Abstracts

50 min (18F-DOG) and 80 min (11C-methionine) after tracer injection animal were anesthetized by 3% isoflurane. 10 minutes PET scans were performed in each bed positions using a small animal PET scanner (MiniPET-II, Department of Nuclear Medicine, Debrecen) to visualize the primary tumor and the metastasis. The MiniPET-II consists of 12 detector modules in a ring with LYSO scintillator crystal blocks. The axial and radial field of view (FOV) are 48 mm and 106 mm, respectively and the system absolute sensitivity is 10.14% (NEMA NU4-2008). The 18F-DOG and 11C-methionine uptake were expressed in terms of standardized uptake values (SUVs) and tumor to muscle (T/M) ratios.

Results: By taking the SUV values from the MiniPET-II images the major of the radioactivity (18F-DOG and 11C-methionine) was accumulated in the primary tumors: He/De 18F-DOG-SUVmean: 10.2 ± 3.0, 11C-methionine-SUVmean: 3.2 ± 1.0; My/De 18F-DOG-SUVmean: 4.7 ± 1.2, 11C-methionine-SUVmean: 3.2 ± 0.8. Two weeks after the implantation in rats bearing primary tumors under the renal capsule we found metastases at the parathymic lymph nodes (PTLN): He/De 18F-DOG-SUVmean: 3.5 ± 0.6, 11C-methionine-SUVmean: 1.7 ± 0.2; My/De 18F-DOG-SUVmean: 3.2 ± 0.7, 11C-methionine-SUVmean: 1.8 ± 0.5. In the subcutaneous models after two weeks only primary tumors (He/De — SUVmean: 9.0 ± 2.6, My/De — SUVmean: 7.7 ± 1.8) and no metastases were found by 18F-DOG scans. Three weeks after intravenous injection of He/De cells metastatic lesions were found by 18F-DOG scans in the liver and lungs with SUVmean 4.3 ± 0.7 and 2.3 ± 0.3, respectively.

Conclusion: This preclinical study showed that tumor cells implanted under the capsule of the kidney generate metastases in the PTLN. The renal capsule-parathymic lymph node complex seems to be suitable for the isolated in vivo examination of metastatic development. MiniPET-II scanner and the animal models are helpful appliances in preclinical research and drug development research.

P12

METHODOLOGICAL DEVELOPMENTS FOR AUTOMATED REGI0N ANALYSIS OF BRAIN SPECT

AND PET EXAMINATIONS

G. Opposits1, T. Spisák1, M. Koselák1, L. Pohubi1, L. Galuska1, A. Jakab1, E. Berényi1, M. Emri1

1Institute of Nuclear Medicine, Medical and Health Science Centre, University of Debrecen, Debrecen, Hungary

Background: The infrastructure for automated region analysis of brain PET and SPECT examinations was partly available in our institute, which was developed for image registration processes earlier. We broadened this automated process by software components, which were developed along the development of BrainLOC, made it possible to join these components to the automated image processing thread.

Materials and methods: We have used the MultiModal Medical Imaging software system to develop the main software components required by the automated regional analysis service: pre-defined functional and anatomical brain structures as part of the VOI database of the BrainOC application, 3rd party (MINI, FSL) and inhouse developed multimodal registration and standardization software, utilities for ROI analysis. We have also developed the DicomBox software to receive and convert images, which is built on the basis of the DICOM server in our institute. Processing and monitoring services are available through the interfaces developed for the R+D web site of our institute.

Results: In contrast with our goals, a completely automated software system was developed to evaluate regional analysis of brain PET and SPECT data using arbitrary regional definitions of various brain areas. The user requesting this service could select regions from more than 20 brain atlases and for spatial standardization T1-weighted MRI, PET or SPECT templates. The results of analysis carried out on the images received by our DICOM server can be accessed by email or through the web site of the institute. The standardization was carried out by the automated system.

Conclusion: We expanded the automated image processing in our institute with a service of automated region analysis of brain PET and SPECT examination. This service can be accessed by other institutes who does not have this kind of image processing infrastructure.

P13

INTEGRATION OF PET-CT IN THE MANAGEMENT OF PATIENTS' TREATED WITH RADIOTHERAPY: DEBRECEN'S EXPERIENCES

B. Szucs1, Zs. Hassel1, J. Dobai2, L. Bognár1, I. Garai1

1ScanoMed Nuclear Medicine Centers, Debrecen, Hungary

2Rotating Gamma Institute, Debrecen, Hungary

Background: The first hungarian gamma radiosurgery center was opened at 2007 in Debrecen. Until now 1800 patients have been treated. Radiosurgery is based on different imaging modalities that are used for targetting. We present patients' clinical performance of contrast-enhanced CT and T1-weighted contrast-enhanced 3D SPGR MR sequences. We report our clinical experience with the combined use of metabolic (18F-DOG-PET-CT, 11C-MET-PET) and anatomic (CT/MR) images for the radiosurgical treatment of patients, to determine whether these imaging methods can be useful for further clinical management.

Material and methods: Four patients with brain metastases were treated with stereotactic radiosurgery, MRI and 11C-Met-PET examinations were done before the treatment and 2 and 6 months following the radiosurgical procedure. PET/MR fusions were also conducted. In the PET-scans we measured the size of the lesions and the tumor activity. Data was compared to the MRI findings. In one brain metastatic case radiotherapists used 11C-Met/PET/contrast-enhanced CT fused images for treatment planning.