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Abstract 

Hydrolytic enzyme production is typical of the autolysis in filamentous fungi; however, less 

attention  has  been  given  to  the  physiological  role  of  the  enzymes.  Here,  the  aim  was  to  

investigate the possible relation of the chitinolytic enzymes to the changes in the biomass in 

some filamentous fungi of high importance for pharmaceutical or food industry. In 

Penicillium and Aspergillus filamentous fungi, which showed different characteristics in 

submerged cultures, the growth and biomass decline rates were calculated and correlated to 

the chitinase and N-acetyl-ß-D-glucosaminidase enzyme productions. Correlation was found 

between the biomass decrease rate and the chitinase level at the stationary growth phase; 

while, chitinase production covariates negatively with N-acetyl-β-D-glucosaminidase 

activities. The chitinase production and the intensive autolysis hindered the production of N-

acetyl-β-D-glucosaminidase and, therefore, could hinder the cell death in the cultures. 

Keywords: Penicillium, Aspergillus nidulans, autolysis, chitinase, N-acetyl-ß-D-

glucosaminidase. 
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1 Introduction 

Autolysis has been generally used to describe hallmarks of aging cultures including 

vacuolization, hyphal fragmentation, increasing extracellular ammonia concentration and 

increase in extracellular hydrolase activities [1], which are followed by the degradation of cell 

wall constituents and cellular organelles, and finally the biomass decreases [1, 2]. The 

phenomenon contributes to the survival of filamentous fungi under harsh environmental 

conditions like carbon shortage [3] as its main function is to supply developmental processes 

with energy sources [4, 5].  

Chitin hydrolytic (chitinolytic) enzymes are classified into two main groups: chitinases 

(E.C.3.2.1.14 according to IUBMB Enzyme Nomenclature) and N-acetyl-β-D-

glucosaminidases (E.C.3.2.1.52), which are different in their splitting mechanisms. In 

filamentous fungi, e.g. Aspergillus [6] or Trichoderma [7], high number of chitinase genes 

(10-25) can be found. Contrarily, besides the high number of the chitinase genes, only some 

(2-3) N-acetyl-β-D-glucosaminidase genes were found in filamentous fungi. In A. nidulans 

(nagA, AN1502.3; [8, 9]) as well as in P. chrysogenum (nagA, AF056977; [10]) only one 

gene was proved to have N-acetyl-β-D-glucosaminidase coding function. As demonstrated by 

global transcriptome analyses performed in autolyzing cultures of A. nidulans,  the  onset  of  

gross autolysis is preceded by the strong up-regulation of an array of genes encoding autolytic 

hydrolases [11] like glucanases (e.g. EngA 1,3-β-glucosidase) and chitin hydrolytic enzymes 

(ChiB, ChiC, NagA) [12-15]; however, some of the proteins have never been detected (e.g. 

ChiC) or the role of the proteins (e.g. NagA) was not proven in the process. 

While the autolysis is an important process considering the secondary metabolite 

production [16, 17] or enzyme and heterologous protein production [18], the factors which 

influence the process have only been studied in yeast [19] and less attention has been given to 

the process in filamentous fungi. Therefore, the aim was to characterize biomass changes and 
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concomitant chitinase and N-acetyl-β-D-glucosaminidase production, and investigate a 

possible correlation among them in Penicillium and Aspergillus species that possess high 

significance for pharmaceutical and food industry or food control. 

2 Materials and Methods 

2.1 Culture media and cultivation conditions 

Penicilli (Table  1)  were  maintained  on  malt  extract  agar  (30  g  l-1 malt  extract,  5  g  l-1 

mycological peptone; 15 g l-1 agar; pH5.4) except P. chrysogenum NCAIM 00237 strain 

which was maintained on solid phase rice medium supplemented with 20% (v/w) Czapek-

Dox medium (3 g l-1 NaNO3,  1 g l-1 KH2PO4, 0.5 g l-1 MgSO4×4H2O, 0.5 g l-1 KCl, 0.01 g l-1 

Fe2SO4×7H2O, 30 g l-1 glucose, 15 g l-1 agar; pH 7.3) and 5% (w/w) peanut meal at 25 °C. 

Aspergillus nidulans strains (Table 1) were cultivated in solid minimal-nitrate medium {50 ml 

l-1 20×nitrate salt solution (120 g l-1 NaNO3, 10.4 g l-1 MgSO4×4H2O, 10.4 g l-1 KCl and 30.4 

g l-1 KH2PO4), 1 ml l-1 1000×trace element solution (22 g l-1 ZnSO4×7H2O, 11 g l-1 H3BO3, 5 

g l-1 MgCl2×4H2O, 5 g l-1 Fe2SO4×7H2O, 1.6 g l-1 CoSO4×5H2O, 1.6 g l-1 CuSO4×5H2O, 1.1 g 

l-1 (NH4)6Mo7O24×4H2O,  50  g  l-1 Na2-EDTA) and 20 g l-1 agar} supplemented with 5 g l-1 

yeast extract and 10 g l-1 glucose, which was also amended with 25 mg l-1 biotin, 200 mg l-1 p-

aminobenzoic acid, and 200 mg l-1 pyridoxine (pH 6.5) at 37 °C. 

For batch cultivation, 100 ml aliquots of YGL broth (0.4% K2HPO4,  0.2%  KH2PO4, 

0.05% MgSO4, 1% glucose, 0.5% yeast extract) amended with 0.5% tryptone (Sigma-Aldrich 

Ltd., Budapest, Hungary) in 500 ml Erlenmeyer flasks were inoculated with 108 Penicillium 

spores and was incubated at 25°C on 3.66 Hz shaking frequency. For batch cultivation of 

Aspergilli, 100 ml aliquots of minimal nitrate medium amended with 5 g l-1 yeast extract, 10 g 

l-1 glucose and 25 mg l-1 biotin, 200 mg l-1 p-aminobenzoic acid, and 200 mg l-1 pyridoxine 
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supplements at pH 6.5 in 500 ml Erlenmeyer flasks were inoculated with 5x107 spores and 

were incubated with shaking at 37 °C and 3.66 Hz shaking frequency. 

2.2 Determination of the growth and biomass decline rates 

Mycelial dry weight was measured as described by Pócsi et al. [20]: 5 ml aliquots of the 

batch cultures were taken at 16, 24, 48, 72, 96, 120 and 144 h of cultivation times and were 

filtered through pre-weighted filter paper (3M, Whatman) placed on sintered glass. Mycelial 

mats were washed with distilled water and air-dried.  

Growth rate was determined from dry cell mass increase between 24 h cultivation time 

and the time of maximal measured biomass production, while the biomass decline rate was 

calculated from the decrease of the dry cell mass between the cultivation time of the maximal 

measured biomass production and 120 h cultivation time. 

2.3 Hydrolytic enzyme activity assays 

To monitor chitinase production, to 100 ml aliquots of culture filtrates 100 ml volumes 

of  2  mg  ml-1 carboxymethyl-chitin-Remazol Brilliant Violet substrate solution (Loewe 

Biochimica, Sauerlach, Germany) and also 400 ml aliquots of 0.1 mol l-1 citrate buffer (pH 

5.0) were added and the reaction mixtures were incubated at 24 °C for 10 min [2]. After 

quenching the reaction with 100 ml 2 mol l-1 HCl, the samples were kept on ice for 10 min and 

centrifuged (16 000 g, 10 min). The released colored product was determined 

spectrophotometrically at l=550 nm.  

In N-acetyl-β-D-glucosaminidase activity measurements, 5 mmol l-1 p-nitrophenyl-N-

acetyl-β-D-glucosaminide (Sigma-Aldrich Ltd., Budapest, Hungary) substrate was used [20] 

in a microplate end-point assay (Vreaction mixture=100 ml, treaction=10 min, performed in 0.2 mol l-1 

sodium acetate buffer, pH 5.0). After quenching the reaction with 200 ml of 0.2 mol l-1 sodium 
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borate buffer (pH 10.0), the quantity of the liberated 4-nitrophenolate ions were determined 

spectrophotometrically at l=400 nm. 

Protein contents were quantified by the Bradford method [21] using bovine serum 

albumin calibration and the data were used in specific enzyme activity calculations. 

2.4 Statistical analysis 

All measurements were done in triplicate. The means and the statistical deviations were 

calculated in Microsoft Excel 2010 software. Regressions at 95% confidence level and 

correlations were calculated using Analysis ToolPak of the Microsoft Office software. 

3 Results 

3.1 Characterization of biomass and morphology changes in submerged cultures 

All strains reached the stationary growth phase around 40-50 h cultivation time (Fig. 1) 

except the wild type P. chrysogenum (Fig. 1A). The increase of the biomass of the wild type 

P. chrysogenum (Fig. 1A; Table 2) resulted in a maximum dry cell mass at 72 h cultivation 

time that was followed by the disintegration of the filaments and biomass decrease. 

P. chrysogenum SMC 0514 strain (Fig. 1B) reached the highest biomass among studied 

Penicilli, while the P. chrysogenum NCAIM 00237 and ATCC 10.002 strains produced 

around 6-7 mg∙ml-1 dry cell  mass (Fig.  1C and D) with lower growth rates (Table 2).  Some 

differences in the biomass decrease also could be observed as the biomass of the SMC 0514 

strain decreased at higher rate and reached the lowest dry cell weight at the 120 h cultivation 

time (Table 2; Fig. 1B). Meanwhile, NCAIM 00237 (Fig. 1C) and ATCC 10.002 (Fig. 1D) 

strains showed slow decrease in the dry cell mass with a plateau of the dry cell mass curve 

from about the 120 h cultivation time (Fig. 1). While the pellet structure was characteristic for 

all investigated P. chrysogenum strains, the morphology of the cultures significantly changed 
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under progressing autolysis. The filaments were strongly vacuolated in all aging cultures, and 

empty hyphal segments were observed in SMC 0514 and ATCC 10.002 strains as the cell 

wall remained seemingly untouched; while, an intensive fragmentation of the filaments was 

observable in NCAIM 00237 cultures resulting in one or two-celled fragments in the aging 

cultures. 

P. glabrum ATCC 10.103 showed a slower growth in the exponential growth phase 

(Table 2) and the culture reached its maximal dry cell mass at the 24 h of the cultivation (Fig. 

1E) and it also started the autolytic phase earlier than the P. chrysogenum strains. The autolyis 

was characterized by an intensive fragmentation and a reasonably high biomass decline rate 

(Table 2); however, after 120 h of cultivation a cryptic growth phase was started with the dry 

cell mass of about 5.3 mg ml-1.  

The dry cell mass of the P. pinophylum NRRL 1066 (Fig. 1F) increased with low rate 

and the maximum dry cell mass was measured only at 72 h cultivation time similarly to the 

wild type P. chrysogenum (Table 2). The autolysis that was characterized by a weak mycelial 

fragmentation resulted in slow decrease of the dry cell mass (Table 2) up to the steady cryptic 

phase with 4 mg ml-1 dry cell mass.  

Comparing to the other investigated strains, the increase of the dry cell mass of A. 

nidulans FGSC A26 was moderate, while the decrease in the biomass was quite intensive 

(Table 2). Here, the autolytic phase was characterized by an intensive vacuolation and 

moderate fragmentation. In FGSC A1079 strain brlA (main regulator transcription factor of 

asexual development) gene was deleted [4], which resulted in weak fragmentation; while, in 

FGSC A744 the FluG protein was inactive [22]. Deletion of the brlA gene resulted in 

moderate growth that was similar to FGSC A26; however, the biomass decline rate (Table 2) 

was much lower than that of FGSC A26. Meanwhile, the inactive FluG protein expression 
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caused intensive growth and a high biomass decline rate in the autolytic phase of growth 

(Table 2). 

3.2 Characterization of chitinase and N-acetyl-β-D-glucosaminidase production 

The chitinase production of the wild-type P. chrysogenum (Fig. 1A), SMC 0514 (Fig. 

1B), NCAIM 00237 (Fig. 1C), P. pinophilum NRRL 1066 (Fig. 1F) and A. nidulans FGSC 

A26 (Fig. 1G) reached its maximum at the stationary phase of growth. The highest activity 

was reached by the NRRL 1066 (Fig. 1F) strain (Table 2). Age related chitinase production 

was observed in the exponential phase of P. chrysogenum ATCC 10.002 (Fig. 1D); P. 

glabrum ATCC 10.103 (Fig. 1E), A. nidulans FGSC A1079 (Fig. 1H) and FGSC A744 (Fig. 

1I) strains, where the highest activities were measured in the exponential phase of growth that 

indicated different regulation of the chitinase genes. For these strains low chitinase activities 

were characteristic at the autolytic phase except A. nidulans mutant strains (Fig. 1H and Fig. 

1I), where the exponential phase and the autolysis were characterized by a clearly separately 

activated set of chitinases. 

The N-acetyl-β-D-glucosaminidase expression and the extracellular production were 

also different in the investigated strains. The enzyme was produced either constitutively, like 

in the wild type P. chrysogenum (Fig. 1A), or was induced throughout the stationary phase of 

growth as it was usual in the other investigated strains (Fig. 1). The N-acetyl-β-D-

glucosaminidase production of the A. nidulans mutant strains was also interesting as two 

activity peaks were detected, one in the exponential and one in the autolytic phase of growth 

(Fig. 1H-1I), which phenomenon needs further investigation. 

3.3 Statistical analysis 

In  the  correlation  analyses  the  enzyme  activities  detected  at  24  h  cultivation  time  

(exponential growth phase) and at the maximum dry cell mass and at 96 h cultivation time 

(autolytic phase ) were included in the statistical analysis to investigate correlation with the 
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decline  of  the  biomass  and/or  the  growth  rates  (Table  2).  Significant  correlations  (p<0.05) 

were found between the hydrolytic activities in the stationary growth phase and during 

autolyis, and the chitinase production versus the  biomass  decline  rate  also  showed  a  

significant but weak correlation at 95% confidence level (Table 3). Interestingly, negative 

covariance (-7.55 at the maximum dry cell mass and -37.58 in the autolytic phase) was 

calculated for the chitinase and the N-acetyl-β-D-glucosaminidase activities. While 

investigating data from the exponential growth phase (24 h cultivation time) any significant 

correlations were determined (data not shown). 

4 Discussion 

4.1 Chitinase activity correlates with the rate of the biomass decline  

Under carbon shortage highly vacuolated cytoplasmic structure and empty hyphal walls 

were observed in submerged cultures of filamentous fungi [1, 23]. Specific chitinase activities 

significantly correlated with the rate of the biomass decline in aging cultures (Table 3). In 

several fungal strains specific inhibition of chitinase activity inhibited the fragmentation and 

the autolysis [24-25] indicating also the significance of chitinase activities in the autolytic 

process. In A. nidulans FGSC 26 wild-type strain, the expression of the ChiB chitinase is 

predominant giving more than 90 % of the detectable extracellular chitinase activity during 

the early autolytic phase of growth [26]. The deletion of the chiB gene resulted in decreased 

autolytic cell wall degradation [13] and the gene was described as inevitable for the progress 

of fragmentation [5]. Cell wall degradation process in these fungal cultures is under glucose 

repression, nutrition sensing and BrlA regulation [5, 27]. The deletion of brlA gene and the 

inactivation of the upstream FluG protein resulted in similar chitinase and N-acetyl-β-D-

glucosaminidase production patterns (Fig. 1H and 1I), which were different from that of the 

wild type A. nidulans A26 strain (Fig. 1G) and showed clearly the age-related production of 

the proteins. The modulation of the gene expression of brlA had role in the repression of the 
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autolysis directly and/or indirectly, e.g. through the regulation of MpkB mitogen activated 

protein kinase, as it down-regulates the expression of chitinase production in A. nidulans [28].  

4.2 N-acetyl-β-D-glucosaminidase and chitinase activity show negative covariance 

In relation of N-acetyl-β-D-glucosaminidase and chitinase production a negative covariance 

and significant correlation was calculated. Similarly to that of chiB chitinase regulation in A. 

nidulans [13, 26], glucose repression of the N-acetyl-β-D-glucosaminidase gene is 

characteristic [9, 20, 26]. However, while the accumulation of the N-acetyl-β-D-

glucosaminidase activity was detected in the soluble intracellular samples [20], it was not 

characteristic to the production of the autolytic chitinase of P. chrysogenum [24] or to A. 

nidulans ChiB [26]. Distinct regulation of chitinase and N-acetyl-β-D-glucosaminidase gene 

expressions and negative covariance of the activities suggested that these proteins can be 

connected to different physiological function [5, 13, 29]. N-acetyl-β-D-glucosaminidase was 

not essential for growth on easily metabolizable carbon sources [9] and it is activity was not 

essential in autolysis, too; however, it was shown to play a role in morphogenesis and nutrient 

utilization during autolysis [26]. Changes in the N-acetyl-β-D-glucosaminidase production of 

the asexual development signal transduction cascade mutant A. nidulans strains were 

observed for the first time. Until now the only suggestion on possible regulation of N-acetyl-

β-D-glucosaminidases through stress related signal transduction cascades was done by Shin et 

al. [30], as they suggested that the enzyme had importance in cell death, but it needs further 

research. We demonstrated recently that the levels of nagA and chiB mRNA were high during 

the  stationary  and  autolytic  phases  [26],  and  ChiB  and  NagA  accumulated  at  high  levels  

during autolysis and/or cell death in A. nidulans and thereby coordinately conferred cell death 

and degradation of fungal cell walls. 

We described regularity and correlation of the enzyme productions in closely related fungal 

species. It can be concluded that high chitinase activity under carbon shortage speeded up the 
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autolysis and the intensive autolysis and/or the changes in the regulation hinder the 

intracellular accumulation and release of N-acetyl-β-D-glucosaminidase. By the investigation 

of N-acetyl-β-D-glucosaminidase and chitinase we can get a picture on the physiological state 

of Aspergillus and Penicillium cultures and estimate the intensity of the autolysis in 

submerged cultures. 
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Table 1 Organisms in the experiments 

Strain Code Genotype/ origin 

P. chrysogenum - wild type  

(G. Winkelman, University of Tübingen, Germany) 

P. chrysogenum SMC1 0514 wild type (University of Szeged, Szeged, Hungary) 

P. chrysogenum NCAIM2 00237 industrial strain 

P. chrysogenum ATCC3 10.002 industrial strain (alias Wisconsin Q-176) 

P. glabrum ATCC 10.103 type strain 

P. pinophylum NRRL4 1066 alias P. purpurogenum var. rubrisclerotium Thom. 

A. nidulans FGSC5 A26 biA1 

A. nidulans FGSC A1079 biA1; pabaA1; pyroA4; ΔbrlA 

A. nidulans FGSC 744 pabaA1; yA2; fluG1 

1SMC, Mycological Collection of University of Szeged, Hungary; 

2NCAIM, National Collection of Agricultural and Industrial Microorganisms, Hungary; 

3ATCC, American Type Culture Collection, USA; 

4NRRL, Northern Regional Research Laboratory, now ARS Culture Collection, USA; 

5FGSC, Fungal Genetics Stock Center, USA. 
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Table 2 Summary of the growth and biomass decline rates and specific enzyme activities of the investigated species. 

Strain Strain code Growth rate† 

(mg*ml-1*h-1) 

Biomass decline rate† 

(mg*ml-1*h-1) 

Chitinase activity††  

(A550 nm*103*μg-1) 

N-acetyl-β-D-glucosaminidase activity†† 

(kat*kg-1) 

    Exp. Max. Auto. Exp. Max. Auto. 

P. chrysogenum - 0.125±0.015 0.075±0.005 7.04±0.35 10.25±0.35 9.24±0.55 0.14±0.01 0.15±0.002 0.17±0.11 

P. chrysogenum  SMC 0514 0.166±0.024 0.061±0.004 2.08±0.11 10.92±0.56 4.53±0.21 0.51±0.03 2.1±0.03 2.32±0.13 

P. chrysogenum  NCAIM 00237 0.135±0.014 0.029±0.005 0.67±0.04 8.47±0.44 5.36±0.32 1.19±0.05 1.77±0.05 83.3±2.3 

P. chrysogenum  ATCC 10.002 0.150±0.008 0.016±0.007 17.32±0.21 12.28±0.21 4.91±0.18 1.81±0.02 11.1±0.08 91.0±2.4 

P. glabrum  ATCC 10.103 0.215±0.011 0.034±0.002 8.38±0.28 3.45±0.08 3.61±0.20 0.11±0.01 0.08±0.01 1.03±0.10 

P. pinophylum  NRRL 1066 0.079±0.007 0.028±0.001 3.63±0.25 16.19±0.75 12.90±0.43 0.1±0.01 0.33±0.02 1.05±0.12 

A. nidulans  FGSC A26 0.113±0.031 0.053±0.003 0 1.48±0.05 3.67±0.11 4.64±0.09 12.89±0.8 29.55±0.32 

A. nidulans  FGSC A1079 0.115±0.025 0.035±0.006 28.72±0.7 4.27±0.07 1.58±0.12 13.74±0.15 6.43±0.05 22.62±0.32 

A. nidulans  FGSC A744 0.250±0.021 0.046±0.002 32.65±0.41 11.3±0.01 18.34±0.71 8.98±0.24 2.98±0.04 9.00±0.61 

†Growth rate was determined from dry cell mass increase between 24 h cultivation time and the time of the maximum measured biomass 

production, while the biomass decline rate was calculated from the decrease of the dry cell mass between the 72 and 120 h cultivation times. 

††Measured from the samples of 24 h cultures (Exp. - exponential growth phase), at the maximum dry cell mass (Max.) and of 96 h 

cultivation time at the autolysis (Auto.). 
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Table 3 Summary of the significant correlations. 

Correlated data† 

Correlation 

coefficient 

(r) 

r2 t test p value†† 

Chitinase vs. N-acetyl-β-D-glucosaminidase 

at maximum dry cell mass 
0.3674 0.1349 4.7672 0.002 

Biomass decline rate vs. chitinase  

at maximum dry cell mass 
0.1481 0.0219 2.3600 0.050 

Chitinase vs. N-acetyl-β-D-glucosaminidase 

at autolytic phase  
0.2663 0.0709 3.6259 0.008 

† Specific chitinase and N-acetyl-β-D-glucosaminidase activities. 

††Calculated at 95% confidence level.  
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Captions to the Figures 

Figure 1 Changes in dry cell mass (■), chitinase (○) and N-acetyl-β-D-glucosaminidase 

(●) hydrolytic enzyme production of the Penicilli and Aspergilli: (A) wild-type P. 

chrysogenum; (B) P. chrysogenum SMC 0514;  (C)  P. chrysogenum NCAIM 00237; (D) P. 

chrysogenum ATCC 10.002; (E) P. glabrum ATCC 10.103; (F) P. pinophilum NRRL 1066; 

(G) A. nidulans FGSC A26; (H) A. nidulans FGSC A1079; (I) A. nidulans FGSC A744.  
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