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Abstract: 

RATIONALE: Aflatoxins, a type of mycotoxins particularly hazard to food 
therefore, from analytical point of view, knowledge on their mass 
spectrometric properties is essential. The aim of the present study was to 
describe the collision-induced dissociation behavior of the four most 
common aflatoxins including B1, B2, G1 and G2. The results of the present 
investigation could be helpful in the mass spectrometric identification of 
these aflatoxins from foods and feeds.  
METHODS: Protonated aflatoxins were produced using atmospheric 
pressure chemical ionization (APCI) mass spectrometry (MS) combined 
with high-performance liquid chromatography (HPLC). For the MS/MS 
experiments nitrogen was used as the collision gas and the collision 
energies were varied in the range of 9-40 eV (in the laboratory frame).  
RESULTS: The APCI-MS/MS measurements showed that the protonated 
aflatoxins are relatively stable; their remarkable fragmentations occur at 
30 eV collision energy. The main fragmentation channels were found to be 
the losses of a series of carbon monoxide and loss of a methyl radical 
which led to the formation of radical-type product ions. In addition, if the 
aflatoxin molecule contained an ether- or lactone-oxygen atom linked to a 
saturated carbon atom, loss of a water molecule was observed from the 
precursor ion, especially in the case of aflatoxins G1 and G2.  
CONCLUSIONS: A relatively small modification in the structure of aflatoxins 
dramatically alters the fragmentation properties and this is particularly true 
for aflatoxins B1 and B2. Due to the presence a C=C double bond 
connected to the ether group in aflatoxin B1 no elimination of water was 
observed but, instead, formation of radical-type product ions was 
identified. Fragmentation of aflatoxin B1 yields the most abundant radical-
type cations, and this is in line with the well-known experience that among 
the four aflatoxin derivatives substance B1 is the most dangerous to 
health.  
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RATIONALE: Aflatoxins, a type of mycotoxins particularly hazard to food therefore, from 

analytical point of view, knowledge on their mass spectrometric properties is essential. The 

aim of the present study was to describe the collision-induced dissociation behavior of the 

four most common aflatoxins including B1, B2, G1 and G2. The results of the present 

investigation could be helpful in the mass spectrometric identification of these aflatoxins from 

foods and feeds. 

METHODS: Protonated aflatoxins were produced using atmospheric pressure chemical 

ionization (APCI) mass spectrometry (MS) combined with high-performance liquid 

chromatography (HPLC). For the MS/MS experiments nitrogen was used as the collision gas 

and the collision energies were varied in the range of 9-40 eV (in the laboratory frame). 

RESULTS: The APCI-MS/MS measurements showed that the protonated aflatoxins are 

relatively stable; their remarkable fragmentations occur at 30 eV collision energy. The main 

fragmentation channels were found to be the losses of a series of carbon monoxide and loss of 

a methyl radical which led to the formation of radical-type product ions. In addition, if the 

aflatoxin molecule contained an ether- or lactone-oxygen atom linked to a saturated carbon 

atom, loss of a water molecule was observed from the precursor ion, especially in the case of 

aflatoxins G1 and G2. 

CONCLUSIONS: A relatively small modification in the structure of aflatoxins dramatically 

alters the fragmentation properties and this is particularly true for aflatoxins B1 and B2. Due 
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to the presence a C=C double bond connected to the ether group in aflatoxin B1 no 

elimination of water was observed but, instead, formation of radical-type product ions was 

identified. Fragmentation of aflatoxin B1 yields the most abundant radical-type cations, and 

this is in line with the well-known experience that among the four aflatoxin derivatives 

substance B1 is the most dangerous to health. 

 

Keywords: Aflatoxin, APCI-MS, collision-induced dissociation, fragmentation, mycotoxin 

 

Introduction 

Mycotoxins attract more and more attention since getting into the human and animal nutrition 

these substances cause significant adverse health effects. Mycotoxins are mainly the 

secondary metabolites of fungal species. The WHO has acknowledged that contamination of 

food and feed with a variety of mycotoxins (such as aflatoxins, ochratoxin A, zearalenon, 

deoxynivalenol, fumonisin and T-2 toxin) is one of the major risk factors for the foodborne 

diseases1. Aflatoxins, a type of mycotoxins particularly hazard to food, carry a substituted 

coumarin-ring system. They are mainly the secondary metabolites of Aspergillus parasiticus 

and Aspergillus nominus fungi2. Of the aflatoxins, the B1, G1 and M1 7,8-dihydrofurano[2.3-

b]furan (DHFF) derivatives are highly toxic, while aflatoxins B2, G2 and M2 with a 2,3,7,8-

tetrahydrofurano[2.3-b]furan structure (THFF) are less toxic. Aflatoxin B1, occurring most 

commonly in foods3,4, shows high acute and chronic toxicity. In addition, the aflatoxins 

possess hepatotoxic, mutagenic, teratogenic and carcinogenic effects5-8. Correlation has also 

been established between the aflatoxin intake and liver cancer9,10. 

Several instrumental methods have been developed for the fast and accurate determination of 

mycotoxins, both in the food and feed11-13. Depending on the type of mycotoxins various 

chromatographic methods have been applied for qualitative and quantitative determination14-

19. However, with the appearance of soft ionization techniques such as APCI and ESI, 

application of LC/MS for the determination of mycotoxins has been increasing due to the high 

accuracy, sensitivity and selectivity of these mass spectrometric methods20-23. 

In this article we report the detailed fragmentation study of four most common aflatoxins 

including aflatoxins B1, B2, G1 and G2. To our best knowledge no detailed report on the 

fragmentation properties and fragmentation pathways of this important and intriguing class of 

mycotoxins have been published. 
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Experimental 

Chemicals 

All chemicals were purchased from Sigma Aldrich (Seelze, Germany). The standard mixture 

of aflatoxin containing B1, B2, G1 and G2 was dissolved in a mixture of methanol and water 

(60:40 v/v). The concentration for B1 and G1 was 0.2 µg/mL, and for B2 and G2 it was 0.06 

µg/mL. The structures of the four aflatoxin derivatives investigated are presented in Scheme 

1. 

 

Scheme 1. 

 

Instrumentation 

High performance liquid chromatographic separation (HPLC) 

The HPLC separation was performed with a Waters 2695 Separation module equipped with a 

Waters 2665 Diode Array Detector (Waters Milford, MA, USA) and coupled with a 

MicroTOF-Q mass spectrometer (Bruker Daltonik GmbH, Bremen, Germany). The separation 

was achieved with a Symmetry SB C18 reverse phase analytical column (4.6 x 150 mm, 3.5 

µm, Waters) at a 0.5 mL/min flow rate, the column temperature was 35 °C. Isocratic method 

was performed with an eluent containing methanol and water (40: 60 v/v). A 10 µL standard 

aflatoxin solution was injected via a thermostable autosampler (5 °C). 

 

Atmospheric pressure chemical ionization quadrupole time-of-flight mass spectrometry 

(APCI-QTOF MS) 

The MS and MS/MS measurements were performed in the positive ion mode with a 

MicroTOF-Q type Qq-TOF mass spectrometer  equipped with an APCI ion source (Bruker 

Daltonik GmbH, Bremen, Germany). 

The source temperature of APCI was set to 390 °C, the applied corona voltage was 5 kV. 

Nitrogen was used as nebuliser gas its pressure was 2 bar, the temperature of the drying gas 

(N2) was kept at 200 °C and its flow rate was set to 6 L/min. 

For the MS/MS experiments nitrogen was used as the collision gas and the collision energies 

were varied in the range of 9-40 eV (in the laboratory frame). The pressure in the collision 

cell was determined to be 8x10-3 mbar. The precursor ions for MS/MS were selected with an 

isolation width of 4 m/z units. The MS/MS spectra were accumulated and recorded by means 

of a digitizer at a sampling rate of 2 GHz. The accuracy of the m/z determination in the MS 
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and MS/MS modes was within ±0.005 units. The mass spectra recorded were evaluated with 

the DataAnalysis 3.4 software from Bruker. 

 

Computational method 

Mixed torsional/low mode conformational searches were carried out for 6aR,9aS-aflatoxin B1 

and the homochiral aflatoxins B2, G1 and G2 by means of the Macromodel 9.9.223 software 

using Merck Molecular Force Field (MMFF) in vacuo.24 The MMFF analysis provided 1, 2, 2 

and 4 conformers in a 42 kJ/mol energy window, respectively. All conformers were 

reoptimized at the B3LYP/6-31G(d), B3LYP/6-311G(d,p) and HF/6-31G(d) levels of theory 

implemented in the Gaussian 09 package.25 Electrostatic Potential (ESP) (Merz–Kollman) 

charges26, 27 were computed at all three levels. Protonated aflatoxins were built from the low-

energy B3LYP/6-31G(d) optimized conformers (in the case of carbonyl oxygens the protons 

were placed from inner and outer sides while in the case of ether and lacton oxygens the 

protons were placed in, above and below the plane) and optimized at the same level. 

 

Results and Discussion 

The separation of aflatoxins was achieved by high-performance liquid chromatography 

(HPLC) as detailed in the Experimental. In the APCI-MS/MS spectra of aflatoxins B1, B2, 

G1 and G2 only the protonated aflatoxin molecules [M+H]+ (precursor ions) occurred up to 

the collision energy of 20 eV indicating the relatively stable structure of these derivatives. 

Fragmentation started only at higher collision energies. In Fig. 1. the survival yields (i.e., the 

fraction of undecomposed precursor ion) as a function of the collision energy for aflatoxins 

B1, B2, G1 and G2 are plotted. 

 

Fig. 1. 

 

The survival yields of aflatoxins can be easily compared by using the collision energy 

necessary to obtain 50 % fragmentation, i.e., the CE50 values. The CE50 values determined 

from the plot in Fig. 1. for B1, B2, G1 and G2 are 27.5 eV, 30.7 eV, 27.8 eV and 30.1 eV, 

respectively. It is interesting that the CE50 values obtained for B1 and G1  are very similar 

(27.5 and 27.8 eV) and this is also true for aflatoxins B2 and G2 (30.7 and 30.1 eV). As a 

representative example the APCI-MS/MS spectrum of protonated aflatoxin B1 recorded at 38 

eV is shown in Fig. 2. 
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Fig. 2. 

 

As seen in Fig. 2. several product ions appeared in the APCI-MS/MS spectra, which showed 

that the fragmentation of protonated aflatoxins is characterized by a series of carbon-

monoxide loss. However, the fragmentation properties of the protonated aflatoxins B1 and B2 

differ considerably from those of aflatoxins G1 and G2, thus it is appropriate to discuss them 

separately for the pairs (B1, B2) and (G1, G2). 

 
Fragmentation of protonated aflatoxins B1 and B2 

In the case of the protonated aflatoxins B1 and B2 the main fragmentation pathway is a 

consecutive losses of CO molecules from the precursor ion resulting in the formation of a 

series of product ions denoted by [M+H-xCO]+, where x is the number of the lost CO 

molecules. In the case of aflatoxins B1 and B2 CO losses with x up to 5 were observed. 

Interestingly, in addition to the product ions formed by CO losses OE●+ (OE means an odd-

electron species) type product ions produced by the loss of a methyl radical with a 

composition corresponding to [M+H-(CO)x-CH3]
●+ (where 0 < x < 5) can also be observed. 

The relative intensities of the product ions formed by losses of CO molecules together with 

that of the precursor ion are plotted in Fig. 3.a. For better visualization, the relative intensities 

are normalized and presented in Fig. 3.b. 

 

Fig. 3. 

 

Fig. 3a. and Fig. 3b. show that the maximum of intensities of the product ions formed by 

losses of CO molecules, i.e., those appeared at m/z 285 ([M+H-CO]+), 257 ([M+H-2CO]+), 

229 ([M+H-3CO]+), 201 ([M+H-4CO]+) and 173 ([M+H-5CO]+) are shifted gradually to 

higher collision energies indicating the consecutive formation of these product ions. In 

addition, parallel to CO molecule losses, elimination of a methyl radical also takes place. Fig. 

3a. inset shows the relative intensities of the product ions at m/z 285, 257 (formed from the 

ion m/z 285 by the loss of a CO molecule) and 270 (formed from the ion m/z 285 by the loss 

of a methyl radical) as a function of the collision energy. The curve for the m/z 270 ion shifted 

to higher collision energy as compared to that for the m/z 257 ion suggesting that elimination 

of a methyl radical requires higher activation energy than that of a CO molecule.  

To determine the most probable sites for protonation of the aflatoxin molecules Merz-

Kollman ESP charges were computed at 3 levels of theory for the low-energy reoptimized 
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MMFF conformers obtained from mixed torsional/low mode conformational searches. 

According to the results, the oxygen atoms in aflatoxin B1 can be ordered as O(14) ≈ O(15) > 

O(10) > O(6) > O(7) > O(12) where O(14) and O(15) bear the most negative partial charge 

(for a comparative table see Table S1. in the Supporting Information). This means that the 

first protonation occurs at O(14) and O(15) with the same probability. Optimizations of the 

protonated aflatoxin B1 showed that protonation at O(14) at the more probable outer site 

causes a slight elongation of C(11)-C(11a) bond while protonation of O(15) at the outer site 

has the same effect on the C(1)-C(11a) bond even in the optimized geometries (see Table S2. 

in the Supporting Information). This can indicate that in the case of protonation at O(14) the 

CO cleavage takes place from the neighboring 6-membered ring and vice versa. Thus the first 

two CO losses can be ascribed to C(1)=O(14) and C(11)=O(15). 

The proposed fragmentation pathway for the aflatoxins B1 and B2 is depicted in Scheme 2: 

each product ion formed by the loss of a CO molecule can eliminate both the CH3 radical and 

a C2H4 unit. However, according to our study, only the loss of a CO molecule and a methyl 

radical from the precursor ion was seen directly, elimination of a C2H4 unit was observed 

neither in the case of aflatoxin B1 nor for aflatoxin B2. 

 

 

Scheme 2. 

 

In the case of Aflatoxin B2 we got similar order of the ESP charges of oxygen atoms; the only 

difference was that O(7) became more negative and surpassed O(6). This means that the 

probability of protonation at O(7) increased. 

Besides the above mentioned two main fragmentation channels of aflatoxin B1 additional 

ones can also be observed. One of these is the elimination of a C2H4 unit, which proceeds 

simultaneously with the CO elimination. 

A zoomed APCI-MS/MS spectrum for the product ions appearing at m/z 229 is presented in 

Fig. 4. 

Fig. 4. 

 

Two peaks occur at m/z 229 and one of these corresponds to that formed by the elimination of 

a CO molecule, while the other is that produced by release of a C2H4 unit from the m/z 257 

ion ([M+H-2CO]+). This is confirmed by accurate mass measurement: the measured and 

calculated masses for the [M+H-3CO]+ ion (257-CO) are 229.082 and 229.086, respectively, 
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while these values for the [M+H-2CO-C2H4]
+ ion (257-C2H4) are 229.047 and 229.050, 

respectively. 

The product ions formed by the release of a C2H4 unit occur with low intensity besides the 

product ions produced by the CO elimination in the case of aflatoxins B1 and B2. 

Moreover, in the case of aflatoxin B2 the extent of C2H4 elimination is significantly higher 

than in the case of B1. Although in both aflatoxins B1 and B2 elimination of C2H4 is 

conceivable from ring E, in the case of B2 there is an another possible site of loss in ring A. 

According to the increased negativity of O(7) it is likely that the rupture of the C(8)−C(9) 

bonds can contribute to the elimination of the C2H4 unit in aflatoxin B2. Fig. 4. inset shows 

the relative intensities of the product ions formed by CO and C2H4 eliminations from aflatoxin 

B1 as a function of the collision energy. As it turns out from Fig. 4. inset, the elimination of 

CO is favored over that of the C2H4 unit at all collision energies. 

Furthermore, the release of a C2H2O unit from aflatoxin B1 and elimination of a C2H4O unit 

from aflatoxin B2 were found. The formation of these product ions may be the result of the 

cleavages taking place at the C(9)-C(9a) and O(7)-C(6a) bonds. The elimination of C2H2O 

and C2H4O units directly from the precursor ion proceeds only to a small extent. Moreover, at 

higher collision energies the CO-loss product ions further decompose by the rupture of their 

dihydrofuran ring resulting in the elimination of C2H2O and C2H4O units as shown in Scheme 

2 for the aflatoxin B1 (product ions with m/z 243, 215 and 187). Interestingly, elimination of a 

CHO radical can also be observed for both aflatoxins B1 and B2. For example, the product 

ion at m/z 241 presented in Fig. 2. is most probably formed from the m/z 270 ion by 

elimination of a CHO radical. Although as mentioned earlier, the fragmentation pattern of B2 

is very similar to that of aflatoxin B1, an another difference between them besides the 

elimination of C2H4 is the considerable water-loss from the precursor ion in the case of B2. 

Elimination of a H2O molecule from the protonated aflatoxin B1 was not observed. Since the 

only structural difference between B1 and B2 is the presence of a double bond between the 

C(8) and C(9) atoms in B1, it is reasonable to assume that the oxygen atom connected to 

C(6a) is eliminated in form of H2O. The enhanced ESP charge of O(7) in B2 compared to B1 

and the highly elongated C(6a)-O(7) bond in the optimized geometries can confirm this 

assumption. The possible reason for the difference manifesting in H2O elimination is outlined 

in Scheme 3. 

 

Scheme 3. 
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According to Scheme 3, protonation of aflatoxin B2 at the O(7) followed by bond cleavage 

may take place yielding a primary alcohol from which H2O can eliminate. 

 

Fragmentation of aflatoxins G1 and G2 

In the case of aflatoxins G1 and G2 the elimination of a H2O molecule is the main 

fragmentation channel. The APCI-MS/MS spectrum of aflatoxin recorded at 32 eV collision 

energy is shown in Fig. 5. 

 

Fig. 5. 

 

Taking into account that elimination of water from aflatoxin B1 was not observed at all, and 

water-loss occurred only to a small extent from aflatoxin B2, it is assumed that the extensive 

water-loss from aflatoxins G1 and G2 is due to the presence of the lactone ring. Thus, 

protonation at the oxygen atom of the lactone ring followed by σ-bond cleavage leads to the 

elimination of a water molecule as depicted in Scheme 4. Similarly to aflatoxins B1 and B2 

Merz-Kollman ESP charges were computed for G1 and G2. According to the results the most 

negative partial charges are located on the oxygen atoms O(15), O(16) and O(2) being O(15) 

only marginally more negative than the two others. This means that in contrast to aflatoxins 

B1 and B2 now we have three highly favored protonation sites (see Table S1. in the 

Suppoting Information). The protonation at O(2) resulted in the cleavage of C(1)-O(2) even 

in the optimized geometries (see Table S2. in the Suppoting Information). 

 

Scheme 4. 

 

The resulting water-loss product ion can further decompose by elimination of a C3O2 or a CO 

unit. Fig.6. shows the relative intensity of the product ion formed by elimination of a water 

molecule ([M+H-H2O]+) and that of the [M+H-H2O-CO]+ and [M+H-H2O-C3O2]
+ ions. 

 

Fig. 6. 

 

Fig. 6. shows that elimination of water from the precursor ion starts at ca. 15 eV. Furthermore, 

it is also evident from Fig. 5. that ejections of CO and a C3O2 unit from the [M+H-H2O]+ ion 

occurs nearly at the same collision energy (ca. 20 eV). However, the relative intensity of the 

[M+H-H2O-CO]+ ion at higher collision energies is significantly lower than that of the [M+H-
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H2O-C3O2]
+ ion indicating the higher stability of the latter. The higher stability of the [M+H-

H2O-C3O2]
+ ion with respect to that of [M+H-H2O-CO]+ ion can be explained by the 

fragmentation channel presented in Scheme 4. Accordingly, elimination of a C3O2 unit from 

the [M+H-H2O]+ ion leads to the formation of a relatively stable aromatic benzopyrylium 

cation. 

The elimination of a CO molecule directly from the precursor ion also occurred in the case of 

aflatoxins G1 and G2, and the [M+H-CO]+ ion further decomposed by a series of elimination 

of CO and C2H4 molecules. Moreover, this fragmentation channel is less significant in the 

case of aflatoxins G1 and G2 than with aflatoxins B1 and B2. In addition, the elimination of a 

methyl radical from the protonated aflatoxins G1 and G2 leading to the formation of radical 

cations, occurred only in a very vanishing extent. These observations indicate that protonation 

of the ether- or lactone-oxygen atom connected to saturated C-C bonds opens a low activation 

energy fragmentation channel which is dominant over the radical ones with high activation 

energies. 

 

Conclusion 

The fragmentation properties of four aflatoxins including B1, B2, G1 and G2 were studied by 

energy-variable tandem mass spectrometry. The MS/MS results show that the main 

fragmentation channels of the investigated aflatoxins are accompanied by the losses of CO, 

H2O and CH3 radical. It is shown that a relatively small modification in the structure of 

aflatoxins dramatically alters the fragmentation properties and this is particularly true for 

aflatoxins B1 and B2. Due to the presence a C=C double bond connected to the ether group in 

aflatoxin B1 no elimination of water was observed but, instead, formation of radical-type 

product ions was identified. On the contrary, in the case of aflatoxin B2 one of the main 

fragmentation channels was the elimination of a water molecule, while the presence of 

radical-type product ions in the MS/MS spectra was not significant. Most probably due to the 

presence of a lactone ring in aflatoxins G1 and G2, the product ions were formed by the 

elimination of a H2O molecule from the precursor ion. These product ions occurred in a 

significant extent, while the radical-type cations appeared only with low relative intensity in 

the APCI-MS/MS spectra. Moreover, sequential losses of CO molecules were observed for all 

of the studied aflatoxin derivatives. Interestingly, fragmentation of aflatoxin B1 yields the 

most abundant radical-type cations, and this is in line with the well-known experience that 

among the four aflatoxin derivatives substance B1 is the most dangerous to health. 
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Supporting Information 

Additional supporting information (Merz-Kollman ESP charges, selected bond length values 

and Cartesian coordinates of the optimized structures) can be found in the online version of 

this article. 
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Legends for the Schemes and Figures 

 

Scheme 1. 

The structures of the investigated aflatoxin derivatives. 

 

Scheme 2. 

Proposed fragmentation pathway for the protonated aflatoxin B1. The numbers below the 

compositions represent the calculated (upper) and the measured (lower) masses. 

 

Scheme 3. 

Proposed fragmentation mechanism for the elimination of a H2O molecule for protonated 

aflatoxin B2. 

 

Scheme 4. 

Proposed fragmentation mechanism for the eliminations of H2O and C3O2 units from 

protonated aflatoxin G1 and G2. 

 

Figure 1. 

Survival yield (SY) versus collision energy curves for the protonated aflatoxin B1, B2, G1 

and G2. 

Figure 2. 

APCI-MS/MS spectrum of protonated aflatoxin B1 recorded at 38 eV collision energy. 

 

Figure 3. 

(a) Variation of the relative intensities of the precursor ion and product ions formed by 

consecutive losses of CO molecules as a function of the collision energy in the case of 

protonated aflatoxin B1: [M+H-CO]+ (m/z 285), [M+H-2CO]+ (m/z 257), [M+H-3CO]+ (m/z 

229), [M+H-4CO]+ (m/z 201), [M+H-5CO]+ (m/z 173). Figure inset shows the relative 

intensity versus collision energy curves for the product ions 

[M+H-CO]+ (m/z 285), [M+H-CO-CH3]
+ (m/z 270) and [M+H-2CO]+ (m/z 257). 

(b) The normalized relative intensities versus collision energy for the product ions formed by 

consecutive losses of CO molecules. 
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Figure 4. 

The zoomed MS/MS spectrum of protonated aflatoxin B1 at around m/z 229 at 38 eV 

collision energy. The inset shows the relative intensity versus collision energy curves for the 

product ions m/z 257 ([M+H-2CO]+), [M+H-3CO]+ (257-CO) and [M+H-2CO-C2H4]
+ (257-

C2H4). 

 

Figure 5. 

MS/MS spectrum of protonated aflatoxin G1 recorded at 32 eV collision energy. 

 

Figure 6. 

The variation of the relative intensities for the product ions [M+H-H2O]+ (m/z 311), [M+H-

H2O-CO]+ (m/z 283) and [M+H-H2O-C3O2]
+ (m/z 243) as a function of the collision energy in 

the case of aflatoxin G1. 
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Scheme 1. 
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Scheme 2. 
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Scheme 3. 
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Scheme 4. 
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Fig. 2. 
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Fig. 3. 
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Fig. 4. 
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Fig. 5. 
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Fig. 6. 
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