AUTHOR QUERY FORM

Dear Author,

Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen annotation in the PDF file) or compile them in a separate list. Note: if you opt to annotate the file with software other than Adobe Reader then please also highlight the appropriate place in the PDF file. To ensure fast publication of your paper please return your corrections within 48 hours.

For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions.
Any queries or remarks that have arisen during the processing of your manuscript are listed below and highlighted by flags in the proof. Click on the ' Q ' link to go to the location in the proof.

Location in article	Query / Remark: click on the \mathbf{Q} link to go Please insert your reply or correction at the corresponding line in the proof
$\underline{\mathrm{Q} 2}$	Please confirm that given names and surnames have been identified correctly. Please check the email address for the corresponding author that has been added here, and correct if necessary. This section comprises references that occur in the reference list but not in the body of the text. Please position each reference in the text or, alternatively, delete it. Any reference not dealt with will be retained in this section. Please check the journal title in Refs. [3,9]. Please provide the volume number for Refs. [27,37]. Please provide a caption for Scheme 1.

Thank you for your assistance.

Synthesis, enzyme kinetics and computational evaluation of N-(β-d-glucopyranosyl) oxadiazolecarboxamides as glycogen phosphorylase inhibitors
Mária Polyák, Gergely Varga, Bence Szilágyi, László Juhász*, Tibor Docsa, Pál Gergely, Jaida Begum, Joseph M. Hayes, László Somsák*

Synthesis, enzyme kinetics and computational evaluation of N-(β-d-glucopyranosyl) oxadiazolecarboxamides as glycogen phosphorylase inhibitors

$10 \quad{ }^{\text {a D Department of Organic Chemistry, University of Debrecen, PO Box 20, H-4010 Debrecen, Hungary }}$
${ }^{\text {b }}$ Department of Medical Chemistry, Medical and Health Science Centre, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary

ARTICLE INFO

Article history:

Received 6 May 2013
Revised 8 July 2013
20 Accepted 10 July 2013
Available online xxxx

Keywords:

1,2,4-Oxadiazole

1,3,4-Oxadiazole

β-d-Glucopyranosyl derivatives
Glycogen phosphorylase
Inhibitor
ADMET

Abstract

All possible isomers of N - β-D-glucopyranosyl aryl-substituted oxadiazolecarboxamides were synthesised. O-Peracetylated N-cyanocarbonyl- β-D-glucopyranosylamine was transformed into the corresponding N -glucosyl tetrazole-5-carboxamide, which upon acylation gave N -glucosyl 5-aryl-1,3,4-oxadiazole-2carboxamides. The nitrile group of the N-cyanocarbonyl derivative was converted to amidoxime which was ring closed by acylation to N-glucosyl 5-aryl-1,2,4-oxadiazole-3-carboxamides. A one-pot reaction of protected β-d-glucopyranosylamine with oxalyl chloride and then with arenecarboxamidoximes furnished N-glucosyl 3-aryl-1,2,4-oxadiazole-5-carboxamides. Removal of the O-acetyl protecting groups by the Zemplén method produced test compounds which were evaluated as inhibitors of glycogen phosphorylase. Best inhibitors of these series were N-(β-d-glucopyranosyl) 5-(naphth-1-yl)-1,2, 4-oxadiazol-3-carboxamide ($K_{\mathrm{i}}=30 \mu \mathrm{M}$), N-(β-D-glucopyranosyl) 5-(naphth-2-yl)-1,3,4-oxadiazol-2-carboxamide ($K_{\mathrm{i}}=33 \mu \mathrm{M}$), and N-(β-D-glucopyranosyl) 3-phenyl-1,2,4-oxadiazol-5-carboxamide ($K_{\mathrm{i}}=104$ $\mu \mathrm{M})$. ADMET property predictions revealed these compounds to have promising oral drug-like properties without any toxicity.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Glycogen phosphorylase (GP), the main regulatory enzyme of the glycogen metabolism pathway, is a validated target to control tic glucose output in mellitus (T2DM). ${ }^{1-3}$ T2DM is a major concern to public health ${ }^{4,5}$ with several long term complications ${ }^{6}$ such as cardiovascular disease, neuropathy, retinopathy and nephropathy. Biochemical and pharmacological aspects of T2DM have been amply reviewed and for a detailed rationalization of the possible use of GP inhibitors (GPIs) as antidiabetics, the reader is kindly referred to those articles. ${ }^{1-3}$ Besides T2DM, inhibition of GP has also been studied in connection with diseases caused by abnormalities in glycogen metabolism, ${ }^{7,8}$ such as myocardial ischemia ${ }^{9}$, cerebral ischemia ${ }^{10}$ and tumors. ${ }^{11,12}$

Several types of compounds have been shown to inhibit this enzyme under in vitro conditions. ${ }^{13}$ Among them the glucose

[^0]based inhibitors targeting the catalytic site are the most extensively investigated derivatives ${ }^{14-17}$ and a glucopyranosylid-ene-spiro-thiohydantoin has been shown to have appreciable in vivo hypoglycaemic effects. ${ }^{18}$
N-Acyl- β-D-glucopyranosylamines ${ }^{19-21}$ (Chart $1, \mathbf{I}$), N-aryl- ${ }^{13}$ and N-acyl- N^{\prime} - β-D-glucopyranosyl ureas (II) ${ }^{13,22,23}$ are among the best glucose analogue inhibitors of GP discovered to date, which are efficient in or below the low micromolar range.

Bioisosteric replacement is widely used in medicinal chemistry to design new drug molecules by systematic modification of lead compounds. ${ }^{29}$ Nonclassical bioisosteric replacements of the NHCO moiety in I by heterrocyclic linkers $\mathbf{A}-\mathbf{D}$ (Chart 1) resulted in inhibitors of varying efficiency. ${ }^{24-26}$ Whîle $1,2,3$-triazoles IA proved equipotent with the amides I, among oxadiazoles IB-D the constitution of the ring was decisive for the effect, and only ID was of similar efficiency as I. In these compounds the presence of a large hydrophobic aromatic ring was very advantageous for the inhibition, and derivatives with a 2-naphthyl group were the best inhibitors in each series. Replacements of the 'second' amide moiety in II (highlighted in Chart 1) with heterocycles \mathbf{E} and \mathbf{F} were detrimental for the binding, but revealed that compounds with a phenyl

A

B

C

D

I 10^{20}

16^{24}	10%	38^{27}	12^{26}
36^{25}	at $625 \mu \mathrm{M}^{26}$		

E

F

target compounds of this study:
IIB-D
II 0.35^{13}

Chart 1. Selected inhibitors of GP and their efficiency against rabbit muscle GPb ($K_{\mathrm{i}}(\mu \mathrm{M})$ for $\mathrm{R}=2$-naphthyl).

Scheme 1.
group could bind stronger than those with a 2-naphthyl substituent. ${ }^{28}$

As a continuation of our systematic structure-activity relationship studies ${ }^{25,26,28,30}$ on bioisosteric replacements of NHCO moieties in inhibitors I and II, we have now synthesised new oxadiazolecarboxamide derivatives IIB-D and evaluated through kinetic experiments their potential for GP inhibition. In addition, prediction of absorption, distribution, metabolism, excretion and toxicity (ADMET) properties was also performed to evaluate the drug-like potential of these derivatives.

2. Results and discussion

2.1. Syntheses

Preparation of the target compounds was envisaged and investigated by two possible routes (Scheme 1): formation of the amide $\mathrm{C}-\mathrm{N}$ bond in a direct transformation of protected glucopyranosyl ầide via acylation of the in situ generated iminophosphorane with
an oxadiazolecarboxylic acid or acid chloride, or equivalently, by acylation of glucopyranosylamine (route A), or heterocyclisation of suitable functional groups of the corresponding N -acylated glucopyranosylamine derivatives (route B).

To study synthetic routes A, preparation of the necessary oxadiazolecarboxylic acids was first attempted. Following a literature protocol, commercially available benzhydrazide (1) was ethoxalylated to give 2 (Scheme 2) which was closed to ethyl 5-phenyl-1,3,4-oxadiazole-2-carboxylate (3) in 47% yield. ${ }^{31}$ Hydrolysis of $\mathbf{3}$ gave carboxylic acid 4 in 70% yield. ${ }^{32}$ Synthesis of $1,2,4$-oxadiaz-ole-carboxylic acids was also tried from the corresponding ethyl esters, ${ }^{33}$ however, we were unable to reproduce the reported hydrolytic step ${ }^{34}$ because of opening of the heterocycle.

Acylation of the glycosylimino-trimethylphosphorane obtained from 2,3,4,6-penta-O-acetyl- β-d-glucopyranosyl azide (6) with carboxylic acid 4 failed, however, oxadiazolecarboxamide derivative 10a could be prepared in 10\% yield by using acid chloride 5.

In view of the low yield of this transformation and the failure of getting other oxadiazolecarboxylic acids, we turned to the

Scheme 2. (i) EtOCOCOCl, 3 equiv $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to rt and in the same pot (ii) TsCl , rt, overnight; (iii) LiOH in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}=1: 1$; (iv) SOCl_{2}, reflux; (v) PMe_{3}; $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (vi) dry toluene, $50^{\circ} \mathrm{C}$; (vii) $\mathrm{Me}_{3} \mathrm{SiN}_{3}, \mathrm{Bu}_{2} \mathrm{SnO}$; dry toluene $80^{\circ} \mathrm{C}$; (viii) ArCOCl , dry toluene, reflux; (ix) NaOMe (cat.), MeOH, rt.

Scheme 3. (i) $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}$; dry pyridine; $50^{\circ} \mathrm{C}$; (ii) 1. ArCOCl , dry pyridine-toluene, $110^{\circ} \mathrm{C}$; (iii) TBAF in THF-dry toluene, $110^{\circ} \mathrm{C}$; (iv) NaOMe (cat.), dry MeOH.
preparation of our target compounds by route B (Scheme 1). N-Cyanocarbonyl-2,3,4,6-penta-O-acetyl- β-d-glucopyranosylamine ($\mathbf{8}$, Scheme 2) was the key intermediate of this pathway, which was prepared from glucosylamine 7 in 57% yield by using Renslo's method. ${ }^{35}$ Transformation of $\mathbf{8}$ into N -glucopyranosyl tetrazol-5carboxamide 9 was achieved with $\mathrm{Me}_{3} \mathrm{SiN}_{3}-\mathrm{Bu}_{2} \mathrm{SnO}^{36}$ in 88% yield. The necessary 5 -aryl-1,3,4-oxadiazole derivatives $10 a-c$ were obtained from 9 by the corresponding aroyl chloride in dry toluene
at elevated temperature ${ }^{37}$ in moderate to good yields (10a: 80%; 10b: 74\%, 10c: 30\%). O-Deacetylations were performed by the Zemplén protocol to give excellent yields (up to 87%) of unprotected 1,3,4-oxadiazole derivatives 11a-c.

Next, we turned to the synthesis of N -glucopyranosyl 5-aryl-1,2,4-oxadiazole-3-carboxamides 15a-c (Scheme 3). In a continuous operation, N -cyanocarbonyl derivative $\mathbf{8}$ was transformed into amidoxime 12 by $\mathrm{NH}_{2} \mathrm{OH}$, followed by acylation with aroyl chlorides and ring closure in the presence TBAF to the desired 1,2,4-oxadiazole derivatives 14a-c in moderate overall yields (22-24\%). Synthesis of $\mathbf{1 4 a}$ was also carried out via the isolated but unpurified 12 and fully characterized 13a in a two steps procedure, but the overall yield was similar (28% as compared to 24% by the one-pot reaction). O-Deacetylations by the Zemplén protocol gave the unprotected 5-aryl-1,2,4-oxadiazole derivatives 15a-c in acceptable yields (49-64\%).

Synthesis of N -glucopyranosyl 3-aryl-1,2,4-oxadiazole-5-carboxamides $\mathbf{2 0}$ was attempted by cycloaddition of nitrile-oxides to the CN group of $\mathbf{8}$, however, this resulted in an unseparable multicomponent product mixture. To get 20 in a less direct but one-pot procedure, acylation of glucopyranosylamine $\mathbf{7}$ was achieved with $(\mathrm{COCl})_{2}$ in dry THF (Scheme 4) to give the N-substituted oxamidoyl chloride 16. Next, freshly prepared arenecarboxamidoximes 18ac, ${ }^{38-40}$ obtained from the corresponding nitriles 17a-c, werê acylated by $\mathbf{1 6}$ to furnish 19a-c which underwent immediate ring closure to the desired 3 -aryl-1,2,4-oxadiazole-5-carboxamides 20a-c in low to acceptable yields (15-55\%). O-Deacetylations were

Scheme 4. (i) $(\mathrm{COCl})_{2}$ in dry THF at $0^{\circ} \mathrm{C}$; (ii) amidoximes 18a-c, THF, rt; (iii) NaOMe in dry MeOH ; (iv) $\mathrm{NH} \mathrm{H}_{2} \mathrm{OH} \cdot \mathrm{HCl}$, dry pyridine, $50^{\circ} \mathrm{C}$.
performed by the Zemplén protocol to give good ($62_{\bar{\alpha}} \mathbf{7 9 \%}$) yields of unprotected 3 -aryl-1,2,4-oxadiazole derivatives 21a-c.

2.2. Enzyme inhibition studies

The kinetic parameters of the deprotected compounds (inhibition constants (K_{i}) against rabbit muscle glycogen phosphorylase b (RMGPb)) were determined according to the protocol described earlier. ${ }^{41}$ The results are summarized in Table 1, together with the $K_{i}-\mathrm{s}$ of relevant reference compounds.

The new N -glucopyranosyl oxadiazole-carboxamides showed inhibitory properties in a very broad range from inactive compounds to low micromolar inhibitors. The most remarkable observation was that the best compounds in the different series did not have the same aromatic moiety as it could have been expected from previous experiences. Thus, from 1,3,4-oxadiazoles 11, from 5 -aryl-1,2,4-oxadiazoles 15, and from 3 -aryl-1,2,4-oxadiazoles 21, the 2-naphthyl 11b, the 1-naphthyl 15c, and the phenyl 21a derivatives, respectively, were the best inhibitors. Since the size of the heterocycles must be very similar, this phenomenon might be due to variations of interactions between the oxadiazole rings and the enzyme as well as to the probably different orientations of the aromatic substituents. It is also worth noting that in two series the 2 -naphthyl derivatives $\mathbf{1 5 b}$ and $\mathbf{2 1 b}$ were inactive, although this was similar to the cases of isoxazoles 22 and 1,2,3-triazoles $\mathbf{2 3}$. In comparison to the homoaromatic N -glucopyranosyl arenecarboxamides 24 the inhibition of the oxadiazolecarboxamides was generally weaker for the phenyl (a) and the 2-naphthyl (b) derivatives, while stronger for the 1-naphthyl (c) compounds. This may be attributed to the different size of the molecules and the orientation of the aromatic rings. Finally, a comparison to the 'parent' molecules $\mathbf{2 5}$ used as lead for the bioisosteric replacement showed a significant loss of the activity with each of the aromatic substituents. Molecular dockings to get a better insight in the structural details of the binding peculiarities of these and other heterocyclic N -glucopyranosyl carboxamides as well as to predict more efficient structures are in progress.

Table 1
Inhibition of rabbit muscle glycogen phosphorylase b (RMGPb) by the new compounds and selected glucose derivatives $K_{\mathrm{i}}(\mu \mathrm{M})$
(23

[^1]
2.3. ADMET properties calculations

Unfavourable absorption, distribution, metabolism, excretion and toxicity (ADMET) properties can in many cases lead to the clinical trials failure of otherwise potentially successful drug candidates. Their evaluation, therefore, at an earlier stage is desired. ${ }^{43,44}$ Accordingly, we have predicted ADMET properties of our inhibitors using the QikProp 3.5 program (Schrodinger, LLC) which estimates both physically significant descriptors and pharmaceutically relevant properties. Considering the reported accuracy of ALOGPS ${ }^{45}$ in comparison with other programs, ${ }^{46} \log S$ (aqueous solubilities) and $\log P(o / w)$ (partition of ligands in an octanol/water mixture) values from ALOGPS 2.1 are also reported. Meanwhile, toxicity is the leading cause of drug attrition in clinical trials, together with lack of efficacy. ${ }^{47}$ Therefore, toxicity structural warnings for our inhibitors were also probed using the FAF-Drugs2 server. ${ }^{48}$

The results of our calculations are given in Table 2. Property predictions that are outside the range observed for 95% of known drugs (QikProp, version 3.5, User Manual) are flagged with an asterisk (*), while violations of Lipinski's 'rule of five' ${ }^{49}$ Jorgensen's 'rule of three ${ }^{, 50,51}$ (QikProp 3.5 User Manual) $\hat{\text { for oral bioavailability are }}$ highlighted in italics. The property values should be treated as approximate but serve as a useful guideline for future ligand studies, of particular relevance here.

As a first test of the drug-likeness of the ligands, we applied Lipinski's 'rule of five' requiring candidates to have no more than 5 and 10 hydrogen bond donors (HBDs) and acceptors (HBAs), respectively, molecular weights (MW) less than 500 amu , and log $P(o / w)$ values less than 5 . An orally active compound/drug should have no more than one violation of these rules. No violations of these rules was observed for any of our inhibitors. Furthermore, the properties were within the range of values for 95% of known drugs. Satisfactory agreement between QikProp and 'consensus' ALOGPS ${ }^{45} \log P(o / w)$ values was obtained, with a root-mean-square deviation (RMSD; Eq. (1)) of 1.1 and a maximum absolute difference of 1.3 units.

Jorgensen's 'rule of three' considers a Caco-2 cell permeability value $>22 \mathrm{~nm} \mathrm{~s}^{-1}$ (used as a model for gut-blood barrier ${ }^{53}$, a log S value $\gg-5.7$ and number of primary metabolites (NPM) <7 to be characteristic of potential drugs with better oral bioavailability, more 'drug-like' molecules having fewer violations. The $\log S$ and NPM criteriâ are satisfied for all ligands. The RMSD (Eq. (1)) between QikProp and ALOGPS $\log S$ values was 0.6 , with a maximum absolute difference of 0.7 units. The Caco-2 cell permeabilities (18$22 \mathrm{~nm} \mathrm{~s}^{-1}$), however, are generally borderline the Jorgensen limit and outside the desirable range of 95% of known drugs ($>25 \mathrm{~nm} \mathrm{~s}^{-1}$). This is consistent with inhibitor polar surface areas (PŜAs; $\sim 170 \AA^{2}$) exceeding Veber et al., ${ }^{52}$ suggested limit (PSA $<140 \AA^{2}$), , but contrary to the PSAs lying within the range for 95% of known drugs ($7-200 \AA^{2}$). It is clear, however, that the sensitive balance between adequate lipophilicity and solubility properties will need attention in 'lead optimization' of any heterocylic derivative conjugated to glucose found to have attractive GP inhibitory potential (low $\mu \mathrm{M}$ activity or better).

The degree of plasma protein binding also affects the amount of bioavailable drug. $\log K_{\mathrm{hsa}}$ is the prediction of the degree of binding to human serum albumin (hsa) and is satisfactory for all ligands (~ 1), within the range for 95% of known drugs ($-1.5-1.5$). Likewise, thê predicted blood-brain barrier co-efficients ${ }^{\hat{}} \log B \widehat{B}$ values: -3.02.7) are within the desirable limits ($-3.0-1.2$). Finally, a completê lack of toxicity structural warnings from FA今F-Drugs2 is encouraging with respect to the toxicity profiles for conjugates of glucose and substituted heterocycles. ${ }^{48}$

Table 2
Results of ADMET property predictions for the inhibitors studied in this work ${ }^{\text {a }}$

Inhibitor	Lipinskis's rule of five and violations ($V)^{\text {b }}$				V	Jorgensen's rule of three and violations $(V)^{\text {b }}$			V	$\begin{aligned} & \operatorname{PSA}^{\mathrm{C}}\left(\AA^{2}\right) \\ & \left(<140 \AA^{2}\right) \end{aligned}$	Log $K_{\text {hsa }}{ }^{\text {d }}$	$\log B B^{\text {e }}$	TSW ${ }^{\text {f }}$
	M_{r} (Da)	HBD ${ }^{\text {g }}$	$\mathrm{HBA}^{\text {h }}$	$\log P(\mathrm{o} / \mathrm{w})^{\mathrm{i}}$		Caco-2 ${ }^{\text {j }}$ ($\mathrm{nm} \mathrm{s}^{-1}$)	$\log S^{\text {i }}$	NMP ${ }^{\text {k }}$					
	(<500)	$(\leqslant 5)$	$(\leqslant 10)$	(<5)		(<22)	(>-5.7)	(<7)					
11a	351.3	5	10	$\begin{aligned} & -1.4 \\ & (-0.8 \pm 0.7) \end{aligned}$	0	22.3*	$\begin{aligned} & -2.6 \\ & (-2.0) \end{aligned}$	6	0	170.7	-1.04	-2.7	-
11b	401.4	5	10	$\begin{aligned} & -0.6 \\ & (0.3 \pm 0.7) \end{aligned}$	0	22.3*	$\begin{aligned} & -3.4 \\ & (-2.7) \end{aligned}$	6	0	170.7	-0.85	-2.8	-
11c	401.4	5	10	$\begin{aligned} & -0.7 \\ & (0.3 \pm 0.7) \end{aligned}$	0	21.8*	$\begin{aligned} & -3.3 \\ & (-2.7) \end{aligned}$	6	1	171.2	-0.85	-2.8	-
15a	351.3	5	10	$\begin{aligned} & -1.6 \\ & (-0.7 \pm 0.5) \end{aligned}$	0	18.5*	$\begin{aligned} & -2.6 \\ & (-2.0) \end{aligned}$	5	1	171.9	-1.10	-2.8	-
15b	401.4	5	10	$\begin{aligned} & -0.8 \\ & (0.4 \pm 0.5) \end{aligned}$	0	21.1*	$\begin{aligned} & -3.3 \\ & (-2.7) \end{aligned}$	5	1	170.4	-0.91	-2.9	-
15c	401.4	5	10	$\begin{aligned} & -0.9 \\ & (0.4 \pm 0.5) \end{aligned}$	0	21.9*	$\begin{aligned} & -3.3 \\ & (-2.7) \end{aligned}$	5	1	170.5	-0.92	-2.8	-
21a	351.3	5	10	$\begin{aligned} & -1.6 \\ & (-0.7 \pm 0.5) \end{aligned}$	0	19.4*	$\begin{aligned} & -2.6 \\ & (-2.0) \end{aligned}$	5	1	171.3	-1.10	-2.8	-
21b	401.4	5	10	$\begin{aligned} & -0.9 \\ & (0.4 \pm 0.5) \end{aligned}$	0	18.1*	$\begin{aligned} & -3.4 \\ & (-2.7) \end{aligned}$	5	1	172.4	-0.91	-3.0	-
21c	401.4	5	10	$\begin{aligned} & -0.9 \\ & (0.4 \pm 0.5) \end{aligned}$	0	20.0*	$\begin{aligned} & -3.3 \\ & (-2.6) \end{aligned}$	5	1	171.4	-0.92	-2.9	-
Range ${ }^{1}$	130-725	0-6	2-20	-2.0-6.5	-	<25 poor; >500 great	-6.5-0.5	1-8	-	7-200	-1.5-1.5	-3.0-1.2	-

${ }^{\text {a }}$ ADMET data were calculated as described in the text using Qikprop 3.5; predicted properties outside the range for 95% of known drugs are indicated with an asterisk (*).
${ }^{\mathrm{b}}$ Rules as listed in the columns, with any violations of the rules highlighted in italics.
${ }^{\text {c }}$ PSA represents the van der Waals (polar) surface areas of N and O atoms ${ }^{52}$ recommended PSA $<140 \AA^{2}$.
${ }^{\mathrm{d}} \log K_{\mathrm{hsa}}$: predicted binding to human serum albumin.
${ }^{\mathrm{e}} \log B B$: the predicted blood-brain barrier co-efficient.
${ }^{\mathrm{f}}$ Toxicity structural warnings from FAF-Drugs2.
${ }^{\mathrm{g}}$ Number of hydrogen bond donors.
${ }^{\text {h }}$ Number of hydrogen bond acceptors.
${ }^{i}$ Values calculated with ALOGPS are given in parentheses (a 'consensus' value \pm standard deviation in the case of $\log P_{(0 / \mathrm{w})}$).
${ }^{\mathrm{j}}$ Caco-2 cell permeability.
${ }^{k}$ Number of primary metabolites.
${ }^{1}$ Range for 95% of known drugs; reference: QikProp version 3.5 User's Manual.

3. Conclusions

Synthetic procedures were elaborated for all possible isomers of N - β-d-glucopyranosyl aryl-substituted-oxadiazolecarboxamides. The compounds with phenyl, 1- and 2-naphthyl substituents were assayed against rabbit muscle GPb to show low micromolar efficiency for the best inhibitors. Both the constitution of the oxadiazole ring and the type of the aryl substituent had a strong bearing on the inhibition, and the best compounds of the different series were 11b $\left(K_{\mathrm{i}}=30 \mu \mathrm{M}\right)$, 15c $\left(K_{\mathrm{i}}=33 \mu \mathrm{M}\right)$, and 21a ($\left.K_{\mathrm{i}}=104 \mu \mathrm{M}\right)$. ADMET property predictions revealed all ligands to have oral 'drug-like' properties based on Lipinski's 'rule of 5 '. Apart from potential $\widehat{\text { permeability }}$ issues which would require 'optimization' based on Jorgensens 'rule of three', the inhibitors had satisfactory pharmacokinetic profiles and were devoid of any toxicity structural warnings. The consideration of heterocyclic substitutions in $N-\beta$-D-glucopyranosyl carboxamides is thus justified and further syntheses and computational evaluation of such compounds will be reported in due course.

4. Experimental

4.1. General synthetic methods

Melting points were measured in open capillary tubes or on a Kofler hot-stage and are uncorrected. Optical rotations were determined with a Perkin-Elmer 241 polarimeter at room temperature. NMR spectra were recorded with Bruker 360 ($360 / 90 \mathrm{MHz}$ for ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$) spectrometer. Chemical shifts are referenced to TMS as the internal reference $\left({ }^{1} \mathrm{H}\right)$, or to the residual solvent signals. Microanalyses were performed on an Elementar vario Micro cube. TLC was performed on DC-Alurolle Kieselgel $60 \mathrm{~F}_{254}$ (Merck). TLC
plates were visualized under UV light, and by gentle heating. For column chromatography Kieselgel 60 (Merck, particle size (0.063-0.200 mm) was applied.

4.2. 5-Phenyl-1,3,4-oxadiazole-2-carboxylic acid (4)

To the solution of ethyl 5-phenyl-1,3,4-oxadiazole-2-carboxylate $(\mathbf{3})(1.5 \mathrm{~g}, 6.91 \mathrm{mmol})$ in the $1: 1$ mixture of THF/water $(78 \mathrm{~mL})$ $\mathrm{LiOH}(248 \mathrm{mg} ; 10 \mathrm{mmol})$ was added and stirred at roôी temperature for 30 min . Then the mixture was acidified with $\mathrm{CH}_{2} \mathrm{SO}_{4}$ and the pre-
 air. The product is light yellow crystals ($900 \mathrm{mg}, 68 \%$, mp: decomposed over $230{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta(\mathrm{ppm})=7.5-7 . \mathrm{F}^{(\mathrm{m}}(\mathrm{m}, 3 \mathrm{H}$, aromatic), 8.0-8.1 (m, $\widehat{2} \mathrm{H}$, aromatic), 9.1 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{COOH}) .{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta \widehat{(\mathrm{ppm}): ~ 124.5, ~ 128.23, ~ 130.5, ~ 133.5, ~} 166.15$ (arồatic carbons), 178.5 (COOH). Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{3}$ (190.04): C, 56.85; H, 3.18; N, 14.73; Found: C, 56.94; H, 14.85.

4.3. 5-Phenyl-1,3,4-oxadiazole-2-carbonyl chloride (5)

5-Phenyl-1,3,4-oxadiazole-2-carboxylic acid (4) ($400 \mathrm{mg}, 2.11$ mmol) was dissolved in thionyl chloride (4 mL) and refluxed for four hours. Then the mixture was concentrated in vacuum and used without any purification.

4.4. N-Cyanocarbonyl-2,3,4,6-tetra-O-acetyl-d-glucopyranosylamine (8)

To a stirred solution of 2,2-dimethyl-5-(p-tosyloxyimino)-1,3-dioxane-4,6-dione ${ }^{35}$ ($2.19 \mathrm{~g}, 6.7 \mathrm{mmol}$) in dry toluene (50 mL) 2,3,4,6-tetra-O-acetyl- β-d-glucopyranosŷlamine (7) ($2.35 \mathrm{~g}, 6.8^{\wedge}$
mmol) was added and the mixture was stirred for 2 days at $50^{\circ} \mathrm{C}$. Subsequently the mixture was concentrated in vacuum, and the residue purified by column chromatography (eluent: hexane/ethylacetate $=1: 1$) to give $\mathbf{8}$ as white crystals. ($1.54 \mathrm{~g}, 57 \% ;[\alpha]_{\mathrm{D}}=9.33$ in $\left.\mathrm{CHCl}_{3} ; c=0.51\right)$; mp.: $\left.125-145^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})$: $2.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 2.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), \widehat{2} .08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 2.10$
$\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 3.79-3.88(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 4.10(1 \mathrm{H}, \mathrm{dd} ; J=1.8$ and $\left.12.3 \mathrm{~Hz} ; \mathrm{H}-6_{\mathrm{A}}\right), 4.29,\left(1 \mathrm{H}, \mathrm{dd}, J=4.8\right.$ and $\left.12.6 \mathrm{~Hz} ; \mathrm{H}-6{ }_{\mathrm{B}}\right), 5.00,5.08$, $5.29(3 \times 1 \mathrm{H}$; pseudo t ; $J=9.5-9,8 ; \mathrm{H}-2 ; \mathrm{H}-3 ; \mathrm{H}-4), 5.22(1 \mathrm{H}, \mathrm{t}$, $J=9,2 ; \stackrel{\mathrm{H}}{ }-1), 7.86(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})$: 20.66, $20.78\left(4 \times \mathrm{COCH}_{3}\right), 61.66(\hat{\mathrm{C}}-6), 67.85 ; 70.25 ; 72.58 ; 74.20$; 77.92 (C-1, C-2; C-3; C-4; C-5), 110.86 (CN), 143.48 (NHCO), 169.71; 170.05; 170.80; 171.18 ($4 \times$ CO). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{10}$ (400.11): C, $48.00 ; \mathrm{H}, 5.04$; $\mathrm{N}, 7.00$; Found: C: $4 \widehat{8} .05$; H: 5.09; N: 7.03
4.5. N -(2,3,4,6-Tetra-O-acetyl- β-d-glucopyranosyl)-2H-tetrazole-5-carboxamide (9)

A solution of N-cyanocarbonyl derivative ($\mathbf{8}$) ($2.00 \mathrm{~g}, 5.0 \mathrm{mmol}$), trimethylsilyl azide ($2.23 \mathrm{~mL}, 16.96 \mathrm{mmol}$) and $\mathrm{Bu}_{2} \widehat{\mathrm{SnO}}(0.10 \widehat{\mathrm{~g}}$, 0.42 mmol) in anhydrous toluene (90 mL) was stirred overnight at $80^{\circ} \mathrm{C}$. Subsequently the mixture was concentrated in vacuum, and the residue was crystallized from methanol to give 9 as white crystals ($1.95 \mathrm{~g} ; 88 \%$); mp; $110-113^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=-1.61$ in CHCl_{3}; $\left.c=0.335, \mathrm{mp}: 174-177{ }^{\circ} \mathrm{C}\right)$ white solid. ${ }^{\hat{1}} \mathrm{H}$ NMR $\hat{\left(\mathrm{CDCl}_{3}\right)} \delta(\mathrm{ppm})$: $1.9 \hat{3}\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 1.99\left(9 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), \hat{3} .99(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 4.10$ $\left(1 \mathrm{H}, \mathrm{dd}, J=12.3,<1, \mathrm{H}-6_{\mathrm{A}}\right), 4.24\left(1 \mathrm{H}, \mathrm{dd}, J=12.3,2.8, \mathrm{H}-6_{\mathrm{B}}\right), 5.22$, 5.32, 5.47, $5.66(4 \times 1 \mathrm{H}$, pseudo $\mathrm{t}, J=9.6,9.1 \mathrm{~Hz}$ in each, $\mathrm{H}-1, \mathrm{H}-2$, $\mathrm{H}-3, \mathrm{H}-4$,), $7.26-\hat{7} .01\left(1 \mathrm{H}\right.$, brs, NH), 8.74 ($1 \hat{\mathrm{H},}$, brs, CONH), ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 20.54$ and $20.61\left(\mathrm{COCH}_{3}\right), 61.78(\mathrm{C}-6)$, $68.01,70.42,73.07,73.74$ (C-2, C-3, C-4, C-5), 77.96 (C-1), 152.59 (tetrazole C-5), 156.97 (amide CO), 169.69, 170.23, 170.47, $170.83\left(\mathrm{COCH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{10}$ (443.13): C, 43.34; H, 4.77; N, 15.80. Found: C: $\widehat{43.39}$; H: 4.89; N: 15.94.

4.6. General procedures for the preparation of N-(2,3,4,6-tetra0 -acetyl- β-D-glucopyranosyl)-5-aryl-1,3,4-oxadiazole-2carboxamides

Method A: To a solution of 2,3,4,6-tetra-O-acetyl- β-d-glucopyranosyl azide ($\mathbf{6}, 2.3 \mathrm{mmol}$) in dry dichloromethane (14 mL) a solution of PMe_{3} in toluene ($\widehat{2} .3 \mathrm{~mL}$) was added and the mixture was stirred at room temperature. When the starting material was transformed (TLC, eluent: hexane/ethyl-acetate $=1: 1$) an acid chloride (2.3 mmol) was added to the mixture and stirred at room temperature for one day. Subsequently the mixture was concentrated in vacuum and the residue was purified by column chromatography (eluent hexane/ethyl-acetate $=2: 1$).

Method B: A solution of an aroyl-chloride (3.37 mmol) and tetrazole 9 (2.25 mmol) in dry toluene (15 mL) was stirre $\widehat{\text { at }} 80^{\circ} \mathrm{C}$ for 2 h . Then the mixture was cooled and concentrated in vacuum and the residue was purified by column chromatography (eluent hexane/ethyl-acetate $=2: 1$).

4.7. N-(2,3,4,6-Tetra-O-acetyl- β-d-glucopyranosyl)-5-phenyl-1,3,4-oxadiazole-2-carboxamide (10a)

By method A, starting from 6 ($858 \mathrm{mg}, 2.3 \mathrm{mmol}$) and 5-phenyl-1,3,4-oxadiazole-2-carbonyl chloride (5) (436 mg , 2.3 mmol) to give 10a as white crystals ($110 \mathrm{mg}, 10 \%$).

By method B, starting from benzôyl chloride ($196 \mu \mathrm{l}, 1.68 \mathrm{mmol}$) and tetrazole 9 ($500 \mathrm{mg}, 1.12 \mathrm{mmol}$) in dry toluene (6 mL) to givê 10a as white crystâls ($470 \mathrm{mg}, 80 \%, \mathrm{mp}$: $169-171^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}=-4.672$ in DMSO, $\left.c=0.6\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)^{1} \delta(\mathrm{ppm}): 2 . \hat{0} 2$ $\left(6 \mathrm{H}, \mathrm{s}, \stackrel{\wedge}{\mathrm{s}} 2 \times \mathrm{CH}_{3}\right), 2.04,2.05\left(\hat{6} \mathrm{H}, \mathrm{s}, 2 \stackrel{\wedge}{\times} \mathrm{CH}_{3}\right), 3.95(1 \mathrm{H}, \mathrm{ddd}, J=9.8$,
4.6 and $2.1 \mathrm{~Hz}, \mathrm{H}-5), 4.16\left(1 \mathrm{H}, \mathrm{dd}, J=12.6\right.$ and $\left.4.6 \mathrm{~Hz}, \mathrm{H}-6_{\mathrm{A}}\right), 4.28$ $\left(1 \mathrm{H}, \mathrm{dd}, J=12.6\right.$ and $\left.2.1 \mathrm{~Hz}, \mathrm{H}-6_{\mathrm{B}}\right), 5.13,5.18,5.36(3 \times 1 \mathrm{H}$, pseudo $\mathrm{t}, J=9.8,9.4$ and $9.4 \mathrm{~Hz}, \mathrm{H}-2, \mathrm{H}-3, \mathrm{H}-4), 5.44(1 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}, \mathrm{H}-1)$, $7.50(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}$, aromatic), $7.56(1 \mathrm{H}, \mathrm{m}$, aromatic), $8.15(2 \mathrm{H}$, $\mathrm{d}, J=7.3 \mathrm{~Hz}$, aromatic). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 20.68\left(\mathrm{COCH}_{3}\right)$, $20.79\left(3 \times \mathrm{COCH}_{3}\right), 61.74(\mathrm{C}-6), 68.09,70.38,72.90,73.95(\mathrm{C}-2, \mathrm{C}-3$, C-4, C-5), 78.12 (C-1), 122.69, 127.68, 129.35, 132.95 (phenyl), 153.68, 157.67 (1,3,4-oxadiazole), 166.89 (NHCO), 169.64, 170.11, 170.63, 170.76, $\left(\mathrm{COCH}_{3}\right)$.

Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{11}$ (519.15): C, $53.18 ; \mathrm{H}, 4.85 ; \mathrm{N}, 8.09$. Found: C, 53.25; $\hat{H}, 4.96 ; \mathrm{N}, 8.18$.

4.8. N-(2,3,4,6-Tetra-O-acetyl- β-d-glucopyranosyl)-5-(naphth-2-yl)-1,3,4-oxadiazole-2-carboxamide (10b)

By method B, starting from 2-naphthoyl chloride (640 mg , 3.37 mmol) and tetrazole $9(1 \mathrm{~g}, 2.25 \mathrm{mmol})$ in dry toluene $(15 \mathrm{~mL})$ to give 10b as white crystals ($943 \mathrm{mg}, 74 \%, \mathrm{mp}$: 186 $188{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=-12.843$ in DMSO, $\left.c=0.61\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \hat{\delta}$ (ppm): $2.04\left(3 \widehat{\mathrm{H}}, \mathrm{s}, \mathrm{COCH}_{3}\right), 2.06\left(6 \mathrm{H}, \stackrel{\mathrm{s}}{\mathrm{s}}, 2 \times \mathrm{COC}_{3}\right), 2.07(3 \mathrm{H}, \mathrm{s}$, COCH_{3}), $3.95(\mathrm{ddd}, J=10.0,4.3$ and $2.0 \mathrm{~Hz}, \hat{\mathrm{H}}-5), 5.16,5.23,5.40$, $5.49(4 \times 1 \mathrm{H}$, pseudo $\mathrm{t} ; \vec{J}=11.6,11.3,9.5$, and $9.4 \mathrm{~Hz} ; \mathrm{H}-1, \mathrm{H}-2, \mathrm{H}-$ $3, \mathrm{H}-4), \widehat{4.15}\left(1 \mathrm{H}, \mathrm{dd}, J=1 \hat{2} .3\right.$ and $\left.4.3, \mathrm{H}-6_{\mathrm{A}}\right), 4.30(1 \hat{\mathrm{H}}, \mathrm{dd}, J=12.6$ and $\left.2.0 \mathrm{~Hz}, \mathrm{H}-6_{\mathrm{B}}\right), 7.54(\hat{2} \mathrm{H}, \mathrm{m}$, aromatic), $7.81(1 \mathrm{H}, \mathrm{d} \mathrm{J}=7.6 \mathrm{~Hz}$; $\mathrm{NH}), 7.88(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}$; aromatic), $8.09(2 \mathrm{H}, \mathrm{m}$, aromatic), $8.57(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1$ naphthalene $) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 20.67$ $\left(4 \times \mathrm{COCH}_{3}\right), 61.83$ (C-6), 68.24, 70.54, 72.96, 74.05, (C-2; C-3; C4; C-5), 78.29 (C-1), 123.23, 127.39, 128.03, 128.68, 129.12, 129.30, 132.75, 135.19 (aromatic), 153.76, 157.75 ($1,3,4$-oxadiazole), 167.09 (NHCO), 169.59, 170.06, 170.68, $170.98\left(\mathrm{COCH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{11}$ (569.16): C, 56.94; H, 4.78; $\mathrm{N}, 7.38$. Found: C, $57.02 ; \mathrm{H}, 4.86 ; \mathrm{N}, 7.45$.

4.9. N-(2,3,4,6-Tetra-O-acetyl- β-d-glucopyranosyl)-5-(naphth-1-yl)-1,3,4-oxadiazole-2-carboxamide (10c)

By method B, starting from 1-naphthoyl chloride ($178 \mu \mathrm{l}$, 1.17 mmol) and tetrazole $9(345 \mathrm{mg}, 0.78 \mathrm{mmol})$ in dry toluene $(15 \mathrm{~mL})$ to give 10c as white crystals $(133 \mathrm{mg}, 30 \%, \mathrm{mp}: 124-$ $126{ }^{\circ} \mathrm{C} ; \hat{}[\alpha]_{\mathrm{D}}=-19.64$ in $\left.\mathrm{CHCl}_{3}, c=0.52\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \widehat{\delta}$ (ppm) $2.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 2.07\left(3 \mathrm{H}, \mathrm{s}, \widehat{\mathrm{COCH}}{ }_{3}\right), 2.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right)$, $2.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 3.98(1 \mathrm{H}, \mathrm{ddd}, J=10.2,4.6$ and $2.2 \mathrm{~Hz}, \mathrm{H}-5)$, $4.18\left(1 \mathrm{H}, \mathrm{dd}, J=12.6\right.$ and $\left.2.2 \mathrm{~Hz}, \mathrm{H}-6_{\mathrm{A}}\right), 4.33(1 \mathrm{H}, \mathrm{dd}, J=12.6$ and $\left.4,5 \mathrm{~Hz}, \mathrm{H}-6_{\mathrm{B}}\right), 5, \hat{19} ; 5,28 ; 5,43,5,55(4 \times 1 \mathrm{H}$, pseudo $\mathrm{t}, \mathrm{J}=9.7,9.4$, 9.5 and $9.3, \mathrm{H}-1 ; \mathrm{H}-2 ; \mathrm{H}-3 ; \mathrm{H}-4) 7.46$ ($1 \mathrm{H}, \mathrm{m}$, aromatic), 7.53 ($1 \mathrm{H}, \mathrm{m}$, aromatic), $7.66(1 \mathrm{H}, \mathrm{m}$, aromatic), $7.84(1 \mathrm{H}, \mathrm{t}, J=8.6 \mathrm{~Hz}$, aromatic), $7.97(1 \mathrm{H}, \mathrm{d}, \quad J=8.1 \mathrm{~Hz}$, aromatic), $8.19(1 \hat{H}, \mathrm{~d}$, $J=7.3 \mathrm{~Hz}$, aromatic), 8.51 ($1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{CONH}$). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \widehat{\delta}(\mathrm{ppm}) 20.60,20.70,20.71\left(\mathrm{CO}_{\mathrm{CH}}^{3}\right), \stackrel{\lambda}{1.79}(\mathrm{C}-6), 68.09$, 70.41, 72.97, 73.87, (C-2, C-3, C-4, C-5), 78.16 (C-1), 118.99, 124.84, 125.80, 136.88, 128.58, 128.81, 129.52, 129.90, 133.70 (aromatic), 153.85, 157.19 (1,3,4-oxadiazole), 166.77 (NHCO), 169.61, 170.08, 170.62, $170.70\left(\mathrm{COCH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{11}$ (569.16): C, 56.94 ; $\mathrm{H}, 4.78$; $\mathrm{N}, 7.38$. Found: C, 57.04 ; H, 4.89; N, 7.46.

4.10. N-[2,3,4,6-Tetra-O-acetyl- β-d-glucopyranosyl]-1-(N^{\prime} hydroxycarbamimidoyl) formamide (12)

To the solution of N -cyanocarbonyl derivative (9) (100 mg , 0.25 mmol) in anhydrous pyridine (0.5 mL) hydroxylamine hydro- chloride ($43.6 \mathrm{mg}, 0.63 \mathrm{mmol}$) was added, and the reaction was stirred for one hour at $50^{\circ} \mathrm{C}$. Sûbsequently it was acidified with 5% aqueous solution of $\mathrm{HCl}(10 \mathrm{~mL})$ and extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$ and washed with wâter $(2 \times 10 \mathrm{~mL})$ The organic layer
was dried over MgSO_{4} and concentrated in vacuum. The residue was used without any purification. ($77 \mathrm{mg}, 71 \%$).

4.11. N-[2,3,4,6-Tetra-O-acetyl- β-d-glucopyranosyl]-1-(N^{\prime} benzoyloxycarbamimidoyl) formamide (13a)

A solution of $12\left(77 \mathrm{mg}_{\Omega} 0.178 \mathrm{mmol}\right)$, benzoyl-chloride ($23 \mu \mathrm{l}$, 0.196 mmol) and anhydrous pyridine ($16 \mu \mathrm{l}, 0.196 \mathrm{mmol}$) in anhydrous toluene (5 mL) was stirred for 24 h at $40^{\circ} \mathrm{C}$. for a day. Subsequently it was acidified with 5% aqueous solution of $\mathrm{HCl}(10 \mathrm{ml})$ and extracted with ethyl acetate ($3 \times 10 \mathrm{ml}$) and washed with water $(2 \times 10 \mathrm{~mL})$. The organic layer was dried over MgSO_{4} and concentrated in vacuum. Purification of the residue by column chromatography (hexane/ethyl acetate $=1: 1$) gave 13a as white a crystal ($\left.50 \mathrm{mg}, 52 \%, \mathrm{mp}_{\dot{\beta}} 240-246{ }^{\circ} \mathrm{C} ; \hat{\alpha}\right]_{\mathrm{D}}={ }_{\lambda} 18.415$ in CHCl_{3}; $c=0.5) .{ }^{1} \mathrm{H}_{2} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}): 2.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 2.04(2 \times$ $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 2.10\left(3 \mathrm{H}, \mathrm{s} ; \mathrm{COCH}_{3}\right), 3.84(1 \mathrm{H}, \mathrm{ddd}, J=10.1,3.8$ and $2.2 \mathrm{~Hz}, \mathrm{H}-5), 4.12\left(1 \mathrm{H}, \mathrm{dd}, J=12.4\right.$ and $\left.2.2 \mathrm{~Hz}, \mathrm{H}-\widehat{6}_{\mathrm{A}}\right), 4.26$ ($1 \mathrm{H}, \mathrm{dd}, J=12.4$ and $4.0 \mathrm{~Hz}, \mathrm{H}-6_{\mathrm{B}}$) $, 5.08,5.11,5.32,5.33(4 \times 1 \mathrm{H}$,
 $J=7.2 \mathrm{~Hz}$; aromatic), $7.61(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}$, aromatic), $7.98(1 \mathrm{H}, \mathrm{d}$, $J=9.5 \mathrm{~Hz}, \mathrm{NH}) 8.04\left(2 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}\right.$, aromatic). ${ }^{13} \mathrm{H}$ NMR (CDCl_{3}): $\delta(\mathrm{ppm}): 20.07,20.85\left(\mathrm{COCH}_{3}\right) ; 61.64(\mathrm{C}-6) ; 68.02,70.40,73.03$, 73.83, 78.34 (C-1, C-2, C-3, C-4, C-5), 128.76, 129.72, 133.63, 147.77 (aromatic), $160.08,163.26,169.54,170.15,170.25,170.86$ $\left(\mathrm{C}=\mathrm{N}, \mathrm{COPh}, \mathrm{COCH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{12}$ (537.16): C, $51.40 ; H, 5.06 ; N, 7.82$. Found: C, $5 \hat{1} .4 \hat{9} ; \mathrm{H}, 5.15 ; \mathrm{N}, 7.91$.

4.12. General procedure for the synthesis of \boldsymbol{N}-(2,3,4,6-tetra- \mathbf{O} -acetyl- β-d-glucopyranosyl)-5-aryl-1,2,4-oxadiazole-3carboxamides

Method C: To a solution of N-cyanocarbonyl derivative $\mathbf{8}(300 \mathrm{mg}$, 0.75 mmol) in dry pyridine (1.5 mL) hydroxylamine hydrochloride $(131 \mathrm{mg}, \widehat{1} .87 \mathrm{mmol})$ was added and stirred at $50^{\circ} \mathrm{C}$ for 45 min . Dry toluene $(10 \mathrm{~mL})$ and 0.76 mmol acid chloride was then added and the mixture was refluxed for $1 . \widehat{5} \mathrm{~h}$. Subsequently a solution of TBAF (0.37 mL of a 1 M solution in THF) was added to the mixture and refluxed for seven days (the progress of the reaction was monitored by TLC using hexane/ethyl-acetate $=1: 1$ as eluent). The mixture was diluted with 5% aq $\mathrm{HCl}(30 \mathrm{~mL})$ and extracted with ethyl acetate $(3 \times 30 \mathrm{~mL})$, washed with water $\widehat{(2 \times 20 \mathrm{~mL})}$ and dried over MgSO_{4}. The shlvent was evaporated in vacuum and the residue was purified by column chromatography (eluent hexane/ethyl-acetate $=1$: 1).

4.13. N-(2,3,4,6-Tetra-O-acetyl-d-glucopyranosyl)-5-phenyl-1,2,4-oxadiazol-3-carboxamide (14a)

To the solution of $\mathbf{1 3 a}(80 \mathrm{mg} 0.15 \mathrm{mmol})$ in dry toluene $(2 \mathrm{~mL})$ a solution of TBAF (0.37 mL of a $1 \hat{\mathrm{M}}$ solution in THF) was added to the mixture and refluxed for four days. Then the mixture was diluted with 5% aq $\mathrm{HCl}(30 \mathrm{~mL})$ and extracted with ethyl acetate $(3 \times 30 \mathrm{~mL})$, washed with water $(2 \times 20 \mathrm{~mL})$ and dried over mgSO_{4}. The \widehat{s} solvent was evaporated in vacuum and the residue was purified by column chromatography (eluent: hexane/ethyl-acetate $=1: 1$) to give 14a as white crystals ($60 \mathrm{mg}, 76 \%, \mathrm{mp}$: $\hat{1} 52-156{ }^{\circ} \mathrm{C}$)
 amine hydrochloride ($130.8 \mathrm{mg}, 1.88 \mathrm{mmol}$) and benzôyl-chloride ($0.09 \mathrm{~mL}, 0.76 \mathrm{mmol}$) to give 14a as white crystals ($96 \mathrm{mg}, 24 \%$, $\mathrm{mp}: 150-157^{\circ} \mathrm{C} ;[\hat{\alpha}]_{\mathrm{D}}=-27.07$ in $\left.\mathrm{CHCl}_{3} ; c=0.25\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left.\left(\mathrm{CDCl}_{3}\right): \hat{\delta}(\mathrm{ppm}): 2.05\left(6 \mathrm{H}, \mathrm{s} ; 2 \times \mathrm{COCH}_{3}\right), 2.07 \hat{}{ }^{\hat{\prime}} 3 \mathrm{H}, \mathrm{s} ; \mathrm{COCH}_{3}\right)$, $2.10\left(3 \mathrm{H}, \mathrm{s} ; \mathrm{COCH}_{3}\right), 3.94(1 \mathrm{H}, \mathrm{m}, \mathrm{C}-5), 4.13\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6_{\mathrm{A}}\right), 4.34$ $\left(1 \mathrm{H}, \mathrm{dd}, J=12.4\right.$ and $\left.3.8 \mathrm{~Hz}, \mathrm{H}-6_{\mathrm{B}}\right), 5.14(2 \mathrm{H}$, pseudo $\mathrm{t}, J=9.4 \mathrm{~Hz}$, $\mathrm{H}-3, \mathrm{H}-4), 5.39 ; 5.50(2 \times 1 \mathrm{H}$, pseudo $\mathrm{t}, J=9.4 \mathrm{~Hz}, \mathrm{H}-1, \mathrm{H}-2), 7.5 广$ $(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}$, aromatiĉ$), 7.66(1 \mathrm{H}, \mathrm{t}, J=\hat{7} .4 \mathrm{~Hz}$, aromatic), 7.85
($1 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}$; CONH), $8.19\left(2 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}\right.$, aromatic). ${ }^{13} \mathrm{C}$ NMR: $\delta(\mathrm{ppm}): 20.67,20.79\left(4 \times{ }_{1} \mathrm{COCH}_{3}\right), 61.71(\mathrm{C}-6), 68.10$, $70.51,72.75,73.97$ (C-1, C-2, C-3, C-4), 78.10 (C-5), 123.14, 128.53, 129.40, 133.77 (phenyl), 156.78 ($\mathrm{NHC}=0$), 162.27 (C-3 in 1,2,4-oxadiazole), 169.66, 170.00, 170.71, $170.88\left(4 \times{ }_{\text {人 }} \mathrm{COCH}_{3}\right)$, 177.34 (C-5 in oxadiazole). Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{11}$ (519.15): C, 53.18 ; H, 4.85; N, 8.09. Found: C, 53.27 ; H, 4.95; N, 8.19.

4.14. N -(2,3,4,6-Tetra-O-acetyl-d-glucopyranosyl)-5-(naphth-2-yl)-1,2,4-oxadiazol-3-carboxamide (14b)

By method C, starting from 8 ($300 \mathrm{mg}, 0.75 \mathrm{mmol}$), hydroxylamine hydrochloride ($130.8 \mathrm{mg}, 1.88 \mathrm{mmol}$) and 2-naphthoyl chloride ($157 \mathrm{mg}, 0.83 \mathrm{mmol}$) to give $\mathbf{1 4 b}$ as white crystals (95 mg ; $22 \% ; \mathrm{mp} ; 17 \widehat{5}_{\lambda}-180^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=-27.102$ in $\left.\mathrm{CHCl}_{3} ; c=0.5\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \hat{\delta}(\mathrm{ppm}): 2.03\left(6 \mathrm{H}, \stackrel{\wedge}{\mathrm{s}}, 2 \times \mathrm{COCH}_{3}\right), 2.04\left(3 \hat{\mathrm{H}}, \mathrm{s}, \mathrm{COCH}_{3}\right)$, $2.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 3.96(1 \mathrm{H}, \mathrm{ddd}, J=10.01,4.5$ and $2.0 \mathrm{~Hz} \mathrm{H}-5)$, $4.15\left(1 \mathrm{H} ; \mathrm{dd} ; J=12.6\right.$ and $\left.4.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{A}}\right), 4.35(1 \mathrm{H}, \mathrm{dd}, J=12.6$, $4.6 \mathrm{~Hz}, \mathrm{H}-6_{\mathrm{B}}$), $5.13,5.14 ; 5,38 ; 5,5 \hat{1}\left(4 \times{ }^{1} \mathrm{H}\right.$ pseudo $\mathrm{t}, J=9.8,9.5$, $9.5,9 . \hat{4} \mathrm{~Hz}, \mathrm{C}-1 ; \mathrm{C}-2 ; \mathrm{C}-3 ; \mathrm{C}-4), 7.54-\hat{7} .68$ ($2 \mathrm{H}, \mathrm{m}$, aromatic), 7.90 $(2 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}), 7.97(2 \mathrm{H}, \mathrm{d}, J=8 . \overline{3} \mathrm{~Hz}$, aromatic and NHCO$)$, $8.14\left(1 \mathrm{H}, \mathrm{dd}, J=8.6 ; 1.6 \mathrm{~Hz}\right.$, aromatic), $8.72\left(1 \mathrm{H}, \mathrm{s}\right.$, aromatic). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}): 20.65 ; 20.76\left(\mathrm{COCH}_{3}\right), 61.74(\mathrm{C}-6), 68.12$, 70.54, 72.79, 73.96 (C-2; C-3; C-4; C-5), 78.80 (C-1), 120.22, $123.64,127.50,128.06,129.07,129.35,130.02132 .62,135.57$ (aromatic), 156.82 (NHCO), 163.33 (C-3 in 1,2,4-oxadiazole), 169.64, 169.98, 170.68, $170.78\left(\mathrm{COCH}_{3}\right), 177.46$ ($\mathrm{C}-5$ in 1,2,4-oxadiazole). Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{11}$ (569.16): C, 56.94; H, 4.78; $\mathrm{N}, 7.38$. Found: C, $5 \hat{7} .0 \hat{2}$; H, 4.91; N, 7.47.
4.15. N -(2,3,4,6-Tetra-O-acetyl-d-glucopyranosyl)-5-(naphth-1-yl)-1,2,4-oxadiazol-3-carboxamide (14c)

By method C, starting from 8 ($300 \mathrm{mg}, 0.75 \mathrm{mmol}$), hydroxylamine hydrochloride ($1308 \mathrm{mg}, 1.88 \mathrm{mmol})$ and 1 -naphthoyl chloride ($124 \mu \mathrm{l}, 0.83 \mathrm{mmol}$) to give $\mathbf{1 4 c}$ as white crystals ($145 \mathrm{mg}, 22 \%$, mp: 175-180 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=-27.47$ in $\left.\mathrm{CHCl}_{3} ; c=0.5\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)$: $\delta(\hat{\mathrm{ppm}}): \stackrel{\hat{2}}{2} .04\left(\hat{3} \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 2.08\left(9 \mathrm{H}, \mathrm{s}, \mathrm{COC}_{3}\right), 3.9 \hat{4}(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5)$, $4.12\left(1 \mathrm{H}, \mathrm{d}, J=12.4 \mathrm{~Hz}, \mathrm{H}-6_{\mathrm{A}}\right), 4.34(1 \mathrm{H}, \mathrm{dd}, J=12.5$ and 3.7 Hz , $\left.\mathrm{H}-6_{\mathrm{B}}\right), 5.14,5.1 \widehat{6}, 5.40, \stackrel{\wedge}{5} .50(4 \times 1 \mathrm{H}$, pseudo $\mathrm{t} ; \hat{J}=9.7 \mathrm{~Hz} ; 1 \mathrm{H}, \mathrm{t}$, $J=9.7,9.4$ and $9.3 \mathrm{~Hz}, \mathrm{H}-1$; H-2; $\hat{\mathrm{H}}-3 ; \mathrm{H}-4), 7.55-7.65(2 \mathrm{H}, \stackrel{\mathrm{m}}{\mathrm{m}}$, aromatic), $7.72(1 \mathrm{H}, \mathrm{t}, J=\hat{7} .2 \mathrm{~Hz}$, aromatic), $7.93(1 \mathrm{H}, \hat{\mathrm{d}}, J=8.1 \mathrm{~Hz}$, aromatic), $8.10(1 \mathrm{H}, \mathrm{d}, \hat{J}=9.1 \mathrm{~Hz}, \mathrm{NHCO}), 8.10(1 \mathrm{H}, \mathrm{d}, \stackrel{\wedge}{ } J=8 . \hat{1} \mathrm{~Hz}$, aromatic), $8.39(1 \mathrm{H}, \mathrm{d}, J=\hat{7} .3 \mathrm{~Hz}$, aromatic $), 9.10(1 \mathrm{H}, \mathrm{d}, J=\hat{8} .6 \mathrm{~Hz}$, aromatic). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3} \hat{)}: \delta(\mathrm{ppm}): 20.67 ; 20.72 ; 20.80\left(\mathrm{COCH}_{3}\right)\right.$, 61.73 (C-6), 68.81, 70.58, 72.72, 73.99 (C-2; C-3; C-4; C-5) 78.30 (C1), $119.51,130.08,133.90,124.95,125.54,127.10,128.90,129.02$, 130.77, 134.76 (aromatic), 156.89 (NHCO), 163.14 (C-3 in 1,2,4oxadiazole), 169.66, 169.99, 170.72, $170.96\left(\mathrm{COCH}_{3}\right), 177.47$ (C-5 in 1,2,4-oxadiazole). Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{11}$ (569.16): C, 56.94; H, 4.78; N, 7.38. Found: C, $5 \hat{7} .03$; H, $4.90 ;$ N, 7.46.
4.16. General procedure for the synthesis of \boldsymbol{N}-(2,3,4,6-tetra- \mathbf{O} -acetyl- β-d-glucopyranosyl)-3-aryl-1,2,4-oxadiazole-5carboxamides

Method D: A solution of 2,3,4,6-tetra-O-acetyl- β-D-glucopyranosylamine ($7,275 \mathrm{mg}, 0.79 \mathrm{mmol}$) in dry THF (15 mL) was added dropwise to the coolềd solution ôf oxalyl chloride (0.79 mmol) in dry THF (10 mL) in one hour. Subsequently an arềecarboxamidoxime ($\mathbf{1 8 a}-\mathbf{c}, 0.79 \mathrm{mmol}$) was added to the reaction mixture and stirring waŝ continued at $\hat{\text { room }}$ temperature for seven days. The progress of the reaction was monitored by TLC (eluent: hexane/ethyl-acetate $=1: 1$). When the reaction was completed, the solvent was removed in vacuum and the residue was purified by column chromatography (eluent hexane/ethyl-acetate $=1$: 1).
4.17. N-(2,3,4,6-Tetra-O-acetyl- β-d-glucopyranosyl)-3-phenyl-1,2,4-oxadiazole-5-carboxamide (20a)

By method D, starting from benzamidoxime (18a) (389 mg ; 2.87 mmol) to give 14 as white crystals ($845 \mathrm{mg}_{,} 55 \%, \mathrm{mp}$; 154 $162{ }^{\circ} \mathrm{C} ; \quad[\alpha]_{\mathrm{D}}=-23.55$ in $\left.\mathrm{CHCl}_{3} ; c=0.5\right) .{ }^{1} \mathrm{H}_{\Delta}$ NMR $\left(\mathrm{CDCl}_{3}\right): \widehat{ }$ (ppm): $2.01\left(6 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 2.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 2.05(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{COCH}_{3}\right), 3.92(1 \mathrm{H}, \mathrm{ddd}, J=10.1,4.1$ and $2.0 \mathrm{~Hz}, \mathrm{C}-5), 4.13(1 \mathrm{H}, \mathrm{dd}$,

4.19. N-(2,3,4,6-Tetra-O-acetyl- β-d-glucopyranosyl)-3-(naphth-

 1-yl)-1,2,4-oxadiazole-5-carboxamide (20c)By method D, starting from naphth-1-amidoxime (18c) ($168 \mathrm{mg}, 0.90 \mathrm{mmol}$) to give $\mathbf{2 0 c}$ as a yellow oil $(85 \mathrm{mg} ; 16 \%$, $[\alpha]_{\mathrm{D}}=-\hat{3} 1.53$ in $\left.\mathrm{CHCl}_{3} ; c=0.5\right) .{ }^{1} \mathrm{H}$ NMR: $\delta(\mathrm{ppm}): 2.06,2.07$, $2.08\left(\hat{1} \hat{2} \mathrm{H}, \mathrm{s}, 3 \times \mathrm{COCH}_{3}\right), 3 . \hat{9} 2-3.97^{\wedge}(1 \mathrm{H}, \mathrm{ddd}, J=10.1,4.36$ and $1.90 \mathrm{~Hz}, \mathrm{H}-5), 4 . \hat{1} 1-4.16\left(1 \mathrm{H}, \widehat{\mathrm{m}}, \mathrm{H}-6_{\mathrm{A}}\right), 4.34(1 \mathrm{H}, \mathrm{dd}, J=9.8$ and $\left.4.64, \hat{\mathrm{H}}-6_{\mathrm{B}}\right), 5.16, \stackrel{\wedge}{5} .41,5.48\left(2 \mathrm{H}, \mathrm{m} ; 1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz} ;{ }^{\wedge} 1 \mathrm{H}, \mathrm{t}\right.$, $J=9,3 \mathrm{~Hz} ; \mathrm{H}-1 ; \mathrm{H}-2 ; \mathrm{H}-3 ; \mathrm{H}-4), 7.57(2 \mathrm{H}, \mathrm{t}, J=3.4 \hat{\mathrm{~Hz}}$, arômatic), $7.65(1 \mathrm{H}, \mathrm{m}$, aromatic $), 7.92(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{H} \hat{\mathrm{z}}$, aromatic), 8.02 ($1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}$, aromatic), $8.17(1 \mathrm{H}, \mathrm{d}, \hat{J}=9.3 \mathrm{~Hz}, \mathrm{NHCO}$), 8.27 ($1 \mathrm{H}, \mathrm{dd}, J=\hat{=} 0.5,7.2 \mathrm{~Hz}$, aromatic $\hat{\mathrm{C}}), 8.88(1 \mathrm{H}, \mathrm{d}, \hat{J}=8.5 \hat{\mathrm{~Hz}}$, aromatic). ${ }^{13} \mathrm{C}$ NMR: $\delta(\mathrm{ppm}): 20.61,20.66,20.74\left(\mathrm{COCH}_{3}\right), 61.68(\hat{\mathrm{C}}-6), 68.04$, $70.49,72.68,74.03,78.32$ (C-1, C-2, C-3, C-4, C-5), 122.34, 130.32, $133.88,125.07,126.01,126.62,128.04,128.84,30.03,132.74$ (aromatic), 153.39 (NHCO), 166.73 (oxadiazole), 169.32, 169.59, 169.93, $170.62\left(\mathrm{COCH}_{3}\right), 170.79$ (oxadiazole). Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{11}$ (569.16): C, 56.94 ; H, 4.78; $\mathrm{N}, 7.38$. Found: C, 57.16 ; H, 4.88; N, 7.48.

4.20. General procedure for removal of \boldsymbol{O}-acetyl protecting groups

Method E: To the solution of a protected sugar derivative in dry methanol (or in dry methanol and dry chloroform) a catalytic
amount of NaOMe (1 M solution in methanol) was added and stirred at room temperature. The progress of the reaction was monitored by TLC (chloroform/methanol =9:1). When the starting material was consumed the mixture was neutralised with a cation exchange resin Amberlyst $15\left(\mathrm{H}^{+}\right.$form) or with acetic acid, then the resin was filtered off and the solvent removed. The precipitated product was filtered off, washed with ether and dried.

4.21. N-(β-d-Glucopyranosyl)-5-phenyl-1,3,4-oxadiazole-2carboxamide (11a)

By method E , staring from $\mathbf{1 0 a}(90 \mathrm{mg}, \mathrm{mmol})$ in the mixture of dry methanol (3 mL) and dry chloroform (1.5 mL) gave 11a as a white crystal ($56 \mathrm{mg}, 50 \%$, mp; 229-232 ${ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}=7.82$ in DMSO; $c=0.45) .{ }^{1} \mathrm{H}^{2}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}\right): \delta(\mathrm{ppm}): 4.90(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{H}-1)$, $7,5 \widehat{7}-7,78(\hat{m} ; 3 \mathrm{H}), 8.04-8.18(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{D}_{2} \widehat{\mathrm{O}}\right): \delta(\hat{\mathrm{ppm}}):$ 60.59 (C-6), 69.43, 71.34, 76.75, 78.62, 79.6 (C-1; C-2; C-3; C-4; C-5), 122.34, 127.01, 129.41, 132.71 (aromatic), 153.40, 157.99 (1,3,4-oxadiazole), 165.02 (NHCO). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{7}$ (351.11): C, 51.28 ; H, 4.88; N, 11.96. Found: C, $51.3 \widehat{8}, \mathrm{H}, 4.96, \mathrm{~N}$, 12.01 .

4.22. N-(β-d-Glucopyranosyl)-5-(naphth-2-yl)-1,3,4-oxadiazole-2-carboxamide (11b)

By method E, starting from 10b ($411 \mathrm{mg}, 0.72 \mathrm{mmol}$) in dry methanol (2 mL) to give 11b as white crystals ($244 \mathrm{mg}, 8 \hat{5} \%$, mp: 219-221 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=8.776$ in DMSO; $\left.c=0.69\right) .{ }^{1} \mathrm{H}$ NMR $\left(\hat{\mathrm{D} M S O}-d_{6}\right)$ $\delta(\mathrm{ppm}): \widehat{3} .12(1 \mathrm{H}$, pseudo $\mathrm{t}, J=9.2, \mathrm{~Hz}, \mathrm{H}-3), 3.21-3.31(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}-2, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-6_{\mathrm{A}}\right), 3.69\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.2 \mathrm{~Hz} \mathrm{H}-6_{\mathrm{B}}\right), \hat{4} .61$ (1 H , brs $\mathrm{OH}), 4.96(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{H}-1), 5.11(2 \mathrm{H}, \mathrm{brs} 2 \times \mathrm{OH}), 7.52-7.79$ $(2 \mathrm{H}, \mathrm{m}$, aromatic), $8 . \hat{05}(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}$, aromatic), $\hat{8} .18(3 \mathrm{H}, \mathrm{s}$, aromatic), $8.75\left(1 \mathrm{H}, \mathrm{s}\right.$, aromatic), $\hat{9} .86(\hat{1} \mathrm{H}, \mathrm{brs}, \mathrm{NHCO}) .{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) $\delta(\mathrm{ppm}): 60.9$ (C-6), 70.00, 71. 93, 77.44, 79.18, 80.17 (C-1, C-2, C-3, C-4, C-5), 120.18, 123.23, 127.75, 128.15, 129.20, 129.57, 123.57, 134.74 (aromatic) 158.4, 153.6 (1,3,4-oxadiazole), 165.47 (NHCO). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{7}$ (401.12): C, 56.86; H, 4.77; N, 10.47. Found: C: $56.94 ;$ H, $4.87 ; N, 10.58$.

4.23. N-(β-d-Glucopyranosyl)-5-(napht-1-yl)-1,3,4-oxadiazole-2carboxamide (11c)

Staring from 10 c ($300 \mathrm{mg}, 0.53 \mathrm{mmol}$) in the mixture of dry methanol (7 mL) and dry chloroform (7 mL) gave 11c as a white crystal ($185 \mathrm{mg}, 87 \%, \mathrm{mp}: 230-234^{\circ} \mathrm{C} ;[\widehat{\alpha}]_{\mathrm{D}}=3.84$ in DMSO; $c=0.62$). ${ }^{1} \mathrm{H}$ NMR $\left.\left(\mathrm{DMSO}_{-} \hat{d}_{6}\right) \delta \hat{\mathrm{ppm}}\right): 3.07-3.17(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5)$, $3.3 \hat{2}-3.20(2 \hat{H}, \mathrm{~m}, \mathrm{H}-2, \mathrm{H}-3), 3.41-3.51$ ($2 \mathrm{H}, \hat{\mathrm{m}}, \mathrm{H}-4, \mathrm{H}-6_{\mathrm{B}}$), 3.70 $\left(1 \mathrm{H}, \widehat{d d}, J=10.5\right.$ and $\left.5.4 \mathrm{~Hz}, \mathrm{H}-6_{\mathrm{A}}\right)$, , $4.55-4.65(1 \mathrm{H}, \mathrm{m}, \mathrm{OH}), 4.95-$ $5.05(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{OH}) 5.10-5.17(2 \mathrm{H}, \mathrm{m}, \mathrm{OH}), 7.59-7.90(3 \mathrm{H}, \mathrm{m}$, aromatic), $8.13(1 \mathrm{H}, \mathrm{d}, J=8.0 \hat{\mathrm{~Hz}}$, aromatic), $8.28(1 \mathrm{H}, \hat{\mathrm{d}}, J=8.2 \mathrm{~Hz}$, aromatic), $8.40(1 \mathrm{H}, \mathrm{d}, J=\hat{7} .3 \mathrm{~Hz}$, aromatic), $9.13(1 \mathrm{H}, \mathrm{d}, J=\hat{8} .5 \mathrm{~Hz}$, aromatic), $9.92\left(1 \mathrm{H}, \mathrm{d}, J_{=}^{=} 8.7 \mathrm{~Hz}, \mathrm{NH}\right) .{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): δ (ppm): 62.56 (C-6), 71.27, 73.44, 78.75, 80.25, 81.41 (C-1; C-2; C3; C-4; C-5), 120.61, 126.44, 126.75, 128.16, 129.60, 132.20, 130.69, 131.04, 134.69, 135.16 (aromatic), $155.51,159.42$ (oxadiazole), 167.08 ($\mathrm{NHC}=0$). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{7}$ (401.12): C, 56.86; H, 4.77; N, 10.47; O, 27.90. Found: C: 56.91 ; H, 4.86; N, 10.56.

4.24. N-(-d-Glucopyranosyl)-5-phenyl-1,2,4-oxadiazol-3carboxamide (15a)

By method E, starting from 14a ($132 \mathrm{mg}, \mathrm{mmol}$) in dry methanol (2 mL) to give 15a as white crystals (56 mg , $64 \%, \mathrm{mp}$: $245-$ $250{ }^{\circ} \mathrm{C}$; $[\hat{\alpha}]_{\mathrm{D}}=8.83$ in DMSO; $c=0.5$). ${ }^{1} \mathrm{H}$ NMR $\left(\right.$ DMSO- $\left.\hat{d}_{6}\right): \hat{\delta}$ (ppm): 3.07-3.71 (5H, m, H-2, H-3, $\left.{ }^{\wedge} \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-6_{\mathrm{A}}\right), 3.79(1 \mathrm{H}, \mathrm{d}$,
$\left.J=10.8, \mathrm{H}-6_{\mathrm{B}}\right), 4.58(1 \mathrm{H}$, brs; OH$), 4.93(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{H}-1), 5.07$ (${ }^{1} \mathrm{H}_{\mathrm{A}}$ brs; OH), $7.6-7.8(3 \mathrm{H}, \mathrm{m}$, aromatic), $8.10-8.25$ ($2 \mathrm{H}, \mathrm{m}$, aromatic), $9.49(1 \mathrm{H}, \mathrm{brs} ; \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta_{A}(\mathrm{ppm}): 60.98$ (C-6), 69.89, 71.70, 77.45, 79.06, 79.84 (C-1, C-2, C-3, C-4, C-5), 122.96, 128.14, 129.74, 133.85 (aromatic), 156.88 (NHCO), 164.24, 176.03 (oxadiazole). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{7}$ (351.11): C, 51.28; H, 4.88; N, 11.96. Found: C, $51.40, \mathrm{H}, 4.99, \mathrm{~N}, 12.05$.

4.25. N-(-d-Glucopyranosyl)-5-(naphth-2-yl)-1,2,4-oxadiazol-3carboxamide (15b)

By method E , starting from $\mathbf{1 4 b}(95 \mathrm{mg}, 0.17 \mathrm{mmol})$ in the mix-

4.28. N-(-D-glucopyranosyl)-3-(napht-2-yl)-1,2,4-oxadiazol-5carboxamide (21b)

By method E , starting from $\mathbf{2 0 b}$ ($90 \mathrm{mg}, 0.16 \mathrm{mmol}$) in the mixture of dry methanol (2 mL) and dry chloroform (1 mL) to give 21b as white crystals ($39 \mathrm{mg}, \hat{62 \%}, \mathrm{mp}: 256-259{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{\hat{2}}=-2.25$ in DMSO; $c=0.5) .{ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}-d_{6}$) $\mathrm{H}-5), 3.21-3.32$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2, \mathrm{H}-3$); $4.41-3.52\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4, \mathrm{H}-6_{\mathrm{A}}\right)$,
$3.71\left(1 \mathrm{H}, \mathrm{dd}, J=10.9\right.$ and $\left.3.3 \mathrm{~Hz}, \mathrm{H}-6_{\mathrm{B}}\right), 4.59(1 \mathrm{H}$, brs, OH$), 4.96$ $(1 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}, \mathrm{H}-1), 4.98 ; 4.99 ; 5.12\left(3 \times_{\Lambda} 1 \mathrm{H}\right.$, brs, OH$), 7.58-$ $7.75(2 \mathrm{H}, \mathrm{m}$ aromatic), $8.04(1 \mathrm{H} ; \mathrm{d}, J=7.3 \mathrm{~Hz}$, aromatic), 8.14 ($3 \mathrm{H}, \mathrm{s}$, aromatic), $8.72(1 \mathrm{H}, \mathrm{s}$, aromatic), $10.01(1 \mathrm{H}$, brs; NHCO). ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta_{\lambda}(\mathrm{ppm}): 60.99(\mathrm{C}-6), 69.89,71.74,77.30$, $79.15,80.12$ (C-1, C-2, C-3, C-4, C-5), 122.85, 123.33, 127.34, 127.94, 128.21, 128.88, 129.26, 132.56, 133.40 (aromatic), 153.59 (NHCO), 168.24, 169.19 (oxadiazole). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{7}$ (401.12): C, 56.86 ; H, 4.77; N, 10.47. Found: C: 56.97 ; H, 4.88; N, 10.55 .

4.29. N-(-d-glucopyranosyl)-3-(napht-1-yl)-1,2,4-oxadiazol-5carboxamide (21c)

By method E , starting from $\mathbf{2 0 c}$ ($127 \mathrm{mg}, 0.22 \mathrm{mmol}$) in the mixture of dry methanol (2 mL) and dry chloroform (1 mL) to give 21c as white crystals ($64 \mathrm{mg}, 72 \%, \mathrm{mp} ; 245-250^{\circ} \mathrm{C} ;[\alpha]_{D}=-6.17$ in DMSO; $c=0.5$). ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right): \delta(\hat{\mathrm{ppm}}): ~ \hat{\jmath} .08-3.17^{\hat{1}}(1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-5), 3.20-3.32(2 \hat{\mathrm{H}}, \mathrm{m}, \mathrm{H}-2, \mathrm{H}-3) ; 3.40-3.55\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4, \mathrm{H}-6_{\mathrm{A}}\right)$, $4.60(1 \mathrm{H}, \mathrm{brs}, \mathrm{OH}), 4.98(1 \mathrm{H}, \mathrm{d}, J=9.3 \mathrm{~Hz}, \mathrm{H}-1), 4.99(1 \mathrm{H}$, brs, $\mathrm{OH}), 5.05-5.20(2 \mathrm{H}$, brs; $2 \times \mathrm{OH}), 7.69-7.73(3 \mathrm{H}, \mathrm{m}$, aromatic), $8.10(1 \mathrm{H}, \widehat{\mathrm{d}}, J=7.1 \mathrm{~Hz}$, aromatic), 8.23 ($1 \mathrm{H}, \mathrm{d}, J=7.5$, aromatic), $8.3(1 \mathrm{H}, \mathrm{d}, J=7.5$, aromatic) $8.81(1 \mathrm{H}, \mathrm{d}, J=7.7 \widehat{\mathrm{~Hz}}$, aromatic), $10.05(1 \mathrm{H}$, brs. NHCO$) .{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}\right): \delta \hat{(\mathrm{ppm})}: 60.99$ (C6), 69.89. 71.78. 77.32. 79.18. 80.19 (C-1; C-2; C-3; C-4; C-5), 119.56, 122.34, 125.44, 126.79, 128.08, 128.94, 129.70, 132.54, 129.76, 133.52 (aromatic), 153.71 (NHCO), 164.03, 175.79 (oxadiazole). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{7}$ (401.12): C, 56.86 ; $\mathrm{H}, 4.77$; N , 10.47. Found: C: $5 \hat{6} .99$; H, 4.90 ; N, 10.60 .

4.30. General procedure for GP inhibition assay

Glycogen phosphorylase b was prepared from rabbit skeletal muscle according to the method of Fischer and Krebs ${ }^{54}$ using 2mercaptoethanol instead of L-cysteine, and recrystallized at least three times before use. The kinetic studies with glycogen phosphorylase were performed as described previously. ${ }^{41}$ Kinetic data for the inhibition of rabbit skeletal muscle glycogen phosphorylase by monosaccharide compounds were collected using different concentrations of α-D-glucose-1-phosphate ($4,6,8,10,12$ and 14 mM) and constant concentrations of glycogen ($1 \% \mathrm{w} / \mathrm{v}$) and AMP $(1 \mathrm{mM})$. The enzymatic activities were presented in the form of double-reciprocal plots (Lineweaver-Burk) applying a nonlinear data-analysis programme. The inhibitor constants (K_{i}) were determined by Dixon plots, by replotting the slopes from the Linewe-aver-Burk plots against the inhibitor concentrations. The means of standard errors for all calculated kinetic parameters averaged to less than $10 \%{ }^{55,56} \mathrm{IC}_{50}$ values were determined in the presence of 4 mM glucose 1-phosphate, 1 mM AMP, 1% glycogen, and varying concentrations of an inhibitor.

4.31. ADMET property predictions

ADMET properties of the inhibitor analogues were predicted using the QikProp 3.5 program (Schrodinger, LLC) in normal mode. ALOGPS 2.1^{45} was used to calculate supplementary $\log S$ and 'consensus' $\log \hat{P}(o / w)$ values for comparison with the QikProp values. The RMSD between QikProp and ALOGPS values was calculated as:
$R M S D=\sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(P_{Q P}-P_{A L O G P S S}\right)^{2}}$
where P_{QP} and $P_{\text {ALOGPS }}$ represent the QikProp and ALOGPS values, respectively, of a property P. The FAF-Drugs2 server ${ }^{48}$ was used to extract any toxicity structural warnings for the ligands.

Inhibitors were initially prepared for the QikProp calculations using Maestro and LigPrep (Schrodinger, LLC). Use of more extended conformations of ligands as input to QikProp can lead to ADMET property predictions closer to their experimental equivalents (QikProp version 3.5, User Manual). Confgen 2.3 (Schrodinger, LLC), therefore, employing the OPLS-AA (2005) forcefield and the Generalised Born/Surface Area (GB/SA) continuum model for bulk solvation effects was used to generate low energy conformations for each ligand (energy window of $5 \mathrm{kcal} / \mathrm{mol}$). The most extended conformation was then selected based on the calculated solvent accessible surface areas (SASAs) using the Schrodinger python script 'conformer_geom_extent.py' and used as input for the ADMET property predictions.

Uncited reference

Ref. 27.

Acknowledgments

This work was supported by the Hungarian Scientific Research Fund (OTKA CK77712, CNK80709), TÁMOP-4.2.2.-08/1/20080014, TÁMOP 4.2.1./B-09/1/KONV-2010-0007, and TÁMOP-4.2.2./ B-10/1-2010-0024 projects implemented through the New Hungary Development Plan, co-financed by the European Social Fund, TÁMOP 4.2.4.A/2-11-12012-0001 (B.Sz.) and Bolyai János Research Fellowships of the Hungarian Academy of Sciences (to L.J. and T.D.).

References and notes

800 1. Kurukulasuriya, R.; Link, J. T.; Madar, D. J.; Pei, Z.; Richards, S. J.; Rohde, J. J.; Souers, A. J.; Szczepankiewicz, B. G. Curr. Med. Chem. 2003, 10, 123.
2. Ross, S. A.; Gulve, E. A.; Wang, M. H. Chem. Rev. 2004, 104, 1255.
3. Agius, L. Best Pract. Res. Clin. Endocrinol. 2007, 21, 587.
4. Alberti, G.; Zimmet, P.; Shaw, J.; Bloomgarden, Z.; Kaufman, F.; Silink, M. Diabetes Care 2004, 27, 1798.
5. Whiting, D. R.; Guariguata, L.; Weil, C.; Shaw, J. Diabetes Res. Clin. Pract. 2011, 94, 311.
6. Brownlee, M. Nature 2001, 414, 813.
7. Baker, D. J.; Greenhaff, P. L.; Timmons, J. A. Expert Opin. Ther. Pat. 2006, 16, 459. 810 8. Henke, B. R.; Sparks, S. M. Mini-Rev. Med. Chem. 2006, 6, 845.
9. Tracey, W. R.; Treadway, J. L.; Magee, W. P.; Sutt, J. C.; McPherson, R. K.; Levy, C. B.; Wilder, D. E.; Yu, L. J.; Chen, Y.; Shanker, R. M.; Mutchler, A. K.; Smith, A. H.; Flynn, D. M.; Knight, D. R. Am. J. Physiol. Heart Circ. Physiol. 2004, 286, H1177.
10. Guan, T.; Qian, Y.; Tang, X.; Huang, M.; Huang, L.; Li, Y.; Sun, H. J. Neurosci. Res. 2011, 89, 1829.
11. Geschwind, J.-F.; Georgiades, C. S.; Ko, Y. H.; Pedersen, P. L. Expert Rev. Anticancer Ther. 2004, 4, 449.
12. Schnier, J. B.; Nishi, K.; Monks, A.; Gorin, F. A.; Bradbury, E. M. Biochem. Biophys. Res. Commun. 2003, 309, 126.
13. Somsák, L.; Czifrák, K.; Tóth, M.; Bokor, É.; Chrysina, E. D.; Alexacou, K. M.; Hayes, J. M.; Tiraidis, C.; Lazoura, E.; Leonidas, D. D.; Zographos, S. E.; Oikonomakos, N. G. Curr. Med. Chem. 2008, 15, 2933.
14. Somsák, L. C. R. Chim. 2011, 14, 211.
15. Tsirkone, V. G.; Tsoukala, E.; Lamprakis, C.; Manta, S.; Hayes, J. M.; Skamnaki, V. T.; Drakou, C.; Zographos, S. E.; Komiotis, D.; Leonidas, D. D. Bioorg. Med. Chem. 2010, 18, 3413.
16. Alexacou, K.-M.; Tenchiu, A.-C.; Chrysina, E. D.; Charavgi, M.-D.; Kostas, I. D.; Zographos, S. E.; Oikonomakos, N. G.; Leonidas, D. D. Bioorg. Med. Chem. 2010, 18, 7911.
830 17. Feuillastre, S.; Chajistamatiou, A. S.; Potamitis, C.; Zervou, M.; Zoumpoulakis, P.; Chrysina, E. D.; Praly, J.-P.; Vidal, S. Bioorg. Med. Chem. 2012, $20,5592$.
18. Docsa, T.; Czifrák, K.; Hüse, C.; Somsák, L.; Gergely, P. Mol. Med. Rep. 2011, 4, 477.
19. Watson, K. A.; Mitchell, E. P.; Johnson, L. N.; Cruciani, G.; Son, J. C.; Bichard, C. J. F.; Fleet, G. W. J.; Oikonomakos, N. G.; Kontou, M.; Zographos, S. E. Acta Crystallogr., Sect D: Biol. Crystallogr. 1995, D51, 458.
20. Györgydeák, Z.; Hadady, Z.; Felföldi, N.; Krakomperger, A.; Nagy, V.; Tóth, M.; Brunyánszky, A.; Docsa, T.; Gergely, P.; Somsák, L. Bioorg. Med. Chem. 2004, 12, 4861.
21. Gimisis, T. Mini-Rev. Med. Chem. 2010, 10, 1127.
22. Oikonomakos, N. G.; Kosmopoulou, M.; Zographos, S. E.; Leonidas, D. D.; Chrysina, E. D.; Somsák, L.; Nagy, V.; Praly, J. P.; Docsa, T.; Tóth, A.; Gergely, P. Eur. J. Biochem. 2002, 269, 1684.
23. Nagy, V.; Felföldi, N.; Kónya, B.; Praly, J.-P.; Docsa, T.; Gergely, P.; Chrysina, E. D.; Tiraidis, C.; Kosmopoulou, M. N.; Alexacou, K.-M.; Konstantakaki, M.; Leonidas, D. D.; Zographos, S. E.; Oikonomakos, N. G.; Kozmon, S.; Tvaroška, I.; Somsák, L. Bioorg. Med. Chem. 2012, 20, 1801.
24. Chrysina, E. D.; Bokor, É.; Alexacou, K.-M.; Charavgi, M.-D.; Oikonomakos, G. N.; Zographos, S. E.; Leonidas, D. D.; Oikonomakos, N. G.; Somsák, L. Tetrahedron: Asymmetry 2009, 20, 733.
25. Bokor, É.; Docsa, T.; Gergely, P.; Somsák, L. Bioorg. Med. Chem. 2010, 18, 1171.
26. Tóth, M.; Kun, S.; Bokor, É.; Benltifa, M.; Tallec, G.; Vidal, S.; Docsa, T.; Gergely, P.; Somsák, L.; Praly, J.-P. Bioorg. Med. Chem. 2009, 17, 4773.
27. He, L.; Zhang, Y. Z.; Tanoh, M.; Chen, G.-R.; Praly, J.-P.; Chrysina, E. D.; Tiraidis, $\mathbf{0 5}$ C.; Kosmopoulou, M.; Leonidas, D. D.; Oikonomakos, N. G. Eur. J. Org. Chem. 2007, 596.
28. Kónya, B.; Docsa, T.; Gergely, P.; Somsák, L. Carbohydr. Res. 2012, 351, 56.
29. Meanwell, N. A. J. Med. Chem. 2011, 54, 2529.
30. Kun, S.; Nagy, G. Z.; Tóth, M.; Czecze, L.; Van Nhien, A. N.; Docsa, T.; Gergely, P.; Charavgi, M.-D.; Skourti, P. V.; Chrysina, E. D.; Patonay, T.; Somsák, L. Carbohydr. Res. 2011, 346, 1427.
31. Leung, D.; Du, W.; Hardouin, C.; Cheng, H.; Hwang, I.; Cravatt, B. F.; Boger, D. L. Bioorg. Med. Chem. Lett. 2005, 15, 1423.
32. Bischoff, A.; Subramanya, H. S.; Sundaresan, K.; Sammeta, S. R.; Vaka, A. K. WO2008157844A1; 2008, p. 292.
33. Huhtiniemi, T.; Suuronen, T.; Rinne, V. M.; Wittekindt, C.; Lahtela-Kakkonen, M.; Jarho, E.; Wallen, E. A. A.; Salminen, A.; Poso, A.; Leppanen, J. J. Med. Chem. 2008, 51, 4377.
34. Huang, L.; Clancy, J.; Tomazic, A.; Wang, W.; Taylor, C.; Jackson, J. W. WO2006071471A2; 2006, p. 138.
35. Renslo, A. R.; Danheiser, R. L. J. Org. Chem. 1998, 63, 7840.
36. Wittenberger, S. J.; Donner, B. G. J. Org. Chem. 1993, 58, 4139.
37. Meyer, E.; Joussef, A. C.; Gallardo, H. Synthesis 2003, 899.
38. Jeong, H. J.; Park, Y.-D.; Park, H.-Y.; Jeong, I. Y.; Jeong, T.-S.; Lee, W. S. Bioorg. Med. Chem. Lett. 2006, 16, 5576.
39. Jadhav, G. R.; Shaikh, M. U.; Kale, R. P.; Ghawalkar, A. R.; Gill, C. H. J. Heterocycl. Chem. 2009, 46, 980.
40. Bedford, C. D.; Howd, R. A.; Dailey, O. D.; Miller, A.; Nolen, H. W., III; Kenley, R. A.; Kern, J. R.; Winterle, J. S. J. Med. Chem. 1986, 29, 2174.
41. Ősz, E.; Somsák, L.; Szilágyi, L.; Kovács, L.; Docsa, T.; Tóth, B.; Gergely, P. Bioorg. Med. Chem. Lett. 1999, 9, 1385.
42. Cheng, Y.-C.; Prusoff, W. H. Biochem. Pharmacol. 1973, 22, 3099.
43. Hayes, J. M.; Leonidas, D. D. Mini-Rev. Med. Chem. 2010, 10, 1156.
44. Kantsadi, A. L.; Hayes, J. M.; Manta, S.; Skamnaki, V. T.; Kiritsis, C.; Psarra, A. M.; Koutsogiannis, Z.; Dimopoulou, A.; Theofanous, S.; Nikoleousakos, N.; Zoumpoulakis, P.; Kontou, M.; Papadopoulos, G.; Zographos, S. E.; Komiotis, D.; Leonidas, D. D. ChemMedChem 2012, 7, 722.
45. Tetko, I. V.; Gasteiger, J.; Todeschini, R.; Mauri, A.; Livingstone, D.; Ertl, P.; Palyulin, V. A.; Radchenko, E. V.; Zefirov, N. S.; Makarenko, A. S.; Tanchuk, V. Y.; Prokopenko, V. V. J. Comput. Aided Mol. Des. 2005, 19, 453.
46. Mannhold, R.; Poda, G. I.; Ostermann, C.; Tetko, I. V. J. Pharm. Sci. 2009, 98, 861.
47. Smith, G. F. Prog. Med. Chem. 2011, 50, 1.
48. Lagorce, D.; Maupetit, J.; Baell, J.; Sperandio, O.; Tuffery, P.; Miteva, M. A.; Galons, H.; Villoutreix, B. O. Bioinformatics 2011, $27,2018$.
49. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Adv. Drug Delivery Rev. 1997, $23,3$.
50. Jorgensen, W. L.; Duffy, E. M. Bioorg. Med. Chem. Lett. 2000, 10, 1155.
51. Jorgensen, W. L.; Duffy, E. M. Adv. Drug Delivery Rev. 2002, 54, 355.
52. Veber, D. F.; Johnson, S. R.; Cheng, H. Y.; Smith, B. R.; Ward, K. W.; Kopple, K. D. J. Med. Chem. 2002, 45, 2615.
53. Artursson, P.; Palm, K.; Luthman, K. Adv. Drug Delivery Rev. 2001, $46,27$.
54. Fischer, E. H.; Krebs, E. G. Methods Enzymol. 1962, 5, 369.
55. Somsák, L.; Kovács, L.; Tóth, M.; Ősz, E.; Szilágyi, L.; Gyorgydeák, Z.; Dinya, Z.; Docsa, T.; Tóth, B.; Gergely, P. J. Med. Chem. 2001, 44, 2843.
56. Oikonomakos, N. G.; Skamnaki, V. T.; Ősz, E.; Szilágyi, L.; Somsák, L.; Docsa, T.; Tóth, B.; Gergely, P. Bioorg. Med. Chem. 2002, 10, 261.

[^0]: * Corresponding authors. Tel.: +36 52512900x22474; fax: +36 52512744 (L.J.); tel.: +36 52512900×22348 (L.S.).

 E-mail addresses: juhasz.laszlo@science.unideb.hu, dr.juhasz.m.laszlo@gmail. com (L. Juhász), somsak.laszlo@science.unideb.hu (L. Somsák).

[^1]: ${ }^{\text {a }}$ Calculated from the IC_{50} values by the Cheng-Prusoff equation: $K_{\mathrm{i}}=\mathrm{IC}_{50} /$ $\left(1+[S] / K_{\mathrm{m}}\right) .{ }^{42}$
 ${ }^{\mathrm{b}}$ Zero percentage inhibition at $625 \mu \mathrm{M}$.

