
A Review of Congestion Management Algorithms on Cisco
Routers

SZILÁGYI Szabolcs1, ALMÁSI Béla2

1 Department of Computer Science,
University of Oradea, Faculty of Electrical Engineering and Information Technology,

Universit ii 1, 410087 Oradea, Romania, E-Mail: szilagyi.szabolcs@inf.unideb.hu, sszilagyi@uoradea.ro

2Department of Informatics Systems and Networks,
University of Debrecen, Faculty of Informatics,

Kassai 26, 4028 Debrecen, Hungary, E-Mail: almasi.bela@inf.unideb.hu

Abstract – This paper presents one of the features of
DS (Differentiated Services) architecture, namely the
queuing or congestion management. Packets can be
put in separate buffer queues, on the basis of DS value.
Several forwarding policies can be used to favor high
priority packets in different ways. The main reason for
queuing is that a router must hold a packet in its
memory, and meanwhile the outgoing interface is busy
with sending another packet. The queuing tools are
covered in the order in which they were added as Cisco
IOS features: FIFO (First-In First-Out), CQ (Custom
Queuing), PQ (Priority Queuing), WFQ (Weighted
Fair Queuing), CBWFQ (Class Based Weighted Fair
Queuing) and LLQ (Low Latency Queuing).

Keywords: congestion; queuing; FIFO; PQ; CQ;
WFQ; CBWFQ; LLQ.

I. INTRODUCTION

In the beginning, the Internet was designed for data
processing applications where delays were not very
important. In the majority of cases a best effort delivery
service was enough, and when data was lost or
corrupted, the TCP protocol took care of the
retransmission and recovery which was necessary.
Today these expectations have changed due to the
growth of multimedia applications, which require higher
bandwidth (they need megabits per second instead of
kilobits per second which was used for data processing
applications). Nowadays applications are quite sensitive
for the delays experienced when transmitting over the
Internet. Therefore it is important to keep track of the
delay and delay variation (jitter) and ensure they don’t
overgrow.That is why it is needed to support a variety of
traffic with different quality of service (QoS) [1]. The
most important side of this is how to share the existing
resources while experiencing congestion. In order to
proceed with this, it is needed that different mechanisms
help differentiate between the types of traffic
(prioritize).

The mechanisms which facilitates the queuing on
each interface consists in hardware and software
components.[2] If the hardware queue, often named

“transmit queue” (TxQ) is not congested or full
(exhausted), the packets are not kept in the software
queue. They are switched directly to the hardware
queue, where they are transferred quickly to the medium
using FIFO order. In the case when the hardware queue
is full, the packets are held in the software queue,
processed, and released to the hardware queue based on
the software queuing discipline. (Figure 1) [3].The
software queuing discipline could be FIFO (First-In
First-Out), CQ (Custom Queuing), PQ (Priority
Queuing), WFQ (Weighted Fair Queuing), CBWFQ
(Class Based Weighted Fair Queuing) and LLQ (Low
Latency Queuing).

Figure 1. Queuing components.

II. FIFO QUEUING

First-In First-Out (FIFO) is the most simple modality
of queuing. The incoming packets are put in a single
queue and are processed in the order of receiving them.
(Figure 2) Packets are dropped when the FIFO queue is
full (tail drop). [2] This queuing type requires little
computation and its behavior is very predictable, i.e. the
delay of packet is a direct function of the queue size.
Cisco IOS defaults to use FIFO on Fast Ethernet and
Gigabit Ethernet interfaces with bandwidths above E1
speeds (2.048 Mbps). [4] There are several undesirable
characteristics related to this queuing policy, because of
its simplistic approach. [1]

It is not possible to offer different services for
different packet classes as all packets are put into
the same queue.

__103Journal of Computer Science and Control Systems

If an incoming flow suddenly becomes bursty,
then it is possible for the entire buffer space to be
filled by this single flow and other flows will not be
serviced until the buffer is emptied.

Figure 2. FIFO.

III. PRIORITY QUEUING

“A simple way to offer different services to different
classes of packets is Priority Queuing. Its operation
involves classifying each incoming packet into different
priorities and placing them into separate queues
accordingly.” [1] In Cisco IOS, PQ uses up to four
queues, named high, medium, normal, and low (Figure
3) [5], and they are scheduled as shown in Figure 4. [4]
The packets having the highest priority are transferred
on the output port before the lower priority packets. [1]
PQ uses tail-drop logic, so when a new packet arrives
for a particular queue, and the queue is full, the new
packet is dropped. Even if this queuing type is suitable
of providing differentiated service, it also has some
drawbacks, such as large continuous flow of high
priority traffic into the queue, equals excessive delay,
and perhaps even service starvation for lower priority
packets [1].

Medium

High

Normal

Low

Incoming
packets

Outgoing
packets

Classifier Scheduler

Figure 3. PQ.

Figure 4. PQ scheduling logic [4].

CQ addresses the biggest shortcoming of PQ

ens

que

IV. CUSTOM QUEUING

uring a guaranteed minimum bandwidth to each
queue, thereby queue starvation is avoided. With CQ up
to 16 queues can be created by the network
administrator in order to categorize traffic. (Figure 5)
The queues are emptied one by one in a round-robin
fashion, starting with queue 1. CQ takes packets from
the queue, until the total byte count which was specified
for the queue has been met or exceeded. After the queue
has been serviced for the defined byte count, or when
the queue does not have any more packets, CQ moves
on to the next queue and repeats the process. (Figure 6)

One of the CQ queues can be setup as a default
ue in order to manage traffic that is not identified

specifically by the classification process. There is also
one system queue which is hidden, used for important
overhead traffic (routing protocol hellos, etc.). This
system queue is serviced before all other queues. Cisco
permits use of this queue 0, but does not recommend it.
CQ uses the same classification options, and can use tail
drop only for managing drops. [4]

Figure 5. CQ.

The disadvantage of CQ as compared to PQ, is the
lac

,

k of a high-priority queue that is always serviced
first. That is, CQ has no way to provide guaranteed low-
latency service to any traffic. The CQ scheduler reserves
an approximate percentage of overall link bandwidth for
each queue, but instead of configuring actual
percentages, CQ approximates the bandwidth
percentages using a simple algorithm.

Figure 6. CQ scheduling logic for current queue [4].

__104 Volume 5, Number 1, May 2012

V. WEIGHTED FAIR QUEUING

Processor Sharing (PS) is a type of queuing
me

 Fair Queuing (WFQ) [6] is a subtype of
Pro

as

ere is a time stamp on each incoming
pac

thodology having the purpose to allow fair access for
each incoming flow and to prevent a bursty flow from
consuming all the output bandwith. PS includes a queue
for each distinct flow and packets from each flow are
put into its appropriate queue. Then the system serves
the queues one packet at a time using a round-robin
approach.

Weighted
cessor Sharing (PS) and it supports flows with

different bandwidth requirements.[1] Weighted fair
queuing differs from PQ and CQ in some significant
features. Most obviously we can mention that WFQ does
not allow classification options to be configured. Based
on flows, WFQ classifies packets automatically, with
each flow being placed into a separate queue. (Figure 7)

For the purposes of WFQ, a flow can be described
all packets with the same values for: source IP

address, destination IP address, Transport layer protocol,
TCP or UDP source port, TCP or UDP destination port
and IP Precedence. Because WFQ puts packets of
different flows in different queues, must have a greater
number of queues than all of the non-flow-based
queuing instruments. The WFQ scheduler uses logic that
is somehow different from the logic of other queuing
tools in order to be able to deal with the larger number
of queues. [4]

In WFQ, th
ket with a finish time in addition to placing into its

corresponding flow queue. In contrast to Processor
Sharing, the selection of the packet to be served is now
based on the time stamp on each packet. Further packets
are serviced by examining their finish times. “The ones
with earlier finish times are transmitted before the ones
which have later finish times. It is possible for a later
packet to have a finish time stamp that is smaller than an
earlier packet.” [1]

igure 7. WFQ.

The WFQ scheduler takes the packet having the
low

revious_SN + (weight * new_packet_length) (1)

Wh

weight = 32,384 / (IP_Precedence + 1) (2)

“The formula considers the length of the new packet,
the

l
dro

 F

est finish time (FT) (sometimes called sequence
number, or SN) when it needs to move the next packet to
the hardware queue. WFQ associates to each packet an
SN when the packet is added to a WFQ flow queue. The
WFQ scheduler includes both the packet length and IPP
when calculating the SN. The formula to calculate the
SN for a packet is as below:

P

ere weight is calculated as follows:

 weight of the flow, and the previous SN. By
considering the packet length, the SN calculation results
in a higher number for larger packets, and a lower
number for smaller packets. By including the SN of the
previous packet enqueued into that queue, the formula
assigns a larger number for packets in queues that
already have a larger number of packets enqueued. And
by putting the weight (IPP + 1) in the denominator,
packets with higher IPP values end up with lower SNs.

WFQ uses a two-step process called modified tai
p to choose when to drop packets. First, WFQ

considers the absolute limit on the number of packets
enqueued among all queues. This limit is called the
hold-queue limit. If a new packet arrives, and the hold-
queue limit has been reached, the packet is discarded.
That part of the decision is based not on a single queue,
but on the whole WFQ queuing system for the interface.
Second, WFQ considers the length of the queue into
which the newly arrived packet will be placed. Before
adding a new packet to its queue, the congestive discard
threshold (CDT) is checked against the actual length of
that queue. If that queue is longer than CDT packets
long, one packet is discarded—but maybe not the newly
arrived packet. Figure 8 depicts the WFQ drop decision
process.

Figure 8. WFQ modified tai p and congestive discard

WFQ can be configure or a maximum of 4096
que

l dro
threshold [4].

d f

ues. The allowed configurable values are powers of
2, between 16 and 4096, inclusive. IOS restricts the
values because WFQ performs a hash algorithm to
classify traffic, and the hash algorithm only works when
the number of queues is one of these valid values.
Additionally, WFQ keeps eight hidden queues for

__105Journal of Computer Science and Control Systems

overhead traffic generated by the router. WFQ uses a
very low weight for these queues to give preference to
the overhead traffic.” [4].

VI. CLASS BASED WEIGHTED FAIR QUEUING

“CBWFQ [7] carries the WFQ algorithm further by
allo

wing user defined classes, which allow greater
control over traffic queuing and bandwidth allocation.
CBWFQ provides the power and ease of configuration
of WFQ, along with the flexibility of custom queuing.
CBWFQ allows the creation of up to 64 individual
classes plus a default class. (Figure 9) The number and
size of the classes are based on the bandwidth. By
default, the maximum bandwidth that can be allocated to
user-defined classes is 75 percent of the link speed. This
maximum is set so that there is still some bandwidth for
Layer 2 overhead, routing traffic (BGP, EIGRP, OSPF,
and others), and best-effort traffic.

Figure 9. CBWFQ.

ach user-defined class is guaranteed a certain

ban

to one of the defined classes
are

VII. LOW LATENCY QUEUING

Neither WFQ nor CBW Q can provide guaranteed
ban

E
dwidth, but classes that exceed that bandwidth are

not necessarily dropped. Traffic in excess of the class’s
guaranteed bandwidth may use the “free” bandwidth on
the link. “Free” is defined as the circuit bandwidth
minus the portion of the guaranteed bandwidth currently
being used by all user-defined classes. Within this “free”
bandwidth, the packets are considered by fair queuing
along with other packets, their weight being based on
the proportion of the total bandwidth that was
guaranteed to the class. [8]

All packets not falling in
 considered part of the default class. The default class

can be configured to have a set bandwidth like other
user-defined classes, or configured to use WFQ in the
remaining bandwidth and treated as best effort. When
the fair queuing buffers overflow, packets are dropped
with tail drop unless WRED (Weighted Random Early
Detection) [9] has been configured for the class’s policy.
In the latter case, packets are dropped randomly before
buffers totally run out in order to signal the sender to
throttle back the transmission speed.” [4]

F

dwidth and low-delay guarantee to selected
applications such as VoIP. “That is because those
queuing models have no priority queue. Certain
applications such as VoIP have a small end-to-end delay

budget and little tolerance to jitter. LLQ [10] includes a
strict-priority queue that is given priority over other
queues, which makes it ideal for delay and jitter-
sensitive applications. Unlike the plain old PQ, whereby
the higher-priority queues might not give a chance to the
lower-priority queues and effectively starve them, the
LLQ strict-priority queue is policed. This means that the
LLQ strict-priority queue is a priority queue with a
minimum bandwidth guarantee, but at the time of
congestion, it cannot transmit more data than its
bandwidth permits. If more traffic arrives than the strict-
priority queue can transmit, it is dropped. Hence, at
times of congestion, other queues do not starve, and get
their share of the interface bandwidth to transmit their
traffic. Figure 10 shows an LLQ.

Class 1
Bandwidth=216

Priority queue
Min Bw=384

Class 2
Bandwidth=169

Class Default
Bandwidth=31 kbps

Incoming
packets

Outgoing
packets

Class-based
Classifier

CBWFQ
Scheduler

.

.

.
Up to 64

Figure 10. LLQ.

As we can see, LLQ is effectively a CBWFQ with
one

 strict-priority queues added. It is possible to have
more than one strict priority queue. This is usually done
so that the traffic assigned to the two queues – voice
[11], [12] and video traffic, for example - can be
separately policed. However, after policing is applied,
the traffic from the two classes is not separated. It is sent
to the hardware queue based on its arrival order (FIFO).
As long as the traffic that is assigned to the strict-
priority class does not exceed its bandwidth limit and is
not policed and dropped, it gets through the LLQ with
minimal delay. This is the benefit of LLQ over
CBWFQ.” [3] The LLQ scheduler logic is shown in
Figure 11.

Figure 11. LLQ scheduler logic [4].

__106 Volume 5, Number 1, May 2012

Table 1 summarizes some of the key points
reg

TABLE 1. Queuing protocol comparison [4].

Feature

PQ C
Q

Q

VII. CONCLUSIONS

arding the IOS queuing tools covered in this paper.

FI
FO

W
FQ

C
BW

F

LL
Q

Includes a
y es strict-priorit

queue

Y

Yes

Polices priority

e
queues to
prevent
starvation

s

Y

Reserves
bandwidth
queue

 per

es

es eY Y

s Y

Includes robust

cation

es e
set of
classifi
fields

Y

s

Y

Classifies based
es

es2 eon flows Y Y

s2 Y

Maximum
1

1 4096 64 number of

queues
4 61

64

 queue that is unavailable for customer use.

REFERENCES

] T. Svensson, A. Popescu, “Development of laboratory

Student

 Mehta, “CCIE Routing and

rvice Solutions Configuration

orks -

aly, D. Donohue, “CCIE Routing and

urand, J. Sommerville, M.Buchmann, R. Fuller,

, E. Rozell, “Configuring

o Voice

orks -

CH Open

1Also includes a system
es

Qu

2WFQ can be used in the class-default queue, or in all CBWFQ queu
in 7500 series routers.

[1
exercices based on OPNET Modeler”, Master thesis,
Blekinge Institute of Technology, Department of
Telecommunications and Signal Processing, 2003

[2] QOS, “Implementing Cisco Quality of Service”,
Guide, Volume 2, Version 2.2, © 2006 Cisco Systems Inc.

[3] A. S. Ranjbar, “CCNP ONT Official Exam Certification
Guide”, Cisco Press, 2007

[4] W. Odom, J. Geier, N.
Switching Official Exam Certification Guide”, Second
Edition, Cisco Press, 2006

[5] “Cisco IOS Quality of Se
Guide”, Release 12.4T, © 2008 Cisco Systems Inc.

[6] M. Barreiros, P. Lundqvist, “QOS-Enabled Netw
Tools and Foundations”, A John Wiley & Sons, Ltd.,
Publication, 2011

[7] W. Odom, R. He
Switching Certification Guide”, 4th Edition, Cisco Press,
2010

[8] B. D
“Administering Cisco QoS in IP Networks”, Syngress
Publishing, Inc., 2001

[9] R. S. Benn, S.C. Kronenberg
Cisco AVVID – Architecture for Voice, Video, and
Integrated Data”, Syngress Publishing, Inc., 2001

[10] K. Wallance, “Authorized Self-Study Guide - Cisc
over IP (CVOICE)”, 3rd Edition, Cisco Press, 2009

[11] P. K. Verma, L. Wang, “Voice over IP Netw
ality of Service, Pricing and Security”, Lecture Notes in

Electrical Engineering, Vol. 71, Springer, 2011
[12] S. Kashihara, “VoIP Technologies”, INTE

Access Publisher, 2011

__107Journal of Computer Science and Control Systems

