Az MR-angiográfia jelentősége az intracranialis aneurysmák vizsgálatában

P. Nagy Zoltán
Bajzik Gábor
Bogner Péter
Berényi Ervín
Szász Krisztina
Kopa János
Repa Imre

THE ROLE OF MR ANGIOGRAPHY IN THE EXAMINATION OF INTRACRANIAL ANEURYSMS: A COMPARATIVE STUDY

INTRODUCTION – MR imaging has recently emerged for visual representation of blood vessel structures as well. With MR angiography (MRA), appropriate diagnosis can be established for a number of pathologies involving the arteries and veins.

PATIENTS AND METHODS – In this report, authors analyse the significance of MR and MRA examinations in the diagnostics of intracranial aneurysms of 87 cases, comparing these procedures with results obtained by digital subtraction angiography (DSA), which is regarded as the gold standard method. In 52 patients where surgical intervention was performed, intraoperative findings were used as control.

RESULTS – MR – MR angiographic examination was very sensitive in detecting aneurysms larger than 3 mm (98%), the rate of depicting smaller aneurysms proved to be lower (56%), the overall sensitivity was 79%.

CONCLUSIONS – MRA is an excellent noninvasive diagnostic tool in the examination of intracranial aneurysms. The method can not replace catheter angiography completely but its application is justified and useful in many cases. Occasionally, aneurysms not seen on DSA can be depicted with MR angiography.

Correspondence:
Zoltán P. Nagy, MD
University of Kaposvár
Diagnostics Institute
H-7401 Kaposvár P.O.Box 16
e-mail: pnagy@ct1.kaposvar.pate.hu

MR angiography, cerebral aneurysm

BEVEZETÉS – Az éructukról megjelenitésében az MR-képalkotást egyre szélesebb körben alkalmazzák. Számos arteriás és vénás kóroformánlak megfelelő diagnózis biztosítható MR-angiográfia (MRA) segítségével.

BETEGEK ÉS MÓDSZEREK – A szerzők 87 fél-dolgozott eset kapcsán az elfogazott MR- és MR-angiográfias vizsgálatok jelentőségét elemzik az intracranialis aneurysmák diagnosztikájában, a módszert a gold standard-ként alkalmazott digitális szubtrakció angio-grafia (DSA) eredményeivel összehasonlítva. A műtétben átesett 52 betegnél az intraoperatív lelelet használták, kontrollként.

EREDMÉNYEK – Az alkalmazott MR és MR angiográfias vizsgálat a 3 mm feletti aneurysmák kimutatásában rendkívül érzékenynek bizonyult (98%), a kisebb aneurysmák kimutatathatósága azonban alacsonyabbnak mutatkozott (56%); összességében a módszer szen- zitivitása 79%-osnak adódott.

KÖVETKEZETTEK – Az MRA az intracraniális aneurysmák kiváló non invazív vizsgálómódszere. A kététes angiografias vizsgálatokat napjainkban még nem helyettesíti teljesen, alkalmazása azonban számos esetben indokolt és hasznos. Az MR-angiográfia esetenként a DSA-vel nem diagnosztizált aneurysmákra is fényt deríthet.
Az intracraniális aneurysmák diagnosztikai képalkotó megjelenítésének napjainkban még elsődleges eszköze a digitális szubtrakciós angiográfia (DSA). A CT-angiográfia (CTA) is hasznos információt nyújt az agyi aneurysmák kimutatásában, megítélésében; ennek jelentőségéről több szerző is beszámolt (1–4). Az MR-vizsgálat már a hagyományos szekvenciákkel is értékes információkat szolgáltat az intracraniális érmafóliák, így az aneurysmák képi megjelenítésénel. Jól ábrázolódik a nagyobb aneurysmák, pontosan megéltethető trombotizálásuk mértéke és a környezetükben lévő struktúrák érintettsége, diszlokáció és kompressziója (3–8).


Tanulmányunkban 87, intracraniális aneurysma gyanújá miatt vizsgált beteg adatai alapján elemeztük a háromdimenziós TOF-módszer lehetőségeit és korlátoit, az újabb MR-angiográfia technikák tükében.

Betekek és módszerek


A használt transzverzális sikú MRA-szekvencia paramétereit az 1. táblázat tartalmazza.

1. táblázat. A használt transzverzális sikú MRA-szekvencia paraméterei

<table>
<thead>
<tr>
<th>TE</th>
<th>TR</th>
<th>FA</th>
<th>Acq</th>
<th>Sl</th>
<th>SatS</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 ms</td>
<td>30 ms</td>
<td>15°</td>
<td>1</td>
<td>64</td>
<td>SatS</td>
</tr>
<tr>
<td>FOV = 200 mm</td>
<td>Slab Th = 63 mm</td>
<td>Ma = 192x256</td>
<td>TA = 6 min 11 s</td>
<td>Eff S1 Th = 0,98 mm</td>
<td></td>
</tr>
</tbody>
</table>

2. táblázat. A coronális sikban alkalmazott MRA-szekvencia főbb paraméterei

<table>
<thead>
<tr>
<th>TE</th>
<th>TR</th>
<th>FA</th>
<th>Acq</th>
<th>Sl</th>
<th>SatS</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 ms</td>
<td>32 ms</td>
<td>15°</td>
<td>1</td>
<td>64</td>
<td>SatS</td>
</tr>
<tr>
<td>FOV = 230 mm</td>
<td>Slab Th = 76,8 mm</td>
<td>Ma = 192x256</td>
<td>TA = 6 min 35 s</td>
<td>Eff S1 Th = 1,22 mm</td>
<td></td>
</tr>
</tbody>
</table>

A transzverzális MR-angiográfia esetében a vizsgálat hasába foglalta a carotisszífont, a circulus Willisát, az arteria cerebri mediat, anteriort és posteriort, valamint egyes esetekben az arteria cerebelli superior ágrendszerét. A szaturoció cseleket a vizsgálati hasáballal parallel helyeztük el úgy, hogy a sinus sagittalis superiormból a vizsgálati területbe mozgó sinappelet testesítek.

A coronális sikban alkalmazott MRA-szekvencia főbb paramétereit a 2. táblázat tartalmazza.

A coronális sük MR-angiográfia során a vizsgálat hasába esett az arteria (a.) carotis interna és externa, az a. vertebralis és a. basilaris, az a. cerebri media, az a. cerebri anterior főtörzse és az a. cerebri posterior készleti szakasz.

A sinus sigmoideusból a vena juguláris internákba kezdő telítetlen spinék által okozott, valamint a szemp- és szájmozdásokból eredő zavaró hatást a vizsgálati mezővel párhuzamos, kettős telítő rádiófrekvenciás pulzusok alkalmazásával szüntettük meg (parallel szaturoció). Azokban az esetekben, amikor az arteria vertebralis, basilaris vagy pericállósa aneurysmájának a gyanúja merült fel, célzott transzverzális siku MR-angiográfia is készült.

Az MR-angiorádiográfia mérések eredményeként a használt szekvenciák esetében 64 metzseti szeletet nyertünk, amelyek a maximális jelentetetlenség képpontok vetületének (maximum intensity projection, MIP) alapadatait, munkaképet képeztek. A transzversális angiorádiográfia a cranio-caudalis és jobb-bal tengely körül forgatott, 10°-os nézetek sorozatával rekonstruáltuk 0° és 180° között. Ez 19 darab kétdimenziós síkra visszanyert háromdimenziós angiorádiográfia rekonstrukcióként jelent. A koronális adatok MIP-rekonstrukcióját cranio-caudalis tengely körül forgattuk 0°-tól 180°-ig, ezt követően minden vetületi képet kifótoztuk. Speciális esetekben célzott MIP-rekonstrukciók is készültek, ilyenkor a forgatási tengelyeket mindig az adott eset határoztuk.

A DSA-vizsgálatonál Siemens Angiotion készüléket alkalmaztunk, mindkét oldali carotis és vertebrais ágrendszer feltüntetésével. Az eredőről minden esetben többirányú, valamint nagyított felvételek is készültek. A feldolgozásban szereplő 87 beteg közül a kimutatott aneurysma miatt 52-t soroltak meg a Kaposi Mó Rókház Idegsebészeti Osztályán.

Eredmények

A vizsgálatok során a 87 beteg közül 76-nál összesen 108 valódi aneurysma igazolódott, 24 esetben (32%) multiplicitás állt fenn. Az 52 műtőt betegnél 63 aneurysmára derült fény, egy esetben a műtét előtt nem igazolódott érvelváltozás.

Osszességében az aneurysmák 13%-a a vertebrobasilis rendszerhez esett, míg 87%-uk a carotisrendszerek során fordult elő, az artérial cerebri media aneurysmák bizonyult a leggyakoribbnak (32%) (3. táblázat).

Az MRA érzékenysége az aneurysmák kimutatásában 79%-osnak bizonyult a műteti lelethez (50/63 aneurysma) és a DSA-vizsgálatnál (85/108 aneurysma) képest is, alapos vizsgálat az MRA-vizsgálat után következett el. Az aneurysmák mérete szerint és annak alapján, hogy subarachnoidealis végzés fennáll-e a végzés idején, külön is elemzettük az MRA érzékenységét (4. táblázat). A 3 mm feletti aneurysmák kimutatásában rendkívül érzékenyeknak találtuk a módszert (98%), míg a kisebb elváltozásoknak csak mint a felét sikerült kimutatni (56%). Huszánnymagban betegnél aneurysmavádura lépett fel; az előzetesen elkészült CT képek subarachnoidealis végzésével érzelést észleltünk. A ruptúrázó aneurysmák nagy részét az akut CT-vizsgálat után közvetlenül elvégzett MR- és MRA-vizsgálat során ismertük fel. Tanulmányunkban a subarachnoidealis végzés jelenleg nem befolyásolja lényegesen az MRA érzékenységét az aneurysmák kimutatásában (73%).

Vizsgálataink során négy esetben a negatív MRA-vizsgálatot követően elvégzett DSA jelezt az aneurysma létezését, ezeket a műteti lelet is igazolta. Az MRA-képek másodszori elemzése során ezek a 2–3 mm-es elváltozásokat sejtették volk. 14 esetben az MRA-val igazolt aneurysma mellett még egy vagy két, 3 mm-nél kisebb aneurysmát is kimutattuk a DSA, összesen 18-at. Két esetben az MRA-képekben a célzott MIP-rekonstrukcióknak és a különféle tengely körüli forgatási lehetőségeknek köszönhetően negatív DSA-eredmény mellett egyértelmű aneurysma ábrázolódott, amelyhez az elvégzett műteti beavatkozás igazolta. Az MRA által felvetett tizenegy, 2–3 mm-es aneurysmaganyás képlet esetében a DSA nem igazolta kóros eltérést, a vizsgálatokat műtét el nem követte. Egy alkalommal a subarachnoidealis végzés mellett elvégzett műteti pozitív leletet adott az angiorádiográfia eljárások negatív vitása is ellenére.

Vizsgáltuk során a nagyobb aneurysmák jó ábrázolódottak (1. ábra), meglévő bizonyításához...
Az MR-angiográfia jelentősége az intracranialis aneurysmák vizsgálatában

1. ábra. Az a. basilaris giant aneurysmájának MRA- (a) és DSA- (b) képe

esetenként az alapképek is elegendőek voltak. Megállapítottuk, hogy ha megfelelő áramlás volt a 2–3 mm-es aneurysmákban, azok az MR-angiográfia képeken is jól ábrázolódtak (2. ábra). Kismértékű, az a. cerebri media oszlásánál lévő vagy az a. communicans anterior területén található aneurysmákat a MIP-ek több sikban elvégzett forgatása igazolt alkalmanként. Ilyen esetekben az adatmátrix célzott rekonstrukciója is hasznosnak bizonyult. A carotisszifon területén a komplex áramlások következtében fellépő gyakori műterméképződés ellenére a nagyobb aneurysmák jól ábrázolódtak (3. ábra). Kisebb szifonaneurysmákat a MIP megfelelő forgatásával tudtunk látótérbe hozni.

2. ábra. Az a. cerebri media kis aneurysmája MRA- (a) és DSA- (b) képen

3. ábra. A carotisszifon aneurysmájának MRA- (a) és DSA- (b) képe
Megbeszélés

Az intracranialis aneurysmák ábrázolódása MRA során a keringési viszonyok mellett nagyságukból, lokализációjukból és esetleges trombotizáltságból függ.

Számos tanulmány szerint az intracranialis aneurysmák MRA-val és a hagyományos MR-vizsgálat alapján megfelelő pontosággal kimutathatók (17-19). Bizonyos esetekben MRA-val fény derülhet, hogy azDSA-vizsgálat során nem ábrázolódó aneurysmára is (20). Ennek hátterében thrombus, spasm, speciális lokalizációs állhat. Ez azt is jelenti, hogy negatív DSA-eredmény sem zárja ki feltétlenül az aneurysma fenntartását. Természetesen, miként az eredményeknek is mutatják, az MRA-vizsgálat adhat pozitív eredményt. Valós statisztikát az MRA-vizsgálat diagnosztikai értéke, két esetben abban az esetben volt való mód készíteni, ha minden elvégzett MRA-vizsgálatot DSA-vizsgálat és műtéti beavatkozás is követne, ami teljeséggel lehetetlen.

Az általunk is alkalmazott háromdimenziós TOF-szekvenciáival elérhető felbontás 1,5 T mágneses térerő esetén megközelíthető 0,8x0,8x0,8 mm, amely későgtelenül elmarad a hagyományos angiografikus felbontóképességétől, azonban a 2-3 mm-nél nagyobb aneurysmák MR-angioformánival jól láthatóak. A 2-3 mm-es alatt a terhelés és a műtő elhalálozásának szempontjából azért lényeges, mert az irodalmi adatok alapján a 3 mm-nél kisebb aneurysmák rupturájának valószínűsége kisebb (21, 22).

Az elvégzett MRA-vizsgálatok az aneurysmák kimutatásában bizonyos korlátozásokat mutattak, ennek okait az alábbiakban összegezhetjük:

- A háromdimenziós TOF-technikában a mérési térfogat limitált, ezért a patológiai folyamatok területek egy mérésében nem ellenezhetők.

- Az erek kontrasztja a MRA-szekvenciákban nagymértékben függ a megfelelő áramlási viszonnyéktől. Nagyobb (giant) aneurysmák a bennük kialakuló lassú áramlás okozta spínzatúrációt, valamint turbulencia következtében kialakuló feszültséges és az esetleges thrombosis miatt egyáltalán nem vagy kisebbnek ábrázolódhatnak az MRA-képekben, mint amekkorak valójában (9). Természetesen a hagyományos felvételek a giant aneurysmák könnyen felismerhetők, bár a részlegesen trombitizált aneurysmák megjelenése rendkívül változatos és megfelelő lehet (5). A viszonylag kisebb méretű, de 3 mm-nél nagyobb aneurysmák nagyságának meghatározása esetén az MRA és a hagyományos angiográfia emlékei jól korrelálnak.

- MRI-angiogramokon a műteti megoldás szempontjából fontos aneurysmának gyakran nem vagy csak nehezen úthető meg. Ennek az oka, hogy a szűk nyakban fennálló komplex áramlások gyakran jelentenek okozzák (23).

- Az aneurysmában elhelyezkedő thrombusban a vörös vértestek lebomlása során methemoglobin akalul, ami paramagnézium tulajdonsága miatt miatt áramlást utánoz jelent ad, és megnehezíti a valódí anatómiája szintezésének meghatározását. Ezekben az esetekben ismét a hagyományos spínoke képek segítnek (24).

- A hypophysisi hátsó lehelyen, az ormelléküregcst átlan bizonyos nökségenen utánozhatják az aneurysma képtét. Ugyancsak aneurysmazárt határt mutatnak hurokképződés, érveléseken is. Ezekben az esetekben fontos a MIP-ek több tengely körüli forgatása és célzott rekonstrukciója (8, 25).

- A hagyományos MR-vizsgálat hátraja, hogy a módszer nem elégé érzékeny az akut, nem térdgolat jéllegű subarachnoidalis vérzések detektálására, ezért subarachnoidalis vérzés gyanúja esetén első lépésént a CT a megfelelő képalkotó eljárás (26). Ruptura esetén az alapépek segíthetnek, mivel ilyenkor egyszerű a gyakran fellépő spasmus és a friss vérzés azonos intenzitás miatt a rekonstruált MIP magát az aneurysmát néha nem jelenti meg. Krónikusan vérző aneurysmák esetén a körülnő képződő jelszegyének hossziderinti gyűrés segíthet a diagnózis felállításában (27, 28).

- Akut esetekben a zavar tudhat, súlyos cardiorespiratorius állapotot betegnek technikai okok miatt a CT-vizsgálat gyorsabban, informatívanabb, biztonságosabb.

- Az arteria communis anterior, cerebi media és basilaris területén lévő aneurysmák MRA-val legtöbbször jól meghatározhatók. Sokszor gondot okoz a carottiszfion aneurysmának ábrázolása, mivel ezen a szakaszban gyakori a turbulensek, illetve komplex áramlás. Az ebből származó jelensések, az anatómiára variációk és a carotis kanyargós lefutása miatt az aneurysmát ezen a szakaszon az MRA nem ábrázolja nagy biztonsággal (29).

- Az irodalmi megállapításokkal egybehangzó aneurysmás munkáképek áttekintése az aneurysmák értékelésekor rendkívül fontos és elkerülhetetlen, akár csak a célzott MIP-rekonstrukciók és a több tengely mentén történő forgatások (15, 18).

- A háromdimenziós TOF-MRA nem dinamikus vizsgálat, a hemodinamikai változás csak indirekt módon detektálható.

A mai MR-készülékek közül a nagyobb mágneses térerővel rendelkezők (≥ 1 T) nagyobb pontosságot mutatnak az aneurysmának diagnosztikájában, mint az alacsonyabb térerőjűek (< 1 T); ezért színtén befolyásolja az MRA klinikai alkalmazását (29). A TOF-MR-angioformáció további optimálisáját úgynevezett magnetizációs transzszentenced és egymást átfedő sikú vizsgálati hasábok [multiple overlapping thin-slab acquisition (MOTSA)] alkalmazásával (16). Intravénás kontrasztanyag alkalmazásával a kíserek jobban meghatározzák.
és csökkenthetők az áramlási műtermékek. Kedvezőtlen viszont a vénás struktúrák ábrázolódása, amely főleg a sünnus cavernosus területén okozhat diagnosztikai nehézséget (30). Az újabb MRA-technikák lehetővé teszik, hogy intravénus kontrasztanyag boluszserű adása után 10–20 másodperc alatt készítsenek az angiográfias képeket. Hatályként említhető viszont a rosszabb térbeli felbontás; rossz időtartam esetén a vénák is kitalálók kontrasztanyaggal, megnehezíve ezáltal az angiográfia felvételek értékelését (31).


Következtetés
Az MRA a nem invazív képalkotások közül az az eljárási, amely a legtöbb információt szolgáltatja az intracraniális aneurysmánkról. Napjainkban még nem pótolja az angiográfát, de már nem jár messze ettől. Ellenőrzve hogy a koponya MR-vizsgálatának idejét csak 6–15 perc mellett meghosszabbítva, értékes információt jelent mind a radiológus, mind a klinikus számára.

A közleményben összeszettanyag és a vizsgálati tapasztalataink alapján az MRA elvégzése egyértelműen indokolt:

- intracraniál aneurysma gyanúja esetén (például a cephhalgia diagnosztikájában) – ezekben az esetekben az MR-vizsgálat elvégzése a CT-vizsgálatot megelőzően is ajánlott;
- a veszélyeztetett populációk vizsgálatában (polycystas vese, coarctatio aortae, fibromuscularis dysplasia, kollagénbetegségek, családon belől forduló aneurysma) – az ezekben a körülményekben szennedőknél MRA-vizsgálat végezése, akár szűrő jelleggel is, feltétlenül javasoltható;
- egyértelmű aneurysmára utaló klinikai kép, illetve pozitív CT-vizsgálat esetében, amennyiben a beteg állapota lehetővé teszi, a DSA alkalmazását megelőzőleg;
- az angiográfia vizsgálat elvégzésének kontra-indikációja esetén.

A további rohamos technikai fejlődés révén való, hogy amennyiben az MRA-t első lépésként alkalmazzák, utána egyre ritkábban kell a károsított angiográfia diagnosztikai célból elvégezni.


GASZTROENTEROLÓGIAI TOVÁBBKÉPZŐ KONFERENCIA

Helyszín: Budapest, Pesti Vigadó

A konferencia fő témakörei és moderátorai:

Tényeken alapuló gyakorlat a gasztroenterológiaiban
- Prof. dr. Talassay Zsolt egyetemi tanár, igazgató; Semmelweis Egyetem, Budapest, II. Sz. Belgyógyászati Klinika
- Korszerű hepatopatológia
- Prof. dr. Szalay Ferenc egyetemi tanár; Semmelweis Egyetem, Budapest, I. Sz. Belgyógyászati Klinika
- Gyulladásos bélbetegségek diagnosztikája és kezelése
- Prof. dr. Talassay Zsolt egyetemi tanár, igazgató; Semmelweis Egyetem, Budapest, II. Sz. Belgyógyászati Klinika
- A pancreasbetegségek aktualis kérdései
- Prof. dr. Flautner Lajos egyetemi tanár, igazgató; Semmelweis Egyetem, Budapest, I. Sz. Sebészeti Klinika
- Emészthoz rendszertani onkológia
- Prof. dr. Makó Ernő egyetemi tanár, igazgató; Semmelweis Egyetem, Budapest, Radiológiai és Onkoterápiai Klinika
- Gyermek-gastroenterológia
- Prof. dr. Talassay Zsolt egyetemi tanár, igazgató; Semmelweis Egyetem, Budapest, I. Sz. Gyermekklinika
- Endoszkópos vizsgálataik közvetítése a Semmelweis Egyetem II. Sz. Belgyógyászati Klinikájáról
- Gasztroenterológiai betegségek korszerű szemlélete
- Prof. dr. Talassay Zsolt egyetemi tanár, igazgató; Semmelweis Egyetem, Budapest, II. Sz. Belgyógyászati Klinika

Tudományos információ: dr. Prónai László tudományos főmunkatárs,
Semmelweis Egyetem, Általános Orvostudományi Kar, II. Sz. Belgyógyászati Klinika,
1088 Budapest, Szentkirályi u. 46. Teléfon: 266-0120, fax: 266-0816.