On the relationship between received signal strength and received signal strength index of IEEE 802.11 compatible radio transceivers

Attila Buchman
Faculty of Informatics
University of Debrecen
Debrecen, Hungary
buchman.attila@inf.unideb.hu

Claudiu Lung
Faculty of Engineering
Technical University of Cluj-Napoca
Cluj-Napoca, Romania

Abstract—Every WiFi, ZigBee or Bluetooth compatible radio chip provides a byte of information related to the received signal strength (RSS), the so called received signal strength index (RSSI). In a given point in space, on a specific radio channel, the RSS has a unique value at a given moment in time. Still, radio chips produced by different manufacturers will report different RSSI numbers. So RSSI is only related to, but not identical to RSS. In this paper, a formula that relates RSS and RSSI is derived. The validity of this theoretical assumption is tested on various vendors’ data. For Microchip’s MRF24WB radio chip the testing is done experimentally.

Keywords—received signal strength; received signal strength index; dBm; network interface card; WiFi; RF;

I. MOTIVATION

The subject of this paper is related to RF map based indoor localization [1-8]. Several versions of this method were implemented [12, 13]. Some of them make use of the existing WiFi LAN infrastructure. In this case a so called RSS map of the building is first recorded. This is a simple data base containing records like (1).

\[R_k = \{(AP_1, RSS_1), (AP_2, RSS_2), \ldots, (AP_N, RSS_N)\} \quad (1) \]

In (1) \(k \in (1, M) \) is an integer that stands for the location identifier, \(M \) is the total number of points on the map and \(N \) is the number of access points considered for localization.

In order to locate a mobile device in the mapped environment one needs the “fingerprint” of the actual location of the device i.e. a record like in (2).

\[R_x = \{(AP_1, RSS_1), (AP_2, RSS_2), \ldots, (AP_N, RSS_N)\} \quad (2) \]

\(R_x \) will be compared to all \(R_k \) and if the best fit is for \(k=i \) than \(x=i \), that is the device is in location \(i \).

If the mobile device is a laptop, tablet or smartphone, then things go well because they all can report actual RSS readings in dBm (dB related to 1mW), so one RSS map can be used with several devices. But when simple embedded system are used, one must take into account that IEEE 802.11 compatible radios report a RSS index (RSSI) which is usually not equal to RSS and is also different from one manufacturer to another. So their reports must be translated in standard RSS units in order to locate them using the same map.

Each vendor may or may not offer means (formula, lookup table) to derive RSS from his specific RSSI but in this paper we propose a general relationship between these values. The experimental proof of our theoretical assumptions is also presented in the particular case of MRF 24WB radio transceiver.

The rest of this paper is organized as follows: based on some practical assumption related to the way that a generic radio receiver is built, section II gives a theoretical derivation of the relationship between RSS and RSSI. Section III presents IEEE 802.11 specifications referring to RSSI and how this byte of information is used inside and outside of WLANs. Section IV presents formulae and lookup tables given by vendors to relate RSS to RSSI. As one shall see they are compatible with our assumptions. Section V is about experimentally establishing a \(RSS = f(RSSI) \) relationship and section VI presents the experimental results. Section VII concludes this paper.

II. THEORETICAL CONSIDERATION

Every radio receiver has a mean to detect, at the output of analog frontend stages, the average signal (specifically voltage) level. This voltage is used to control the gain of the RF and IF amplifiers. The process is called automatic gain control (AGC) and goes like this (refer to fig. 1):

(i) If \(V_L \) is beyond \(V_{REF} \) (so the input signal is weak) the AGC will exert no influence on the RF or IF amplifiers enabling them to work at full gain.

(ii) If \(V_L \) exceeds \(V_{REF} \), the AGC will act to reduce the gain of IF amplifier stages.

(iii) If that is not enough (for \(V_L \approx V_{REF} \)) than the gain of RF stages will also be reduced.
As a consequence the overall gain is a function of the input signal level: the weak signals are fully amplified while stronger signals are less amplified. This resembles to a logarithmic amplifier and one may approximate V_L as being:

$$V_L = A \cdot \log(V_{IN}) + B$$ \hspace{1cm} (3)$$

In (3) A and B are just some constants for a specific radio receiver, but still can have different values from one manufacturer to another.

Instead of voltage levels in telecommunication one deals with power levels. Taking into account that:

$$P_{IN} \propto V_{IN}^2$$ \hspace{1cm} (4)$$

equation (3) can be re-written as:

$$V_L = A \cdot \log(k \cdot (P_{IN})^{\frac{1}{2}}) + B$$ \hspace{1cm} (5)$$

In (5) k is again some constant standing for the effect of the input impedance on the input power. Taken into account the proprieties of logarithms (5) still can be written in a format that is similar to (3), but relates V_L to the input power:

$$V_L = C \cdot \log(P_{IN}) + D$$ \hspace{1cm} (6)$$

Of course, now we have new constants (denoted C and D) but a linear relationship between V_L and the logarithm of the input power.

Even if mathematically may not be the most rigorous, the above demonstration shows that the voltage controlling the AGC loop (V_L) can be used as a measure of the received signal power.

In fact we assume that this is what radio chip manufacturers do: V_L, after analog to digital conversion is presented as $RSSI$, by consequence (7) stands.

$$RSSI \propto V_L$$ \hspace{1cm} (7)$$

On the other hand, $\log(P_{IN})$ is related to RSS as in (8):

$$RSS = 10 \cdot \log\left(\frac{P_{IN}}{P_0}\right)$$ \hspace{1cm} (8)$$

where P_0 is a reference power level.

Usually (for WiFi, Bluetooth and 802.15.4 compatible radios at least) $P_0=1mW$. That is why one can say that RSS is expressed in dBm, (m standing for mW).

Taking into account (6), (7) and (8) one can conclude that RSS must be related to $RSSI$ as in (9).

$$RSS = \alpha \cdot RSSI + \beta$$ \hspace{1cm} (9)$$

In (9) α and β are just dimensionless constants, parameters specific to each radio manufacturer. So a linear relationship seems to exist between RSS and $RSSI$ values. We will test this relationship, with manufacturer data and experimental measurements to.

III. IEEE 802.11 AND RSSI

The IEEE 802.11 standard recommends (but IEEE 802.15.4 specifically asks) for the physical layer (PHY) to supply one byte of information called RSSI relative to the received signal strength (RSS). The signal strength is supposed to be observed between the beginning of the start frame delimiter and the end of the PLCP header error check [8, 10]. The standard does not specify how this RSSI should relate to RSS. That is why it’s hard to compare RSSI readings from different vendors.

A. Making use of RSSI internally

With or without any recommendation coming from IEEE standard committees, radio chip manufacturers still have to provide means to detect radio energy in a specific channel, prior to start any data transmission or reception. Moreover, even the decision to connect to a specific access point (AP) relays on signal strength information. In the specific case of IEEE 802.11 compatible radio communication:

(i) Prior to any data transmission a so called clear channel assessment (CCA) routine is performed in order to avoid collisions with already transmitting stations. CCA can only be done if one has means to detect and quantify radio energy in a specific channel. $RSSI$ is very well suited, in fact is generated for this purpose.

(ii) In order for the receiver to capture incoming messages a so called carrier sense (CS) routine must be performed. In fact CS is performed permanently, by every radio chip, if not in sleeping or transmitting mode. Carrier sensing is nothing more than radio signal strength evaluation on a specific channel. For this purpose, $RSSI$ comes in handy.

(iii) While roaming or before any connection attempt, stations performs scans of the radio channel, observing $RSSI$ values from different AP (if any) in range. Decision to disconnect from or to connect to one specific AP or another is taken considering their respective $RSSI$ levels.

B. Making use of RSSI externally

If $RSSI$ would be used only in-chip for communication related tasks (CS/CCA/roaming) there would be of no interest to us what the actual relationship between RSS and $RSSI$ is. But $RSSI$ has shown to be useful in at least another application area: indoor localization and positioning.

While outdoor localization, due to GPS technology is a closed issue, indoor localization is far from being so. The
reason is simple, GPS signals cannot be detected indoors. As an alternative, a handful of technique were proposed, tested and used:

- ultrasonic echo location,
- infrared localization,
- computer vision and image recognition,
- RFID based technologies,
- RF based methods:
 - time-of-arrival (TOA)
 - RSSI

All these technologies except for the last (RSSI based RF) have a major drawback: the need for an application specific hardware infrastructure to be deployed. This makes them costly and not user friendly at all.

RSSI based RF technology also needs a specific infrastructure but (at least in urban areas) that is already present: the ubiquitous WiFi LAN infrastructure. Performing a passive scan any WiFi enabled device would get a so called RSS fingerprint of the specific spot in which it is momentarily located. Several techniques exist to locate the device based on this RSS fingerprint. Figure 2 shows an example of what such a passive scan report would look like for a MRF24WBOMA radio chip (other information that comes as passive scan results but are irrelevant for localization purposes where discarded).

One can observe that the signal strength values are not the same. Taking for example the AP with MAC address …5D (first row in fig. 3, second row in fig. 2) the values are not only of opposite polarity but the absolute value is also different: 49 vs. 148. And that goes for every AP in the previous examples.

An important observation must be derived here: while observing the same reality (RSS), different radios report different results (RSSI). While RSSI is used internally this fact is irrelevant. But when it comes to use RSSI readings externally this inconsistency became cumbersome. What would be the result of a localization attempt if the RSS map was recorded with the Intel NIC from the previous example and the fingerprint is taken with a MRF24W radio device?

It is therefore of utmost importance to have means to translate various type of RSSI readings into some standard RSS metric.

IV. RELATIONSHIP BETWEEN RSSI AND RSS

As we previously stated several IEEE standards (802.11, 802.15.4 to name just two of them) ask for RSSI to be accessible. But there are no requirements in those standards that the relationship between RSSI and RSS should be revealed. This matter is of no importance for the scope of those standards. Therefore, different WiFi radio vendors may have different policies regarding this issue.

(i) There are some vendors (like Intel) which provide RSS directly, in dBm. For their radios RSS = RSSI. That’s one of the reasons why, there is some degree of confusion regarding the proper usage of these terms.

(ii) Other vendors (like Atheros) provide formulae to compute RSS based on RSSI readings. These formulae are usually very simple, something like $RSS=RSSI-k$, with k being a constant.

(iii) There are vendors (Symbol, Cisco) who give more or less fine grained lookup tables which relate every possible RSSI reading to the corresponding RSS value.

(iv) Finally there are vendors (Microchip) who, after our best knowledge haven’t published yet information to relate RSSI to RSS for some of their newest radio chips. In this case...
the relationship between RSS and RSSI should be derived empirically.

In our opinion, eq. (9) can always be used to express the relationship between RSSI and RSS. In order to prove that, let’s apply (9) using some actual vendor data taken from [9].

A. The case of Intel transceivers

Intel makes the life easy in this field: theirs NICs, as previously stated, provide RSS in dBm directly. This is a particular case of eq. (9), for $\alpha=1$ and $\beta=0$.

B. The case of Atheros transceivers

Atheros is one of those vendors that offer a formula to compute RSS based on RSSI readings:
\[RSS = RSSI - 95 \]
(10)

Comparing (10) and (9) one can see that (10) is a particular case of (9), for $\alpha=1$ and $\beta=-95$.

C. The case of Symbol transceivers

Symbol gives a very coarse grained lookup table to convert RSSI to RSS. There are only six entries in this table:

- $\text{RSSI} \leq 4$ is considered to be -100dBm
- $\text{RSSI} \leq 8$ is considered to be -90dBm
- $\text{RSSI} \leq 14$ is considered to be -80dBm
- $\text{RSSI} \leq 20$ is considered to be -70dBm
- $\text{RSSI} \leq 26$ is considered to be -60dBm
- $\text{RSSI} \geq 32$ is considered to be -50dBm

Except for the first row, any other two rows in this table allows us to fit this data to eq. (9). In a straightforward manner one can show that this table is generated by (9) for $\alpha=1.666$ and $\beta=-103.333$.

D. The case of Cisco transceivers

Unlike Symbol, Cisco gives a very fine grained lookup table to convert RSSI to RSS. There are no less than 100 entries in this table so we will present it in a graphical manner (see figure 4.).

As one can see in fig.4, the relationship is very close to linear so eq. (9) would represent a very good approximation. It is given in the table (it may not be so obvious in the graph) that for $\text{RSSI}=0$ the RSS value is -113. By consequence (see eq. 9) $\beta=-113$. The slope (α) can be approximated with:
\[\alpha = \frac{\Delta RSS}{\Delta RSSI} = \frac{-12-(-113)}{93-0} = 1.086 \]

V. EXPERIMENTAL WORK

In order for us to find α and β values that gives the best RSS estimate for MRF24WB radios several measurements where performed. The experimental setup is presented in fig. 5.

The main components and their role in this setup are as follows:

(i) The device under test is MRF24WBOMA, an 802.11.b compliant RF transceiver. The chip supports WiFi networks at 1 and 2 Mbps data rates. It is mounted on a chipKIT WiFi shield. The shield does not add any new feature to the radio chip (except for the on-PCB antenna) but offers easy connectivity to chipKIT Uno32 prototyping boards. The radio chip can be controlled by an external microcontroller via an SPI protocol compliant serial port.
One can see in fig. 6 the linear trend of both data sets and the equations describing the result of linear data regression. Using these equations it is straightforward to prove that the relationship between RSS and RSSI is as given in (12).

$$RSS = 1.18 \cdot RSSI - 217$$

(12)

The results of comparison between RSSI and RSS (retrieved with Xirrus Wi-Fi Inspector) are given graphically in figure 7.

Fig. 7. RSSI (up, positive values) vs. RSS (down, negative values)

One can see in fig. 7 the linear trend of both data sets and the equations describing the result of linear data regression. Using these equations it is straightforward to prove that the relationship between RSS and RSSI is as given in (13).

$$RSS = 1.16 \cdot RSSI - 215$$

(13)

Comparing (12) and (13) we can see a very good match between the two equations and since we have no other reason to incline towards one of them we would suggest the mean of the two to be used:

$$RSS = 1.17 \cdot RSSI - 216$$

(14)

VII. CONCLUSION

In conclusion eq. (14) can be used for translating RSSI readings retrieved from MRF 24WBOMA radio into objective RSS readings expressed in dBm. This equation was derived experimentally but proofs the theoretical assumption expressed in eq. (9) i.e. the linear relationship between RSS and RSSI. In fact (14) is an instance of (9) for $\alpha = 1.17$ and $\beta = -216$.

The range of valid RSSI readings (according to [11]) for this type of radios goes from 106 to 200. According to eq. (14) this would give an input power range of [-92dBm, 18dBm] which is consistent with the radio chip datasheet. In fact, in our experiment we never succeeded to obtain a RSSI value beyond 112 or above 166. More over RSSI readings where relatively coarse grained, going from 112 to 166 with an increment of six from one level to the next (112, 118, 124, … and so on). According to (14), that means 7dBm distance between two adjacent RSS levels which is coarse but still better than those (only) six levels of Symbol radio transceivers.

Finally table I summarizes our findings. As previously demonstrated Eq. (9) stands, if used with data provided by various radio chip vendors (in this paper data from Intel,
Atheros, Symbol and Cisco datasheets where considered and is consistent with experimental measurements to.

<table>
<thead>
<tr>
<th>Radio chip</th>
<th>α</th>
<th>β</th>
<th>eq. (9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTEL</td>
<td>1</td>
<td>0</td>
<td>RSS = RSSI</td>
</tr>
<tr>
<td>AHEROS</td>
<td>0</td>
<td>-95</td>
<td>RSS = RSSI-95</td>
</tr>
<tr>
<td>SYMBOL</td>
<td>1.67</td>
<td>-103</td>
<td>RSS = 1.67RSSI-103</td>
</tr>
<tr>
<td>CISCO</td>
<td>1.09</td>
<td>-113</td>
<td>RSS = 1.09RSSI-113</td>
</tr>
<tr>
<td>MRF24WB</td>
<td>1.17</td>
<td>-216</td>
<td>RSS = 1.17RSSI-216</td>
</tr>
</tbody>
</table>

ACKNOWLEDGMENT
This paper was supported by the TÁMOP-4.2.2.C-11/1/KONV-2012-0001 project. The project has been supported by the European Union, co-financed by the European Social Fund.

REFERENCES
[1] X., Luo et al., Comparative evaluation of Received Signal-Strength Index (RSSI) based indoor localization techniques for construction jobsites, Journal of Advanced Engineering Informatics (September 2010).