implying the $(9R^*, 11S^*)$ relative configuration as shown for 2 in Figure 6. The structures of all the computed conformers are fully in accordance with the NMR spectroscopic data. The solution ECD spectrum of 2 was very sim-236 ilar to that of (9S,11S)-1. A solution ECD calculation protocol was pursued on the 9-methoxyl model compound of 2, which revealed that the chiral center was inverted compared to those of (9S,11S)-1. The MMFF conformational search and DFT optimization provided five major conform-241

FULL PAPER

Table 1. NMR spectroscopic data of xestodecalactone D (1), xestodecalactone E (2), and xestodecalactone F (3)	Table 1. NMR st	pectroscopic d	data of xesto	decalactone I	O (1).	xestodecalactone	E (2), and	xestodecalactone	F (3).
---	-----------------	----------------	---------------	---------------	--------	------------------	------	--------	------------------	-----	-----

Position	1 ^[a]		2 ^[b]		3 ^[a]	
	δ_{C}	$\delta_{ m H}$	δ_{C}	$\delta_{ m H}$	δ_{C}	$\delta_{ m H}$
1	148.5		149.4		148.7	
2	134.1		134.2		133.9	
3	151.2		151.5		149.3	
4	110.5	6.22, s	110.1	6.21, s	105.7	6.14, s
5	128.6	,	127.7	,	130.6	,
6	120.5		121.7		116.1	
7	204.5		204.1		127.8	6.18, d (16.2)
8	52.4	2.66, dd (9.4, 14.6) 3.45, br. dd (2.2, 14.6)	60	3.04, dd (10.1, 15.3) 2.93, br. d (15.1)	134.3	5.46, dd (9.5, 16.1)
9	63.9	4.03, m	76.1	3.68, m	79.9	3.84, ddd (5.1, 9.5, 10.8)
10	41.8	1.76, ddd (6.7, 7.3, 14.6) 1.87, ddd (3.2, 4.0, 14.6)	52.1	1.67, ddd (9.8, 11.6, 14.6) 1.94, br. d (14.6)	42.7	1.77, ddd (10.8, 10.8, 13.8) 2.00, ddd (1.0, 5.1, 13.8)
11	68.2	4.81, ddg (4.0, 6.7, 6.5)	70.9	4.75, ddg (2.6, 11.5, 6.2)	68.6	4.84, ddg (0.9, 10.8, 6.4)
12	169.1		168.8		172.9	
13	38.6	3.54, br. s	38.9	3.46, d (18.7) 3.78, d (18.7)	40.6	3.29 ^[c] 3.76, d (15.5)
1'			67.1	$3.41, m^{[d]}$	66.6	3.27, m ^{[c][d]} 3.42, m ^[d]
2'			31.5	$1.46, m^{[d]}$	31.4	$1.45, m^{[d]}$
3'			18.9	$1.32, m^{[d]}$	18.9	$1.30, m^{[d]}$
4'			13.7	0.88, t (7.3)	13.7	0.86, t (7.4)
2-OCH ₃	60	3.68, s	60.1	3.69, s	59.8	3.66, s
11-CH ₃	19.5	1.16, d (6.5)	20.6	1.10, d (6.2)	21.0	1.20, d (6.4)
1-OH		9.32, s		9.36, s		8.65, s
3-ОН 9-ОН		9.71, s 4.75, d (5.0)		9.73, s		9.22, s

[a] Measured at 600 (¹H) and 150 (¹³C) MHz ([D₆]DMSO). [b] Measured at 400 (¹H) and 100 (¹³C) MHz ([D₆]DMSO). [c] Overlapped with water peak. [d] Second order system.

ers above 3% population (Figure S2). H-9 and H-11 adopted *pseudo-axial* orientation in all conformers, in which the conformation of the fused heterocycle was practically the same and differed mainly in the arrangement of

- 246 the hydroxyl and methoxyl groups. The Boltzmannweighted TZVP ECD spectra (B3LYP, BH&HLYP, PBE0 functionals) of the conformers of the (9R,11S) enantiomer reproduced well the experimental ECD curve, with B3LYP giving the best agreement (Figure 4). Thus, the absolute
- 251 configuration of **2** was determined as (+)-(9R,11S) and it was named xestodecalactone E. Apparently, the inversion of the C-9 chirality center did not have a significant effect on the ECD spectra.

Compound **3** was obtained as a yellowish amorphous mass. Its molecular formula was determined as $C_{19}H_{26}O_{6}$,

- on the basis of the $[M + Na]^+$ signal at m/z 373.1618 obtained by HRMS (ESI). ¹H NMR spectroscopic data of **3** (Table 1) showed familiar features to those observed for **1** and **2**, including one aromatic proton ($\delta_H = 6.14$ ppm), a
- 261 methoxyl group ($\delta_{\rm H}$ = 3.66 ppm), two aromatic hydroxyl groups ($\delta_{\rm H}$ = 8.65 and 9.22 ppm, assigned for 1- and 3-OH, respectively), a methylene group ($\delta_{\rm H}$ = 3.29 and 3.76 ppm, CH₂-13), and signals attributed to the *n*-butyl side chain from CH₂-1' ($\delta_{\rm H}$ = 3.27 and 3.42 ppm) to CH₃-4' ($\delta_{\rm H}$ =
- 266 0.86 ppm). Inspection of the COSY correlations (Figure 1) confirmed the presence of the latter spin system, and showed the diagnostic homonuclear long-range correlation of CH₂-13 to H-4. They further revealed an additional continuous spin system from the olefinic CH-7 ($\delta_{\rm H} = 6.18$ ppm)
- 271 to 11-CH₃ ($\delta_{\rm H}$ = 1.20 ppm). By analogy to 1 and 2, the

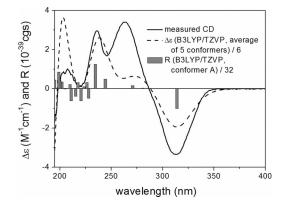


Figure 4. Experimental ECD spectrum of 2 in acetonitrile compared to the Boltzmann-weighted B3LYP/TZVP spectrum calculated for the five lowest-energy conformers of the truncated model of the (9R,11S)-enantiomer. Bars represent rotatory strength of the lowest-energy conformer.

HMBC experiment corroborated the attachment of the methoxyl group at C-2, the phenylacetic acid substructure of **3**, the ester bond linkage between C-12 ($\delta_{\rm C} = 172.9$ ppm) and the oxygenated methine group at C-11 ($\delta_{\rm H} = 4.84$ ppm), as well as the attachment of the *n*-butyl side chain to C-9 ($\delta_{\rm C} = 79.9$ ppm) through an ether linkage (Figure 2). Further inspection of the HMBC spectrum indicated correlations of CH-7 ($\delta_{\rm H} = 6.18$ ppm) with C-1, C-5, C-6 and C-8, CH-8 ($\delta_{\rm H} = 5.46$ ppm) with C-7 and C-9, CH-9 ($\delta_{\rm H} = 3.84$ ppm) with C-1', C-7 and C-10, CH₂-10 ($\delta_{\rm H} = 1.77$ and 2.00 ppm) with C-8 and C-9, CH-11 ($\delta_{\rm H} = 4.84$ ppm) with

281

4

Date: 02-05-12 12:46:05

Pages: 10

Decalactone Derivatives

C-9, and 11-CH₃ with C-10 and C-11. Accordingly, the fragment CH(7)CH(8)CH(9)CH₂(10)CH(11)CH₃ was established, indicating a possible reduction of the C-7–C-8

286 bond in 2 followed by dehydration at the same bond. Attachment to the aromatic ring at C-6 was deduced from correlations of CH-7 to C-6 and C-1 and C-5.

As with 1 and 2, the relative configuration of 3 was determined from an analysis of the coupling constants and

- 291 ROESY correlations. The axial orientations of protons H-9 and H-11 were evident from their large ${}^{3}J$ values $({}^{3}J_{H-})_{8ax,H-9ax} = 9.5$ Hz, ${}^{3}J_{H-10ax,H-11ax} = 10.8$ Hz). Moreover, H-9 showed a diagnostic through-space correlation with H-11, which is an indication of the *cis* orientation of H-9 and H-
- 11 as found in 2. In addition, the 1,3-*cis* diaxial relationship of H-9 and H-11 was found in all of the four computed low-energy conformers. The experimental ECD spectrum of 3 was completely different to those of 1 and 2 due to a different chromophore system. There were three negative
- 301 CEs at 287, 250 and 216 nm and the 316 nm band was missing. The MMFF conformational search and DFT reoptimization of the 9-OMe model compound afforded four major conformers above 2% populations (see the Supporting Information, Figure S3). The Boltzmann-weighted ECD spec-
- tra of the (9R,11S) model compound showed good agreement with the experimental solution ECD curve (Figure 5), which proved that **3** is homochiral with **2**, i.e., it has (–)-(9R,11S) absolute configuration. Compound **3** was hence identified as a new natural product for which the name xes-
- 311 todecalactone F was proposed. The new optically active natural products 1-3 have the same (11*S*) absolute configuration, and their stereochemistry differed in the configuration of the C-9 chiral center. The ECD spectra of 1 and 2 are mirror images compared to those of the related xestode-
- calactones A–C, which confirms that the former belong to the (11*S*) series, whereas the latter belong to the (11*R*) series. A similar phenomenon has recently been found for curvularin derivatives; most curvularin-type natural products belong to the (15*S*) series, but (15*R*) derivatives have
 also been recently reported.^[47,48]
 - Only 1 showed a *trans* configuration of H-9 and H-11, whereas 2 and 3 showed a *cis* relationship (Figure 6). However, the *cis*-isomer of 1 (1a) was also detected, albeit as a mixture with 1. Upon measuring the ROESY spectrum of
- the mixture of both isomers, a clear cross-peak between H-9 and H-11 was observed only for the *cis* isomer **1a**. This

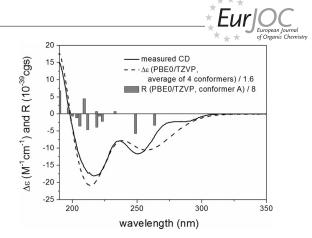


Figure 5. Experimental ECD spectrum of 3 in acetonitrile compared with the Boltzmann-weighted PBE0/TZVP spectrum calculated for the four lowest-energy conformers of the truncated model compound of the (9R,11S)-enantiomer. Bars represent rotatory strength of the lowest-energy conformer.

indicates the presence of both stereoisomers, as described previously for other derivatives,^[44] however, the low amounts of the fraction available (ca. 0.9 mg) did not permit purification of the *cis* isomer **1a**.

Compound 4 was obtained as a grey amorphous powder with a molecular formula of $C_{15}H_{12}O_6$, deduced from the $[M + H]^+$ signal at *m/z* 289.0712 in the HRMS (ESI), thus revealing an increase in the molecular weight by 16 amu compared to the known corynesidone A (5), which was like-336 wise isolated from Corynespora cassiicola.[41] The ¹H NMR spectra of both compounds were very similar, except for the presence of only one pair of meta-coupled protons in 4 (Table 2) instead of the two pairs in 5. This was further confirmed by inspection of the COSY spectrum, which 341 showed only one spin system composed of H-9, H-7 and CH₃-13. The aromatic proton appeared as a singlet at $\delta_{\rm H}$ = 6.68 ppm (H-4) and showed a ω -correlation to the ester carbonyl group at $\delta_{\rm C}$ = 163.6 ppm (C-11), and no correlation to the methyl group (CH₃-12, $\delta_{\rm H}$ = 2.25 ppm, $\delta_{\rm C}$ = 346 13.6 ppm) neither in the COSY nor in the HMBC spectra. On the other hand, the HMBC spectrum showed strong correlations (³J) of both H-4 and CH₃-12 to C-11a ($\delta_{\rm C}$ = 113.6 ppm) and the oxygenated C-2 ($\delta_{\rm C}$ = 142.4 ppm). Thus, the 16 amu increase in molecular weight, correspond-351 ing to an additional oxygen atom in the structure of 4 compared to 5, and the downfield chemical shift of C-2, re-

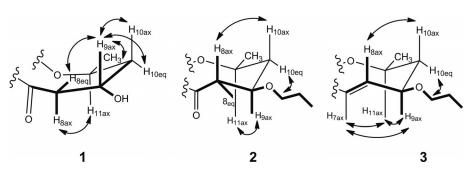


Figure 6. Key ROESY correlations of the new decalactones.

FULL PAPER

356

13

5a, 6, 7

vealed the presence of an additional hydroxyl group at C-2. Hence, 4 was identified as a new natural product and was given the name corynesidone D.

16.0

Table 3. NMR spectroscopic data of 8 at 600 (¹H) and 150 (¹³C) MHz ([D₆]DMSO) and 6-(3'-hydroxybutyl)-7-O-methylspinochrome B (8').

given the i		sidulic D.						
C	2			Position	8	S	UMDC	8 ′
Table 2 NM	IR spectrosco	nic data of corvnesid	one D (4). Measured		$\delta_{\rm C}$	$\delta_{\rm H}$	HMBC	$\delta_{\rm H}$
		MHz ([D ₆]acetone)		1	181.2			
				2	161.1			
Position	4	2		3	147.7			
	$\delta_{ m C}$	$\delta_{ m H}$	HMBC	4	185.7			
1	128.6			4a	105.8			
2	142.4			5	160.9			
3	150.5			6	122.3			
4	105.0	6.68, s	2, 3, 4a, 11, 11a	7	140.4			
4a	156.6	0.00, 3	2, 5, 40, 11, 110	8	107.3	7.04, s	6a, 7, 9, 10	7.06, s
5a	143.8			8a	128.6			
6	131.8			1'	19.2	2.65, m	5, 6, 2', 3'	2.65, t (6)
7	114.2	6.45, d (2.0)	5a, 8, 9, 13			2.63 ^[a]	5, 6, 2', 3'	2.65, t (6)
8	155.2	0.45, d (2.0)	54, 0, 9, 15	2'	38.9	1.51, m	1', 3',4'	1.50, m
9	105.7	6.45, d (2.0)	5a, 7, 8, 9a			1.49, m	1',3',4'	1.50, m
9a	146.0	0.15, a (2.0)	54, 7, 6, 54	3'	66.1	3.60, m	1'	3.50, m
11	163.6			4′	23.4	1.09, d (6.3)	2', 3'	1.10, d (6)
11a	113.6			7-OMe	60.3	3.78, s	7	3.85, s
12	13.6	2.25, s	1, 2, 11a	OH-5		12.61, s	5, 6, 4a	12.65, s
12	15.0	2.25, 5	1, 2, 11a					

Compound 8 was obtained as a red-brown solid. MS and ¹H NMR (Table 3) data resembled those previously reported for 6-(3'-hydroxybutyl)-7-O-methylspinochrome B, isolated from Fungi imperfecti.^[42] The structure was con-

2.26, s

- firmed by inspection of COSY and HMBC spectra 361 (Table 3). Although previously isolated, no attempts were made to determine the absolute stereochemistry of 8. Hence, the modified Mosher procedure^[49] was applied to determine the absolute configuration of the chiral center C-
- 3'. The observed chemical shift differences (500 MHz, 366 C_5D_5N) between the (2'S)-2'-methoxy-2'-trifluoromethyl-2'-phenylacetic acid (MTPA) ester and its (2'R)-MTPA diastereomer (Table 4) were consistent with the (3'R) absolute configuration of 8.
- 371 The isolated compounds were subjected to a panel of bioassays to evaluate their potential activities. These included an estimation of their cytotoxic activity against murine L5178Y cells and antibacterial activity against multi drug resistant strains of Staphylococcus aureus, Streptococ-
- cus pneumoniae, Enterococcus faecium, and Enterococcus 376 cloacae. In addition, antifungal activity of the isolated compounds against drug resistant strains of Aspergillus fumigatus, Aspergillus faecalis, Candida albicans, and Candida

[a] Overlapped by the solvent peak.

Table 4. Chemical shift difference between the (S)-MTPA and (R)-MTPA esters of 8.

H atom			C ₅ D ₅ N, at 500 MHz) (<i>R</i>)-MTPA ester	$\Delta \delta S - \delta R$
1′	3.31	2.27	2.33	-0.04
2'	2.16	1.61	1.90	-0.29
4′	1.40	1.30	1.28	+0.02

krusei was investigated, as well as their antitrypanosomal activity. None of the isolated natural products proved to be 381 active in any of the cellular screens applied. However, in a biochemical protein kinase activity assay using 16 different human protein kinases, 6 and 8 inhibited several of the tested kinases (Table 5). The IC_{50} values observed for both compounds were in the low micromolar range against some 386 protein kinases such as ALK, VEGF-R2, SRC, IGF1-R, and PIM1 of which inhibition is known to confer antitumoral effects. Of special interest is the fact that 6 inhibited PIM1 with an IC_{50} value of 3.5×10^{-7} M, indicating a tenfold higher specificity of this naturally occurring inhibitor 391 against this particular protein kinase in comparison to most of the other kinases investigated in this study (Table 5).

Table 5. IC_{50} values of compounds 6 and 8 against different protein kinases.^[a].

	AKT1	ALK	ARK5	Aurora-B	AXL	FAK	IGF1-R	MEK1 wt
6	5.28E-05	4.26 E-06	4.92 E-05	1.57 E-06	9.13 E-06	2.21 E-05	4.87 E-06	> 1 E-04
8	7.18 E-05	5.65 E-06	6.96 E-05	2.83 E-05	9.15 E-06	1.73 E-05	3.51 E-06	> 1 E-04
	MET wt	NEK2	NEK6	PIM1	PLK1	PRK1	SRC	VEGF-R2
6	8.15 E-06	5.22 E-05	2.34 E-05	3.52 E-07	2.79 E-05	4.90 E-05	3.56 E-06	5.12 E-06
8	1.69 E-05	6.46 E-05	4.17 E-05	2.54 E-06	> 1 E-04	9.89 E-05	2.39 E-06	4.48 E-06

[a] Inhibitory potentials of compounds at various concentrations were determined in biochemical protein kinase activity assays. Listed are IC_{50} values in mol/L.

Date: 02-05-12 12:46:05

Pages: 10

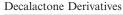
_ Eurjoc erropean journal of Organic Chemis

426

dish (malt agar medium) containing an antibiotic to suppress bacterial growth (medium composition: 15 g/L malt extract, 15 g/L agar, and 0.2 g/L chloramphenicol in distilled water, pH 7.4–7.8) and incubated at room temperature (25 °C). After several days, hyphae growing from the plant material were transferred to fresh plates with the same medium, incubated again for 10 d, and periodically checked for culture purity.

Identification of Fungal Cultures: Fungal cultures were identified
according to a molecular biological protocol by DNA amplifi-
cation and sequencing of the ITS region as described previously.
[50]431The sequence data have been submitted to GenBank, accession
number HQ389223. The fungal strain was identified as *Corynes-
pora cassiicola*. A voucher strain (strain designation JCM 23.3) is
kept in the Institute of Pharmaceutical Biology and Biotechnology,
Düsseldorf, Germany.436

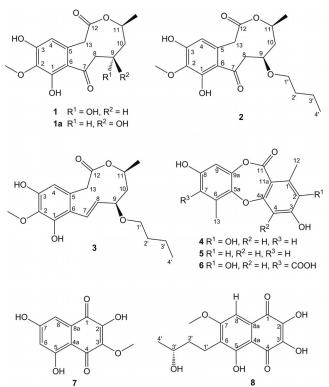
Cultivation: Twenty Erlenmeyer flasks (1 L each) containing 100 gof rice and 100 mL of distilled water were autoclaved. A small partof the medium from a Petri dish containing the purified fungus wastransferred under sterile conditions to the rice medium. The fungalstrain was grown on solid rice medium at room temperature (22 °C)for 40 d.


Extraction and Fractionation: The culture was extracted extensively with EtOAc. The EtOAc extract was washed with water, taken to dryness, and partitioned between *n*-hexane and 90% MeOH. The 446 90% MeOH fraction was purified by chromatography over silica gel F254 (Merck, Darmstadt, Germany) using gradient elution (nhexane/EtOAc/CH2Cl2/MeOH). One of the resulting fractions (MeOH/CH₂Cl₂, 60:40) was purified by chromatography over a Sephadex LH-20 column with 100% MeOH as solvent. Based on 451 detection by TLC (silica gel F254, Merck, Darmstadt, Germany) using EtOAc/MeOH/H₂O (77:13:10) as solvent system, collected fractions were combined and subjected to semipreparative HPLC (Merck, Hitachi L-7100) using a Eurosphere 100-10 C₁₈ column $(300 \times 8 \text{ mm}, L \times i.d.)$ with the following gradient (MeOH/H₂O): 456 0 min, 10% MeOH; 5 min, 10% MeOH; 35 min 100% MeOH; 45 min, 100% MeOH. Yields of compounds were as follows: 2.1 mg (1), 2.2 mg (2), 2 mg (3), 3.4 mg (4), 2.2 mg (5), 19.4 mg (6), 1.8 mg (7), 49.2 mg (8).

Xestodecalactone D (1): Yield 2.1 mg; yellowish white amorphous 461 powder; $[a]_{20}^{D} = -25$ (*c* 0.04, CHCl₃). UV (PDA): $\lambda_{max} = 202.2$, 222.5, 275.5 nm; ECD (CH₃CN, *c* = 1.12 × 10⁻³): λ_{max} ($\Delta \varepsilon$) = 316 (-3.73), 268 (3.31), 238 (3.19), 219 (-0.39), 207 (0.36), 192 (-4.11) nm; ¹H and ¹³C in [D₆]DMSO, see Table 1. MS (ESI+): *m/z* = 311.0 [M + H]⁺, 333.0 [M + Na]⁺; MS (ESI-): *m/z* = 309.0 [M – 466 H]⁻; HRMS (ESI): calcd. for C₁₅H₁₉O₇ [M + H]⁺ 311.1131; found 311.1134.

Xestodecalactone E (2): Yield 2.2 mg; yellowish amorphous mass; $[a]_{20}^{D} = +12 \ (c = 0.115, \text{CHCl}_3); \text{UV (PDA)}: \lambda_{\text{max}} = 220.9, 252.5 \text{ nm};$ ECD (CH₃CN, $c = 2.05 \times 10^{-3}$): $\lambda_{\text{max}} \ (\Delta \varepsilon) = 313 \ (-3.34), 264 \ (3.41),$ 471 236 (2.96), 207 (1.03), 192 (-3.05) nm; ¹H and ¹³C in [D₆]DMSO, see Table 1. MS (ESI+): $m/z = 366.9 \ [M + H]^+, 754.7 \ [2M + Na]^+; MS \ (ESI-): m/z = 365.0 \ [M - H]^-; HRMS \ (ESI): calcd. for$ C₁₉H₂₆O₇ [M + H]⁺ 367.1751; found 367.1752.

Xestodecalactone F (3): Yield 2.0 mg; yellowish amorphous mass; 476 $[a]_{20}^{D} = -180 \ (c = 0.04, \text{ CHCl}_3). \text{ UV (PDA): } \lambda_{\text{max}} = 202.8, 221.8, 274.8 \text{ nm; ECD (CH}_3\text{CN, } c = 0.85 \times 10^{-3}): \lambda_{\text{max}} \ (\Delta \varepsilon) = 287 \ (\text{sh}, -2.23), 250 \ (-11.65), 216 \ (-18.09), \text{ positive below } 198 \text{ nm. }^1\text{H} \text{ and }^{13}\text{C in [D}_6]\text{DMSO, see Table 1. MS (ESI+): } m/z = 722.0 \ [2M + \text{Na}]^+; \text{ MS (ESI-): } m/z = 349.0 \ [M - \text{H}]^-; \text{ HRMS (ESI): calcd. for } 481 \ \text{C}_{19}\text{H}_{26}\text{O}_6 \ [M + \text{Na}]^+ \ 373.1627; \text{ found } 373.1618.$


Corynesidone D (4): Yield 3.4 mg; grey amorphous powder; UV (PDA): $\lambda_{max} = 230.7$, 271.7 nm; ¹H and ¹³C in [D₆]acetone, see

Conclusion

396

The structures of three new xestodecalactones D^ˆF and a new corynesidone D have been determined through the use of 1D and 2D NMR spectroscopic techniques and mass analysis. Scheme 1 summarizes the deduced structures. ■■ ((<=Authors: this short conclusion has been added. Please check and extend if desired)) ■■

Scheme 1. Structures of isolated compounds.

401 Experimental Section

General Experimental Procedures: Optical rotation values were measured with a Perkin–Elmer-241 MC polarimeter. 1D and 2D NMR spectra were recorded with Bruker ARX 500, ARX 400, or AVANCE DMX 600 NMR spectrometers. MS (ESI) and HRMS

- 406 (ESI) were obtained with Finnigan LCQ Deca and Micromass QTOF 2 mass spectrometers, respectively. Solvents were distilled prior to use, and spectral grade solvents were used for spectroscopic measurements. HPLC analysis was carried out with a Dionex P580 HPLC system coupled to a photodiode array detector (UVD340S).
- 411 Routine detection was performed at 235, 254, 280, and 340 nm. The separation column (125×4 mm, $L \times i.d.$) was prefilled with Eurospher-10 C₁₈ (Knauer, Germany), and the following gradient was used (MeOH/0.02% H₃PO₄ in water); 0 min, 10% MeOH; 5 min, 10% MeOH; 35 min, 100% MeOH; 45 min, 100% MeOH.
- 416 **Fungal Material:** Fresh, healthy leaves of *Languncularia racemosa* (Combretacaeae) were collected in September 2009 from Hainan Island, China. Leaves were rinsed twice with sterilized distilled water. Surface sterilization was achieved by immersing the leaves in 70% ethanol for 2 min (twice) followed by rinsing twice in sterilized
- 421 distilled water. The leaves were then cleaved aseptically into small segments (ca. 1 cm in length). The material was placed on a Petri

FULL PAPER

491

Table 2. MS (ESI+): $m/z = 289.1 [M + H]^+$, 598.8 [2M + Na]⁺, 886.5 [3M + Na]⁺; MS (ESI-): $m/z = 287.1 [M - H]^-$; HRMS (ESI): calcd. for C₁₅H₁₃O₆ [M + H]⁺ 289.0712; found 289.0712.

6-(3'-Hydroxybutyl)-7-O-methylspinochrome B (8): Yield 49.2 mg; red-brown solid; $[a]_{20}^{20} = -12$ (c = 0.025, acetone); UV (PDA) λ_{max} = 213.7, 268.0, 320.7 nm; ¹H and ¹³C in [D₆]DMSO (Table 3), MS (ESI+): m/z = 309.1 [M + H]⁺, 331.0 [M + Na]⁺; MS (ESI-): m/z= 307.1 [M - H]⁻.

Mosher Method: The reaction was performed according to a convenient Mosher ester procedure.^[49]

- Biochemical Protein Kinase Activity Assay: Protein kinase inhibi tory activity was determined in 96-well plates as described pre viously.^[51] The following substrates were used: GSK3(14–27),
 AKT1, NEK6, PIM1; tetra(LRRWSLG), Aurora B; poly(Glu,Tyr)
 4:1, FAK, IGF1-R, SRC, VEGF-R2; poly(Ala,Glu,Lys,Tyr)_{6:2:5:1},
 ALK, AXL, METwt; ERK2-KR, MEK1 wt; Rb-CTF, NEK2;
- 501 RBER-CHKtide, PLK1, PRK1. Autophosphorylation was measured for ARK5.

Computational Section: Conformational searches were carried out by using Macromodel 9.7.211^[52] software employing the Merck Molecular Force Field (MMFF) with implicit solvent model for

- 506 chloroform. Geometry reoptimizations at the B3LYP/6-31G(d) level of theory followed by TDDFT calculations using various functionals (B3LYP, BH&HLYP, PBE0) and TZVP basis set were performed by the Gaussian 03^[53] package. Boltzmann distributions were estimated from the ZPVE corrected B3LYP/6-31G(d) energies.
- 511 ECD spectra were generated as the sum of Gaussians^[54] with 3000 and 2100 cm⁻¹ half-height width (corresponding to ca. 19 and 13 nm at 250 nm, respectively), using dipole-velocity computed rotational strengths for conformers above 3%. The MOLEKEL^[55] software package was used for visualization of the results.

516 Acknowledgments

531

541

This project was supported by grants from the Bundesministerium für Bildung und Forschung (BMBF) to P. P., A. D., and M. K., and from the Ministry of Science and Technology of China (MOST) to W. L. We are indebted to C. Kakoschke for NMR measurements

- 521 (HZI, Braunschweig, Germany). T. K. thanks the New Hungary Development Plan, cofinanced by the European Social Fund and the European Regional Development Fund (TÁMOP 4.2.1./B-09/ 1/KONV-2010-0007). A scholarship (grant number 10/6/117) granted and financed by the Egyptian Government, Ministry of
- 526 High Education to W. E. is gratefully acknowledged.
 - A. H. Aly, A. Debbab, J. Kjer, P. Proksch, *Fungal Divers.* 2010, 41, 1–16.
 - [2] A. Debbab, A. H. Aly, W. Lin, P. Proksch, *Microbial Biotech*nol. 2010, 3, 544–563.
 - [3] A. H. Aly, A. Debbab, P. Proksch, *Appl. Microbiol. Biotechnol.* 2011, 90, 1829–1845.
 - [4] A. Debbab, A. H. Aly, P. Proksch, Fungal Divers. 2011, 49, 1– 12.
- [5] A. H. Aly, A. Debbab, P. Proksch, Fungal Divers. 2011, 50, 3– 536 19.
 - [6] G. A. Strobel, R. V. Miller, C. Miller, M. Condron, D. B. Teplow, W. M. Hess, *Microbiology* **1999**, 45, 1919–1926.
 - [7] S. B. Singh, D. L. Zink, Z. Guan, J. Collado, F. Pelaez, P. J. Felock, D. J. Hazuda, *Helv. Chim. Acta* 2003, *86*, 3380–3385.
 - [8] Y. M. Ma, Y. Li, J. Y. Liu, Y. C. Song, R. X. Tan, *Fitoterapia* 2004, 75, 451–456.
 [9] A. G. K. Li, L. K. K. P. J. 1997, 50, 1215, 1224.
 - [9] A. Stierle, G. Strobel, J. Nat. Prod. 1995, 58, 1315-1324.

- [10] G. A. Strobel, X. Yang, J. Sears, R. Kramer, R. S. Sidhu, W. M. Hess, *Microbiology* **1993**, *142*, 435–440.
- [11] G. Vassal, C. Pondarré, I. Boland, C. Cappelli, A. Santos, C. 546 Thomas, E. Lucchi, K. Pein, F. Imadalou, J. Morizet, A. Gouyette, *Biochimie Mar.* 1998, *80*, 271–80.
- [12] A. L. Eyberger, R. Dondapati, J. R. Porter, J. Nat. Prod. 2006, 69, 1121–1124.
- [13] V. Kumaresan, T. S. Suryanarayanan, Mycol. Res. 2001, 105, 551 1388–1391.
- [14] E. B. Gareth Jones, S. J. Stanley, U. Pinruan, *Botanica Marina* 2008, 51, 163–170.
- [15] T. Takemura, N. Hanagata, K. Sugihara, S. Baba, I. Karube, Z. Dubinsky, Aquat. Bot. 2000, 68, 15–28.
- [16] A. K. Parida, A. B. Das, *Ecotoxicol. Environ. Saf.* 2005, 60, 324–349.
- [17] E. L. Gilman, J. Ellison, N. C. Duke, C. Field, Aquat. Bot. 2008, 89, 237–250.
- [18] Z.-S. Cheng, J. Pan, W. Tang, Q. Chen, Y. Lin, J. For. Res. 561 2009, 20, 63–72.
- [19] F. Waller, B. Achatz, H. Baltruschat, J. Fodor, K. Becker, M. Fischer, T. Heier, R. Hückelhoven, C. Neumann, D. von Wettstein, P. Franken, K. H. Kogel, *Proc. Natl. Acad. Sci.* USA 2005, 102, 13386–13391.
- [20] H. W. Zhang, Y. C. Song, R. X. Tan, Nat. Prod. Rep. 2006, 23, 753–771.
- [21] J. W. Blunt, B. R. Copp, M. H. G. Munro, P. T. Northcote, M. R. Prinsep, *Nat. Prod. Rep.* 2010, *27*, 165–237.
- [22] B. J. Rawlings, Nat. Prod. Rep. 1999, 16, 425-484.
- [23] J. Kobayashi, T. Kubota, J. Nat. Prod. 2007, 70, 451-460.
- [24] P. M. Dewick, Medicinal natural products: a biosynthetic approach, John Wiley & Sons, 2002, Chichester, UK, p. 35.
- [25] R. G. Coombe, J. J. Jacobs, T. R. Watson, Aust. J. Chem. 1968, 21, 783–788.
- [26] D. J. Robeson, G. A. Strobel, Z. Naturforsch. C 1981, 36, 1081– 1083.
- [27] S. Lai, Y. Shizuri, S. Yamamura, K. Kawai, Y. Terada, H. Furukawa, *Tetrahedron Lett.* 1989, 30, 2241–2244.
- [28] A. J. Birch, O. C. Musgrave, R. W. Rickards, H. Smith, J. 581 Chem. Soc. 1959, 4, 3146–3152.
- [29] Y. Liu, Z. Li, J. C. Vederas, *Tetrahedron* 1998, 54, 15937–15958.
- [30] A. H. Aly, A. Debbab, R. A. Edrada-Ebel, W. E. G. Müller, M. H. G. Kubbutat, V. Wray, R. Ebel, P. Proksch, *Mycosphere* 2010, 1, 153–162.
 586
- [31] J. Xu, A. Aly, V. Wray, P. Proksch, *Tetrahedron Lett.* 2011, *52*, 21–25.
- [32] A. Debbab, A. H. Aly, R. Edrada-Ebel, V. Wray, W. E. Mueller, F. Totzke, U. Zirrgiebel, C. Schaechtele, M. H. Kubbutat, W. H. Lin, M. Mosaddak, A. Hakiki, P. Proksch, R. Ebel, *J. Nat.* 591 *Prod.* 2009, 72, 626–631.
- [33] A. Debbab, A. H. Aly, R. Edrada-Ebel, V. Wray, A. Pretsch, G. Pescitelli, T. Kurtan, P. Proksch, *Eur. J. Org. Chem.* 2012, 7, 1351–1359.
- [34] L. Yánez-Espinosa, T. Terrazas, L. López-Mata, J. I. Valdez-Hernández, Wood Sci. Technol. 2004, 38, 217–226.
- [35] W. M. Bandaranayake, Mangrove Salt Marsh. 1998, 2, 133– 148.
- [36] P. H. List, L. Horhammer, ######### ? ##########, Springer, Berlin, 1969–1970, vol. 2–6 ■■ ((<=Author: please 601 add the book title)) ■■ .
- [37] J. F. Morton, Econ. Bot. 1965, 19, 113–123.
- [38] W. A. Collier, T. Tjong, A. Hung, Rev. Med. Vet. Parasitol. 1952, 11, 11–30.
- [39] P. A. Paranagama, E. M. K. Wijeratne, A. M. Burns, M. T. 606 Marron, M. K. Gunatilaka, A. E. Arnold, A. A. L. Gunatilaka, J. Nat. Prod. 2007, 70, 1700–1705.
- [40] E. M. K. Wijeratne, B. P. Bashyal, M. K. Gunatilaka, A. E. Arnold, A. A. L. Gunatilaka, J. Nat. Prod. 2010, 73, 1156–1159.
- [41] P. Chomcheon, S. Wiyakrutta, N. Sriubolmas, N. Ngamrojanavanich, S. Kengtong, C. Mahidol, S. Ruchirawat, P. Kittakoop, *Phytochemistry* 2009, 70, 407–413.

576

571

566

Pages: 10

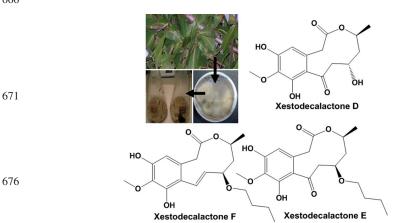
Decalactone Derivatives

631

- [42] H. Chimura, T. Sawa, Y. Kumada, F. Nakamura, M. Matsuzaki, J. Antibiot. 1973, 26, 618–20.
- 616 [43] G. Assante, R. Locci, L. Camarda, L. Merlint, G. Nasini, *Phy*tochemistry **1977**, *16*, 243–247.
 - [44] R. Edrada, M. Heubes, G. Brauers, V. Wray, A. Berg, U. Berg, M. Wohlfarth, J. Muehlbacher, K. Schaumann, S. G. Bringmann, P. Proksch, J. Nat. Prod. 2002, 65, 1598–1604.
- [45] Y.-S. Cai, T. Kurtán, Z.-H. Miao, A. Mándi, I. Komáromi, H.-L. Liu, J. Ding, Y.-W. Guo, *J. Org. Chem.* 2011, *76*, 1821–1830.
 [46] Y. Zhou, A. Mándi, A. Debbab, V. Wray, B. Schulz, W. E. G. Müller, W. H. Lin, P. Proksch, T. Kurtán, A. H. Aly, *Eur. J.*
- Org. Chem. 2011, 6009–6019.
 [47] H. Greve, P. J. Schupp, E. Eguereva, S. Kehraus, G. Kelter, A. Maier, H. H. Fiebig, G. M. König, *Eur. J. Org. Chem.* 2008, 5085–5092.
 - [48] J. Dai, K. Krohn, U. Flörke, G. Pescitelli, G. Kerti, T. Papp, K. E. Kövér, A. C. Bényei, S. Draeger, B. Schulz, T. Kurtán, *Eur. J. Org. Chem.* 2010, 6928–6937.
 - [49] B. N. Su, E. J. Park, Z. H. Mbwambo, B. D. Santarsiero, A. D. Mesecar, H. H. S. Fong, J. M. Pezzuto, A. D. Kinghorn, *J. Nat. Prod.* 2002, 65, 1278–1282.
- [50] S. Wang, X. M. Li, F. Teuscher, D. L. Li, A. Diesel, R. Ebel,
 P. Proksch, B. G. Wang, J. Nat. Prod. 2006, 69, 1622–1625.
 - [51] A. H. Aly, R. A. Edrada-Ebel, I. D. Indriani, V. Wray, W. E. G. Müller, F. Zirrgiebel, U. Totzke, C. Schaechtele, M. H. G. Kubbutat, W. H. Lin, P. Proksch, R. Ebel, *J. Nat. Prod.* 2008, 71, 972–980.

- [52] MacroModel, Schrödinger LLC, **2009**; http://www.schrodinger.com.
- [53] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, 646 G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. 651 Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, 656 G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, revision C.02, Gaussian, Inc., Wallingford CT, 2004. 661
- [54] P. J. Stephens, N. Harada, Chirality 2010, 22, 229-233.
- [55] U. Varetto, *MOLEKEL*, v.5.4, Swiss National Supercomputing Centre, Manno, Switzerland, **2009**.

Received: March 2, 2012


AP1

Date: 02-05-12 12:46:06

Pages: 10

FULL PAPER

Three new xestodecalactones D^FF (1–3) and a new corynesidone D were isolated from *Corynespora cassiicola*. The structures were

681 determined by 1D and 2D NMR spectroscopy as well as by high-resolution mass spectrometry. The absolute configurations of 1-3 were determined by TDDFT ECD calculations. All compounds were tested against a panel of human protein kinases.

Natural Products

Decalactone Derivatives from *Corynespora cassiicola*, an Endophytic Fungus of the Mangrove Plant *Laguncularia racemosa*

Keywords: Natural products / Medicinal chemistry / Drug discovery / Fungi / Structure elucidation / Conformation analysis / Lactones