
Metadata of the article that will be visualized in OnlineFirst

 
1 Article Title Pituitary Adenylate Cyclase-Activ ating Polypeptide (PACAP)

Signalling Enhances Osteogenesis in UMR-106 Cell Line

2 Article Sub- Title

3 Article Copyright -
Year

Springer Science+Business Media New York 2014
(This will be the copyright line in the final PDF)

4 Journal Name Journal of Molecular Neuroscience

5

Corresponding

Author

Family Name Zákány

6 Particle

7 Given Name Róza

8 Suffix

9 Organization University of Debrecen

10 Division Department of Anatomy, Histology and
Embryology, Faculty of Medicine

11 Address Nagyerdei krt. 98, Debrecen H-4032, Hungary

12 e-mail roza@anat.med.unideb.hu

13

Author

Family Name Juhász

14 Particle

15 Given Name Tamás

16 Suffix

17 Organization University of Debrecen

18 Division Department of Anatomy, Histology and
Embryology, Faculty of Medicine

19 Address Nagyerdei krt. 98, Debrecen H-4032, Hungary

20 e-mail

21

Author

Family Name Matta

22 Particle

23 Given Name Csaba

24 Suffix

25 Organization University of Debrecen

26 Division Department of Anatomy, Histology and
Embryology, Faculty of Medicine

27 Address Nagyerdei krt. 98, Debrecen H-4032, Hungary

28 e-mail

   

   

_____________________________________________________________________________________

Please note: Images will appear in color online but will be printed in black and white._____________________________________________________________________________________



29

Author

Family Name Katona

30 Particle

31 Given Name Év a

32 Suffix

33 Organization University of Debrecen

34 Division Department of Anatomy, Histology and
Embryology, Faculty of Medicine

35 Address Nagyerdei krt. 98, Debrecen H-4032, Hungary

36 e-mail

37

Author

Family Name Somogyi

38 Particle

39 Given Name Csilla

40 Suffix

41 Organization University of Debrecen

42 Division Department of Anatomy, Histology and
Embryology, Faculty of Medicine

43 Address Nagyerdei krt. 98, Debrecen H-4032, Hungary

44 e-mail

45

Author

Family Name Takács

46 Particle

47 Given Name Roland

48 Suffix

49 Organization University of Debrecen

50 Division Department of Anatomy, Histology and
Embryology, Faculty of Medicine

51 Address Nagyerdei krt. 98, Debrecen H-4032, Hungary

52 e-mail

53

Author

Family Name Hajdú

54 Particle

55 Given Name Tibor

56 Suffix

57 Organization University of Debrecen

58 Division Department of Anatomy, Histology and
Embryology, Faculty of Medicine

59 Address Nagyerdei krt. 98, Debrecen H-4032, Hungary

60 e-mail

61
Author

Family Name Helgadottir

62 Particle

   

   



63 Given Name Solv eig Lind

64 Suffix

65 Organization University of Debrecen

66 Division Department of Anatomy, Histology and
Embryology, Faculty of Medicine

67 Address Nagyerdei krt. 98, Debrecen H-4032, Hungary

68 e-mail

69

Author

Family Name Fodor

70 Particle

71 Given Name János

72 Suffix

73 Organization University of Debrecen

74 Division Department of Physiology, Faculty of Medicine

75 Address Nagyerdei krt. 98, Debrecen H-4032, Hungary

76 e-mail

77

Author

Family Name Csernoch

78 Particle

79 Given Name László

80 Suffix

81 Organization University of Debrecen

82 Division Department of Physiology, Faculty of Medicine

83 Address Nagyerdei krt. 98, Debrecen H-4032, Hungary

84 e-mail

85

Author

Family Name Tóth

86 Particle

87 Given Name Gábor

88 Suffix

89 Organization University of Szeged

90 Division Department of Medical Chemistry, Faculty of
Medicine

91 Address Dóm tér 8, Szeged H-6720, Hungary

92 e-mail

93

Author

Family Name Bakó

94 Particle

95 Given Name Év a

96 Suffix

97 Organization University of Debrecen

   

   



98 Division Cell Biology and Signalling Research Group of
the Hungarian Academy of Sciences, Department
of Medical Chemistry, Research Centre for
Molecular Medicine, Faculty of Medicine

99 Address Nagyerdei krt. 98, Debrecen H-4032, Hungary

100 e-mail

101

Author

Family Name Reglődi

102 Particle

103 Given Name Dóra

104 Suffix

105 Organization University of Pécs, Medical School

106 Division Department of Anatomy, PTE-MTA “Lendület”
PACAP Research Team

107 Address Szigeti út 12, Pécs H-7624, Hungary

108 e-mail

109

Author

Family Name Tamás

110 Particle

111 Given Name Andrea

112 Suffix

113 Organization University of Pécs, Medical School

114 Division Department of Anatomy, PTE-MTA “Lendület”
PACAP Research Team

115 Address Szigeti út 12, Pécs H-7624, Hungary

116 e-mail

117

Schedule

Received 28 March 2014

118 Revised  

119 Accepted 22 July 2014

120 Abstract Presence of the pituitary adenylate cyclase-activating polypeptide
(PACAP) signalling has been proved in various peripheral tissues.
PACAP can activate protein kinase A (PKA) signalling via binding
to pituitary adenylate cyclase-activating polypeptide type I receptor
(PAC1), vasoactive intestinal polypeptide receptor (VPAC) 1 or
VPAC2 receptors. Since little is known about the role of this
regulatory mechanism in bone formation, we aimed to investigate
the effect of PACAP on osteogenesis of UMR-106 cells. PACAP
1-38 as an agonist and PACAP 6-38 as an antagonist of PAC1 were
added to the culture medium. Surprisingly, both substances
enhanced protein expressions of collagen type I, osterix and
alkaline phosphatase, along with higher cell proliferation rate and
an augmented mineralisation. Although expression of PKA was
elevated, no alterations were detected in the expression,
phosphorylation and nuclear presence of CREB, but increased

   

   



nuclear appearance of Runx2, the key transcription factor of
osteoblast differentiation, was shown. Both PACAPs increased the
expressions of bone morphogenetic proteins (BMPs) 2, 4, 6, 7 and
Smad1 proteins, as well as that of sonic hedgehog, PATCH1 and
Gli1. Data of our experiments indicate that activation of PACAP
pathway enhances bone formation of UMR-106 cells and PKA,
BMP and Hedgehog signalling pathways became activated. We
also found that PACAP 6-38 did not act as an antagonist of PACAP
signalling in UMR-106 cells.
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14 Abstract Presence of the pituitary adenylate cyclase-
15 activating polypeptide (PACAP) signalling has been proved
16 in various peripheral tissues. PACAP can activate protein
17 kinase A (PKA) signalling via binding to pituitary adenylate
18 cyclase-activating polypeptide type I receptor (PAC1), vaso-
19 active intestinal polypeptide receptor (VPAC) 1 or VPAC2
20 receptors. Since little is known about the role of this regulatory
21 mechanism in bone formation, we aimed to investigate the
22 effect of PACAP on osteogenesis of UMR-106 cells. PACAP
23 1-38 as an agonist and PACAP 6-38 as an antagonist of PAC1
24 were added to the culture medium. Surprisingly, both sub-
25 stances enhanced protein expressions of collagen type I,
26 osterix and alkaline phosphatase, along with higher cell pro-
27 liferation rate and an augmented mineralisation. Although

28expression of PKAwas elevated, no alterations were detected
29in the expression, phosphorylation and nuclear presence of
30CREB, but increased nuclear appearance of Runx2, the key
31transcription factor of osteoblast differentiation, was shown.
32Both PACAPs increased the expressions of bone morphoge-
33netic proteins (BMPs) 2, 4, 6, 7 and Smad1 proteins, as well as
34that of sonic hedgehog, PATCH1 and Gli1. Data of our ex-
35periments indicate that activation of PACAP pathway en-
36hances bone formation of UMR-106 cells and PKA, BMP
37and Hedgehog signalling pathways became activated. We also
38found that PACAP 6-38 did not act as an antagonist of PACAP
39signalling in UMR-106 cells.
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80 PAC181 Pituitary adenylate cyclase-activating
82 polypeptide type I receptor
83 PACAP84 Pituitary adenylate cyclase-activating
85 polypeptide
86 PBS87 Phosphate-buffered saline
88 PBST89 Phosphate-buffered saline supplemented
90 with 1 % Tween 20
91 PLC92 Phospholipase C
93 PKA94 Protein kinase A
95 PKC96 Protein kinase C
97 PTHrP98 Parathyroid hormone-related peptide
99 RT-PCR100 Reverse transcription followed
101 by polymerase chain reaction
102 Runx2103 Runt-related transcription factor 2
104 SHH105 Sonic hedgehog
106 TBE107 Tris-boric acid-EDTA
108 TGFβ109 Transforming growth factor-β
110 VEGF111 Vascular endothelial growth factor
112 VIP113 Vasoactive intestinal polypeptide
114 VPAC115 Vasoactive intestinal polypeptide receptor116

117 Introduction

118 Bone formation and regeneration are well-organised processes
119 orchestrated by several signalling pathways. Initially,
120 osteoprogenitor cells undergo a rapid proliferation and then
121 differentiate to early osteoblasts secreting organic bone ma-
122 trix. In consecutive steps, activity of late osteoblasts results in
123 an intensive extracellular matrix (ECM) mineralisation and
124 ultimately osteocytes are formed. Differentiation processes of
125 osteogenic cells are induced by a few fundamental regulatory
126 pathways; activation of bone morphogenetic protein (BMP)
127 (Chen et al. 2012), WNT (Kim et al. 2013), fibroblast growth
128 factor (FGF) (Marie 2012) and Hedgehog (HH) (Pan et al.
129 2013) regulated signalling cascades lead to proper bone for-
130 mation. BMPs, related to the transforming growth factor-β
131 superfamily (TGF-β), are generally considered as cytokines
132 regulating various events during embryonic development in-
133 cluding physiological osteogenesis but also play role in ec-
134 topic bone formation (Bae et al. 2013). Via the initiation of the
135 activation of several genes, BMPs are key regulators of ECM
136 production during bone and cartilage formation both in vitro
137 and in vivo (Chen et al. 2012; Perrier-Groult et al. 2013;
138 Zouani et al. 2013). The activation of BMP receptors through
139 Smads may induce elevated expression of alkaline phospha-
140 tase (ALP) or collagen type I; moreover, it can activate the
141 expression of bone-specific transcription factors such as
142 osterix (Wang et al. 2013). Some of these cytokines, including
143 BMPs 2, 4, 5, 6 and 7 have been identified as markers of
144 proper osteogenic differentiation, although experimental evi-
145 dence suggested that a combined expression of these
146 morphogenes was more essential than the single presence of

147any of them (Lavery et al. 2008). One mechanism which may
148result in transcriptional activation of BMP encoding genes is
149the increased activity of protein kinase A (PKA). This kinase
150can phosphorylate cAMP response element-binding protein
151(CREB) transcription factor which subsequently translocates
152into the nucleus and can induce messenger RNA (mRNA)
153expression of BMPs (Zhang et al. 2011). The complexity of
154this regulatory system is hallmarked by the fact that activation
155of genes encoding BMPs can also be regulated by HH signal-
156ling pathway, e.g. via a negative feedback loop of sonic
157hedgehog (SHH) signalling (Bastida et al. 2009; Jiang et al.
1582013). The members of HH family are fundamental regulators
159of various embryonic developmental processes, e.g. neuronal
160differentiation, tooth and limb development (Ehlen et al. 2006;
161Hu et al. 2013; Vazin et al. 2014). The well-balanced spatio-
162temporal expression of HH molecules is crucial during endo-
163chondral ossification both for survival of chondrocytes and for
164induction of their physiological apoptotic program (St-
165Jacques et al. 1999). The elevated expression of Indian hedge-
166hog (IHH) can regulate the expression of parathyroid
167hormone-related peptide (PTHrP) which in turn may upregu-
168late the activation of Runx2 transcription factor, a key player
169of bone formation (Ochiai et al. 2010; St-Jacques et al. 1999).
170Pituitary adenylate cyclase-activating polypetide
171(PACAP), a member of the VIP–secretin–GHRH–glucagon
172superfamily, was originally isolated from extract of rat hypo-
173thalamus (Miyata et al. 1989). The expression of the neuro-
174peptide has been demonstrated in various peripheral organs,
175such as gonads (Reglodi et al. 2012), intestinal tract (Pirone
176et al. 2011) and urinary systems (Gonkowski and Całka 2012),
177and the presence of PACAP has also been verified in human
178milk and blood plasma (Borzsei et al. 2009). The
179posttranslationally modified active form of the neuropeptide
180consists of 38 amino acids, and a shorter 27 amino acid-long
181biologically active variant also exists (Miyata et al. 1989).
182Several in vitro and in vivo data demonstrated the importance
183of PACAP during neuronal differentiation and its general role
184in embryonic development (Ago et al. 2011; Falluel-Morel
185et al. 2008; Ohta et al. 2006). Trophic effect of PACAP has
186been demonstrated in oxidative stress, under ischaemic, toxic
187or traumatic conditions (Horvath et al. 2011; Sanchez et al.
1882008; Shioda et al. 2006; Tamas et al. 2012;Wada et al. 2013).
189The neuropeptide is generally expressed by neurons or re-
190leased in autonomic nerve endings (Braas et al. 1998; Inglott
191et al. 2012), but several nonneuronal cell types such as devel-
192oping germ cells of testis (Shioda et al. 1994), intestinal tissue
193(Pirone et al. 2011) and endothelial cells (Seeliger et al. 2010)
194have also been found to release PACAP. It can bind to three
195specific receptors (pituitary adenylate cyclase-activating poly-
196peptide type I receptor (PAC1), vasoactive intestinal polypep-
197tide receptor (VPAC) 1 and VPAC2 (Jolivel et al. 2009)), from
198which the last two can be activated by both PACAP and VIP
199with equal efficiency, while PAC1 receptor has 100-fold
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200 greater affinity to PACAP than VIP (Gourlet et al. 1997).
201 Besides these well-characterised members of PACAP signal-
202 ling pathway, recent data indicated the existence of a novel
203 PACAP receptor or a novel PACAP receptor-mediated path-
204 way (Jansen-Olesen et al. 2014). The canonical PACAP sig-
205 nalling pathway operates via activation of PAC1 receptor
206 leading to the elevation of intracellular cAMP concentration
207 and consequent activation of PKA signalling (Vaudry et al.
208 2009). The truncated form of the neuropeptide, PACAP 6-38,
209 having the first five amino acids cleaved down, is regarded as
210 an antagonist of PAC1 receptor (Vandermeers et al. 1992),
211 although its antagonistic effect seems to be tissue and cell type
212 dependent (Reglodi et al. 2008).
213 Presence of the members of PACAP signalling system has
214 already been demonstrated in different osteogenic cells such
215 as MC3T3 (Nagata et al. 2009) and UMR-106 cells (Kovacs
216 et al. 1996). It has also been shown that PACAP binding can
217 elevate cAMP concentration of UMR-106 cells (Kovacs et al.
218 1996), and sporadic data prove the importance of the neuro-
219 peptide in osteogenesis or bone fracture healing. UMR-106
220 cell line was originally isolated from rat osteosarcoma. Cells
221 of this cell line can differentiate into osteoblasts after serum
222 withdrawal and show the signs of regular bone formation
223 along with the expression of osteogenic markers and secretion
224 of both organic and inorganic components of bone ECM
225 (Midura et al. 1990; Forrest et al. 1985).
226 In this report, we demonstrate that addition of PACAP
227 neuropeptides enhances bone formation along with elevated
228 nuclear presence of Runx2. PACAPs activate expression of
229 various BMPs and increase the nuclear signal of their down-
230 stream target Smad1. Moreover, elevated expression of
231 the components of HH signalling pathways and an
232 enhanced nuclear presence of Gli1 transcription factor
233 is also detected. These observations suggest a multifactorial
234 and dominantly noncanonical PACAP signalling in UMR-106
235 osteoblastic cells.

236 Materials and Methods

237 Cell Culturing

238 Rat osteosarcoma osteoblast-like cell line, UMR-106
239 (ATCC® CRL-1661™), was used to monitor osteogenic dif-
240 ferentiation (Forrest et al. 1985). Cells were cultured in high
241 glucose Dulbecco’s modified Eagle’s medium (DMEM)
242 (PAA Laboratories, Pasching, Austria) supplemented
243 with 10 % foeta l bovine serum (FBS) (PAA
244 Laboratories) at 37 °C in the presence of 5 % CO2

245 and 80 % humidity in a CO2 incubator. At 70 %
246 confluence, normal medium was changed to DMEM without
247 FBS for inducing osteogenic differentiation. This day was
248 considered as day 0.

249Administration of PACAP Polypeptides

250PACAP 1-38 at 100 nM (stock solution 100 μM, dissolved in
251sterile distilled water) was used as agonist of PAC1 receptor;
252as an antagonist, PACAP 6-38 at 10 μM (stock solution
25310 mM, dissolved in sterile distilled water) was applied con-
254tinuously from day 1. PACAPs were synthesised as previously
255described (Jozsa et al. 2005).

256Staining Procedures for Light Microscopical Analysis

257UMR cells of different experimental groups were cultured
258on round coverslips (Menzel-Gläser, Menzel GmbH,
259Braunschweig, Germany) placed into Petri dishes (PAA
260Laboratories). On day 4 or 8, cells were fixed in a 4:1 mixture
261of absolute ethanol and 40 % formaldehyde. For morphological
262analysis, cells were stained with haematoxylin-eosin (HE,
263Sigma-Aldrich, St. Louis, MO, USA); for visualisation of col-
264lagen accumulation, Picrosirius red (Sigma-Aldrich) was used;
265calcium-rich deposits were evaluated with Alizarin red (Sigma-
266Aldrich); and von Kossa method (Millipore, Billerica, MA,
267USA) was used to demonstrate appearance of calcium phos-
268phate in cell cultures. All staining protocols were carried out
269according to the instructions ofmanufacturer. Photomicrographs
270were taken using an Olympus DP72 camera on a Nikon Eclipse
271E800 microscope (Nikon Corporation, Tokyo, Japan).

272Monitoring of Cell Proliferation with 3H-thymidine
273Incorporation, Mitochondrial Activity with MTTAssay

274DMEM medium containing 1 μCi/mL 3H-thymidine (diluted
275from thymidine [6-3H] 20–30 Ci/mmol; 0.74–1.11 TBq/
276mmol), American Radiolabeled Chemicals, Inc., St. Louis,
277MO, USA) was added to cell cultures for 16 h on day 4 of
278culturing. Cells were fixed with ice-cold 5 % trichloroacetic
279solution for 20 min and were harvested into wells of special
280opaque 96-well microtitre plates (Wallac, PerkinElmer Life
281and Analytical Sciences, Shelton, CT, USA). Samples were
282air-dried for 1 week, and radioactivity was counted by
283Chameleon liquid scintillation counter (Chameleon, Hidex,
284Turku, Finland).
285For investigation of general viability or mitochondrial ac-
286tivity, 25 μL 3-[4,5-dimethylthiazolyl-2]-2,5-diphenyltetrazo-
287lium bromide (MTT) reagent (25 mg MTT/5 mL PBS) was
288pipetted into each Petri dish on day 4 of culturing. Cells were
289incubated for 2 h at 37 °C, followed by addition of 500 μL
290MTT solubilising solution; absorption of samples was mea-
291sured at 570 nm (Chameleon, Hidex).

292RT-PCR Analysis

293Cells of UMR-106 cell line were dissolved in TRIzol (Applied
294Biosystems, Foster City, CA, USA), and after the addition of
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t1:1 Table 1 Nucleotide sequences, amplification sites, GenBank accession numbers, amplimer sizes and PCR reaction conditions for each primer pair are
shown

t1:2 Gene Primer Nucleotide sequence (5′→3′) GenBank ID Annealing
temperature

Amplimer
size (bp)

t1:3 Alkaline phosphatise (Alpl) Sense GAA GTC CGT GGG CAT CGT (474–491) NM_013059 59 °C 347

t1:4 Antisense CAG TGC GGT TCC AGA CATAG (801–820)

t1:5 BMP2 (Bmp2) Sense AAG CCA GGT GTC TCC AAG (697–714) NM_017178.1 53 °C 209

t1:6 Antisense AAG TCC ACATAC AAA GGG TG (886–905)

t1:7 BMP4 (Bmp4) Sense TAG TCC CAA GCATCA CCC (876–893) NM_012827.2 53 °C 294

t1:8 Antisense TCG TAC TCG TCC AGATAC AAC (1,149–1,169)

t1:9 BMP6 (Bmp6) Sense CCC AGATTC CTG AGG GTG A (936–954) NM_013107.1 56 °C 248

t1:10 Antisense CAT GTT GTG CTG CGG TGT (1,166–1,183)

t1:11 BMP7 (Bmp7) Sense AGG GAG TCC GAC CTC TTC T (607–625) NM_001191856.1 54 °C 297

t1:12 Antisense GTT CTG GCT GCG TTG TTT (886–903)

t1:13 BMPR1 (Bmpr1a) Sense CCATTG CTT TGC CAT TAT (240–257) NM_009758.4 47 °C 487

t1:14 Antisense TTTACC AAC CTG CCG AAC (709–726)

t1:15 Collagen type I (Col1a1) Sense GGG CGA GTG CTG TGC TTT (348–365) NM_007742.3 60 °C 388

t1:16 Antisense GGG ACC CAT TGG ACC TGA A (717–735)

t1:17 CREB (Creb1) Sense AGATTG CCA CAT TAG CCC (95–112) NM_031017.1 52 °C 441

t1:18 Antisense GCT GTATTG CTC CTC CCT (518–535)

t1:19 GAPDH (Gapdh) Sense TGG CAA AGT GGA GAT TGT TG (69–88) NM_008084.2 59 °C 486

t1:20 Antisense GTC TTC TGG GTG GCA GTG AT (535–554)

t1:21 Gli1 (Gli1) Sense CCA CCC TAC CTC TGT CTATTC G (2,201–2,222) NM_010296.2 49 °C 423

t1:22 Antisense CAC CCT TGT TCT GGT TTTACC (2,603–2,623)

t1:23 IHH (Ihh) Sense CCA ACTACA ATC CCG ACATCA (248–268) NM_053384.1 58 °C 477

t1:24 Antisense GTC TTC ATC CCA GCC TTC C (390–408)

t1:25 Osterix (Sp7) Sense GCC TAC TTA CCC GTC TGA CTT T (525–543) NM_001037632.1 56 °C 131

t1:26 Antisense GCC CAC TAT TGC CAA CTG C (634–652)

t1:27 PACAP (ADCYAP1) Sense GAA GAC GAG GCT TAC GAC CA (314–333) NM_001001291 56 °C 288

t1:28 Antisense GTC CGA GTG GCG TTT GGT (584–601)

t1:29 PAC1 (ADCYAP1R1) Sense CTA CGC CCT TTA CTA CCC AG (210–229) NM_016989.2 49 °C 247

t1:30 Antisense GTATTT CTT GAC AGC CAT TTG T (435–456)

t1:31 PKA (Prkaca) Sense GCA AAG GCTACA ACA AGG C (847–865) NM_008854 53 °C 280

t1:32 Antisense ATG GCA ATC CAG TCA ATC G (1,109–1,126)

t1:33 PKCα (Prkca) Sense AGG GAT GAA ATG CGA CAC C (652–670) NM_001105713.1 55 °C 408

t1:34 Antisense GAG ACG CCG AAG GAA AGG (1,042–1,059)

t1:35 PTCH1 (Ptch1) Sense TGC TAC AAATCA GGG GAA CTT (565–585) NM_053566.1 56 °C 310

t1:36 Antisense CAG GGC AAT CTG GGT CGG (854–874)

t1:37 PTHrP (Pthlh) Sense CAG ACG ACG AGG GCA GAT (290–307) NM_012636.1 58 °C 145

t1:38 Antisense GAC CGA GTC CTT CGC TTT (417–434)

t1:39 Runx2 (Runx2) Sense GGA CGA GGC AAG AGT TTC A (598–616) NM_001278483.1 55 °C 249

t1:40 Antisense TGG TGC AGA GTT CAG GGA G (828–846)

t1:41 SHH (Shh) Sense TCG TGC TAC GCA GTC ATC G (1,042–1,060) NM_017221.1 56 °C 156

t1:42 Antisense CCT CGC TTC CGC TAC AGA (1,180–1,197)

t1:43 Smad1 (Smad1) Sense AGC ACC TAC CCT CAC TCC C (935–953) NM_013130.2 56 °C 306

t1:44 Antisense GAA ACC ATC CAC CAA CAC G (1,222–1,240)

t1:45 VEGF (Vegfa) Sense GCTACT GCC GTC CGATTG (1,167–1,184) NM_001025250.3 54 °C 267

t1:46 Antisense GCT TTG TTC TGT CTT TCT TTG G (1,412–1,433)

t1:47 VPAC1 (VIPR1) Sense GTT CTATGG CAC GGT CAA (376–393) NM_001097523 52 °C 216

t1:48 Antisense AGC AAT GTT CGG GTT CTC (573–590)

t1:49 VPAC2 (VIPR2) Sense TCG GAA CTA CAT CCATCT (477–497) NM_001014970 48 °C 177
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295 20 % RNase-free chloroform, samples were centrifuged at
296 4 °C at 10,000×g for 15 min. Samples were incubated in
297 500 μL of RNase-free isopropanol at −20 °C for 1 h; then,
298 total RNA was harvested in RNase-free water and stored at
299 −20 °C. The assay mixture for reverse transcriptase reaction
300 contained 2 μg RNA, 0.112 μM oligo(dT), 0.5 mM
301 deoxynucleotide triphosphate (dNTP), 200 units of High
302 Capacity RT (Applied Bio-Systems) in 1× RT buffer. For the
303 sequences of primer pairs and further details of polymerase
304 chain reactions, see Table 1. Amplifications were performed
305 in a thermal cycler (Labnet MultiGene™ 96-well Gradient
306 Thermal Cycler; Labnet International, Edison, NJ, USA) in a
307 final volume of 21 μL (containing 1 μL forward and reverse
308 primers [0.4 μM], 0.5 μL dNTP [200 μM], and 5 units of
309 Promega GoTaq® DNA polymerase in 1× reaction buffer) as
310 follows: 95 °C, 2 min, followed by 35 cycles (denaturation,
311 94 °C, 1 min; annealing at optimised temperatures as given in
312 Table 1 for 1 min; extension, 72 °C, 90 s) and then 72 °C,
313 10 min. PCR products were analysed by electrophoresis in
314 1.2 % agarose gel containing ethidium bromide. GAPDHwas
315 used as internal control. Optical density of signals was

316measured by using ImageJ 1.40 g freeware, and results were
317normalised to the optical density of untreated control cultures.

318Western Blot Analysis

319Cells were washed in physiological NaCl solution and were
320harvested. After centrifugation, cell pellets were suspended in
321100 μL of homogenisation radio immunoprecipitation assay
322(RIPA) buffer (150 mM sodium chloride; 1.0 % NP40, 0.5 %
323sodium deoxycholate; 50 mM Tris, pH 8.0) containing prote-
324ase inhibitors (aprotinin (10 μg/mL), 5 mM benzamidine,
325leupeptin (10 ug/mL), trypsine inhibitor (10 ug/mL), 1 mM
326PMSF, 5 mM EDTA, 1 mM EGTA, 8 mMNa fluoride, 1 mM
327Na orthovanadate). Samples were stored at −70 °C.
328Suspensions were sonicated by pulsing burst for 30 s at 40
329A (Cole-Parmer, IL, USA). For Western blotting, total cell
330lysates were used. Samples for sodium dodecyl sulfate poly-
331acrylamide gel electrophoresis (SDS-PAGE) were prepared
332by the addition of Laemmli electrophoresis sample buffer
333(4 % SDS, 10 % 2-mercaptoehtanol, 20 % glycerol, 0.004 %
334bromophenol blue, 0.125 M Tris–HCl pH 6.8) to cell lysates

t1:50 Table 1 (continued)

Gene Primer Nucleotide sequence (5′→3′) GenBank ID Annealing
temperature

Amplimer
size (bp)

t1:51 Antisense TTT GCC ATA ACA CCATAC (636–653)

t2:1 Table 2 Tables of antibodies
used in the experimentst2:2 Antibody Host animal Dilution Distributor

t2:3 Anti-PAC1 Rabbit, polyclonal 1:600 Sigma-Aldrich, St. Louis, MO, USA

t2:4 Anti-PKA Rabbit, polyclonal 1:600 Cell Signaling, Danvers, MA, USA

t2:5 Anti-CREB Rabbit, polyclonal 1:800 Millipore, Billerica, MA, USA

t2:6 Anti-p-CREB Rabbit, polyclonal 1:800 Millipore, Billerica, MA, USA

t2:7 Anti-Coll. I. Mouse, monoclonal 1:1,000 Sigma-Aldrich, St. Louis, MO, USA

t2:8 Anti-osterix Goat, polyclonal 1:200 Santa Cruz Biotechnology, Dallas, TX, USA

t2:9 Anti-ALP Rabbit, polyclonal 1:600 Abcam, Cambridge, UK

t2:10 Anti-Runx2 Rabbit, polyclonal 1:600 Cell Signaling, Danvers, MA, USA

t2:11 Anti-PKCα Rabbit, polyclonal 1:600 Cell Signaling, Danvers, MA, USA

t2:12 Anti-BMP2 Rabbit, polyclonal 1:400 Abcam, Cambridge, UK

t2:13 Anti-BMP4 Rabbit, polyclonal 1:600 Cell Signaling, Danvers, MA, USA

t2:14 Anti-BMP6 Goat, polyclonal 1:200 Santa Cruz Biotechnology, Dallas, TX, USA

t2:15 Anti-BMP7 Rabbit, polyclonal 1:600 Abcam, Cambridge, UK

t2:16 Anti-BMPR1 Mouse, monoclonal 1:600 Abcam, Cambridge, UK

t2:17 Anti-Smad1 Rabbit, polyclonal 1:600 Cell Signaling, Danvers, MA, USA

t2:18 Anti-SHH Rabbit, polyclonal 1:600 Cell Signaling, Danvers, MA, USA

t2:19 Anti-IHH Rabbit, polyclonal 1:600 Millipore, Billerica, MA, USA

t2:20 Anti-PTHrP Mouse, monoclonal 1:300 R&D Systems, Minneapolis, MN, USA

t2:21 Anti-PTCH1 Rabbit, polyclonal 1:600 Abcam, Cambridge, UK

t2:22 Anti-Gli1 Rabbit, polyclonal 1:600 Cell Signaling, Danvers, MA, USA

t2:23 Anti-GAPDH Rabbit, polyclonal 1:1,000 Abcam, Cambridge, UK
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F335 to set equal protein concentration of samples, and boiled for

336 10 min. About 40 μg of protein was separated by 7.5 % SDS-
337 PAGE gel for detection of PAC1, PKA, GAPDH, CREB, p-
338 CREB, Coll. I, osterix, ALP, Runx2, PKCα, BMP2, BMP4,
339 BMP6, BMP7, BMPR1, Smad1, PTHrP, SHH, IHH, PTCH1
340 and Gli1. Proteins were transferred electrophoretically to ni-
341 trocellulose membranes. After blocking with 5 % nonfat dry
342 milk in phosphate-buffered saline with 0.1 % Tween 20
343 (PBST), membranes were washed and exposed to the primary
344 antibodies overnight at 4 °C in the dilution as given in Table 2.
345 After washing for 30 min in PBST, membranes were incubat-
346 ed with anti-rabbit IgG (Bio-Rad Laboratories, CA, USA) in
347 1:1,500, anti-goat IgG (Sigma) in 1:2,000 and anti-mouse IgG
348 (Bio-Rad Laboratories) in 1:1,500 dilution. Signals were de-
349 tected by enhanced chemiluminescence (Pierce) according to
350 the instructions of the manufacturer. Signals were manually
351 developed on X-ray films (Agfa-Gevaert Group, Mortsel,
352 Belgium). Optical density of Western blot signals was mea-
353 sured by using ImageJ 1.40 g freeware, and results were
354 normalised to that of untreated control cultures.

355 Immunocytochemistry

356 On day 4, immunocytochemistry was performed on cells cul-
357 tured on the surface of coverslips to visualise the intracellular
358 localisation of PAC1, p-CREB, Runx2, Smad1 and Gli1.
359 Extracellular organisation of collagen type I was also monitored
360 by immunhistochemical staining. Cells were fixed in Saint-
361 Marie’s fixative (99 % ethanol and 1 % anhydrous acetic acid)
362 and washed in 70 % ethanol. After rinsing in PBS (pH 7.4),
363 nonspecific binding sites were blocked with PBST supplement-
364 ed with 1 % bovine serum albumin (Amresco LLC, Solon, OH,
365 USA); then, cultures were incubated with polyclonal anti-PAC1
366 antibody (Sigma), polyclonal Runx2 (Cell Signaling), Gli1
367 (Cell Signaling), Smad1 (Cell Signalling) and p-CREB
368 (Millipore) antibodies at a dilution of 1:400 and monoclonal
369 anti-Coll. I. (Sigma) antibody at a dilution of 1:800 at 4 °C
370 overnight. Primary antibodies were visualised with anti-rabbit
371 Alexa555 or anti-mouse Alexa555 secondary antibodies (Life

372Technologies Corporation, Carlsbad, CA, USA) at a dilution of
3731:1,000. Specificity of antibodies was confirmed by applying
374control peptides that were identical to antigens against which the
375antibodies were raised; in these experiments, no specific signals
376were detected (data not shown). Cultures were mounted in
377Vectashield mounting medium (Vector Laboratories,
378Peterborough, England) containing DAPI for nuclear DNA
379staining. Photomicrographs of the cultures were taken using
380anOlympusDP72 camera on aNikon Eclipse E800microscope
381(Nikon Corporation, Tokyo, Japan). Images were acquired
382using cellSense Entry 1.5 software (Olympus, Shinjuku,
383Tokyo, Japan) using constant camera settings to allow compar-
384ison of fluorescent signal intensities. For investigation of sub-
385cellular localisation of p-CREB, Runx2, Gli1 and PAC1, fluo-
386rescent images were also taken with an Olympus FV1000S
387confocal microscope (Olympus Co., Tokyo, Japan) using×60
388oil immersion objective (NA: 1.3). For excitation, laser line of
389543 nm was used. The average pixel time was 4 μs. Z image
390series of 1-μm optical thickness were recorded in sequential
391scan mode. Images of Alexa555 and DAPI were overlaid using
392Adobe Photoshop version 10.0 software. Optical density of
393fluorescent signals was measured by using ImageJ 1.40 g free-
394ware, and the data were compared to that of untreated control
395cultures. Integrated optical density of nuclei of 30 independent
396cells in randomly chosen field of view was calculated.

397PKC Activity Assay

398Cells were washed in physiological NaCl solution and were
399harvested. After centrifugation, cell pellets were suspended in
400100 μL of homogenisation RIPA buffer containing protease
401inhibitors mentioned above. Suspensions were sonicated by
402pulsing burst for 3×10 s at 40 A (Cole-Parmer) on ice. After
403centrifugation at 10,000×g for 10 min at 4 °C, supernatants of
404samples were used for in vitro enzyme activity measurements.
405Untreated cultures were used as controls. Gö 6976 was added
406as classical PKC inhibitor, the activity decrease of all PKC
407isotypes considered as classical PKC activity. Measurements
408were performed according to Huang and Huang (1991).

409Determination of Cytosolic Free Ca2+ Concentration

410Measurements were performed on day 2 on cultures seeded
411onto 30-mm round coverslips using the calcium-dependent
412fluorescent dye Fura-2 as described previously (Matta et al.
4132008). Fura-2-loaded cells were placed on the stage of an
414inverted fluorescent microscope (Diaphot, Nikon, Kowasaki,
415Japan) and viewed using a×40 oil immersion objective.
416Measurements were carried out in Tyrode’s salt solution (con-
417taining 1.8 mM Ca2+; composition 137 mM NaCl, 5.4 mM
418KCl, 0.5 mMMgCl2, 1.8 mMCaCl2, 11.8 mMHEPES, 1 g/L
419glucose; pH 7.4) in a perfusion chamber using a dual wave-
420length monochromator equipment (DeltaScan, Photon

�Fig. 1 Effects of PACAP on receptor expression, morphology,
mitochondrial or proliferation activity of UMR-106 cells. mRNA (a)
and protein (b) expression of preproPACAP and PACAP receptors in
UMR-106 cell line. For RT-PCR and Western blot reactions, GAPDH
was used as controls. Integrated optical densities of signals were
determined by ImageJ software, and the results were normalised to the
optical density of control cultures. Representative data of three
independent experiments are shown. c Immuncytochemistry of PAC1
receptor in UMR-106 cells on day 4 of culturing. Original magnification
was×60. Scale bar 10 μm. d Morphology of 4-day-old UMR-106 cells
was visualised with haematoxylin-eosin (HE) staining. Original
magnification was×40. Scale bar 20 μm. e Effects of PACAP
administration on mitochondrial metabolic activity (MTT) and cellular
proliferation (3H-thymidine incorporation) in UMR-106 cell line on
culturing day 4. Asterisks indicate significant (*p<0.05) alteration of
cell proliferation as compared to the respective control
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421 Technologies International, Lawrenceville, KY, USA) at room
422 temperature. Excitation wavelength was altered between 340
423 and 380 nm at 50 Hz, and emission wavelength was detected
424 at 510 nm. Data acquisition frequency was 10 Hz. Ratios of
425 emitted fluorescence intensities (detected at alternating
426 exCitation wavelengths; F340/F380) were measured as previ-
427 ously described (Matta et al. 2008). Basal cytosolic Ca2+

428 concentration was determined on day 2 directly after
429 PACAP administration in three independent experiments,
430 measuring 10 cells in each case.

431 Statistical Analysis

432 All data are representative of at least three different experi-
433 ments. Where applicable, data are expressed as mean±SEM.
434 Statistical analysis was performed by Student’s t test where
435 statistical method reported significant differences among the
436 groups at p<0.05.437

438 Results

439 PACAP Neuropeptides Act on PAC1 Receptor and Increase
440 Proliferation of UMR-106 Cells

441 Weak signals of preproPACAP mRNA were detected in
442 UMR-106 cells without any significant alteration when
443 PACAP treatments were applied. Out of the three PACAP
444 receptors, obvious mRNA expression of PAC1 and weaker
445 signals of VPAC1 mRNA were found, while expression of
446 VPAC2 mRNA remained undetectable. PACAP treatments
447 did not cause any significant alterations of these signals
448 (Fig. 1a). Expression of PAC1 protein was detected on
449 Western blot and treatment with PACAP 1-38 gave rise to a
450 moderate decrease of its signal, while PACAP 6-38 did not
451 have any significant influence on the PAC1 protein level
452 (Fig. 1b). Presence of PAC1 receptor was also demonstrated
453 with immunocytochemistry and stronger fluorescent signals
454 appeared by the addition of PACAP 6-38 (Fig. 1c).
455 Morphology and viability of UMR-106 cells were not
456 altered by the addition of PACAP neuropeptides to the cell
457 cultures (Fig. 1d, e), but significantly increased proliferation
458 was observed. Continuous application of PACAP 1-38 at 100
459 nM for 4 days resulted in an approximately 400% elevation of
460 proliferation rate and surprisingly PACAP 6-38, accepted as
461 an antagonist of PAC1 receptor, exerted an even stronger
462 stimulatory effect on cell proliferation (Fig. 1e).

463 Osteogenic Differentiation Was Enhanced After PACAP
464 Addition

465 In the next step of our experiments, we aimed to investigate
466 the effect of PACAP treatments on bone formation. To this

467end, we performed RT-PCRs and Western blots of various
468osteogenesis markers. Administration of PACAPs did not
469cause any significant change in the mRNA and protein ex-
470pression profile of Runx2 (Fig. 2a, b), although the nuclear
471appearance of this osteogenic transcription factor became
472more pronounced under the effect of PACAP neuropeptides,
473as it was revealed by immunocytochemistry (Fig. 2c). Nuclear
474activity of Runx2 may result in an elevation of bone-specific
475extracellular matrix production. Indeed, an elevated protein
476level of collagen type I, the major organic component of
477bone matrix, was detected with Western blots (Fig. 2b).
478Accumulation of collagen in extracellular space was con-
479firmed with Picrosirius red staining (Fig. 2d) and immunocy-
480tochemistry of collagen type I (Fig. 2e) as the result of PACAP
481treatment. Osterix is another key transcription factor during
482osteogenesis, characteristic for more advanced stages of bone
483formation. mRNA and protein expression of osterix showed
484approximately a 2-fold elevation at the presence of PACAPs
485(Fig. 2a, b). Later stages of bone formation are characterised
486by beginning of matrix mineralisation, and indeed, elevated
487mRNA and protein expression of ALP and an increased
488mRNA expression of VEGF were found (Fig. 2a, b).
489Mineralisation of bone matrix begins with accumulation of
490Ca2+ salts and continues with deposition of phosphates in the
491extracellular space. In order to detect these inorganic bone
492matrix constituents, we performed Alizarine red staining to
493demonstrate calcification and von Kossa reactions to investi-
494gate deposition of phosphates. Both PACAPs elevated the
495extracellular calcium deposits in cell cultures’ UMR-106 cell
496line investigated on day 4 of culturing, and this effect was
497more pronounced in case of the application of PACAP 6-38
498(Fig. 2f). No positive signals were detected with von Kossa
499staining on day 4 of culturing (data are not shown), but both
500neuropeptides elevated the extracellular phosphate accumula-
501tion comparing with the untreated control by day 8 of cultur-
502ing; effect of PACAP 6-38 was stronger again, compared to
503that of PACAP 1-38 (Fig. 2g). As a very surprising and
504unexpected result of these experiments, although PACAP 6-
50538 is believed as an antagonist of PAC1 receptor, it exerted
506positive effects on osteogenesis, similar to the application of
507the PAC1 receptor agonist, PACAP 1-38.

508Canonical PKA-Mediated Downstream Signalling Pathway
509Showed Only Partial Activation Under the Effect
510of PACAPs

511In further steps of our experiments, we aimed to clarify
512downstream signalling mechanisms evoked by PACAPs and
513resulting in enhanced bone formation. The canonical down-
514stream pathway of PAC1 receptor activation is the cAMP-
515dependent PKA signalling via CREB phosphorylation. In line
516with the previously described osteogenesis-promoting effect,
517both PACAP neuropeptides were found to induce significant
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Fig. 2 PACAP influence Runx2,
Coll. I, osterix, ALP and VEGF
expression in UMR-106 cells.
mRNA (a) and protein (b)
expression of Runx2, Coll. I,
osterix, ALP and VEGF in
UMR-106 cells on day 4 of
culturing. For RT-PCR and
Western blot reactions, GAPDH
was used as controls. Optical
density of signals was measured,
and the results were normalised to
the optical density of controls. a,
b, Numbers below signals
represent integrated densities of
signals determined by
ImageJ software. c
Immunocytochemistry of Runx2
in UMR-106 cells on day 4 of
culturing. Original magnification
was×60. Scale bar 20 μm. d
Collagen in 4-day-old UMR-106
cell culture was visualised with
Picrosirius staining. Original
magnification was×40. Scale bar
20 μm. e Immunocytochemistry
of collagen type I in 4-day-old
UMR-106 cell cultures. Original
magnification was×100. Scale
bar 20 μm. f Extracellular
Ca2+ deposits of 4-day-old
UMR-106 cells were visualised
with Alizarin red staining.
Original magnification was×40.
Scale bar 20 μm. g Extracellular
Ca2+ phosphate crystals were
detected with von Kossa method
on day 8 of culturing. Original
magnification was×40. Scale bar
20 μm. Asterisks indicate
significant (*p<0.05) alteration of
expression as compared to the
respective control. Representative
data of three independent
experiments are shown
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518 elevation either mRNA or protein levels of PKA (Fig. 3a, b).
519 CREB transcription factor is the major downstream effector of

520PKA signalling; thus, we investigated the possible changes of
521its expression and phosphorylation. Although elevation of
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F522 expression and/or phosphorylation of CREB could be antici-

523 pated, we failed to detect any significant change of these
524 parameters under the effect of PACAPs (Fig. 3a, b). To con-
525 firm these unexpected results, we performed immunocyto-
526 chemistry, and indeed, we did not observe any significant
527 change in the nuclear signal of p-CREB in PACAP-treated
528 cells as it was demonstrated with densitometry of immunoflu-
529 orescent signals detected at nuclear area of cells (Fig. 3c, d).

530 Ca2+-Induced PKC-Mediated PACAP Signalling Pathway
531 Was Not Activated

532 After being unable to prove any significant activation of
533 PACAP-related CREB phosphorylation, we turned our atten-
534 tion to explore whether the Ca2+-dependent effector mecha-
535 nisms responded to the presence of the neuropeptides. PAC1
536 receptor may signal towards PLC pathway activation, through
537 which it can regulate IP3 operated release of Ca2+ from inter-
538 nal stores and in turn can activate PKC (Osipenko et al. 2000).
539 Resting intracellular Ca2+ concentration of UMR-106 cells
540 was monitored first, and we found that PACAP treatment
541 did not result in any significant change of this parameter
542 (Fig. 4a). No alterations were detected either in the mRNA
543 or protein expression of PKCα (Fig. 4b, c); furthermore, we
544 also failed to detect any significant change in the activity of
545 classical PKCs following PACAP administration (Fig. 4d).

546 Regulation of BMP Expression is Involved in PACAP
547 Downstream Signalling Pathways

548 As we failed to detect any significant response of CREB and
549 cPKC as a result of PACAP treatments, we tried to identify
550 other osteogenesis-related signalling mechanisms which could
551 be responsible for the elevated expression of ALP and osterix
552 observed after PACAP treatments. As BMPs can stimulate
553 osteoblast differentiation and bone formation, we investigated
554 the responsiveness of themembers of this signalling pathway to
555 PACAP treatments. Elevated protein expressions of BMPs 2, 4,
556 6 and 7 were detected along with inconsistent alterations of

557mRNA expressions under the effect of PACAP treatments
558(Fig. 5a, b). BMPs 2, 4, 6 and 7 can exert their biological
559effects via binding primarily to BMPR1, and this interaction
560results in activation of members of R-Smad transcription factor
561family. We found that UMR-106 cells express mRNA and
562protein of BMPR1, and either expression remained constant
563under the effect of PACAP treatments (Fig. 5a, b). Smad1 is
564one of the downstream targets of BMP signalling. Expression
565either of Smad1 mRNA or protein became significantly elevat-
566ed (Fig. 5a, b). We also detected enhanced immunofluorescent
567signals of Smad1 following of PACAP treatments, when nu-
568clear presence of this transcription factor was investigated with
569immunocytochemistry (Fig. 5c). We also compared the nuclear
570intensity of Smad1 immunofluorescent signals detected in
571PACAP-treated cells with that of the untreated control cells,
572and a significantly elevated nuclear presence of Smad1 tran-
573scription factor was proved (Fig. 5d).

574HH Signalling Pathways Were Activated During PACAP
575Administration

576Despite having an intimate cross talk between Runx2 and
577BMP pathways, osteogenesis is also characterised by the
578connection of these signalling mechanisms with other
579morphogenes. One of the major candidates of this link is the
580HH signalling pathway, which can regulate BMP expression
581and/or proliferation of cells. The balance between the activity
582of IHH and PTHrP is a key factor of bone formation. In UMR-
583106 cells, the mRNA and protein expression of IHH remained
584at a constant level after PACAP administration while both of
585the mRNA and protein expression of PTHrP elevated signif-
586icantly (Fig. 6a, b). mRNA and protein expression of SHH
587was also detected in UMR-106 cells, and either signals
588showed strong elevation after treatments with PACAPs
589(Fig. 6a, b). The mRNA expression of PTCH1, the receptor
590of SHH and/or IHH, was not altered by PACAPs, but its
591protein expression became elevated by the neuropeptide treat-
592ments (Fig. 6a, b). Ligand binding of PTCH1 ultimately
593induces activation of Gli1 transcription factor; therefore, we
594investigated the presence and subcellular localisation of this
595signalling molecule. In line with the elevation of SHH protein
596level, stronger bands for Gli1 protein were detected inWestern
597blots (Fig. 6a, b) and enhanced nuclear signals were observed
598with immunocytochemistry (Fig. 6c) upon PACAP treat-
599ments. This elevation proved to be significant with densitom-
600etry of nuclear Gli1fluorescent signals (Fig. 6d). 601

602Discussion

603PACAP neuropeptide is a well-known regulator of neurogenic
604differentiation and/or migration; therefore, its presence is es-
605sential for proper central nervous system formation (Toriyama

�Fig. 3 PACAP augments PKA expression without affecting CREB
phosphorylation in UMR-106 cells. mRNA (a) and protein (b)
expression of PKA, CREB and p-CREB in UMR-106 cells on day 4 of
culturing. For RT-PCR and Western blot reactions, GAPDH was used as
controls. Optical density of signals was measured, and the results were
normalised to the optical density of controls. a, b Numbers below signals
represent integrated densities of signals determined by ImageJ software. c
Immunocytochemistry of p-CREB in UMR-106 cells on day 4 of
culturing. Original magnification was×60. Scale bar 20 μm. d
Integrated density of nuclei of 30 independent cells in randomly
selected field of view was measured. Analysis of fluorescent signal of
nuclei of PACAP treated and 30 control cells of three independent
experiments was performed, respectively. Asterisks indicate significant
(*p<0.05) alteration of expression as compared to the respective control.
Representative data of three independent experiments are shown
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606 et al. 2012; Vaudry et al. 2009; Watanabe et al. 2007). In the
607 last decade, increasing number of experiments have been
608 performed proving presence of the neuropeptide in

609nonneuronal organs and tissues, such as intestinal tract
610(Pirone et al. 2011), gonads (Shpakov et al. 2011) or even in
611blood (Reglodi et al. 2010). Although a substantial amount of

Fig. 4 Effects of PACAPs on
intracellular Ca2+of UMR-106
cells. a Basal cytosolic Ca2+

concentration in Fura-2-loaded
cells on day 4 of culturing.
Measurements were carried out in
untreated control cultures and
during PACAP treatments. Data
shown are mean values of ten
cells in each experimental group.
bmRNA and c protein expression
of PKCα in UMR-106 cells on
day 4 of culturing. GAPDH was
used as a control. Numbers below
signals represent integrated
densities of signals determined by
ImageJ software. d Enzyme
activity of classical PKC in UMR-
106 cells on day 4. Asterisks
indicate significant (*p<0.05)
increase of expression or activity
as compared to the respective
control. Representative data of
three independent experiments
are shown
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Fig. 5 Administration of
PACAPs activates BMP
signalling of UMR-106 cells.
mRNA (a) and protein (b)
expression of BMP2, BMP4,
BMP6, BMP7, BMPR1 and
Smad1 in UMR-106 cells on day
4 of culturing. For RT-PCR and
Western blot reactions, GAPDH
was used as control. Optical
density of signals was measured,
and the results were normalised to
the optical density of controls. a,
b Numbers below signals
represent integrated densities of
signals determined by ImageJ
software. c
Immunocytochemistry of Smad1
in UMR-106 cells on day 4 of
culturing. Original magnification
was×60. Scale bar 5 μm. d
Integrated density of nuclei of 30
independent cells in randomly
selected field of view was
measured. Analysis of fluorescent
signal of nuclei of PACAP treated
and 30 control cells of three
independent experiments was
performed, respectively. Asterisks
indicate significant (*p<0.05)
alteration of expression as
compared to the respective
control. Representative results
of three independent
experiments are shown
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612 data providing evidence on function of PACAP as a neuro-
613 hormone in CNS has been reported, only sporadic data prove
614 its origin and role in development of skeletal elements as in
615 cartilage or bone (Juhász et al. 2014; Nagata et al. 2009;

616Strange-Vognsen et al. 1997). Several results confirm the
617essential function of PACAP/VIP system in the differentiation
618or activation of osteoclasts (Nagata et al. 2009; Persson and
619Lerner 2005, 2011), and it has also been shown that PACAP/

Fig. 6 Effects of PACAPs on HH
signalling of UMR-106 cells.
PACAP 1-38 at 100 nM and
PACAP 6-38 at 10 μM were
administrated continuously from
day 1. mRNA (a) and protein (b)
expression of IHH, PTHrP, SHH,
PTCH1 and Gli1 in UMR-106
cells on day 4 of culturing. For
RT-PCR and Western blot
reactions, GAPDH was used as
controls. Optical density of
signals was measured, and the
results were normalised to the
optical density of controls.
a, b Numbers below signals
represent integrated densities of
signals determined by
ImageJ software. c
Immunocytochemistry of Gli1 in
UMR-106 cells on day 4 of
culturing. Original magnification
was×60. Scale bar 5 μm. d
Integrated density of nuclei of 30
independent cells in randomly
selected field of view was
measured. Analysis of fluorescent
signal of nuclei of PACAP treated
and 30 control cells of three
independent experiments was
performed, respectively. Asterisks
indicate significant (*p<0.05)
alteration of expression as
compared to the respective
control. Representative data of
three independent experiments
are shown
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620 VIP has vital role in bone absorption (Jones et al. 2004). In our
621 experiments, low expressional level of PACAP mRNA was
622 demonstrated in UMR-106 cell line, suggesting the ability of
623 endogenous PACAP release by osteogenic cells. Under phys-
624 iological circumstances in living bone, PACAP release from
625 nerve endings in bone marrow or in periosteum is also possi-
626 ble, as it has been shown earlier (Braas et al. 2007; Strange-
627 Vognsen et al. 1997).
628 Calvaria-derived MC3T3 cells were shown to express
629 VPAC2 receptors (Nagata et al. 2009), and addition of
630 PACAP to the medium of UMR-106 cells induced cAMP
631 production (Kovacs et al. 1996). In our experiments, UMR-
632 106 cells were found to express PAC1 receptor dominantly. As
633 PAC1 has 100-fold greater affinity to bind PACAP than VIP,
634 we administrated PACAP 1-38 as an agonist and PACAP 6-38
635 as an antagonist to the medium of osteoblast cells. Without any
636 alteration on morphology or mitochondrial activity of the cells,
637 both neuropeptides increased cellular proliferation of UMR-
638 106 cells. In fact, PACAP 1-38 is known to influence prolifer-
639 ation in a tissue- and/or cell-dependent manner: it elevated the
640 proliferation of astrocytes (Nakamachi et al. 2011) and neuronal
641 progenitor cells (Nishimoto et al. 2007), but it inhibited the
642 proliferation of neuroblastoma (Waschek et al. 2000), endothe-
643 lial (Castorina et al. 2010) or Leydig cells (Matsumoto et al.
644 2008). PACAP 6-38 was reported as a potent antagonist of
645 PAC1 receptor originally (Bergstrom et al. 2003), but recent
646 data suggested its agonistic behaviour in certain conditions
647 such as in sensory nerve terminals or in cytotrophoblast cells
648 (Reglodi et al. 2008) and in glia cells (Walker et al. 2013).
649 Recently, we also reported a dominantly agonistic effect of this
650 compound in a chicken chondrogenesis model (Juhász et al.
651 2014). One can hypothesise that PACAP 6-38 may have un-
652 known effect on different isoforms of PAC1 receptor or it may
653 act on a yet unidentified PACAP receptor (Jansen-Olesen et al.
654 2014) which can activate variable signalling pathways of cells
655 (Holighaus et al. 2011).
656 As cAMP accumulation by PACAP of UMR-106 cells has
657 already been published (Kovacs et al. 1996), it could be the
658 question of interest which downstream target molecules of
659 PAC1 receptors may activate osteoblast differentiation. PKA,
660 as it is activated by the increased concentration of cAMP, is
661 one of the canonical downstream signalling targets of PACAP
662 binding (Vaudry et al. 2009), and PACAP was supposed to be
663 a positive regulator of osteogenesis via this mechanism in
664 hMSC (Siddappa et al. 2008) or in osteoblasts (Lo et al.
665 2012). CREB, a downstream target of PKA, can directly bind
666 to the promoter region of osteogenic morphogen BMP2
667 (Zhang et al. 2011). Although the expression of PKA was
668 elevated in UMR-106 cells, we were not able to detect any
669 significant alteration in the expression or in the phosphoryla-
670 tion of CREB transcription factor. Furthermore, the nuclear
671 presence of p-CREB did not show any significant change at
672 the presence of PACAPs. These results suggested an

673alternative, CREB-independent initiation of osteogenic differ-
674entiation. As a matter of fact, Runx2, the master transcription
675factor of osteogenesis, can be phosphorylated by PKA and
676ultimately can be translocated into the nucleus (Jonason et al.
6772009; Franceschi and Xiao 2003). Although we did not find
678any alteration of Runx2 expression after PACAP addition, its
679nuclear localisation became pronouncedly elevated, suggest-
680ing that it became activated by ligand binding of PAC1 recep-
681tor and may initiate expression of osteogenic genes. Indeed,
682we detected elevated levels of alkaline phosphatase (ALP) and
683collagen type I mRNA and proteins following PACAP treat-
684ments. It is also known that Runx2 can directly regulate
685osterix expression in osteoblasts (Jonason et al. 2009). In line
686with this observation, we found a significant elevation in
687osterix expression under the effect of PACAPs. Both of ALP
688and osterix can be activated by other upstream signalling
689elements, such as Dlx5 and Smads; moreover, Runx2 can
690cross talk with BMP signalling, and in turn, BMPs can also
691regulate the expression of the above osteogenesis markers (Li
692and Xiao 2007). Another proof of enhanced osteoblast differ-
693entiation was the increased VEGF expression in our experi-
694mental model. This growth factor is crucial for initiation of
695vascularisation of developing bone during endochondral os-
696sification and was capable to enhance bone formation in
697tissue-engineered bone in animal experiments (Wu et al.
6982013). In line with our data, it was also demonstrated that
699VEGF expression can be regulated by the increased activity of
700PKA (Yang et al. 2013).
701The activation of ALP and osterix can indirectly stimulate
702Ca2+ accumulation and mineralisation process in bone devel-
703opment both in vitro and in vivo (Yan et al. 2014). There is
704evidence in neurons that PACAP binding can activate recep-
705tors or ion channels, generating action potential on the post-
706synaptic cell (Aoyagi and Takahashi 2001) by changing the
707Ca2+ release of cells. The vesicular transport of Ca2+ or the
708Ca2+ release induced by PACAP has not been characterised in
709nonexcitable cells yet, although it can be hypothesised that
710NMDA receptors, present on osteoblast cells, may have an
711indirect connection with PAC1 receptor activation through
712which they can regulate Ca2+ inflow and/or outflow of cells
713(MacDonald et al. 2007). Nevertheless, our results suggest
714that PACAP binding may have an indirect effect on Ca2+

715transport of osteoblasts (Morita et al. 2002) and increase the
716mineralisation of bone matrix. PAC1 receptor activation can
717also result in the induction of PLC signalling pathway, which
718subsequently may regulate IP3-dependent intracellular Ca

2+

719release of cells as it has been demonstrated in several neuronal
720models (Osipenko et al. 2000; Payet et al. 2003). The concen-
721tration changes of free cytosolic Ca2+ ions can regulate the
722activation of classical PKC (Hodges et al. 2006), as well as the
723extracellular vesicular Ca2+ transport of cells. In UMR-106
724cells, we were not able to detect significant alterations of
725resting intracellular Ca2+ concentration by PACAPs, and the
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726 Ca2+-dependent PKCα was not activated, suggesting an un-
727 influenced PLC pathway of UMR-106 cells. These results
728 may further support the hypothesis that developmental
729 stage-dependent expression of different isoforms of PAC1
730 receptor results in the activation of Ca2+-related or unrelated
731 downstream pathways in PACAP signalling (Yan et al. 2013).
732 One of the main regulators of bone formation is the proper
733 coexpression or sequential expression of several BMPs, in-
734 cluding BMPs 2, 4, 6 and 7 (Lavery et al. 2008). According to
735 our data, PACAP addition induced the elevation of protein
736 expression of these cytokines in UMR-106 cells. Moreover,
737 the elevated expression of BMP2 and BMP4, characterised by
738 the highest osteogenic capacity, can be responsible for the
739 induction of collagen type I expression or indirectly the in-
740 crease of mineralisation processes (Chen et al. 2012; Zouani
741 et al. 2013). Furthermore, the increase of BMP7 can be partly
742 responsible for the activation of ALP gene expression (Bei
743 et al. 2012), and indeed, we found elevated ALP mRNA and
744 protein levels after PACAP addition in our experiments.
745 BMP6 has a crucial role in regulation of osteoblast differen-
746 tiation through osterix activation (Zhu et al. 2012). Consistent
747 with this finding, BMP6 and osterix expressions both were
748 elevated following PACAP applications in our experiments.
749 The canonical pathways of BMPRI activation lead to the
750 regulation of Smad1/5/8 transcription factors and which can
751 activate expression of various bone-specific genes (Chen et al.
752 2012). We found elevated expression and nuclear presence of
753 Smad1, strongly suggesting that activation of PACAP signal-
754 ling results in the increased activity of BMP signalling in
755 UMR-106 cells, and besides activation of Runx2 by PKA,
756 this pathway also plays role in proosteogenic effect of
757 PACAPs. Moreover, activated Smad1 can cooperate with
758 Runx2 transcription factor on the promoter region of genes
759 responsible for bone formation (Drissi et al. 2003).
760 Another group of crucial osteogenesis-regulating morpho-
761 gens is the HH family consisting of three members: SHH), IHH
762 and Desert hedgehog (DHH) (Pan et al. 2013). Although the
763 functions of IHH in endochondral ossification or in cranial
764 skeleton development have been demonstrated and its presence
765 in osteoblasts has also been detected (St-Jacques et al. 1999; Tu
766 et al. 2012), we did not find any alteration in its expression after
767 PACAP administration. SHH can be responsible for proper
768 bone formation beyond its crucial role in regulation of several
769 tissue or even cancer development (Han et al. 2013; Hu et al.
770 2013; Kiuru et al. 2009). HHs can bind to Patched1 (PTCH1)
771 receptor which releases the membrane associated Smoothened
772 leading to the activation of the Gli transcription factors, which
773 ultimately translocate to the nucleus and activate target genes
774 (James et al. 2010; Pan et al. 2013). Gli1 can regulate early
775 osteogenic differentiation by the activation of Runx2 gene
776 expression (Hojo et al. 2012). SHH was also shown to have
777 an important function in neurogenic development where its
778 connection with PACAP signalling system has been published

779(Waschek et al. 2000, 2006). Addition of PACAPs resulted in a
780pronounced elevation of SHH, PTCH1, Gli1, mRNA and
781protein levels; moreover, nuclear signal of Gli1 also became
782stronger. Taken together, PKA and SHH pathways both were
783found activated by PACAPs in UMR-106 cells. Nonetheless,
784others reported antagonistic relationship of cAMP-activated
785PKA and HH signalling during Drosophila development
786(Waschek et al. 2006) and in bone formation (Regard et al.
7872013). Moreover, PACAP was shown to inhibit the gli1 gene
788expression during the proliferation of medulloblastoma cells or
789antagonise the SHH signalling pathways of motoneuron for-
790mation in embryonic stem cell cultures (Waschek et al. 2000).
791However, evidence about GPCR-induced SHH activation has
792also been reported under certain circumstances and a possible
793involvement of noncanonical SHH regulation can also
794complicate the picture (Brennan et al. 2012). Although
795the antagonistic communication of PKA-SHH signalling
796pathways is convincingly proved in neuronal tissues or
797cell types (Niewiadomski et al. 2013), the universality of this
798way of signalling cross talk is not widely demonstrated.
799Another possible reason which may cause the contradictory
800expression pattern and signalling communication of PKA and
801SHH in UMR-106 cells is the fact that this cell line originates
802from an osteosarcoma, and HH pathways are frequently
803overactivated in this type of tumour (Hirotsu et al. 2010).
804In conclusion, this study shows that PACAP signalling
805plays pro-osteogenic role in consecutive steps of in vitro bone
806tissue formation via activation of various signalling pathways
807in UMR-106 cells. This observation raises the opportunity that
808exogenously administered PACAP may enhance bone forma-
809tion in case of hampered fracture healings or during therapy of
810larger bone defects in the distant future.
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