

A Szinyák-hegység (Kárpátalja) miocén vulkanizmusa, földtani és vulkanológiai környezete

Egyetemi doktori (PhD) értekezés

Gönczy Sándor

Témavezető: Dobosi Gábor DSc

DEBRECENI EGYETEM Természettudományi Doktori Tanács Földtudományok Doktori Iskola Debrecen, 2014. Ezen értekezést a Debreceni Egyetem Természettudományi Doktori Tanács Földtudományok Doktori Iskola A lito- és hidroszféra természetes és antropogén folyamatai programja keretében készítettem a Debreceni Egyetem természettudományi doktori (PhD) fokozatának elnyerése céljából.

Debrecen, 2014. június 27.

a jelölt aláírása

Tanúsítom, hogy Gönczy Sándor doktorjelölt 1999 - 2014. között a fent megnevezett Doktori Iskola A lito- és hidroszféra természetes és antropogén folyamatai programjának keretében irányításommal végezte munkáját. Az értekezésben foglalt eredményekhez a jelölt önálló alkotó tevékenységével meghatározóan hozzájárult. Az értekezés elfogadását javasolom.

Debrecen, 2014. június 27

a témavezető aláírása

A SZINYÁK-HEGYSÉG (KÁRPÁTALJA) MIOCÉN VULKANIZMUSA, FÖLDTANI ÉS VULKANOLÓGIAI KÖRNYEZETE

Értekezés a doktori (Ph.D.) fokozat megszerzése érdekében a Földtudományok tudományágban

Írta: Gönczy Sándor okleveles földrajztanár

Készült a Debreceni Egyetem Földtudományok doktori iskolája (A lito- és hidroszféra természetes és antropogén folyamatai) keretében

Témavezető: Dobosi Gábor DSc

doktori szigorla	ti bizottság:
elnök:	Dr
tagok:	Dr
	Dr

A doktori szigorlat időpontja:

Az értekezés bírálói:

Α

Dr.		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
Dr.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

A bíráló bizottság:	
elnök:	Dr
tagok:	Dr
	Dr
	Dr

Az értekezés védésének időpontja:

Gondot viselj magadról és a tudományról; maradj meg azokban; mert ezt cselekedvén, mind magadat megtartod, mind a te hallgatóidat (1Tim, 4.16)

1.	BEVEZETÉS	1
	1.1. Témaválasztás	2
	1.2. Területlehatárolás	3
	1.3. Célkitűzések	5
2.	ALKALMAZOTT VIZSGÁLATI MÓDSZEREK	6
	2.1. Adattári kutatások, forrásmunkák	6
	2.2. Terepi térképezés, szelvényezés, mintaelőkészítés	7
	2.3. Adatbázis építés, alkalmazott programok, térinformatika	8
	2.4. Műszeres anyagyizsgálatok	10
	2.4.1.Kőzetmikroszkópia	10
	2.4.2.Elemösszetétel	11
	2.5. Az eredmények statisztikus értékelése	11
	2.5.1.Klaszteranalízis	11
	2.5.2. Diszkriminanciaanalízis	12
	2.6. A munka során kialakított és felhasznált adatbázisok	13
3.	A VIZSGÁLT TERÜLET KÖRNYEZETÉNEK ÁTTEKINTŐ FÖL	DRAJZI-
	FÖLDTANI VÁZLATA	17
	3.1.Földrajzi vázlat	17
	3.2. Kárpátalja szerkezeti és földtani vázlata	18
	3.2.1.A Kárpátaljai-süllyedék aljzatkomplexumai	19
	3.2.2.A fedőüledékek rétegtani egységeinek őskörnyezete	21
	3.2.3.A vulkanizmus irodalmi áttekintése	22
4.	AZ ÉK-I KÁRPÁTOK KÜLSŐ VULKÁNI VONULATÁNAK VUL	KÁNI
	KÖRZETEI	26
	4.1.A Vihorlát-Popricsnij vulkáni komplexum különös tekintettel a	
	Popricsnijre	26
	4.1.1.Földtani, rétegtani és vulkanológiai ismeretek	26
	4.2. A Makovica vulkáni körzet	29
	4.2.1.Az Antalóci-Poljána sztratovulkán környezete	30
	4.3. A Szinyák vulkáni körzet ismertsége forrásmunkák alapján	32
	4.3.1.A Szinyákban és környezetében működött vulkánok	36
	4.4. A Borló-Gyil vulkáni körzet feltételezett sztratovulkánjai	42
	4.4.1.A Buzsora rétegvulkán (?)	42
	4.4.2.A Dechmanov rétegvulkán	44
	4.4.3.A Martinszkij Kámeny	44
	4.5. A Nagyszőlősi-hegység vulkáni körzete	45
5.	AZ ÉK-I KÁRPÁTOK BELSŐ VULKÁNI VONULATÁNAK VULI	KÁNI
	KÖRZETEI	47
	5.1. Csap környéki eltemetett vulkáni komplexumok	47
	5.2.Beregszászi vulkáni körzet	48
	5.3.Az Avas vulkáni körzet	50
6.	VULKANI SZIGETHEGYEK A KÁRPÁTALJAI SÍKSÁGON (der	ceni
	Kápolna-hegy, salánki Hömlöc, nagyszőlősi Fekete-hegy)	54
7.	OSSZEHASONLITÓ TERFOGATSZÁMÍTÁSI VIZSGÁLATOK	
	KARPATALJA VULKANI KORZETEIN	56
8.	A SZINYÁK VULKÁNI MÜKÖDÉSÉNEK ROKONSÁGI KAPCSO	DLATAI
	KLASZTERELEMZÉS ALAPJÁN	59

9.	A SZINYÁK VULKANIZMUSÁNAK BEMUTATÁSA	
	TÍPUSFELTÁRÁSOK ALAPJÁN	63
	9.1. Szarmata – alsó-pannon bazaltos andezites és andezites vulkanizmu	is: a
	fedelesfalvi andezittufa feltárás	63
	9.1.1.A tufamátrix és a tufát áttörő andezit jellemzői	64
	9.1.2.Következtetések	65
	9.2. Szarmata – alsó-pannon bazaltos andezites és andezites vulkanizmu	is: a
	frigyesfalvi andezit feltárás	67
	9.2.1.A feltárás és környezetének földtani adottságai	67
	9.2.2.A feltárás kora	72
	9.2.3.Következtetések	72
	9.3. Alsó-pannon bazaltos andezites vulkanizmus: a bányafalui feltárás	73
	9.3.1.Földtani környezet	73
	9.3.2.Terepi megfigyelések	74
	9.3.3.Következtetések	77
	9.4. Alsó-pannon bazaltos andezites vulkanizmus: andezitfeltárás Kölcs	ény K-i
	határában	78
	9.4.1.Kőzetföldtani adottságok	78
	9.4.2.Következtetések	82
	9.5. Alsó-pannon andezites vulkanizmus: a dunkófalvi kőbánya	83
	9.5.1.Földrajzi és földtani adottságok	83
	9.5.2.Következtetések	87
	9.6. Alsó-pannon andezites vulkanizmus: a beregszentmiklósi kettős and	dezittest
	vizsgálata	88
	9.6.1. Földtani, szerkezeti és morfogenetikai jellemzők	88
	9.6.2. Terepi megfigyelések	89
	9.6.3.Következtetések	92
	9.7. Also-pannon andezites es dacitos vulkanizmus: az erdopataki kobal	nya
	feltarasai	94
	9.7.1. Terepi felvetelezes, mintavetelek	9/
	9.7.2.Az Ep (erdopatak) I. szelveny terepi jellemzoi	98 100
	9.7.3. Kovetkeztetesek	100
10	9.8. A Szinyak tipusieitarasainak neiye egy retegvuikani komplexumba	n 102 104
10. ÖS	A SZIN I AK MAGMAS KUMI LEAUMANAK GEUKEMIAJA Iszeeoci al ó	104
CU CU	DEFUGLALU MMADV	109
SU FF	ΜΙΝΙΑΚΙ Ι ΗΛΩΖΝΑΊ Τ ΙΡΟΠΛΙ ΟΜ	115
гĽ ГÜ	Inaliali inudalum Incei ék	113
гU	GGELER	

I. BEVEZETÉS

Kárpátalja földtani szakirodalma és maga a régió, mint kutatási terület a XX. század drasztikus történelmi eseményei miatt a magyar és a nemzetközi érdeklődő szakmai körök számára nehezen hozzáférhető "terra incognitának" számított (1.1. ábra). A szovjet határövezeti státusz, valamint az ott előforduló miocén színes- és nemesfémes ércesedések és a velük párhuzamosan megjelenő ipari jelentősége agyagos. alunitos. kvarcitos kísérőzónák még az intézményesített államközi együttműködéseket is ellehetetlenítette. Így, kevés és alig kontrollálható földtani információ került ki nemzetközi színtérre. Ezek jobbára áttekintő jellegű, szűrt információtartalmú, nagyszerkezeti, rétegtani ill. vulkanológiai közlések voltak, megbízható térképmellékletek és helyszínrajzok nélkül.

1.1. ábra. Kárpátalja (kiemelve) helyzete Kelet-Közép-Európában

Az 1999-ben elkezdett kutatómunkánk óriási nehézségekbe ütközött már az első lépésnél is, hiszen a terepi kiszállásokhoz az első két évben csak M 1:200 000-es méretű topográfiai térképet tudtunk használni (UKRAJNA GEODÉZIAI ÉS KATASZTERI FŐHIVATALA, 1993). Az ezredfordulón vált szabadon hozzáférhetővé M 1:100 000-es léptékben Ukrajna topográfiai térképe (KIJEVI KATONAI TÉRKÉPÉSZETI HIVATAL, 2000), 20 m-es szintvonalközökkel, ami az azonos léptékű katonai térkép tartalmilag némileg szűkített változata, de valamelyest megkönnyítette a munkát.

Hasonló problémát jelentett az is, hogy akár a földtani térkép (SAKIN ed., 1976), akár a tektonikai térkép (GLUSKO – KRUGLOV, 1986) csak 1:200 000-es méretarányban volt publikus. A nyilvánossá tétel azzal a hátránnyal járt, hogy semmilyen azonosítási pontot, kilométerhálót, koordinátát nem tüntettek fel ezeken a térképeken.

A fenti problémák fényében érthető, hogy a terepi munka, az egyes szelvények, mintavételi pontok beazonosítása és összehasonlítása a szakirodalommal nagyon lassan és körülményesen haladt. A megoldást az jelentette, amikor 2004-ben a beregszászi Geológiai Expedíció munkatársainak jóvoltából sikerült hozzájutni a TYITOV-féle M 1:200 000-es földtani térkép munkapéldányához, amin az M 1:100 000-es szelvényezés sarokpontjai fel voltak tüntetve (TYITOV, 1979).

A szakirodalmi feldolgozásnál szinte alig találtunk olyan forrást, amely leírta volna, hogy milyen módszerekkel jutottak kémiai (TOLSZTOJ SZERK., 1976) illetve radiometrikus koradatokhoz (BAGDASZARJAN – DANYILOVICS, 1968).

Az itt felsorolt okok miatt indokoltnak láttuk egy olyan dolgozat elkészítését, amely betekintést ad a kárpátaljai vulkáni egységek képződésébe. E munka keretein belül igyekeztünk sok olyan hiányosságot kiküszöbölni, amit a szovjet-ukrán szakirodalom nem tett, nem tehetett meg. Tesszük ezt azzal a tisztelettel, ami azoknak jár, akik olyan időkben is megpróbáltak tenni valamit a tudományért, amikor ezt nemcsak nem díjazták, hanem ellehetetlenítették.

1.1. Témaválasztás

Átnézve a kárpátaljai vulkáni egységek szakirodalmát, arra jutottunk, hogy a Beregszászi-dombságról van a legtöbb információ és a Debreceni Egyetem Ásvány- és Földtani Tanszékén ebben a témában van a legtöbb előtanulmány (KULCSÁR, 1943; KULCSÁR, 1968; SZÉKYNÉ, 1970). Kézenfekvő lett volna erről a területről írni. Itt működik azonban Ukrajna egyetlen aranybányája, ezért politikai megfontolásból inkább letettünk erről.

Az információk mennyisége alapján a következő helyen az Avas hegység áll, itt viszont a határ menti helyzet problematikájával szembesültem volna, illetve az orosz és ukrán nyelven kívül románul is meg kellett volna tanulnom, így ezt is elvetettük.

A Szinyák hegység előtérbe kerülésének fő oka, hogy Munkács közelsége miatt több kőbányát is létesítettek a területén, valamint a D-i részén a folyamatos útépítések ellátásához ugyancsak létrehoztak kisebb-nagyobb kőfejtőket. Ezek a bányák, feltárások bizonyos betekintést engedtek a hegység vulkáni folyamataiba. Ezen kívül néhány kutatási adalék a befogadó tanszék adattárában is elérhető volt (SzöőR et al., 1990a; RózsA, 1993).

E területről készült egy disszertáció (SZTYEPANOV, 1989), amelyben evolúciós és ércképződési kérdések kerültek tárgyalásra. Mivel ez a munka tisztázta, hogy jelenős ércesedés a területen nincs, így nem kellett attól tartanunk, hogy esetleg államérdekre való hivatkozással akadályozni fogják a munkánkat.

1.2. Területlehatárolás

Ahhoz, hogy bármilyen kutatást, elemzést elvégezhessünk elsősorban pontosan lehatárolt tájegységekre van szükség, melynek keretein belül a területre vonatkozó adatok feltüntethetők. Esetünkben az egyes tájhatárok meghúzása az újabb szakirodalmi források és térképi ábrázolások összevetése után sem volt egyértelmű. Ennek az az oka, hogy a szerzők nem határolják le az általuk tárgyalt tájat, vagy sajátosan értelmezik a tájegységek határait, s ezzel együtt területi kiterjedését is (CISZ, 1962; LAZARENKO et al., 1963; SZIDORENKO, 1966; HERENCSUK szerk, 1981; VOLGINA et al. 1987; SABLIJ, 1991; VASZILENKO, 1993).

Kárpátalján magmás eredetű összleteket a felszínen a Vihorlát-Gutin vulkáni vonulatban, a Beregszászi-dombság területén és a kárpátaljai síkságon elszórt vulkáni eredetű szigethegyekben találunk. A Vihorlát-Gutin vonulatot ÉNy-ról DK-felé haladva több morfológiai egység alkotja Kárpátalja területén (3. melléklet):

- ✓ A Vihorlát-Popricsnij csoport (az Ung jobb partján).
- ✓ Az Ungtól K-re, a Latorcáig, a magyar szakirodalomban Szinyák-hegység néven ismert vonulat található. A szovjet-ukrán szakirodalom azonban e kérdésben nem egységes. SZIDORENKO (et al., 1966) nem beszél Szinyák hegységről, hanem Makovicaként említi az Ung – Latorca közötti vulkánmorfológiai egységet. CISZ (1962) az említett két folyó közére az Antalóci-Poljanát teszi, azonban zárójelben megjegyzi a Szinyák illetve a Makovica elnevezést is, ugyanerre a területre. Egyes térképeken a Szinyák elnevezést a Viznyica-patak és a Latorca közére használják, az Ung és a Viznyica között pedig Makovicát jelölnek (VOLGINA et al., 1987; SABLIJ, 1991).
- ✓ DK felé a Latorca és a Borzsa között a *Borló-Gyil* húzódik, melynek DKi, az Ilosva-patak DNy-ÉK-i szakasza és a Borzsa közé eső részét az ukrán szakirodalom Nagy-Gyil-ként különíti el. Tőle délre az Ilosva-patak ÉNy-DK-i szakasza által határolt, keskeny, megnyúlt magaslat, a *Hát-gerinc* található.
- ✓ Tovább DK-re elkülönül a *Nagyszőlősi-hegység*, amelyet az ukrán szakirodalom Nagy-Sollesz (SZIDORENKO et al., 1966; HERENCSUK, 1981) vagy más néven Tupojként ismer (CISZ, 1962; SZIDORENKO et al., 1966).
- ✓ A Tisza bal partján terül el az Avas, amely már átnyúlik Románia területére.

Az említett nevezéktani problémák miatt is kénytelenek voltunk a tájhatárokat sajátosan értelmezők sorába beállni. A tájakra vonatkozó határokat ahol lehetett folyó- és patakvölgyekhez kötöttük, ennek hiányában az üledékes és magmás képződmények felszíni határát vettük alapul a TYITOV- féle földtani térkép (1979) alapján. Ennek eredményeképpen a vulkáni egységeknek az 1.2. ábrán bemutatott felosztását állítottuk össze és e munkában ezt fogjuk követni. Nagyon sok érv és ellenérv alapján alakult ki ez a felosztás, amely a

legkevesebb ellentmondást tartalmazza. A felosztás az alábbi szerkezetmorfológiai és/vagy genetikai egységeket jelenti:

- ✓ Vihorlát-Popricsnij (az államhatár és az Ung között),
- ✓ Makovica (az Ung, a Turja- és a Viznyica-patakok között),
- ✓ Szinyák (a Viznyica-, Nagy-Pinyja patak és a Latorca-völgy közötti terület),
- ✓ Borló-Gyil (a Latorca Duszinka-patak Borzsa köze),
- ✓ Nagyszőlősi-hegység (a Borzsa Oszava-patak Nagyág-folyó közötti vulkáni egység),
- ✓ Avas (a Tiszának Técső és Huszt közötti szakasza, valamint az államhatár közötti genetikai egység),
- ✓ Beregszászi-dombság a (Kis-Kelemen-domb és a Zápszonyi-hegy közötti dombság),
- ✓ szigetvulkánok (Derceni- v. Kápolna-hegy, Salánki-hegy v. Hömlöc, nagyszőlősi Fekete-hegy) a Kárpátaljai-síkságon elszórtan.

1.2. ábra. Kárpátalja vulkáni egységei (in. Gönczy, 2006)

I – Vihorlát-Popricsnij, II – Makovica, III – Szinyák, IV – Borló-Gyil,
V – Nagyszőlősi-hegység, VI – Avas, VII – Beregszászi-dombság,
VIII – Derceni-hegy, IX – Salánki-hegy, X – Fekete-hegy

1.3. Célkitűzések

A bevezetésben vázolt problémák miatt az alábbi célokat fogalmaztam meg:

I. A kárpátaljai magmás komplexumokra vonatkoztatva:

- 1. Egymással kompatibilis, kellő részletességű, kontrollált, georeferált topográfiai és geológiai térképek digitális szerkesztése, egybedolgozása. Ennek keretében a térképi névanyag megújítása, kétnyelvűvé tétele, a szakmai tartalom kritikai korszerűsítése, a magyarországi adottságokkal való összehasonlíthatóság szempontjainak figyelembevételével.
- 2. Létrehozni egy tisztázott módszerekkel és származási hellyel rendelkező geokémiai és radiometrikus kor adatbázist, amely bárki számára hozzáférhető.

II. A Szinyák-hegységre vonatkoztatva:

- 3. Módszeres, hálózatos terepbejárások tervezése, szervezése, lebonyolítása.
- 4. Terepi földtani-rétegtani, kőzettani-vulkanológiai, morfológiai észlelések, tereppontok dokumentálása, a leginformatívabb feltárások szelvényezése, amennyiben szükséges, légi és kozmikus fotók felhasználása, reprezentatív kőzetminták begyűjtése.
- 5. A beszállított kőzetminták vágása, polírozása, aprítása, makroszkópi leírása, laboratóriumi anyagvizsgálatokra való előkészítése, az anyagvizsgálatok technikai megvalósítása.
- 6. Tisztázni az ellentmondásos és elévült korhatárokat. E kérdés talán érthetőbbnek tűnik annak fényében, hogy a kárpátaljai vulkáni egységek koradatai túlnyomórészt 15,0±0,5 millió év és 9,5±0,5 millió év közé esnek és a földtani térképek pliocén (levantei) korúnak írják le őket. A magyar szakirodalomban az említett időintervallum a miocén kor szarmata–alsó-pannon korszakainak felel meg.
- 7. Az eredmények összevetése szomszédos miocén vulkáni területekkel, a folyamatok sorrendiségének, trendjeinek tisztázása.
- 8. Vizsgálati eredmények értékelése, összegzése, rendezése, ábrázolása, szakirodalmi adatokkal való összevetése, genetikai értékelése, komplex vulkanológiai, petrográfiai és fejlődéstörténeti rekonstrukció.

2. ALKALMAZOTT VIZSGÁLATI MÓDSZEREK

2.1. Adattári kutatások, forrásmunkák

Az elmúlt években igyekeztünk felkutatni minden olyan tudományos értékű munkát, ami ha csak érintőlegesen is, de foglalkozik a kárpátaljai vulkanizmussal, ezen belül a Szinyák-hegységgel. Igyekeztünk minden vulkáni egységre adatokat szerezni, amelyek reményeink szerint összehasonlíthatók lesznek a Szinyák területéről vett mintákból általunk készített adatokkal.

A szakirodalomban, sajnos, nagy hangsúlyt kapott az érintőlegesség, hiszen az értekezésem magvát alkotó Szinyák-hegységre vonatkozóan mindössze négy földtani témájú munkát találtam (KORONOVSZKIJ – SZOLODKOVA, 1964; KORONOVSZKIJ, 1965; KORONOVSZKIJ – MILANOVSZKIJ, 1966; SZTYEPANOV, 1989). Ahogy már a bevezetőben említettem, ezek az információk hiányosak, mivel nem lehet terepi azonosítást végezni és nem tudjuk milyen módszerekkel végezték a méréseket.

A cikkek, könyvek nagy része általánosságban foglalkozik a kárpátaljai vulkánossággal (MERLICS – SZPITKOVSZKA, 1958A,B; BUROV – SEREMETA, 1959; MALEJEV, 1960A; DANYILOVICS et al., 1966 stb.). Más részük a vulkáni ciklusosságot (MALEJEV, 1960B; MALEJEV, 1963A; MALEJEV, 1964 stb.), illetve néhányan az egyes vulkáni egységek felépítését, kialakulását elemzik (KULCSÁR, 1943; MALEJEV, 1960C; DANYILOVICS, 1963; KORONOVSZKIJ – SZOLODKOVA, 1964; KORONOVSZKIJ, 1965; KORONOVSZKIJ – MILANOVSZKIJ, 1966) különböző feldolgozási mélységben. Jóval nagyobb hangsúlyt fektettek a törések és a mélyszerkezet megismerésére, a törésvonalak mentén képződött, vulkanitokhoz kapcsolódó ércesedés felkutatására, illetve a környező országokbeli párhuzamosításra (SZUBBOTYIN, 1955; MERLICS, 1958; VJALOV, 1960; MALEJEV, 1963B; MALEJEV, 1963C; MERLICS, 1965; MERLICS – SZPITKOVSZKAJA, 1965; LAZARENKO – MALIGINA, 1966; BABAK, 1966; KULCSÁR, 1968; SZÉKYNÉ, 1970; GABINYET et al., 1976; SZEPESHÁZY, 1976; KRUGLOV – GLUSKO, 1986; SEGHEDI et al., 2001 stb.).

Lehetőségeimhez mérten összegyűjtöttem Kárpátalja minden vulkáni egységére vonatkozó, a szakirodalomban fellelhető koradatot. Összesen 153 ilyen adatot találtam. Arra nézve, hogy a szovjet irodalomban milyen módszerrel és hol készítették az elemzéseket csak egy kiadványban (BAGDASZARJAN – DANYILOVICS, 1968) találtam utalást. Az innen származó 19 minta korát K/Ar módszerrel határozták meg. Ennek alapján feltételezhető, hogy a többi adatot is ezzel a módszerrel nyerték.

A koradatokkal kapcsolatban komoly probléma merült fel, amikor térképi ábrázolásra került sor, mivel a mintavételi pontok 40 %-át területileg nem lehet pontosan behatárolni. A nehezen azonosítható mintákat a Kárpátaljai Geológiai Expedíció szakembereinek szóbeli közlései alapján 1 km²-en belül lokalizáltam.

Újabb gondot okozott a földtani térképen megjelenő összletek korbeosztása. A legtöbb vulkanit 15, 13 és 10 millió év körül csoportosul, tehát

a Kárpát-medencére érvényes, Központi-Paratethysre vonatkozó korbeosztásban bádeni, szarmata és alsó-pannóniai korúak. Ennek ellenére a szovjet földtani térképeken megjelenő legnagyobb kiterjedésű egységek levantei, illetve dáciai–romániai kort mutatnak (SAKIN et al., 1976; TYITOV et al., 1979; GLUSKO – KRUGLOV szerk., 1986; KUZOVENKO szerk., 2001), mivel a K-i Paratethysre vonatkozó korbeosztást használják. Először VOZNYESZENSZKIJ (1988) mutat rá, hogy amíg nincs egységesen elfogadott, átjárható sztratigráfiai modell a Kárpát-medence és az attól K-re eső területek között, addig ezt a problémát nem lehet orvosolni.

A korösszetételhez hasonlóan kigyűjtöttük a főelem-, illetve a nyomelem és ritkaföld összetételre vonatkozó elemzéseket is minden kárpátaljai vulkánmorfológiai egységre vonatkozóan. Ebbe az adatbázisba 334 főelem adatsor került, melyek közül 56 található a Szinyák területén. szakirodalomból származó főelem adatsoroknál azokkal a problémákkal szembesültünk, hogy nem lehet pontosan meghatározni a mintavételezés helyét és a meghatározás módszerét. A felhasznált publikációk közül csak egy, a TOLSZTOJ (szerk., 1976) által szerkesztett munka közöl módszereket, bár megjegyzi, hogy nincs egységesen kidolgozott és általánosan használt, a geokémiai analízisre kidolgozott eljárás. Valószínű azonban, hogy az elemzések túlnyomó többsége a Magyarországon és a volt szocialista országokban elvileg egységesen használt módszerekkel készült. Ennek alapján el kell fogadni, hogy feltehetőleg nedveskémiai módszerekkel készültek. Ezen kívül gyakran találkoztunk olyan mértékű mérési hibával terhelt adatokkal is, ami erősen korlátozza a felhasználhatóságukat.

A nyomelemek és ritkaföldek esetében sokkal nagyobb hiányosságok tapasztalhatók. Habár több száz szakirodalmi adat áll rendelkezésre (TOLSZTOJ ed, 1974) ezek gyakorlatilag használhatatlanok. A 70-es évek elején készültek, amikor a mérési technikák nem voltak kidolgozottak, ezen kívül itt is megvannak azok a problémák, amelyek a főelem adatoknál. Az elmúlt három évtizedben Kárpátalja magmás komplexumairól alig néhány publikáció látott napvilágot nemzetközi téren. Ezek közül egy (SEGHEDI et al., 2001) közölt elemzéseket, melyekhez hozzáadódik a Szinyák területéről származó kőzetmintákból a MÁFI-ban általunk készíttetett öt adatsor.

A kárpátaljai vulkanitok koráról és kémiai összetételéről publikált adatmennyiség viszonylag nem nagy. Ez azonban nem tükrözi a valóságos megkutatottságot, mivel a Kárpátaljai Geológiai Expedíció adattári jelentései (pl., SKLJANKA et al. 1974) jóval több elemzést tartalmaznak, ezek azonban főleg az ércesedésekhez kapcsolódnak, így a titkosítások miatt elérhetetlenek.

2.2. Terepi térképezés, szelvényezés, mintaelőkészítés

A volt Szovjetunió területén általános gyakorlat volt, hogy térképekhez nagyon nehezen, gyakran csak külön engedéllyel lehetett hozzájutni. Amelyek forgalomba kerültek, azok hiányosak, bizonyos értelemben használhatatlanok voltak, hiszen nem kerültek fel rá azonosítási pontok, nincsenek feltüntetve koordináták és nincs kilométerháló (SAKIN, 1976; GLUSKO – KRUGLOV, 1986).

Ehhez képest jelentős előrelépésnek számított, hogy 1993-ban olyan 1:200 000-es léptékű topográfiai térképet adtak ki (KÁRPÁTALJAI TERÜLET, 1993), amelyen koordinátákat tüntettek fel és a terepen is használható adatokat tartalmazott. Bár a következő, 1999-es kiadásáról már hiányoznak a koordináták, viszont kilométerháló került rá (KÁRPÁTALJAI TERÜLET, 1999).

Az elmondottak fényében talán nem meglepő, hogy terepi kutatásaink elején igen komoly nehézségekbe ütköztünk. A legegyszerűbb dolgok is, amilyen például egy feltárás beazonosítása, komoly problémát jelentett. A részletes terepbejárásokat 2000-ben kezdtük el a Szinyák 280 km²-es területén, amelyből közel 200 km² vulkáni eredetű (2.1. ábra).

Igyekeztünk átfogó, az egész területre kiterjedő bejárásokat végezni. Az olyan területekre, ahonnan többé-kevésbé megbízható szakirodalmi információk voltak, csak egy-egy utat tudtunk finanszírozni, ahonnan kevesebb, ott többszöri és részletesebb bejárásokat végeztünk. Elsősorban azokra a területekre koncentráltunk, ahonnan semmilyen adat nem állt a rendelkezésre. Összesen 180 km-nyi útvonalat jártam végig, így 0,6 - 0,9 km/km²-es bejárási aránnyal számolhatunk attól függően, hogy a Szinyák teljes területét (280 km²), vagy csak a vulkáni képződményeket (193 km²) vesszük figyelembe.

A terepbejárások során 50 pontot mintáztam meg. Ezek közül hét nagyméretű szelvény, a többi pontszerű észlelés. A szelvényekről a terepen látottak és a fotódokumentáció alapján szelvényrajzokat készítettem.

2.3. Adatbázisépítés, alkalmazott programok, térinformatika

Az általunk jelenleg végzett felmérés során a megyére vonatkozó területi adatokat a kijevi katonai-topográfiai intézet által 2000-ben kiadott 1 : 100 000es topográfiai térkép, Kárpátalja megyére vonatkozó térképlapjainak (UKRAJNA TOPOGRÁFIAI TÉRKÉPE M 1 : 100 000) digitalizált változata alapján állítottuk össze. Ez volt az első ilyen léptékű térkép, amelyről feloldották a katonai titkosítást. Az ennél nagyobb, a terepen jól használható 1 : 10 000-es vagy 1 : 50 000-es léptékű topográfiai térképek kiadása még várat magára.

A fent említett adatbázisból áttekintő térképeket készítettünk, ahol a könnyebb eligazodás érdekében feltüntettük a települések körvonalait, megadtuk ezek magyar és ukrán nevét, valamint vázoltuk a fontosabb vízfolyásokat és utakat is. A kétnyelvű település adatbázist MOLNÁR J. – MOLNÁR D. I. (2005) szerkesztették meg több forrás alapján, így munkánkban e legfrissebb nevezéktani adatokat fogadtuk el mérvadónak (4. melléklet).

A földtani adatokat TYITOV (1979) 1 : 200 000-es méretarányú földtani térképe digitalizálásával kaptuk, amely annak ellenére, hogy több mint 30 éve készült, ma is az egyik legkorszerűbbnek mondható. A Kárpátaljai Geológiai Expedíció szakembergárdája által összeállított 1 : 50 000-es méretarányú térképlapokból kicsinyített térképen a gyakorlattól eltérően, a 100 000-es laphatárokat is megjelenítették, vagyis ezzel lehetőség nyílt az összevetésre a topográfiai térképpel és így pontos térképi adatbázist alakíthattunk ki belőle.

2.1. ábra. A Szinyák hegység áttekintő térképe a bejárási útvonalakkal és a kutatás során vett minták sorszámával (lásd 1. melléklet). A pirossal színezettek a részletesebben vizsgált feltárások

Jelmagyarázat: 1. A Szinyák hegység határa, 2. folyók, 3. szintvonalak, 4. bejárási útvonalak

A topográfiai, morfológiai és a velük harmonizálandó földtani adatok együttes megjelenítéséhez korrekciós segédeszközként használtunk fel nagyfelbontású műholdfelvételeket (http://local.google.com).

A digitális adatbázist GeoMediaProfessional szoftver segítségével építettük ki (INTERGRAPH CORPORATION, 2003).

A domborzatmodelleket az ASTER GDEM adatbázis felhasználásával alakítottuk ki (HTTP://GDEM.ERSDAC.JSPACESYSTEMS.OR.JP/).

2.4. Műszeres anyagvizsgálatok

A feltárásokból összesen 108 minta lett begyűjtve. Ezek mindegyikét makroszkóposan leírtam, majd a különböző fáciesek 59 kőzetpéldányából készíttettünk főelemgeokémiai adatsorokat és 97 mintából vékonycsiszolati mikroszkópi vizsgálatot (1. sz. melléklet).

A műszeres geokémiai vizsgálatokhoz (elemösszetétel, ásványos összetétel) a kőzetpéldányok legüdébb részeiből gépi törés, aprítás után acél, majd achát mozsárban végeztünk porítást, s a por méretbeli megfelelőségét 0,065 mm-es lyukátmérőjű szitán ellenőriztük.

A K/Ar elemzésekhez kijelölt alkalmas kőzetrészekből gépi töréssel, majd 0,1-0,2 mm-es lyukátmérőjű szita segítségével állítottuk elő a szükséges szemcseméretű vizsgálati anyagot.

2.4.1. Kőzetmikroszkópia

A makroszkóposan leírt kőzetmintákból készült mikroszkópi vékonycsiszolatokat a Debreceni Egyetem Ásvány- és Földtani Tanszékének elemeztük Microphot-SA típusú kutatómikroszkópban (ZALISCSAK et al., 1981; MACKENZIE et al., 1982; GRIBBLE – HALL, 1985; KUBOVICS, 1993; MCPHIE et al., 1993; HIGGINS, 2006). A jellemző részleteikről Nikon FX 35 DX típusú kamerával készültek fotófelvételek.

A magmás kőzetek szemcseméret eloszlásának és ásványi összetételét kellő pontossággal megadó modális elemzésnek egy új módszerét alkalmaztuk, amelyet a DE Ásvány- és Földtani Tanszékén dolgoztak ki (KOZÁK, 1979; JÁRAI et al., 1993; JÁRAI et al., 1997; ALMÁSI et al., 2006). A 65 %-os megbízhatóságra kialakított mikroszkópi elemzés egyidejűleg adja meg az ásványos összetételt és a szöveti jellemzőket. Az ún. vonalhossz menti mérések vezető vonalainak egymástól való távolsága nagyobb, mint a legnagyobb szemcse átmérője, így a szemcsék hosszát csak egyetlen mérési vonalon mérjük. Az alkotónként összegzett adatok alapján mind a szemnagysági intervallumokba sorolás, mind pedig a komponensek előfordulási gyakorisága és jellemző mérete megadható és grafikusan ábrázolható. A mérések hossza mintánként több mint 230 000 µm volt.

2.4.2. Elemösszetétel

A kőzetminták főelemtartalmából a Na-ot és Mg-ot lángfotometriásan, a többit Rigaku 3063 P típusu hullámhosszdiszperzív röntgenspektrométerrel határoztuk meg a tanszék geokémiai laboratóriumában. A MÁFI-ban külső kontrollként készített minták esetében Perkin-Elmer Optima 3300 DV típusú ICP-OES spektrométerrel történt az elemhatározás, s ennek alapján az eredményeink az elfogadható hibahatáron belüli értéket mutattak. Az eredményeket térképi adatbázisba rendeztem (6. melléklet).

2.5. Az eredmények statisztikus értékelése

2.5.1. Klaszteranalízis

A kárpátaljai szovjet szakirodalmi forrásokban fellelhető kőzetkémiai elemzésekben csak főelem összetételi adatokat lehetett találni, így az összehasonlíthatóság érdekében a saját elemzések jelentős része is főként ezekre koncentrált. Amennyiben ezek megfeleltek a Földtani Tudományok Nemzetközi Szövetségének (IUGS) Magmás Kőzetrendszertani Albizottsága ajánlásainak, akkor az adatsorra alkalmazni lehetett különféle szerzőknek a nemzetközi gyakorlatban elfogadott nevezéktani, genetikai, diszkriminancia, elemzési, ábrázolási stb. módszereit (IRVINE – BARAGAR, 1971; GILL, 1981; LE BAS et al., 1986; LE MAITRE et al., 1989; ROLLINSON, 1993).

A vizsgált kőzetek és az irodalmi forrásokból származó adatsorok összehasonlíthatósága érdekében olyan statisztikai módszert alkalmaztunk, amely alkalmas a főelem összetételi adatsorok közötti rokonsági kapcsolatok kimutatására. Az e célra felhasználható klaszteranalízis számos módszere (DURAN – ODELL, 1977; JAMBU, 1988; KETSKEMÉTY – IZSÓ, 1996) közül a geológia különböző területein leginkább használatos eljárásokat több magyar kutató is vizsgálta (MOLNÁR – GEIGER, 1981; HARANGI, 1990; M. TÓTH – ENGI, 1997). E tapasztalatok alapján választottuk munkánkhoz az un. hierarchikus klaszterelemzési metodikát.

A klaszterelemzés tulajdonképpen egy kódolási művelet, amikor a sok paraméterrel jellemzett objektumot egyetlen számmal, a hozzárendelt csoport (klaszter) kódjával adjuk meg. Esetünkben az objektumokat a kőzetminták képezték, az objektumok paramétereit pedig az azokat reprezentáló SiO₂, TiO₂, Al₂O₃, Fe₂O₃, MnO, MgO, CaO, Na₂O, K₂O és P₂O₅ főelem-geokémiai adatsorok adták. Jelöljük **X**-szel az osztályozandó objektumok összességét, az egyes elemeket pedig **X**_i-vel, azaz

$$\mathbf{X} = \left\{ \mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n \right\},\$$

ahol n – az osztályozandó objektumok száma. Tekintsük az egyes objektumokat *N*-dimenziós vektoroknak, $\mathbf{X}_i \in \mathbf{R}^N$, ahol N – az elemek osztályozásnál figyelembe veendő tulajdonságok a száma.

$$\mathbf{X}_{\mathbf{i}} = \left(x_{i1}, x_{i2}, \dots, x_{iN}\right).$$

Vizsgálatunkban, például, X_i – a geokémiai adatsorok 10 dimenziós vektora, mert a kőzetmintákat 10 főelem adattal (x_{ij}) jellemeztük. Az előállítandó osztályok az **X** halmaz valamennyi objektumát kell hogy tartalmazzák, és valamely objektum csak egy klaszterbe tartozhat. Az **X** objektumrendszerhez rendelhető klasztercsoportok közül azt keressük, amelyikben a hasonló elemek egy osztályba kerülnek, az eltérőek pedig különbözőbe. A hasonlóság mérőszámaként többféle függvényt, ún. metrikát alkalmaznak (pl. az euklideszi távolság, Pearson-korreláció stb.). A metrika megválasztása a csoportosítandó objektumok, illetve a csoportosítási szempontok függvénye.

Kiinduláskor minden egyes X_i objektum, azaz *N*-dimenziós vektor, külön csoportot alkot, vagyis a csoportszám *n*. Kiszámítjuk minden klaszternek az összes többivel vett hasonlósági mérőszámát, esetünkben a korrelációs együtthatóját, így kapjuk az $n \times n$ méretű korrelációs mátrixot. Az első lépésben összevonjuk a legnagyobb korrelációs együtthatójú, tehát leginkább hasonló két elemet egy csoportba. A klaszterek száma ez által n-1-re csökken. Előállítjuk az új klaszterekre vonatkozó korrelációs mátrixot, melynek mérete már csak $(n-1)\times(n-1)$. Újra összevonjuk a két leginkább korreláló klasztert, és ezt folytatjuk addig, amíg minden elem egy csoportba kerül az n-1-dik lépésben.

A hierarchikus klaszteranalízisnek természetesen nem az a célja, hogy az összes objektum egy csoportba kerüljön. Az összevonásokat az elemző döntésétől függő klaszterszámnál abba kell hagyni. Célszerű ezt annál a lépésnél megtenni, amikor az összevonandó klaszterek korrelációs együtthatója az előzőekhez képest ugrásszerűen csökken, ami arra utal, hogy az adott csoportok kevéssé hasonlóak, vagyis az összevonásuk már erőltetett lenne (MOLNÁR, 2003).

2.5.2. Diszkriminanciaanalízis

Az elemzések során alkalmaztam egy másik csoportképző módszert is, a diszkriminanciaanalízist. A módszer segítségével több kvantitatív változó (a kőzetminták SiO₂, TiO₂, Al₂O₃, Fe₂O₃, MnO, MgO, CaO, Na₂O, K₂O és P₂O₅ tartalma) együttes figyelembe vételével különítettünk el kőzetminta csoportokat. Az analízis kiindulási alapja, hogy az objektumok (esetünkben a főelemsorok által jellemzett kőzetminták) előre típusokba (csoportokba) vannak sorolva. Az algoritmus meghatározza a típusok átlagait, majd kiszámítja az egyes objektumok Mahalanobis-távolságát a csoportátlagoktól az alábbi képlet alapján (KETSKEMÉTY – IZSÓ, 1996; DÉVÉNYI – GULYÁS, 1988):

$$D^{2} = \left(\mathbf{X}_{i} - \overline{\mathbf{X}}_{c}\right)^{\mathrm{T}} \mathbf{Q}^{-1} \left(\mathbf{X}_{i} - \overline{\mathbf{X}}_{c}\right),$$

ahol X_i – a főelemsor vektora az *N*-dimenziós térben, *N* – a vizsgálatba vont főelemek száma, \overline{X}_C – a *C* csoport átlagvektora, t – a vektor transzponálásának a jele, **Q** – az X_i és \overline{X}_C mint valószínűségi változók kovariancia mátrixa, **Q**⁻¹ – a kovariancia mátrix inverze, i = 1, 2, ..., n, n - a vizsgálatba vont kőzetminták száma, C = 1, 2, ..., g, g - az előre megadott csoportok száma. Végül a minták újraosztályozása következik, abba a csoportba sorolva be azokat, amelyek középpontjától a Mahalanobis-távolságuk a minimális (MOLNÁR, 2003).

A clusteranalízis, illetve a diszkriminanciaanalízis gyakorlati végrehajtása az SPSS for Windows szoftverrel történt.

2.6. A munka során kialakított és felhasznált adatbázisok

Az irodalomból kigyűjtött és a saját adatokból készített elemzéseket adatbázisba rendeztem, a továbbiakban ezekkel a dolgoztam. Ennek megfelelően a kárpátaljai magmás képződmények geokémiai adatbázisa 393 főelem és 39 nyomelem adatsorból áll (2.2., 2.3. ábra; 2.1. táblázat; 2. melléklet). Ebből 115 esik a Szinyák területére, melyből 56 irodalmi, 59 pedig saját adatokból származik.

Ehhez hasonlóan elkészült a kárpátaljai magmás komplexumok radiometrikus kor adatbázisa is. A 153 db szakirodalmi adathoz 8, saját mintából az ATOMKI-ban készíttetett, a Szinyák-hegység területére eső adatot tudtam hozzátenni. Így összesen 161 abszolút kort tudtam adatbázisba rendezni, melyből 29 esik a Szinyák területére, ezek közül 22 felszíni, 7 pedig fúrásból származik (2.4. ábra, 2.2. táblázat).

2.2. ábra. A kárpátaljai magmatitok főelem adatainak földrajzi megoszlása (saját szerkesztés)

2.3. ábra. A kárpátaljai magmatitok nyomelem adatainak földrajzi megoszlása (saját szerkesztés)

Szerkezetmorfológiai egység	Főelem geokémiai adat (db)	Nyomelem és ritkaföld adat (db)	Az egység területe (km²)	Ebből mamgás (km²)	1 km²-re jutó főelemsor	1 km ² -re jutó nyomelem és ritkaföld
Vihorlát Popricsnij	30	4	104,7	100,5	0,3	0,04
Makovica	36	0	645,5	563,2	0,1	0,00
Szinyák	115	11	279,8	193,4	0,6	0,06
Borló	27	2	695,6	462,3	0,1	0,00
Nagyszőlősi-hegység	30	1	319,2	177,9	0,2	0,01
Avas	48	3	255,1	125,5	0,4	0,02
Beregszászi-dombság	55	12	54,9	48,0	1,1	0,25
Szigethegyek	31	6	30,7	30,5	1,0	0,20
Csap környéki eltemetett komplexumok	21	0	?	?	?	0,00
Összesen	393	39	2385,4	1701,2	0,2	0,02

2.1. táblázat. A magmatitok geokémiai adatainak területi megoszlása Kárpátalján (részletesen lásd a 2. mellékletben)

2.4. ábra. A kárpátaljai magmatitok radiometrikus kor adatainak földrajzi megoszlása (saját szerkesztés)

Név	Radiometrikus kor (db)	Az egység területe (km ²)	Ebből vulkáni (km ²)	1 km ² -re jutó kor adat
Vihorlát Popricsnij	16	104,7	100,5	0,16
Makovica	9	645,5	563,2	0,02
Szinyák	30	279,8	193,4	0,16
Borló	13	695,6	462,3	0,03
Nagyszőlősi-hegység	7	319,2	177,9	0,04
Avas	27	255,1	125,5	0,22
Beregszászi-dombság	45	54,9	48,0	0,94
Szigethegyek	14	30,7	30,5	0,46
Összesen	161	2385,4	1701,2	0,09

2.2. táblázat. A magmatitok K/Ar kor adatainak szerkezetmorfológiai egységenkénti megoszlása Kárpátalján (részletesen lásd a 5. mellékletben)

A képződmények korára vonatkozó abszolút adatok alapján szükséges volt egy sztratigráfiai párhuzamosítás a kárpátaljai és a Pannon-medence belső területei között. Ezt a munkát több tényező is negatívan befolyásolta. Az egyik legfontosabb, hogy a szakirodalomban megjelenő sztratigráfiai táblázatok mellett nincsenek abszolút koradatok. Az általam ismert szakirodalmi források között csak egy esetben találtam egyszerre rétegtani és K/Ar koradatokat (AFANASZJEV – ZIKOV, 1975). Az itt megjelenő időszak, kor és korszakbeosztásokat megjelenítettem a Magyar Rétegtani Bizottság ajánlásai mellett (2.3. táblázat) és ahol erre szükség volt ott használtam a párhuzamosítás Központi-Paratethysre vonatkozó korszakait (CSÁSZÁR szerk., 2000). Sajnos azt kell mondanom, hogy ez sem 100 %-ig megbízható, mivel miocén – pliocén határra vonatkozóan Tolsztoj (1976) pl. 11±1 millió évet közöl.

	Afana	szjej - Z	ikov, 1975	Császár szerk., 2000					
Millió év	Időszak	Kor	Korszak	Időszak	Kor	Korszak			
2- - 4- 5.33		océn			Pliocén				
6-		Plic	kimmériai						
8-			pontuszi			nannóniai			
10- 12 (ak		szarmata	szak		punnonnui			
12,0	SZ			lő	n	szarmata			
15,0 14- - 16-	adidős	'n	tortonai	madic	Aiocé	bádeni			
16,5	mε	Cé	helvét	arı		kárpáti			
17,5 18-	Ian	Mio		Η		ottnangi			
20-	H	~	burdigáliai			eggenburgi			
22- 24-			aquitániai						

2.3. ábra. A Kárpátalján és a Pannon-medence belső területein használt sztratigráfiai beosztások párhuzamosítása

(AFANASZJEV – ZIKOV, 1975; CSÁSZÁR szerk., 2000 nyomán)

3. A VIZSGÁLT TERÜLET KÖRNYEZETÉNEK ÁTTEKINTŐ FÖLDRAJZI-FÖLDTANI VÁZLATA

3.1. Földrajzi vázlat

Kárpátalja mint politikai, területi egység csak 1918-ban jött létre. Az I. világháború befejeződésével kialakult erőviszonyok következtében a határok meghúzásánál kizárólag nagyhatalmi érdekek domináltak. Ezt követően a terület határa többször módosult az aktuális politikai viszonyoknak megfelelően. Trianon után a terület az akkor létrejött Csehszlovákia része lett. A mai 12 800 km²-nyi kiterjedését 1946-ben nyerte el, amikor is az a II. világháborút követően az Ukrán Szovjet Szocialista Köztársaság Kárpátontúli területe, s egyben legnyugatibb megyéje lett. Így, a politikai szempontok alapján kialakított határok több természetföldrajzi egységet vágtak ketté.

Földrajzilag alapvetően hegyvidéki (≈ 80 %) és síksági (≈ 20 %) területekre bonthatjuk Kárpátalját. A hegyvidéki területeket további három részre, Vihorlát-Gutin vulkáni vonulatra, Havasi- és Vízválasztó-vonulatra, a síkságot további két részre, Csap-Munkácsi-síkságra és Máramarosi-medencére oszthatjuk (3. melléklet). A továbbiakban csak a munka szempontjából fontos egységeket mutatom be röviden.

A Vihorlát-Gutin vulkáni vonulat hossza Ukrajna területén kb. 120 km, szélessége 15 - 20 km. Ez ÉNy-on átnyúlik Szlovákiába, ahol a Vihorláttal befejeződik, DK-en pedig Romániában, ahol a Kőhát és a Gutin található. Itt kell megjegyezni, hogy a Gutin elnevezést azon kívül, hogy az Észak-Erdélyi hegységre használják, a szovjet-ukrán földtani szakirodalom magmás (Gutini-formáció) formációként és kárpátaljai vulkáni vonulat a megnevezéseként is használja, így egy egységként kezelve a Vihorláttól a Gutinig húzódó szarmata – alsó-pannóniai vulkáni vonulatot.

A *Csap-munkácsi-síkság* v. medence kb. 2000 km²-nyi területet foglal el. É-on és K-en a Vihorlát-Gutin vonulatba megy át, ÉNy-on az ún. Keletszlovákalföldhöz kapcsolódik, ami tulajdonképpen ugyanennek a síkságnak a része, természetes folytatása. D-en és DK-en a Nagy Magyar Alföldhöz csatlakozik. A Csap-Munkácsi síkság határait vulkáni eredetű magaslatok sora képezi. A síkság egyenletes felszínű, legkevésbé délnyugaton tagolt. A kárpátaljai területen magas, ártérfeletti teraszok találhatók, amelyeket a Tisza, ill. annak jobboldali mellékfolyói alakítottak ki. A síkság a Tisza szintje fölé néhol 5-6 méterrel is kiemelkedik. A Vihorlát-Gutini vonulat szomszédságában abszolút magassága 116 - 120 m között váltakozik, majd Csapnál 100 m-ig ereszkedik alá.

A síkság területén szétszórva több kisebb, különféle korú és eredetű vulkáni maradvány látható. Ezek Beregszász környékén az úgynevezett Beregszászi-dombságban csoportosulnak. Hozzájuk csatlakoznak alsó-szarmata savanyú dómok Beregszász és Csap között (Dédai-, Bégányi-, Kaszonyi- és Zápszonyi-hegy). Nagyszőlős mellett található a pannon vulkáni

maradványként számon tartott Fekete-hegy (568 m). Hasonló korú a Beregszásztól ÉK-re lévő kis andezites monovulkán, a Salánki-hegy v. Hömlöc (372 m) is. Munkácstól D-re, Dercen mellet található egy kis salakos maradványkúp, a Kápolna-hegy (KULCSÁR, 1943; MALEJEV, 1964; DANYILOVICS – BAGDASZARJAN, 1968; GÖNCZY, 2009).

Az Aknaszlatinai- (v. Máramarosi) medence Huszttól K-re egészen Lonkáig húzódik (3. melléklet). Az úgynevezett Huszti-kapun keresztül kapcsolódik a Csap – Munkácsi-síksághoz. Hossza kb. 50 km, szélessége kb. 20 km. Ny-on és D-en a Vihorlát-Gutin vonulat határolja, É-on és K-en a Gyűrt-Kárpátok kréta-paleogén láncai keretezik. Az Aknaszlatinai-medence miocénpleisztocén homokos-agyagos és savanyú vulkáni képződményekből épül fel (CISZ, 1962).

3.2. Kárpátalja szerkezeti és földtani vázlata

Az ÉK-i Kárpátokat szerkezeti földtani szempontból két részre szokták osztani: *Gyűrt-Kárpátok*ra és *Kárpátaljai-süllyedék*re (3.1. ábra) (LAZARENKO et al., 1963; SZIDORENKO, 1966; TOLSZTOJ szerk., 1976; GLUSKO – KRUGLOV, 1986; LOZINJAK – PETRASKEVICS, 2007; KUTASZ, 2011). Megnevezésben kissé másképpen, Külső- és Belső-Kárpátoknak nevezi GNILKO (2011) ugyanezeket az egységeket.

Gyűrt-Kárpátok alatt elsősorban a kréta-paleogén során takaróba rendeződött és a miocénre kiformálódó, flis anyagú, a Havasi- és Vízválasztóvonulatokat hordozó szerkezeti elemeket értik. Meg kell azonban jegyezni, hogy ide sorolják a bajkáli-hercíni eredetű Máramarosi-masszívumot is. Külső szerkezeti határát az előkárpáti törésrendszer alkotja (GLUSKO – KRUGLOV, 1986; FÜLÖP, 1981; CSÁSZÁR, 2005).

A Kárpátok és a Pannon-medence között helyezkedik el a neogén molasszal feltöltött *Kárpátaljai-süllyedék*, amelyet egyrészt ÉNy – DK irányú főszerkezeti vonalak választanak el a Gyűrt-Kárpátoktól, illetve a Pannon-medencétől, másrészt ÉK – DNy-i törésrendszerek osztják kisebb egységekre. Így a süllelyedék határait a Pienini-szirt-övvel és a Peripannon szerkezeti vonallal (MERLICS – SZPITKOVSZKAJA, 1965), valamint a Hernád törésvonaltól az Aknaszlatinai törésvonalig lehet kijelölni. A valóban süllyedék jellegű Kelet-szlovákiai-, Csap-Munkácsi-, és Máramarosi-medencéken kívül, a Vihorlát-Gutini vulkáni vonulatot is ide sorolják (SAKIN, 1976; GLUSKO – KRUGLOV, 1986; LOZINJAK – MISZJURA, 2010).

A két egység határát a Kárpátok vonulatai között mintegy 600 km-en át húzódó, keskeny (2 - 20 km), ív alakú szerkezeti egység, a *Pienini-szirt-öv* képezi. Az ÉK-i Kárpátok területén alig néhány helyen bukkan a felszínre, mivel a Vihorlát-Gutini vulkáni vonulat effúzívumai és a Kárpátaljai-süllyedék miocén molasz üledékei mintegy 100 - 600 m vastagon befedik. Az öv kréta márgákból és eocén flis tömegekbe ágyazódott jura – alsó-kréta korú szirtekből áll. A mészkőblokkok mellett néhol triász kavicstömbök is megjelennek. Minden valószínűség szerint ez az öv egy hatalmas premezozóos mélytörésen fekszik (ANDRUSZOV, 1960; KRUGLOV, 1986; LESCSUH et al., 2001; LOZINJAK – MISZJURA, 2010).

3.1. ábra. Az ÉK-i Kárpátok kárpátaljai részének szerkezeti egységei (GLUSKO – KRUGLOV, 1986)

Jelmagyarázat: 1. Takaróhatár, 2. Államhatár. *Gyűrt-Kárpátok:* 3. Krosznói-takaró, 4. Csornohora-takaró, 5. Dukla-takaró, 6. Szuha-takaró, 7. Rahói-takaró, 8. Máramarosi-masszívum, 9. Magura-takaró, 10. Máramarosiszirt-öv, 11. Pienini-szirt-öv. *Kárpátaljai-süllyedék:* 12. Csap-Munkácsi-síkság, 13. Aknaszlatinai-medence, 14. Vihorlát-Gutini vulkáni vonulat

15. Akhaszlatinai-incuciec, 14. Vinonai-Outini Vulkani V

3.2.1. A Kárpátaljai-süllyedék aljzatkomplexumai

A süllyedék sztratigráfiájában preneogén aljzat (3.2. ábra) és a rátelepült neogén takaró rajzolódik ki (LAZARENKO et al. 1968; KRUGLOV, 1986).

Az aljzat *paleozóos* képződményei fekete, szenes rétegek, csillámosagyagos palák, fillitek, aleurolitok, kvarcosodott csillámos polimikt homokkövek és kavics, de alárendelten agyagos dolomitrétegek és spilitek is megjelennek (KRUGLOV, 1995).

A *mezozóos* képződmények erős diszkordanciával települnek a paleozóos aljzatra. Tagolatlan triász-jura és felső-kréta összletek alkotják. A triászt és a jurát mészkövek, dolomitok, dolomitos mészkövek, sötét színű agyagok, aleurolitok, homokkövek, bazalt (az eredeti közleményekben diabáz) és bazalttufás homokkövek, vékony jáspilitsávok jellemzik. Szerves maradványokat csak elvétve találtak. Az eróziós diszkordanciával települt kréta turoni-maastrichti összletekkel képviselteti magát. Főleg karbonátos

cementációjú kavics, konglomerátum, illetve mészkő és márga alkotja (LAZARENKO, et al., 1963; SZIDORENKO, 1966).

A paleogén képződményekhez bazalt, agyag, messzes agyag és aleurolit tartozik. A felszínre került spórák és pollenek alapján alsó-középső paleogént állapítottak meg (LAZARENKO et al., 1963; TYITOV et al., 1969).

3.2. ábra. A Kárpátaljai-süllyedék aljzata (LAZARENKO,1968; SAKIN, 1976; GLUSKO – KRUGLOV, 1986 nyomán)

3.2.2. A fedőüledékek rétegtani egységeinek őskörnyezete

A paleogén képződményekhez szög- és eróziós diszkordanciával kapcsolódnak a *neogén* fedő üledékek. A továbbiakban külön kell választani az alföldi területet és a vulkáni térszíneket, hiszen a miocén vulkanizmus által lefedett területek további fejlődése jelentősen elkülönül a síksági területekétől (3.1. táblázat).

	Maszárfalvi f.	Burkalói-f.	Teresuli-f.		Novoszelicai-f.	Taracújfalui- v.	Talaborfalui-f.	Aknaszlatinai-f.	Taracközi-f.		Baszheui-f.		Drágabártfalvi-f.			Kövesligeti-f.	Lukovai-f.		Almási-f.		Izai-f.			Keselymezői-f.		Iloncai-f.	Csapi-f.	A formáció neve
eggenburgi	egri -	eggenburgi	ottnangi			kárpáti	bádeni	bádeni	bádeni	szarmata	bádeni-		szarmata			szarmata	szarmata		szarmata		alsó-pannon			alsó-pannon	pannon	felső-	pleisztocén	Kora
	sekélytengeri, lagúna, delta	sekélytenger	sekélytenger, lagúna			sekélytenger	sekélytenger	mélytenger	sekélytenger, lagúna, delta		tavi-alluviális, mocsarak		terrigén			sekélytenger, lagúna, delta	öblök, lagúnák	mocsarak	öblök, lagúnák, partmenti	mocsarak	öblök, lagúnák, partmenti		mocsarak	öblök, lagúnák, partmenti		tavi-alluviális, mocsári	tavi-alluviális, mocsári	Fácies
	konglomerátum, meszes anyag, só, szulfát, anhidrid	homokos agyag	konglomerátum	márga	(16,5±0,5 millió év) riodácit- dácit-tufa, tufit, agyag és	lithothamniumos mészkő, konglomerátum, riolittufa	konyhasó, homok, kavics	flis, riolittufa, tufit	kavics, homok, agyag, savanyú vulkanitok		homok, agyag, lignit	riolittufa, agyag, aleurit, homok, konglomerátum,	andezit, andezit-tufa, dácit, dácit-tufa, kszenotufák,	perlit	riolit dómok (11,5 \pm 0,5 – 13,00 \pm 1,0) és lávafolyások,	homok, agyag, andezit (11,57±1,7), dácit, riolittufa,	riolit, riolit-tufa, dácit, dácit-tufa, ignimbrit	andezit-tufa	mészkő, homokos agyag, bazaltos-andezit, bazaltos-		agyag, homokkő, mészkő, márga tufa, tufit	riolit, riolittufa	andezit-tufa, bazaltos-andezit, bazaltos-andezit-tufa,	agyag, homok, szénlencsék, konglomerátum, andezit,		lignit, agyag és agyagos homokkő	lignit, agyag és agyagos homokkő	Képződmények

3.1. táblázat. Kárpátalja síksági részének fedőüledékei

(LAZARENKO et al., 1963; SZIDORENKO, 1966; TYITOV, 1969; VENGLINSZKIJ, 1975; VERESCSAGIN, 1982; ADAMENKO – GORODECKAJA, 1987; VOZNYESZENSZKIJ, 1988; PRIHOGYKO et al., 1998 nyomán, a korszakok megfelelnek a MRB ajánlásainak, CSÁSZÁR szerk., 2000)

3.2.3. A vulkanizmus irodalmi áttekintése

A kárpátaljai vulkáni komplexumok vulkáni körzetesítésnél a szakirodalom többféle csoportosítást közöl. Ezek bemutatásánál az irodalmi hűség kedvéért ragaszkodtam a forrásmunkákban leírt nevezéktanhoz, annak ellenére, hogy sok esetben nem értettem vele egyet.

MALEJEV (1964) szerkezeti és ehhez kapcsolható genetikai alapon, időrendi sorrendben, a krétától kezdődően geoszinklinális-, orogén- és posztorogén (v. platform) ciklusokként értékeli a vulkanizmust (3.2. táblázat). Az orogén cikluson belül négy fázist különített el, amelyek lényegében lefedik Kárpátalja magmás képződményeinek döntő többségét. Ezen kívül tárgyalja a vulkáni működés által létrehozott képződményeket, azok morfológiai, kőzettani és geokémiai sajátosságait.

Γ	Tektonikai rendszer		Kor	с	iklus, fázis	Kőzettípus	Megjelenési forma	Tektonikai szerkezet
	A gyűrődések befejeződése	Neg fe	yedidőszak– Iső-pliocén	Poszt	torogén ciklus	Bazalt, bazaltos andezit (buzsorai formáció)	Lávafolyások, lávatakarók, eksztrúziók, salakkúpok, kürtők	ÉK-i és szubmeridionáli s törésvonalak
	endszer utolsó		Felső- levantei		Negyedik fázis	Riolit, dácit, savanyú andezit, andezit, bazaltos andezit, bazalt és ezek tufái (Gutini formáció)	Sztratovulkánok, lávafolyások, lávatakarók, dómok, dájkok	Az Ény-i irányú Vihorlát-gutini mélytörés és rá merőleges törésvonalak kialakulása
	:er (a geoszinklinális i akasza)	felső-pliocén	Alsó-levante	gén ciklus	Harmadik fázis	Riodácit, dácit, savanyú andezit, andezit és ezek tufái. Mikrogranodioritok, diorit-porfirit, kvarc gabbró, bazalt (Iloncai formáció)	Sztratovulkánok, lávafolyások, dómok, tufahorizontok, hipabisszikus intruzívumok	Az Ungvár- munkácsi mélytörés és rá merőleges törésvonalak kialakulása
	féligplatform rendsz sz	Miocén –	Alsó- szarmata – felső-torton	Neog	Második fázis	Riolit, dácit, andezit, bazaltos andezit és ezek tufái	Sztratovulkánok, lávafolyások, dómok, tufahorizontok	Az Ény-i irányú Csap- beregszászi mélytörés és rá merőleges törésvonalak
	Orogén, vagy		Felső-torton —burdigáliai		Első fázis	Dácittufa, riodácit. Amfibolandezit (?), andezit Magyarországon	Erodálódott vulkánok, tufahorizontok	Az aknaszlatinai mélytörés kialakulása
	Geoszinklináli s rendszer	Kréta- paleogén	Oligocén, kréta	Oligocén, 방광 영 kréta 노 영		Riolittufa, ofiolit, spilit	Extrúziók, lávafolyások, tufahorizontok	?
1					-			

3.2. táblázat. A	kainozóos magmatiz	zmus szakaszai	Kárpátalján	(MALEJEV,
	1	964)		

A MERLICS – SZPITKOVSZKAJA (1974) szerzőpáros csak a neogén magmatizmust tárgyalja három magmás komplexum és négy fázis keretében. Az első magmás komplexum üledékkel kevert savanyú vulkanitokat tartalmaz, a második bázisos effúzívumokat, a harmadik pedig intrúziókat és szubvulkáni testeket. Az itt-ott időben egymást fedő fázisok területileg is tagolt vulkáni működést tükröznek. Ezek közül az első a Kárpát-medencében regionálisan elterjedt riolittufa szinteket foglalja magába. A második fázis effúzívumai a Peripannon törészóna mentén, a Csap-Beregszász vonalhoz köthetők. A harmadik és negyedik fázis vulkanitjait a Pienini-szirt-övhöz, illetve annak keresztirányú töréseihez rendeli. E munka igyekszik párhuzamokat vonni a kárpátaljai és a Kárpát-medence K-i részének vulkanizmusa között.

RADZIVILL (et al., 1986) tektonomagmás szerkezetekben gondolkozik, amelyek felelősek a poligenetikus sztratovulkánok képződéséért, illetve meghatározzák a hozzátartozó mellékkráterek, parazita- és salakkúpok, valamint a szubvulkáni testek helyzetét (3.3. táblázat). A Kárpátaljaisüllyedéket határoló nagyméretű törésrendszerekhez kapcsolódóan külső és belső vulkáni vonulatot vázol. Ezek mentén kilenc nagyméretű tektonomagmás szerkezetet jelöl ki, melyekhez 16 paleosztratovulkánt társít.

TOLSZTOJ (szerk., 1976) szintén szerkezeti alapon tárgyalja a kárpátaljai vulkanitokat. Megkülönbözteti a Peripannon töréshez köthető Zemplén – Beregszászi vulkáni körzetet és a Vihorlát-gutini vulkáni körzetet, ezen belül a Vihorlát – Nagyszőlősi-hegység vulkáni körzetet, melynek a Szinyák is része és az Avas – Gutin vulkáni körzetet.

SEGHEDI (et al., 2001) a magmadifferenciáció alapján külső, belső és átmeneti vulkáni öveket különít el. Szerinte a külső övbe a Vihorlát-Gutinvulkáni vonulat tartozik, a belsőhöz a Beregszászi- és Kaszonyi-dombság, valamint a Csap környéki eltemetett vulkáni komplexumok, az átmeneti övet pedig a Kárpátaljai-síkságon elszórt vulkáni szigethegyek (derceni Kápolnahegy, salánki Hömlöc és a nagyszőlősi Fekete-hegy) képviselik.

Az eddig elmondottakból kirajzolódik, hogy a Kárpátalja területén húzódó vulkáni régiók két jól elkülönülő sávra koncentrálódnak. Az egyik nagyrészt a Pienini-szirt-övhöz kapcsolódó Vihorlát-Gutin vulkáni vonulat (1.2. ábra). A másik, a Csap-Beregszász-Nagybánya vonalhoz köthető, a Peripannon-mélytörés zónával kijelölhető sáv, melynek felszíni vetülete a Beregszászi-dombság, illetve a két vonulat közötti átmeneti sáv (MALEJEV, 1964; MERLICS – SZPITKOVSZKAJA, 1965; SEGHEDI et al., 2001).

A Vihorlát-Gutin vulkáni vonulat általánosan ÉNy-DK-i csapású, de a Nagyszőlősi-hegység területén markánsan D felé hajlik. A vonulat irányváltása annak köszönhető, hogy az itt található vulkanitok képződése genetikailag három különböző mélytörési zónához köthető, amelyeket csak képződményeik morfológiája foglal egységes vonulatba. A Vihorlát – Borló kitörési centrumai a Pienini-szirt-övhöz, a Nagyszőlősi-hegység vulkáni összletei a Nagyszőlősi-mélytöréshez, az Avas vonulata pedig a Peripannon-mélytöréshez kapcsolható (MERLICS – SZPITKOVSZKAJA 1965; KORONOVSZKIJ 1965; TOLSZTOJ szerk., 1976).

A *neogén vulkanizmus* legfontosabb időszaka a szarmatától az alsópannon végéig tart. Különböző aktivitású fázisokra lehet bontani. Az egyes fázisok kezdete ÉNy-DK-i és ÉK-DNy-i mélytörések kialakulásához köthető. Jellemző, hogy a szarmata végéig egységes süllyedésről lehet beszélni a Kárpátaljai-síkság területén, míg a pannontól kezdődően az aljzat különálló blokkjainak pozitív és negatív vertikális mozgásai kerültek előtérbe.

Magmás komplexumok	Fázisok	Kor	Stádium	Kőzettípus	Kiterjedés Kárpátalján	Kiterjedés Magyarországon
mx		Helvét	Savanyú kőzetek első stádiuma	Plagioriolitos tufa, tufit, tufahomok	Csap-munkácsi- és Aknaszlatinai- medence, Beregszász-bégányi dombság, Visk környéke	Alsó-riolittufa
olitos komple	I.	Torton	Savanyú kőzetek második stádiuma	Plagioriolitos tufa, tufit, tufahomok	Csap-munkácsi- és Aknaszlatinai- medence, Visk környéke	Középső-riolittufa
ikes-vulkáni ri		Alsó-szarmata	Savanyú kőzetek harmadik stádiuma	Plagioriolitos tufa, kvarctartalmú összesült plagioriolt tufa ás tufoláva, kvarctartalmú plagioriolit	Csap-munkácsi- és Aknaszlatinai-medence, Nagyszőlős és Visk környéke	Felső-riolittufa
Üledék		Középső- szarmata – alsó- pannon	Savanyú kőzetek stádiuma	Kvarcnélküli plagioriolit, ezek lávabreccsái és agglomerátumai	Beregszász-bégányi dombság, Rafajna és Nagyszőlős környéke	Tokaji-hg., Gelénes 1 fúrás
	11	Torton–alsó- szarmata	Bázisos kőzetek stádiuma	Bazaltos andezit, kétpiroxénes andezit, tufoláva	Beregszász-bégányi dombság, Csap környéki eltemetett vulkánok	Északi-középhegység
c		Pannon	Savanyú kőzetek stádiuma	Savanyú andezit, dácit, ezek piroklasztikumai	Beregszász-bégányi dombság, Csap környéki eltemetett vulkánok	Tarpa
s komplexum		Pannon – Ievantei	Bázisos kőzetek stádiuma	Bazalt, bazaltosos andezit, kétpiroxénes és piroxén andezit, ezek tufái	Csap környéki eltemetett vulkánok	
fúzív andezít	ш.	Felső-pannon	Bázisos kőzetek stádiuma	Bazaltosos andezit, andezit, tufoláva, agglomerátumok, tufák (Gutini formáció)	Vihorlát-gutini-vulkáni vonulat	
ŭ		Levantei	Savanyú kőzetek stádiuma	Durvaporfiros savanyú andezit, dácit, riolit és ezek tufái	Vihorlát-gutini-vulkáni vonulat	
	IV.	Levantei	Bázisos kőzetek stádiuma	Bazalt, bazaltosos andezit és ezek tufái (Buzsorai formáció)	Vihorlát-gutini-vulkáni vonulat	Mátra, a Balatontól É-ra
		Alsó-szarmata	Első stádium	Gabbró-bazalt, gabbró-porfir	Visk és Nagydobrony környéke	
s koplexum		Alsó-pannon	Második stádium	Diorit-porfirit, kvarctartalmú diorit-porfir	Visk, Nagyszőlős és	A Mátra É-i részén, Tokaji-
Hipabisszikus I		Alsó-pannon	Harmadik stádium	Kvarctartalmú diorit porfirit, granodiorit-porfir	Nagydobrony környéke	hegység
		Felső-pannon	Negyedik stádium	Leukokrát granodiorit-porfir, mikrogranodiorit, dácit	Visk, Perecseny és Szojva környéke	

3.3. táblázat. A vulkáni működés szakaszai Kárpátalján (RADZIVILL et al., 1974)

Az *ottnangi-kárpáti* időszakban induló vulkáni aktivitás fő területe a Beregszászi-dombság. Főleg dácit- és riolit tufák, illetve biotitos andezit jellemzi. *Bádeni* kitörési termékeket kizárólag a Beregszászi-dombság területén

találhatunk. A felszínre jutott vulkáni anyag összetétele a korábbiakhoz képest bázisosabb, hiszen a riolit, dácit és andezit mellett bazaltos-andezit, illetve a hozzájuk kapcsolódó tufák jellemzők.

A *szarmata* vulkanitok elterjedése már jóval nagyobb a Beregszászidombságon kívül, ahol ez a vulkánosság befejező szakasza. Jellemző előfordulásaik a Vihorlát - Popricsnij, a Makovica, a Szinyák, a Borló - Gyil és az Avas területén találhatók. A Popricsnij – Borló területén andezit és gabbródiorit dájkok, illetve riodácit és dácit extrúziók képződtek. Az Avas szarmata magmatitjai granodiorit, gabbró és gabbró-dolerit intrúziók.

A pannonban újabb vulkáni aktivizáció kezdődik. Ekkor alakulnak ki a Nagyszőlősi-hegység bazaltos-andezit láva és tufahorizontjai. A Vihorlát – Borló-Gyil területén ugyanakkor dácitos-andezit szubvulkanitok képződése mellett andezit és bazaltos andezit lávaömlések és tufaszórások figyelhetők meg. Az Avas területén andezit és bazaltos-andezit lávák és tufák képződtek (SZOBOLJOV – KOSZTYUK, 1958; MERLICS – SZPITKOVSZKAJA, 1958A; MERLICS – SZPITKOVSZKAJA, 1958B; MALEJEV, 1964; MALEJEV, 1965; TOLSZTOJ, szerk., 1976).

4. AZ ÉSZAKKELETI-KÁRPÁTOK KÜLSŐ VULKÁNI VONULATÁNAK VULKÁNI KÖRZETEI

A külső és belső vulkáni vonulat megkülönböztetését több érv is indokolja, hiszen mind a vulkanizmus kora, mind a szerkezti-földtani háttér, mind a kemizmus különbözik.

A külső vonulathoz morfológiailag a Vihorlát – Popricsnij, a Makovica, a Szinyák, a Borló és a Nagyszőlősi-hegység tartozik. Szarmata – alsó-pannóniai korú, elsősorban bázisos és intermedier komplexumok alkotják. A Vihorlát – Borló között kialakult vulkáni centrumok a Pienini-szirtövhöz, a Nagyszőlősihegység centrumai az Avasi és Nagyszőlősi törésvonalakhoz köthetők (3.2. ábra).

A belső vonulat felszíni vetülete a Beregszászi-dombság és az Avashegység. Elsősorban savanyú magmatitokból és vulkanitokból áll, melyek képződése az ottnangi-kárpáti korszakoktól indul, paroxizmusát a szarmatában éri el. Szerkezetileg a Csap – Beregszász – Nagybánya vonal mentén jelölhetjük ki a futását. A Csap környéki vulkáni komplexumokat mintegy 500 - 1000 m vastag üledék fedi, így csak fúrásokból ismerjük valamelyest. A vonulat további részét a Beregszászi-dombság képviseli, ami az Avasban folytatódik. Meg kell még jegyezni, hogy az Avasban mind a külső, mind a belső vonulat jegyei megtalálhatók (lásd 5.3. fejezet).

4.1. A Vihorlát-Popricsnij vulkáni komplexum, különös tekintettel a Popricsnijre

A Vihorlát-Gutini vulkáni vonulat kezdőtagjának egy alig több mint 100 km²-es része nyúlik át Ukrajnába. A szovjet-ukrán földtani szakirodalomban, a Popricsnij csúcs (994 m) után Vihorlát-Popricsnijként ismert terület alatt nem morfológiai egységet értünk, mivel a szlovák – ukrán határ mesterségesen vágja ketté. Így azt ÉNy-ról az államhatár, DK-ről az Ungfolyó határolja, az ÉK-i és DNy-i határként pedig a magmás és üledékes kőzetek vonalát vettük alapul a TYITOV (1979) féle földtani térkép alapján (3. melléklet).

4.1.1. Földtani, rétegtani és vulkanológiai ismeretek

A Vihorlát ukrajnai részének 90 %-át a szovjet-ukrán szakirodalomban levanteinek nevezett korú andezitláva és tufa borítja (4.1.1. ábra). Az É-i részen, ahol a terület érintkezik a Magura takaróval és a Pienini - szirtövvel, 18 –20 millió éves gabbró-bazalt intrúziókkal, 15 millió éves riolitokkal és gránátos riolittufákkal találkozhatunk (KOSZTYUK, 1958; KOSZTYUK et al., 1958; MALEJEV, 1964; MERLICS-SZPITKOVSZKAJA, 1974; TOLSZTOJ, 1976; TYITOV, 1979; KRUGLOV, 1986; KUZOVENKO, 2001). TYITOV (1979) három 600 - 900 m átmérőjű krátert azonosított a területen. A fő kitörési központot MALEJEV (1964) a Popricsnij csúcstól É-ra teszi, ami már kiesik az általunk vizsgált területről. TOLSZTOJ (1976) viszont ugyanettől a csúcstól D-re, a Szirova-patak felső folyására helyezte s ezen kívül két krátert definiált Ókemence környékén.

A terület bázisa a Pienini- szirt- öv mentén kiemelkedett aljzatblokk. A paleogén homokkőből álló horszt a Kárpátaljai-süllyedék egészén belül nem jelentős, átlagosan mintegy 400 m mélységben található szerkezet (MERLICS – SZPITKOVSZKAJA, 1974), amelynek anyaga a középső- késő-eocén ún. podhalei flis. Összetételében szürke homokkő, kavics, aprószemű konglomerátum és agyag uralkodik (LOZINYJAK – MISZJURA, 2010).

A magmás fedőképződmények között az adott körzetben TOLSZTOJ (et al., 1974) és RADZIVILL (1986) a jelentős méretű Popricsnij sztratovulkánt említi, melyet ma az ukrán –szlovák államhatár oszt ketté. A területen kialakult legidősebb magmás képződmények $18,0\pm 2 - 22,0\pm 4$ millió éves hipabisszikus gabbró-bazalt testek (MERLICS – SZPITKOVSZKAJA, 1974).

A vulkáni felépítmény ÉK-i részén 14,95 \pm 1 millió éves gránátos riolit, riolittufa és riodácit található (MERLICS – SZPITKOVSZKAJA, 1974). TOLSZTOJ (szerk., 1976) ezek kialakulását hasonló korra, 15,8 \pm 1,0 – 15,5 \pm 1,1 millió év teszi. A magma a paleogén aljzatot áttörve több dómot és egy hatalmas, mintegy 100 m vastag és kb. 1 km-en át a felszínen követhető telért hozott létre. A területen található összes riodácit egy sorozatba tartozik, és ugyanabból a magmakamrából tört a felszínre (MALEJEV, 1964).

A gránátos vulkanitokra regionálisan andezites összetételű tufa és lávatagozat rakódott, három rétegtagban. Az alsó rétegtagot 95 %-ban, 20 -300 m vastag andezittufa alkotja, s csak a tetején található néhány vékonyabb lávafolyás. A kitörési központokat a Popricsnij és a tőle alig 1,5 km-re ÉK-re lévő Vitrova Szkala csúcshoz kötik. A középső rétegtag durva és finomszemcsés andezitet tartalmaz. Ezek sztratigráfiailag egy szintben vannak, mindkettő fordított polaritású, míg az aljzat- és a fedőkomplexumok normál polaritásúak, de más típusú kapcsolat nem bizonyítható közöttük. A felső rétegtagot – az alsóhoz hasonlóan – nagyrész tufák alkotják, ehhez kevés andezit láva és még kevesebb savanyú andezit kapcsolódik (TOLSZTOJ szerk., 1974).

A vulkáni felépítményben a savanyú andezitek után tavi-alluviális üledék található, ami egy rövid szünetet jelez a vulkáni működésben.

Az újabb aktiválódás első lépésében dácit, riodácit dómok és belőlük eredő kisebb lávafolyások alakultak ki (TOLSZTOJ et al., 1974; TYITOV, 1979).

A vulkanizmus záróakkordjaként több nagyméretű lávatakaró és lávafolyás képződött (un. felső andezit). Ezeken belül elkülöníthető egy finomegy közép- és egy durvaporfíros sorozat. Amíg a durvaporfíros andezitek kitörési központjai a Popricsnijhez kötődnek, addig a finom- és középszemcsés andezitek központjai az Antallóci Poljánához.

4.1.1. ábra. A Vihorlát ukrajnai részének áttekintő földtanitopográfiai térképe (balra fent a Vihorlát egésze) és a Popricsnij sztratovulkán elvi szelvénye

(MALEJEV, 1964; TYITOV, 1979; KUZOVENKO ed., 2001; Topográfiai térkép, M 1:100 000; a szintvonalakat az SRTM, a dombormodellt az ASTER adatbázis alapján generáltam)

4.2. A Makovica vulkáni körzet

Ahogy az 1. fejezetben részleteztem, a Makovica, mint morfológiai egység és a KDK-i irányban szomszédos Szinyák-hegység között a magyar és szovjet-ukrán szakirodalom között nevezéktani problémák jelentkeznek, sőt az utóbbi források sem mutatnak egységes álláspontot (1.2. fejezet; 1.2. ábra). A nevezéktani problémákhoz hasonlóan paleovulkáni tekintetben sem találunk egységes álláspontot. MALEJEV (1964) az Antalóci-Pojnánát definiálja rétegvulkánként és a vulkanitok tömege alapján valószínűsíti, hogy még két rétegvulkánnak kellett működni e területen (4.2.1. ábra). Kitörési központként a Makovica és a Határ csúcsokat nevezi meg. TOLSZTOJ (et al., 1976) csak az Antalóci-Poljánát emeli ki, mint vulkáni egységet. RADZIVILL (et al., 1986) az Antalóci-Pojnánáról, a Makovicáról és a Határ vulkánról beszél. PÉCSKAY (et al., 2000) csak az Antalóci Poljanát és a Határt tünteti fel tanulmányában sztratovulkánként. A szakirodalomi források elsősorban geofizikai adatok és a morfológia alapján látták bizonyítottnak ezeket a vulkánokat, de részletesebb leírást nem adtak róluk.

4.2.1. ábra. A Makovica vulkáni körzet áttekintő térképe (MALEJEV, 1964; TYITOV, 1979; KUZOVENKO ed., 2001; Topográfiai térkép, M 1:100 000; a szintvonalakat az SRTM adatbázis alapján generáltam)

4.2.1. Az Antalóci-Poljána sztratovulkán környezete

A bázisképződmények tekintetében a terület változatlan a Popricsnijhez képest, hiszen a Latorcai törésvonalig (3.2. ábra) nem különbözik a földtani fejlődésmenet egészen a Szávai-tektonofázisig.

A vulkán gyökrét pozitív gravitációs anomáliák alapján határozták meg. Az itt feltételezhető magmakamra mintegy 1–1,5 km mélységben lehet, átmérője 5–7 km (RADZIVILL et al., 1986).

Hasonlóságot fedezhetünk fel a Popricsnij és az Antallóci Poljana területén a tekintetben, hogy itt is savanyú vulkanitok fedik a bázisképződményeket, amelyek a Vihorlát-Gutini vulkáni vonulatban máshol nem találhatóak meg (TOLSZTOJ et al., 1974; RADZIVILL et all., 1986). Azonban a szakirodalomban nincs konkrét adat, vagy mintaleírás e vulkanitok meglétéről azon kívül, hogy MALEJEV (1964) Kapuszög falu mellől leír egy az agglomerátumos tufa alól kibukkanó, az erodált flis felszínen megfigyelhető riodácit lávafolyást. RADZIVILL (et al., 1986) kiemeli a savanyú vulkanitok mérsékelt elterjedését az egész Vihorlát–Gutin vulkáni vonulatban

A gránátos savanyú vulkanitokra feltehetően az Újstájer tektonofázishoz kapcsolódóan andezittufa rakódott (20 -300 m). Csak Újkemence környékén, illetve Ókemence és Nevicke között bukkan a felszínre, majd ugyanehhez az aktivizációs szakaszhoz csatlakozva andezit lávafolyások képződnek. A kitörési központok a szomszédos Vihorlát morfológiai egységben, a Popricsnij és a Szkála csúcsokban feltételezhetők (TOLSZTOJ et all., 1974).

A Lajtai tektonofázisban induló újabb aktivizáció során elsősorban andezitláva képződik, a tufák alárendelt szereppel bírnak. A lávafolyások között, azon kívül, hogy egy rétegtani szintben vannak és mindegyik fordított polaritású, más kapcsolat nem bizonyítható. Több kisebb (10-100 m Ø) centrum feltételezhető Felsődomonya és Nevicke környékén, valamint a Szlatina- és a Hlibokij-patak mentén. Ezen kívül az Analóci Poljana és a Popricsnij szolgáltattak nagyobb mennyiségű lávát, illetve tufát (TOLSZTOJ et al., 1974).

A vulkáni működésben kisebb szünet következik, amikor egy vékony mállási réteg képződött.

A vulkanizmus záróakkordjaként több lávatakaró és lávafolyás képződik (un. felső andezit). Ezeken belül elkülöníthető egy finom- egy közép- és egy durvaporfíros sorozat. Amíg a durvaporfíros andezitek kitörési központjai a Popricsnijhez kötődött, addig a finom- és középszemcsés andezitek központja az Antallóci Poljanáhaz. Itt a durvaporfíros anyag alárendelten jelenik meg a vulkán radiális töréseihez kapcsolódó parazitacentrumok környékén. Ezen kívül savanyú andezit tufa és alárendelten láva képződött, melynek központja, a láva és tufarétegek kivastagodásának alapján, feltételezhetően az Analóci Poljana kisebb parazita centrumai lehettek (TOLSZTOJ et al., 1974).

A fő kráter környékén nagyszámban fellelhető andezites szubvulkáni testek és mellékkráterek gyűrű alakú, illetve radiális törésvonal rendszerekhez
köthetők (RADZIVILL et al., 1986), amit a vízhálózat is jól mutat (NEMERKÉNYI, 1986).

4.3. A Szinyák vulkáni körzet ismertsége forrásmunkák alapján

A hegység összterülete mintegy 280 km², azonban ebből csak 193 km²nyi vulkáni eredetű, a többit a Szuha (v. Porkuleci)-takaró kréta-paleogén flis összletei foglalják el (4.3.1. ábra).

4.3.1. ábra. A Szinyák vulkáni körzet áttekintő térképe (MALEJEV, 1964; TYITOV, 1979; KUZOVENKO, 2001; Topográfiai térkép, M 1:100 000; a szintvonalakat az SRTM adatbázis alapján generáltam)

A rendelkezésre álló K/Ar radiometrikus koradatok alapján (BAGDASZARJAN – DANYILOVICS 1968; TOLSZTOJ, 1974; TOLSZTOJ, 1976; SEGHEDI et al., 2001) elsősorban alsó-pannon andezitek és bazaltos andezitek, illetve ezek tufái a hegység fő alkotói, bár a földtani térképeken (SAKIN, 1976; TYITOV, 1979; GLUSKO – KRUGLOV, 1986) a fő felszínalkotókat levantei vulkanitokként tüntetik fel. Megfelelő számú K/Ar radiometrikus koradat hiányában a földtani térkép jelzéseit mi sem változtattuk meg.

kráterek, kitörési központok azonosításához Α а szakirodalmi feldolgozásokat (MALEJEV, 1964; TOLSZTOJ szerk., 1974; TOLSZTOJ szerk., 1976; TYITOV, 1979), illetve a saját terepi bejárásainkat használtuk fel. Ezek alapján mintegy tíz 300 - 800 m átmérőjű krátert, valamint negyven egyéb kitörési centrumot sikerült azonosítani (TYITOV, 1979; MALEJEV, 1964; 4.3.1. ábra). Ezeket a szakirodalom 12 kisebb-nagyobb vulkánhoz sorolja (Szinyák, Matekovkai, Németkucsovai, Zsukói, Felső-Obavai, Határ. Zsornina, Szuszkóujfalui, Obavai, Turjasebesi, Beregszentmiklósi, Szélestőivulkánok, ábra), melyek a Szinyák-hegységben, illetve annak közvetlen 4.3.2. környezetében találhatók.

4.3.2. ábra. Feltételezett vulkánok a Szinyák-hegység dombormodelljén (*saját szerkesztés*)

Jelmagyarázat: 1- Szinyák, 2- Határ, 3- Zsornina, 4- Matekovkai, 5-Németkucsovai, 6- Zsukói, 7- Felső-Obavai, 8- Szuszkóujfalui, 9- Obavai, 10-Turjasebesi, 11-Beregszentmiklósi, 12- Szélestői vulkán

Ha azonban megnézünk más, kárpáti vulkánmaradványokat, akkor azt láthatjuk, hogy ekkora kráterek nem jellemzőek. Az átlagos kráterátmérő 2000 m, a kúpátmérő pedig 4,5- 9,0 km körüli (KARÁTSON, 1996). Ennek alapján feltételezhetjük, hogy a Szinyák területén leírt kráterek nem a főkrátert, vagy főkrátereket jelölik, hanem feltérképezik az itt található összes parazitakúpot, monovulkánt, extrúziót, salakkúpot, necket stb.

A kárpátaljai vulkáni körzetek közül megkutatottság szempontjából a Szinyák valahol középszinten lehet, azzal együtt, hogy az általános megkutatottság viszonylag kicsi. Ahogy a 2. fejezetben már említettem, a szakirodalomban sajnos nagy hangsúlyt kapott az érintőlegesség, hiszen a Szinyák hegységre vonatkozóan csupán négy földtani témájú munkát találtam (KORONOVSZKIJ – SZOLODKOVA, 1964; KORONOVSZKIJ, 1965; KORONOVSZKIJ – MILANOVSZKIJ, 1966; SZTYEPANOV, 1989).

A KORONOVSZKIJ – SZOLODKOVA (1964) szerzőpáros a Szinyák területén a vulkáni eredetű képződmények fekvése, valamint a szerkezet és összetétel alapján a vulkáni működés sorrendjében három vulkáni komplexumot különböztet meg: 1. matekovkai komplexum, 2. szinyáki komplexum és 3. obavai komplexum.

A legidősebb *matekovkai vulkáni komplexum* egy erősen tagolt paleogén mezozóos aljzatra települt, ahol az andezites összetételű vulkanitok tavialluviális üledékkel keveredtek. A szelvényben felfelé haladva egyre inkább uralkodóvá válnak a piroklasztok, a tufa szemcseösszetétele egyre durvábbá válik, majd tufabreccsa képződik, végül a szelvényt bazaltos andezites és andezites összetételű lávafolyás fejezi be. Az egész összlet kialakulását egyetlen kitörési ciklus okozta, méghozzá szünet nélkül, amire a tufabreccsák és a lávarétegek csaknem párhuzamos határa ad magyarázatot, valamint a mély eróziós árkok hiánya, ahová a lávafolyamok befolyhattak volna. A fő kitörési központot a Buza és a Pliska csúcsok közé teszik (4.3.2. ábra).

A hegység É-i és ÉK-i részére, jól lehatárolható területre, korlátozódik a *szinyáki vulkáni komplexum*. Öt különböző felépítéssel és összetétellel jellemezhető vulkáni eredetű rétegre bontható: 1. riolitos-dácitos tufa és tufabreccsák; 2. riolitos-dácitos és dácitos lávaréteg; 3. tavi-alluviális lerakódások, tufás betelepülésekkel. 4. andezites tufa és tufabreccsák rétege kis kiterjedésű lávarétegekkel; 5. andezites lávarétegek nem nagy kiterjedésű tufa és tufabreccsa rétegekkel. Az első három korban közel áll egymáshoz, de területileg elkülönültek. Érdekes megállapítás, hogy a kitörési fázis a Berdóhegy centrumából származó savanyú produktumokkal indul, igaz nem egyedi, hiszen a Pannon-medence belsejében is találunk rá példát.

A Szinyák területének legfiatalabb vulkáni képződményei az *obavai* vulkáni komplexum, melynek képződményeit elsősorban a fő kitörési központként definiált Obavai Kő csúcs környezetében lehet megtalálni. Egyes szerzők e komplexumot három részre tagolják (pl. SZTYEPANOV, 1989): 1. vörös andezites tufa és tufabreccsák; 2. alsó obavai láva; 3. felső obavai láva (4.3.3. ábra). A felső lávák fordított polaritásúak, hasonlóképpen a Pliskát felépítő lávákhoz. E két csúcs mentén ebben az időben törésvonalak kialakulását feltételezik.

4.3.3. ábra. A Szinyák vulkán elvi szelvénye MALEJEV (1964)
KORONOVSZKIJ – SZOLODKOVA (1964) TOLSZTOJ (szerk., 1976) és SZTYEPANOV (1989) munkái alapján (A geokémiai mintákhoz tartozó adatsorok a 2. melléklet 3. táblázatában találhatók meg)

SZTYEPANOV (1989) kutatásai főleg az ércdúsulásokra koncentrálódtak, a vulkáni működés szakaszosságát ennek fényében vizsgálta. A Szinyákot mint sztratovulkánt jellemzi, melynek központi kalderáját gyűrű alakú tektonomagmás centrumként definiálja. Ez a felfogás nem egyedülálló a területen, hiszen földtani térképek is készültek ebben a szellemben (TYITOV, 1979). A kaldera központi részét az Obavai vulkán környékére teszi. A kitörési centrumokat nagyméretű törésvonalakhoz, vagy ezek találkozási pontjaihoz kötötte, működésüket a paleomágnesesség alapján is vizsgálta. A vulkanitok korát néhány K/Ar radiometrikus koradattal, valamint rétegtani alapon a szomszédos síksági terület vulkáni-üledékes rétegeivel (Iloncai formáció) párhuzamosítva fauna és palinológiai adatok alapján határozta meg.

Röviden összefoglalva a következőképpen látta a Szinyák vulkanizmusát: a vulkáni működés korai fázisában bázisos összetételű explóziós és effúziós tevékenység figyelhető meg. A robbanások ereje fokozatosan csökkent, végül pajzsvulkánok alakultak ki. A középső szakaszban a bázisos explóziós-effúziós működéshez extrúziók kapcsolódtak, savanyú andezitet és savanyú andezittufát szolgáltatva. A középső és felső szakasz határán fordítottból normál polaritásúba vált a mágneses mező és effúziós anyagszolgáltatás uralkodik, gyenge explóziók mellett. Fontosnak tartotta még megjegyezni, hogy a működés egy része vízi környezetben ment végbe (SZTYEPANOV, 1989).

4.3.2. A Szinyákban és környezetében működött miocén vulkánok

A Németkucsovai vulkán

A nagyrészt elpusztult és eltemetett vulkáni szerkezet, a Latorca völgyében Munkács környékén van a felszínen, illetve fúrásban (1p fúrás, é.sz. 48°32'18", k.h. 22°49'35") megtalálható a Szinyák területén is. Németkucsovától Ny-ra jól azonosítható egy kb. 2 km átmérőjű kaldera. A vulkáni szerkezet felépítésében inkább a lávafolyások dominálnak (max. vastagság 100 m) a tufarétegek felett (max. vastagság 20 m). A lávák bazaltos andezites, a tufák bázisos-intermedier összetételűek, s csak a működés zárásaként látunk savanyú tufaszórással kísért riolit extrúziókat (SZTYEPANOV, 1989).

A feltárt, mintegy 315 m vastag vulkáni szelvény egy 22 m vastag bázisos agglomerátumos, pszefites tufaréteggel indul, amire egy itt-ott agglomerátumos tufával megszakított, 77 m vastag durvaporfíros andezit lávasorozat települt. Feljebb közepesen durvaporfíros, 100 m vastag lávatakaró található. Ezt 120 m vastag bázisos tufaréteg fedi, tetején két kisebb lávafolyással.

A középső komplexum anyagának képződését intermedier-savanyú összetételű extrúziók kísérték. Ilyen, például, a Munkács melletti Nagyhegy kettős kupolája (é.sz 48°25'14'', k.h. 22°45'08''), melyből egy 80-100 m hosszú lávafolyás is táplálkozott, vagy Szentmiklós és Kölcsény közötti dóm. Hasonló még a munkácsi Várhegy és a Feszty körképből jól ismert Lovacska (é.sz. 48°27'30'', k.h. 22°41'42'') is (MALEJEV, 1964; SZTYEPANOV, 1989). E savanyú dómok és a Szolyvától D-re a Szolyva-1 sz. fúrásban, 650-950 m közötti mélységközben megtalálható gránátos granodiorit között MALEJEV (1964) genetikai kapcsolatot tételezett fel, sőt valószínűsíti, hogy a Perecsenytől É-ra található savanyú intrúziókkal is hasonló a kapcsolat.

A Szinyák területén fúrásban, a kitörési centrumtól 12 km-re, 707,6 – 822,5 m felszín alatti mélységben ugyanennek a vulkánnak a termékei található, három bazalt és bazaltos andezit lávakőzet szint, illetve az őket elválasztó erősen agyagosodott tufaréteg formájában. A két alsó lávafolyás fordított, míg a felső normál polaritást mutat.

Zsukói vulkán

Csak fúrásokból ismerjük, mivel a későbbi vulkáni képződmények teljesen befedték tufával és lávafolyásokkal. A kitörés központja SZTYEPANOV (1989) szerint Zsukó településnél található, de fúrásban a Szinyák területén is megjelenik két rétegben (11 - T, 820,3 - 1287,3 m).

Az alsó összlet 323,8 m vastag, kevert üledékes és vulkanogén rétegekből, valamint piroklasztitból és két lávaszintből áll. Az alsó lávakőzet 35,3 m vastagságban megjelenő kétpiroxénes bazalt, melynek mandulakövei karbonátokkal, krisztobalittal és kvarccal vannak kitöltve. A felső lávaszint 34,2 m vastag kétpiroxénes bazaltos andezit. A kettő között 207 m-nyi bázisos összetételű agglomerátumos, pszefites, ritkán pszammitos tufa és tufit települ (SZTYEPANOV, 1989).

A bazaltos andezitre 46,3 m-nyi aleurolit, homokkő, kavics és konglomerátum összetételű üledék települt.

A felső, 143,2 m vastag réteg bazalt és bazaltos andezit lávafolyásokból és lávabreccsából áll. Itt is megfigyelhető a karbonátokkal kitöltött mandulaköves porózus szerkezet (SZTYEPANOV, 1989).

A Határ vulkán

A vulkán a Makovica területén található, névadója és egyben centruma a Fedelesfalvától NyÉNy-ra lévő Határ csúcs (766 m), ami a jelenleg forgalomban lévő térképeken nincs nevesítve, de a III. katonai felmérésen megtalálható (<u>http://lazarus.elte.hu/hun/digkonyv/topo/200e/40-49.jpg</u>).

A működés vizsgálata során három vulkáni komplexum (alsó, középső és felső) volt elkülöníthető (SZTYEPANOV, 1989).

Az alsó komplexumot a 11-T fúrásban (é.sz. 48°35'21'', k.h. 22°43'01'') a felszíntől 820,3 m mélységig harántolták. Tovább osztható két kisebb egységre. Az alsó egység (416-820,3 m között) mintegy 16 kétpiroxénes andezit és bazaltos andezit összetételű lávafolyást foglal magába. Feküjét terrigén üledékek (elszenesedett fa, lignit, kavics, konglomerátum, homokkő, aleurolit, tufakonglomerátum, tufakavics, tufahomok) alkotja, illetve az alsóbb lávafolyások közötti választóréteget is ezek képezik. Felfelé haladva a lávafolyások között, gyakran összesült tufarétegek találhatók. A felső rész (11-T fúrás, 153-416 m) bazalt, bazaltos andezit és andezit lávafolyásokkal kezdődik, majd egy vékony tufaréteg után egy 16 m vastag savanyú andezit lávaréteg ömlött az egykori felszínre. A felsőbb részeken összesült agglomerátum található.

A középső komplexumot hiperszténes savanyú andezit extruzívumok alkotják. Ezen kívül kisebb riolittestek is előfordulnak, amelyek nagyobb lávafolyások eróziós roncsai. A savanyú andezitek fordított mágnesezettségűek, a K/Ar radiometrikus koruk 14,6±1,5 millió év, de a szerző megjegyzi, hogy szerinte a minta valószínűleg jóval fiatalabb is lehet (SZTYEPANOV, 1989).

A felső vulkáni komplexum a Határ csúcsból kiinduló, nagyméretű andezit lávatakaró, melyet bazaltos andezit telérek törnek át. Ezt a lávatakarót a korábbi lávafolyásoktól a magasabb alkáliatartalom különbözteti meg.

Összességében a Határ vulkánról el lehet mondani, hogy egy kezdeti explóziós-effúziós aktivitás után fokozatosan csökkent a robbanásos kitörések ereje, aminek következtében egy bazaltos andezit összetételű sztratovulkán épült fel, tetején pajzsvulkáni jelleget mutatva. A fázis végén ez utóbbi lejtőin aktív mellékkráterekből andezites salakkúpok épültek.

A következő fázisban savanyú andezit és riolit effuzívumok és extrúziók képződtek, illetve az Ilkóc környékén található három riolittufa réteg arról is tanúskodik, hogy kisebb explóziók is lejátszódtak. Az utolsó stádiumban nagyméretű bazaltos andezit lávatakaró jött létre, melyet hasonló összetételű dájkok törtek át. A kürtő környékén kisebb hidrotermás átalakulás következett be, valószínűleg valamilyen szubvulkáni test képződésének hidrotermikus következményeként (SZTYEPANOV, 1989).

A Matekovkai vulkán

A központi centrum hollétéről a szakirodalom nem nyilatkozik egységesen. Míg MALEJEV (1964) Turjasabestől D-re (≈é.sz. 48°38'49'', k.h. 22°48'46'') definiálja és külön Turjasebesi vulkánról beszél, addig más szerzők majd 7 km-re délebbre (≈é.sz. 48°35'21'', k.h. 22°49'37'') helyezik e központot (KORONOVSZKIJ - SZOLODKOVA, 1964; TOLSZTOJ., 1976; SZTYEPANOV, 1989).

Az 1p fúrásban 452,8–707,6 m-es intervallum között vizsgálható a vulkáni felépítmény. Anyaga összesen 6, 4 és 40 m közötti vastagságú bazalt és legfelül egy bazaltos andezit (34,8 m Ø) összetételű lávafolyásból, valamint az őket elválasztó vulkáni agglomerátumból és tufából áll. Utóbbiak közé gyakran keveredik terrigén üledék, konglomerátum, kavics és homokkő.

A vulkán intruzív képződményeihez tartoznak a Szarvaskút környéki, paleogén flisbe nyomult, kisméretű bazaltos andezites összetételű dájkok és tömzsök. Ez utóbbihoz explóziós breccsák is kapcsolódnak. Meg kell azonban jegyezni, hogy ezek a képződmények mintegy 10 km-re ÉÉK-re találhatók, így az összetartozást ásványtani ismérvek, valamint a későbbi vulkáni működésekből hiányzó analógiák alapján állapították meg (SZTYEPANOV, 1989).

A Szinyák vulkán

A vulkán 12,5 x 10,5 km átmérőjű külső kalderáját ív alakú törésvonalak határolják (SZTYEPANOV, 1989), melyekkel párhuzamosan a kaldera belseje felé hasonló egyidejű törésrendszerek alakultak ki (lásd a Geológiai Expedíció 1:50 000 kéziratos tektonikai munka térképét). Centruma SZTYEPANOV (1989) szerint az Obavai vulkán, melynek központi krátere az Obavai Kő csúcs (é.sz. 48°35'00'', k.h. 22°49'00''). MALEJEV (1964) viszont a központi krátert mintegy 2,5 km-re ÉK-re egy névtelen csúcsra helyezte (é.sz. 48°36'21'', k.h. 22°49'53''). A MALEJEV által gyűjtött és elemeztetett 47. számú kőzetminta e kráter belsejéből származik (2. sz. melléklet, 3. táblázat, Sz47).

A kalderaképződést követően kialakuló újabb kitörések részben savanyú (Berdó-hegy és a Szidorfalva környéki extrúziók), részben intermedier-bázisos (a központi Obavai vulkán és a Pliska, a kaldera É-i peremén) piroklaszt és lávatömegekkel töltötték ki a beroppanást.

A Szinyák vulkán anyaga egy dájkokkal, tömzsökkel átszőtt bázisos piroklasztit összletre települt. Ezek a Szinyák gerinc, a Skitena, Zsornina és Kicsera csúcsok aljzatában, valamint a Zvesznij csúcs D-i nyúlványában találhatók meg.

A vulkáni aktivizáció három szakaszra bontható, ami ennek megfelelően három vulkáni komplexumot hozott létre. A három vulkáni komplexumot a KORONOVSZKIJ – SZOLODKOVA (1964) szerzőpáros Matekovkai, Szinyáki és Obavai vulkáni komplexumnak nevezte. Ugyanezeket TOLSZTOJ (1976) alsó, középső és felső vulkáni komplexumként említi, majd SZTYEPANOV (1989) korai, középső és késői vulkáni komplexumként definiálta. A névváltoztatások mögött minden esetben a korábbi eredmények kisebb nagyobb változtatásai állnak.

Az alsó vulkáni komplexum főleg a Szinyák gerinc kalderán kívüli lejtőin figyelhető meg. A kaldera belsejében csak a Skitena (é.sz. 48°31'48'', k.h. 22°47'18'') és a Kicsera (é.sz. 48°33'27'', k.h. 22°47'03'') csúcsok környékén találhatók meg a felszínen, mivel nagyrészt befedték a későbbiekben működő vulkánok anyagai.

Az 1p fúrásban 263,6 – 452,8 m között találkozunk vele. Két lávafolyás alkotja, amiket egy vastag agglomerátumos tufaösszlet választ el. A lávafolyások kétpiroxénes bazaltos andezites összetételűek és finomporfiros szövetűek, változó mennyiségű zárvánnyal. A tufák megkülönböztető vonása, hogy mind a cementáló anyagon, mind a törmeléken erős oxidáció látható. Az egész komplexumot áttöri egy mikrodioritos szövetű andezit neck, melyben több parametamorfit anyagú aljzatzárvány is előfordul. Az anyagszolgáltatás centrumai a Kicsera és Skitena valamint az Obavai Kő csúcsok lehettek.

A középső vulkáni komplexum a vulkáni felépítmény ÉNy-i részén található a Berdó-hegy (é.sz. 48°34'12'', k.h. 22°45'49'') területén, Szidorfalvától ÉK-re a Cservonij-patak völgyében és Nádaspatak környékén.

A középső komplexumot savanyú extruzívumok, dácit, riodácit és riolit, illetve ezek tufái alkotják, amelyek vékony tavi-alluviális üledékekre települtek. SZTYEPANOV (1989) szerint a tavi üledékek a kaldera belsejében létrejövő állóvízből származnak.

Az egyik kitörési centrum, a Berdó-hegy. Innen D felé egy 3,5 km, ÉKfelé pedig egy 3 km hosszú dácit lávafolyás indul ki (TYITOV, 1976; SZTYEPANOV, 1989).

A középső és felső vulkáni komplexum között a Pliska kitörési centrumból (é.sz. 48°36'50'', k.h. 22°48'52'') származó 3 - 50 m vastag piroklasztit réteg található.

A felső vulkáni komplexum szelvényét két nagyobb egységre lehet osztani. Az alsó főleg piroklasztikumokból, míg a felső elsősorban lávából áll. Az 1p fúrásban a piroklasztit 56,3 – 263,6 m intervallumban található. Oxidálódott blokkos, agglomerátumos tufával indul, majd átmegy bazaltos andezites és andezites összetételű lávafolyásokba. A felső réteg piroklasztitjai jóval finomabb szemcseösszetételűek amit kétpiroxénes andezit lávafolyások tagolnak. A szelvényben felfelé haladva egy 83,3 m vastag, legalább három önálló lávafolyásra bontható bazaltos andezitből és andezitből álló kőzetösszlet található, melyet andezitlencsékkel tarkított piroklasztit réteg takar (1p fúrás, 56,2 – 71,7 m). Végül újabb lávafolyás indul, amelynek vastagsága a centrum környékén eléri a 200 m-t, de innen távolodva gyorsan csökken. A vulkáni működés befejeztével roppant be a kaldera, miközben a Pliska és Obavai vulkánok centruma reaktiválódtak.

Szuszkóujfalui vulkán

Szuszkóújfalutól É-ra, mintegy 800 m-re MALEJEV (1964) egy hatalmas, kréta és paleogén üledékekre települt vulkáni roncsot tételez fel, melynek eredeti magassága elérhette az 1000 m-t, átmérője pedig a 7 km-t. Összetétele elsősorban bazaltos andezit, a kitörési típusa pedig Vulcano vagy Stromboli jellegű lehetett. A feltételezett központ, mintegy 200 m átmérőjű klasztolávából felépült kürtő, bár a szerző megjegyzi, hogy a leírt centrum esetleg csak egy parazitakráter és a fő központ el van temetve.

Felső Obavai vulkán

Munkácstól ÉK-re az Obava-patak felső folyásánál (≈é.sz. 48°34'12", k.h. 22°48'17") található a Felső Obavai sztratovulkán (MALEJEV, 1964). Az eredeti magassága mintegy 3 km, átmérője pedig 10 - 14 km lehetett. A szerző az alaszkai Katmai vulkánhoz hasonlítja a kitörés típusát, az explóziós indexét 90 fölé teszi. Anyagszolgáltatása a bazaltos andezittől a riodácitos összetételig

terjedt. Ez utóbbi centruma a fő kitörési központtól mintegy 2 km-re Ny-abbra volt. Három dóm alakult itt ki, de csak egyből indult ki lávafolyás.

Obavai vulkán

Az Obava patak középső folyásánál (≈é.sz. 48°32'12", k.h. 22°48'40") kisebb monovulkán található, melynek feltételezett magassága 300-400 m lehetett, átmérője pedig 1,5 km. Működésekor Stromboli típusú kitörés valószínűsíthető és kizárólag bázisos anyagot szolgáltatott (MALEJEV, 1964).

Turjasebesi vulkán

MALEJEV (1964) az Obavaihoz hasonló monovulkánként definiálta. Magassága nem haladta meg a 300-400 m-t, átmérője pedig az 1 km-t, szolgáltatott anyaga bazaltos andezit.

A Beregszentmiklósi vulkán

Munkácstól ÉK-re a Latorca völgyében (≈é.sz. 48°29'21", k.h. 22°49'35") egy kb. 300-400 m magas, 2,5-3 km átmérőjű bazaltos andezites anyagot szolgáltató vulkán működhetett. Létezését a környéken fellelhető durva szemcséjű (Ø max. 2 m), osztályozatlan agglomerátumos tufa bizonyítja, melyben jellemzőek a kenyérbombák, míg az apróbb frakció részaránya csekély. Nem messze ÉK-re egy ide sorolható bazaltos andezit dóm található, melyből lávafolyás is indult (MALEJEV, 1964).

4.4. A Borló-Gyil vulkáni körzet feltételezett sztratovulkánjai

Borló területén kialakult sztratovulkánokkal kapcsolatban Α а szakirodalom többféle nézetet vall. TOLSZOJ (1976) csak a Buzsorát különíti el rétegvulkánként és a terület többi részének felépítését teljes egészében megegyezőnek tartja a Szinvák szelvényével. RADZIVILL (1986) csak a Dechmanovot, a Martinszkij Kámenyt és a Jávort értékeli rétegyulkánként, azonban ez utóbbiról semmi egyebet nem tesz közé. A Buzsorát egy beszakadt vulkáni formának tartja, melynek központi része 4x5 km-es meredek, tölcsér alakú bezökkenés. E krátert(?) gyűrű alakban a beszakadáshoz kapcsolható törésvonalak mentén kialakult vulkánok (Buzsora, Kámeny, Szinyák, Bisztra) veszik körbe. Megjegyezi, hogy a Buzsoráról nincs elég adat ahhoz, hogy részletesebb értékelést lehessen adni róla. PÉCSKAY (et al., 2000) a Dechmanovot, a Buzsorát és a Martinszkij Kámenyt különbözteti meg.

4.4.1. ábra. A Borló-Gyil vulkáni körzet áttekintő térképe (MALEJEV, 1964; TYITOV, 1979; KUZOVENKO szerk., 2001; Topográfiai térkép, M 1:100 000; a szintvonalakat az SRTM adatbázis alapján generáltam)

4.4.1. A Buzsora rétegvulkán (?)

Nincs pontos adat arról, hogy a vulkáni működés mikor kezdődött el, csak annyit lehet tudni, hogy a szelvény vastag, később áthalmozott bázisos

piroklasztokkal indul. Erre szintén vastag andezit lávatakaró ömlött, majd két szintben bazaltláva folyások következnek, melyeket egy mállott oxidációs réteg és egy agglomerátumos tufaréteg választ el egymástól (4.4.2. ábra).

4.4.2. ábra. A Buzsora elvi szelvénye (TOLSZTOJ et al., 1974; TOLSZTOJ et al., 1976; RADZIVILL et al., 1986 nyomán)

Ha megnézzük a Borló területéről rendelkezésünkre álló főelemgeokémiai adatokat (4.4.3. ábra), nem találunk egyetlen bazaltos mintát sem, ellentétben a szakirodalom állításaival (SZOBOLJOV et al., 1955; TOLSZTOJ et al., 1974).

4.4.3. ábra. A Borló területéről származó kőzetminták eloszlása a TAS diagramban

(LAZARENKO et al., 1962; DANYILOVICS, 1963; LAZARENKO, 1963; MALEJEV, 1964; TOLSZTOJ et al., 1976; SEGHEDI et al., 2001 adatai)

Az itt említett tanulmányokban részletes petrográfiai leírását adják a "bazaltoknak" olivín kristályokat mutatva ki bennük. Emiatt az ellentét miatt az elvi szelvényt korrigáltam, és bazaltos andezit lávafolyásokat tüntettem fel a szelvény legfelső szakaszában. Ezt az is alátámasztotta, hogy a hegység területén, a dácitba hajló andezitekben is találtak olivínt (LAZARENKO et al., 1963).

4.4.2. A Dechmanov rétegvulkán

A címben szereplő vulkáni felépítmény kialakulása és fejlődése szorosan összefügg a szomszédos Szinyák területén működött vulkánokéval, igaz csak a korai időszakban.

Vastag bazalt és bazaltos andezit tufaszórás után a piroklasztokat áttörő andezites lávaömlések alakultak ki (4.4.4. ábra, A). Ezekre, a működés szünetelése nélkül újabb bázisos tufarétegek települtek, amelyeket helyenként andezit és bazaltos andezit lávarétegek szakítanak meg. Párhuzamban a Szinyák vulkán működésének első szünetével ($\approx 10 - 11$ millió év) a Dechmanovon befejeződtek a kitörések (KORONOVSZIJ – SZOLODKOVA, 1964).

4.4.3. A Martinszkij Kámeny rétegvulkán (?)

A címben szereplő kérdőjel azt mutatja, hogy nagyon kevés adat áll rendelkezésre erről a területről. Az itt fellehető vulkanitokat két részre, egy alsó bazaltos andezites és egy felső andezites összletre lehet bontani (4.4.4. ábra, B) (RADZIVILL, 1986).

4.4.4. ábra. A Dechmanov (A) (KORONOVSZIJ – SZOLODKOVA, 1964 adatai alapján) **és a Martinszkij Kámeny (B) sztratovulkán elvi szelvénye** (RADZIVILL, 1986 nyomán)

4.5. A Nagyszőlősi-hegység vulkáni körzete

Az eddig tárgyalt vulkáni körzetek képződését a neogénben reaktiválódott Pienini-szirt-öv törésrendszeréhez szokták kapcsolni. Ezzel ellentétben, a Nagyszőlősi-hegység kialakulását az előbbitől jóval fiatalabb Avasi (v. Királyházi) törésvonal (3.2. ábra) kialakulásával magyarázzák (TOLSZOTOJ, 1976; KRUGLOV 1986; RADZIVILL, 1986).

A szakirodalomban nincs általánosan elfogadott kép az itt kialakult vulkánokkal kapcsolatban. TOLSZTOJ (1974) egységes szelvényt rajzol az egész hegység területére nézve. RADZIVILL (1986) azonban két egymásba fonódó sztratovulkánt feltételez, melyek kitörési központjai a Tolsztoj és a Tupoj csúcsok (4.5.1. ábra). Mindenesetre elgondolkodtató, hogy mennyire reális két ugyanabban az időben, egymással párhuzamosan működött rétegvulkánt feltételezni egymás mellett, amelyek centrumai mintegy 5 km-re vannak légvonalban?

4.5.1. ábra. A Nagyszőlősi-hegység vulkáni körzet áttekintő térképe (MALEJEV, 1964; TYITOV, 1979; KUZOVENKO 2001; Topográfiai térkép, M 1:100 000; a szintvonalakat az SRTM adatbázis alapján generáltam)

Sajnos, kevés és nagy hibahatárral bíró koradattal rendelkezünk a területről. Ezek alapján elmondható, hogy a szarmata-pannon határon történt bázisos anyagszolgáltatás egy olyan felszínen történt, amelyen már volt valamiféle vulkáni tevékenység, igaz nem bizonyítható, hogy hol lehetett a kitörési központ (4.5.2. ábra). A bazaltos andezit tufaszórást több lávaömlés követte, amit andezites anyagszolgáltatás váltott fel. A továbbiakban ugyanilyen kémiai összetételű anyagprodukció következik szünet nélkül, az egyes lávafolyások közötti eltérések az ásványos összetételben keresendők. A kétpiroxénes bazaltos andezitet és andezitet olivíntartalmú bazaltos andezit követi, majd felsavanyodik, de még mindig nem lép túl az andezites összetételen. Ezután rövid szünet állt be, vagy a működés intenzitása csökkent, amit áthalmozott tufarétegek bizonyítanak. Az újabb aktivizáció során savanyú tufa és láva jellemző, riolit dómok képződnek, majd ismét szünet következik. A tavi-alluviális üledékeket az alsó-pannonban bazaltos andezit láva töri át és ezzel befejeződik a vulkáni működés.

4.5.2. ábra. A Nagyszőlősi-hegység vulkáni működésének elvi szelvénye (MALEJEV, 1964; TOLSZTOJ et al., 1974; TOLSZTOJ et al., 1976; RADZIVILL et al., 1986 nyomán)

5. AZ ÉK-I KÁRPÁTOK BELSŐ VULKÁNI VONULATÁNAK VULKÁNI KÖRZETEI

A belső vulkáni vonulat a Tokaj-Eperjesi-hegyvidéktől indulva mintegy 5-25 km szélességben és 100 - 120 km hosszúságban húzódik ÉNy–DK-i irányban Nagybányáig, kijelölve a Pannon-medence és a Kárpátaljai-síkság szerkezeti határvonalát (LAZARENKO, 1960; MALEJEV, 1964; SZIDORENKO, 1966; LAZARENKO et al., 1968; TOLSZTOJ, 1974; MERLICS - SZPITKOVSZKAJA, 1974; KRUGLOV, 1986).

5.1. Csap környéki eltemetett vulkáni komplexumok

A Csap környékén fúrásokból megismert magmás eredetű képződményeket két részre kell bontani. Ez azért indokolt, mert a korai fázisok savanyú vulkanitjainak kitörési centrumait nem ismerjük. A feltételezések szerint a Beregszászi-dombsághoz vagy a Pannon-medence belső területeinek vulkáni centrumaihoz, esetleg az Aknaszlatinai-medence eltemetett kalderáihoz köthetők ezek a rétegek (LAZARENKO et al., 1963; MALEJEV, 1964; SZIDORENKO, 1966; RADZIVILL, 1974; MERLICS – SZPITKOVSZKAJA, 1974; TOLSZTOJ, 1976; VOZNYESZENSZKIJ 1988; PRIHOGYKO et al., 1998).

RADZIVILL (et al., 1986) négy paleosztratovulkánt különít el Csap környékén. Ezek a Csapi-, Barkaszói-, Nagylucskai- és Újlucskai-vulkánok. A két utóbbit geofizikai szelvények alapján térképezték, valamint egy fúrásban is megtalálták, de részletesebben nem foglalkoztak velük. Ezen kívül elkülönít egy ún. Nagydobronyi magmás komplexumot is. Az itt képződött granodioritok 14,3±2,6 és 11,0±3,0 millió évet mutatnak, a gabbró sorozat pedig 12,2±3,5 millió évet (MERLICS - SZPITKOVSZKAJA, 1974).

A Csapi-vulkán átmérője 6-9 km, kitörési központja Csaptól mintegy 4 km-re K-re lehetett és a szarmatában volt aktív (5.1.1. ábra).

5.1.1. ábra. A Csapi-vulkán elvi szelvénye az aljzattal (BOJKO et al., 1967; RADZIVILL, 1986 adatainak felhasználásával)

Durva, bázisos összetételű agglomerátumos tufával indul a sorozat, amely felfelé folyamatos finomodást mutat. Az első explóziók után bazaltos andezit majd andezit lávaömlések következnek, fokozatos differenciációról téve tanúságot. E vulkanitokra vonatkozóan sajnos csak egy K/Ar radiometrikus koradatot tudtam találni, amely a 60-as években készült a Lembergi Egyetem laboratóriumában, egy benyomult granodiorit testből, így valószínűleg, a legfiatalabb magmatitok egyike. Az adaton jelentkező nagy hibahatár azonban még ezt a testet sem tudja pontosan beilleszteni a vulkanosztratigráfiai rendszerbe.

A Barkaszói-paleovulkán működésének ideje nincs pontosan tisztázva. Az általam ismert szakirodalom egyetlen abszolút koradatot sem közöl, de párhuzamosítja a szomszédos Nagydobronyi magmás komplexummal. Jó korrelációt az adatok nagy hibahatára miatt nem lehet meghúzni, így csak feltételezhető, hogy a működés paroxizmusa a szarmatában lehetett. Ezt támasztja alá az is, hogy ebben a szerkezeti övben a savanyú vulkanizmus a szarmatában véget ért, a szarmata–alsó-pannon határán lehetett kisebb bázisos anyagprodukció (5.1.2. ábra).

5.1.2. ábra. A Barkaszói-vulkán elvi szelvénye (MERLICS - SZPITKOVSZKAJA, 1974; Radzivill et al., 1974 adatai alapján)

5.2. Beregszászi vulkáni körzet

A Beregszászi vulkáni körzet alatt a Beregszászi-dombságot és a dombság környezetében lévő eltemetett vulkáni komplexumokat értem. A Beregszászidombság tagjai: az Ardói-hegy, a Csepka, a Sarok-hegy, a Hosszú-hegy, a Kerek-hegy, a Nagy-hegy (367 m), a Kis-hegy, az Aranyos, a Hajas (v. Szőlőhegy), a Pelikán, valamint a Kis- és a Nagy-Kelemen-hegy. Hozzájuk csatlakozik a különálló maradványként számon tartott Dédai-hegy, Bégányi-hegy, a Kaszonyi- és Zápszonyi-hegy (5.2.1. ábra).

5.2.1. ábra. A Beregszászi-dombság tagjai

A területen a vulkáni működés kb. 15 millió évvel ezelőtt sekélytengeri környezetben létrejövő explóziós tevékenység kezdődik. Ennek anyaga folyamatos differenciációt mutat, hiszen a bazaltos andezittől a dácitig találunk itt tufahorizontokat és lávafolyásokat. A kitörés központjáról nincsenek adatok. Kisebb szünet után kialakul a Beregszászi vulkán, amely eleinte andezites kitöréseket produkált (RADZIVILL, 1986), majd vastag riolittufa rétegeket hagyott maga után. Elképzelhető, hogy a vulkán működésének egyik utolsó szakaszában katasztrofális méretű kitörést produkált, amelyet több lávadóm (Hajas, Pelikán) képződés követett (MALEJEV; 1964).

A vulkáni működés újabb szünete után kialakul a Kaszonyi vulkán (MALEJEV (1964) Bégányi-vulkánnak nevezi és néhány km-re DK-ebre teszi a központot), amely a Beregszászihoz hasonlóan vastag riolittufa réteget hozott létre, bár mennyiségében elmarad a Beregszásziétól. Ezt követően a Kaszonyi vulkán nagyméretű explóziós tevékenysége következett, majd záróakkordként újabb lávadóm képződés következett (Ardói-hegy – Kerek-hegy). A legyező alakú dómokból riolitos lávafolyások indulnak. Maximális hosszuk mintegy

250-1000 m. A vulkáni működés mintegy 13-12 millió éve lezárult (KULCSÁR, 1943; MALEJEV, 1964; RADZIVILL, 1986).

5.2.2. ábra. A Beregszászi vulkáni körzet elvi szelvénye (MALEJEV, 1964; RADZIVILL, 1986 nyomán)

5.3. Az Avas vulkáni körzet

Az Avas vulkáni körzetének magmatizmusát legalább három részre kell bontani. Megkülönböztetnek egy savanyú explóziós, egy idősebb extruziós– intrúziós és egy fiatalabb vulkáni-extruziós sorozatot. A közöttük levő kapcsolatról azonban megoszlanak a vélemények. E munkának nem célja bemutatni a különböző véleményeket, így csak egy általános szelvényt mutatok be a terület magmás képződményeiről és a magmatizmus legfontosabb folyamatairól (MERLICS – SZPITKOVSZKAJA, 1958b; SZPITKOVSZKAJA, 1958; DANYILOVICS, 1963; MALEJEV, 1964; MALEJEV, 1965; RADZIVILL, 1986).

A savanyú explóziós kitörések termékeit a nemzetközi szakirodalom Novoszelicai tufákként ismeri. Gyakorlatilag az egész Kárpátaljai-süllyedék területén megtalálhatók, bár helyenként a korai erózió megsemmisítette. Az egyes rétegeit időnként különböző névvel illetett (Alekszandrovszki, Kovacsszki, Nankovszki) tufasorozatok feltételezett kitörési központja Husztsófalva környékén (3. melléklet) lehetett. Az explóziós termékként felszínre került nagyrészt riodácit tufák vastagsága az Aknaszlatinai medencében eléri a 600-700 m-t (MALEJEV, 1964). Korát alsó–tortóniai-ként határozták meg, ugyanakkor a más forrásból mellé csatolt abszolút koradatot felhasználva (16,6±0,5 millió év, BAGDASZARJAN – DANYILOVICS, 1968) kárpáti–bádeni határ környékére sorolhatjuk be.

Az idősebb extrúziós–intrúziós komplexumok Visk környékén (3. melléklet) található, ahol egy vulkanotektonikus depresszió központi részét átszelő, ÉNy-DK-i irányú törésvonal mentén több nagyobb tömzs és a hozzájuk tartozó szubvulkáni testek és intrúziók sorakoznak (5.3.1. ábra).

5.3.1. ábra. Az Avas vulkáni körzet áttekintő térképe

(DANYILOVICS, 1963; MALEJEV, 1964; TYITOV, 1979; KUZOVENKO ed., 2001; Topográfiai térkép, M 1:100 000; a szintvonalakat az SRTM adatbázis alapján generáltam)

Összetételükben granodiorit, diorit, kvarc diorit, valamint bazaltos andezit, andezit és savanyú andezit váltakozik. E magmatitok felszín közelbe kerülésének oka, hogy a területen több nagyméretű horszt-gráben típusú tektonikai szerkezet jött létre a miocén folyamán. Az egyik ilyen horszt központi részén fekszik Visk. E szerkezeteket GLUSKO (1968) a Zemplén-Beregszászi öv folytatásának tartja, a Csap-Beregszász-Nagybánya törésvonal bizonyítékaként fogja fel. Méreteit RADZIVILL (1986) 58 - 60 km hosszúságúra és mintegy 36 -38 km szélességűre teszi. ZOBKOV (in RADZIVILL et al., 1986) az ukrán – román határon futó Avas vonulatot tartja a legkiemeltebb résznek, innen ÉK felé az aljzat lépcsőszerű bezökkenéseit látja bizonyítottnak (3.3. ábra).

A MERLICS – SZPITKOVSZKAJA (1974) szerzőpáros az idősebb extruziós– intrúziós komplexum kialakulását négy stádiumban írta le. A gabbró-bazalt összetétellel induló magmatizmus dioritos kvarc dioritos sorozattal folytatódik, majd granodiorit és végül leukokrát granodiorit és dácit differenciátumokkal zárul. A felsorolt magmás képződmények között levő folyamatosságot teljes mértékben alátámasztottnak látják. Minden általuk vizsgált kőzettípushoz mellékelnek abszolút koradatot (pl. granodiorit 14±3,0 millió év), azonban olyan nagy hibahatárokkal dolgoztak, hogy ezek kevéssé használhatók (MERLICS – SZPITKOVSZKAJA 1974, 34. táblázat).

5.3.2. ábra. Az Avas magmás képződményeinek elvi szelvénye (DANYILOVICS, 1963; MALEJEV, 1964; BAGDASZARJAN – DANYILOVICS, 1968; MERLICS – SZPITKOVSZKAJA 1974; RADZIVILL et al., 1986 adatainak felhasználásával)

A fiatal vulkáni-extruziós sorozatot egy konglomerátum réteg választja el az idősebb benyomulásoktól (5.3.2. ábra). Az olivín tartalmú bazaltos andeztittel induló vulkanizmus fokozatosan felsavanyodik és e sorozat első szakaszának végén riolit dómok képződésével ér véget. Rövid szünet után újabb aktivizáció következik be, ahol a bazaltos andezit és andezit lávafolyásokat savanyú extruzívumok törik keresztül, melyekből a finális vulkanizmus savanyú andezit és riodácit lávafolyásai táplálkoznak. Több olyan koradat is rendelkezésre áll a területről, amelyek megbízható helyen, ismert módszerrel és megfelelő hibahatárral készültek, azonban az irodalom nem közöl pontos mintavételi helyet, így vulkanosztratigráfiailag nem tudtam beazonosítani, ezért kérdőjellel kerültek a szelvénybe (DANYILOVICS, 1963; MALEJEV, 1964; RADZIVILL et al., 1986).

Három sztratovulkánt ír le a szakirodalom (Frászin, Csarnatői és Kerekhát) az Avas közvetlen környezetében, azonban a kráterek beazonosításán és a rétegvulkáni szerkezet fúrások alapján való definiálásán túl az általam ismert szakirodalomban gyakorlatilag nincs róluk adat (MALEJEV, 1964; TOLSZTOJ et al., 1976; RADZIVILL et al., 1986).

6. VULKÁNI SZIGETHEGYEK A KÁRPÁTALJAI SÍKSÁGON (derceni Kápolna-hegy, salánki Hömlöc, nagyszőlősi Fekete-hegy)

Adatok és feldolgozottság tekintetében talán a szigethegyek a legszegényebbek. Ennek nem csak az az oka, hogy a vulkáni működés rekonstruálása nem élvezett prioritást a szovjet-ukrán földtani kutatásokban, hanem viszonylag kis méreteik miatt is.

A derceni Kápolna-hegyet salakkúpként szokták definiálni. Környezetében megtalálható a Novoszelicai tufa, amit bazaltos andezit, piroxén andezit (12,5±0,8 és 12,6±0,6 millió év) és dácit (11,6±? millió év) tört át (MALEJEV, 1964; Tyitov, 1979; PÉCSKAY et al., 2000; SEGHEDI et al., 2001).

A korábbiakban bemutatott belső vulkáni vonulattal sok hasonlóságot mutat a salánki Hömlöc és a nagyszőlősi Fekete-hegy kialakulása. Ugyanazon preneogén aljzat egy kisebb méretű (12 x 8 km) blokkjának a kiemelkedéséhez, a szerkezeti vonalak kereszteződéséhez kapcsolható mindkét vulkán kialakulása. Ez a blokk a környezetéhez képest (\approx -2400, -2200 m) több mint 1000 m-rel magasabban van. A kiemelkedés ÉNy-i sarkában találjuk a salánki-, a DK-i végében pedig a nagyszőlősi-hegyet (RADZIVILL, 1986).

Feltételezések szerint ez a horszt egy idős (15 - 18 millió éves) kalderaszerkezet része, melynek savanyú produktumai hozzájárultak a Novoszelicai tufahorizont kialakulásához. A ma felszínen lévő Hömlöc területén sehol nem található piroklasztikum. A láva anyaga a kúp lábánál bazaltos andezit, a csúcson andezit. A lávafolyások enyhén lejtenek, emiatt egyes kutatók monovulkánnak írják le (MALEJEV, 1964). Ha elfogadjuk a korábbi kalderaszerkezet továbbélését a Hömlöcben akkor felfoghatjuk, mint sztratovulkánt, azonban az ismertség jelenlegi szintjén ez csak elmélet (RADZIVILL, 1986). A rendelkezésre álló adatok alapján azt lehet elmondani, hogy a vulkán bázisos ciklusa a középső-szarmatában indulhatott (bazaltos andezit: 13,8 \pm 1,0, 12,3 \pm 0,5, 11,8 \pm 0,9 millió év) és az alsó-pannonban (andezit: 9,5 \pm 0,8 millió év) fejeződhetett be.

A nagyszőlősi Fekete-hegy egy olyan sztratovulkán maradványa, melynek működésében uralkodnak a bázisosabb sorozatok, de a magmadifferenciáció a riolitig terjed. A magma felszínre jutását biztosító törésvonalak kialakulása után bazaltos andezites összetételű vulkáni kúp épült fel. E szakasz működésének végén andezites lávaömlés után a kiürülő magmakamra felett beroppanás következett be. Az újabb vulkáni aktivizációban a bazaltos andezitek megint uralkodnak, azonban olívintartalmú dácitdóm épülése is megfigyelhető. A finális vulkanizmus alapvetően andezites jellegét a savanyúbb összetételű extrúziók sem tudják felülírni, melyek a vulkán központi része körül törtek a felszín felé. A vulkáni működés leállása után a tektonikai mozgások következtében a szerkezet kibillent eredeti helyéből és kissé kelet felé megdőlt, így napjainkra a Tisza kráterének egy részét üledékeivel befedte, illetve erodálta. A nagyon kevés abszolút koradat alapján azt mondhatjuk, hogy a környék többi vulkánjához hasonlóan a Fekete-hegy is a szarmata – alsópannon korszakokban működött (ZOLOTUHIN, 1960; MALEJEV, 1964; RADZIVILL, 1986; SZÖŐR et al., 1990).

A nagyszőlősi Fekete-hegy elvi szelvénye (ZOLOTUHIN, 1960; MALEJEV, 1964; RADZIVILL, 1986 adatainak felhasználásával)

7. ÖSSZEHASONLÍTÓ TÉRFOGATSZÁMÍTÁSI VIZSGÁLATOK KÁRPÁTALJA VULKÁNI KÖRZETEIN

A kárpátaljai vulkáni vonulatokban egyes rétegvulkáni szerkezeteket geofizikai, másokat terepi-vulkanológiai módszerekkel próbáltak bizonyítani (MALEJEV, 1964; TYITOV, 1979; RADZIVILL, et al., 1986; PÉCSKAY, 2000; KUZOVENKO ed., 2001). Az említett irodalmak alapján összeállítottam Kárpátalja rétegvulkáni szerkezeteinek térképét (7.1. ábra).

 7.1. ábra. Feltételezett rétegvulkáni szerkezetek Kárpátalján (MALEJEV, 1964; MERLICS – SZPITKOVSZKAJA, 1974; TOLSZTOJ SZERK., 1976; RADZIVILL et al., 1986 adatainak felhasználásával, ASTER GDEM adatbázisból szerkesztett dombormodellen ábrázolva (HTTP://GDEM.ERSDAC.JSPACESYSTEMS.OR.JP/)

Jelmagyarázat: 1. Vihorlát-Popricsnij; 2. Antalóci Poljána; 3. Makovica; 4. Határ; 5. Szinyák; 6. Dechmanov; 7. Martinszkij Kámeny; 8. Jávor; 9. Buzsora; 10. Tupoj; 11. Kerek-hát; 12. Csarnatői-vulkán; 13. Frászin; 14. Fekete-hegy; 15. Hömlöc; 16. Beregszászi-; 17. Kaszonyi-; 18. Nagylucskai-; 19. Újlucskai-; 20. Barkaszói-; 21. Csapi-vulkán A munka során csak a Szinyák esetében nem ragaszkodtam a szakirodalmi megállapításokhoz. Ennek oka, hogy a terepen látottak, nem támasztották alá sem a hegység kalderás (MALEJEV, 1964) sem a kettős kráteres (PÉCSKAY, 2000) kifejlődését, így ezt megváltoztattam és egy morfológiai alapon kijelölt krátert rajzoltam fel a térképre (lásd 8. fejezet).

A következő lépésben minden morfológiai egységre nézve térfogatszámítást végeztem. Ahol sikerült elhatárolni a palástot a szomszédos vulkánoktól ott egy-egy vulkánra külön-külön is elvégeztem a számítást, ahol ez nem sikerült ott csak a hegység morfológiai egészére vonatkoztatott köbtartalmat adtam meg (7.1. táblázat).

	action	Amániá				tom:lot	tánfanat	
Vulkáni egység	magasság (m)	terozio- bázis (m)	felépítmény (m)	átmérő (km)	magasság/ átmérő	(magmás) (km²)	(magmás) (km ³)	K/Ar kor (millió év)
Vihorlát – Popricsnij	1050	147	903	17,6	0,051	$234,5^{*}$ (108,5**)	65,405* (27,04**)	18 - 12,1
Antalóci Polyána	896	192	776	16,5	0,047			11
Makovica	976	326	650	8,4	0,077	597,7	146,1	n.a.
Határ	766	190	576	15,3	0,037			n.a.
Szinyák	1019	125	894	18,5	0,048	193,5	74,1	13 - 9
Dechmanov	1017	180	837	13,7	0,061			n.a.
Buzsora	1086	340	746	14,7	0,05	556 1	166 7	13 - 9,5
Jávor – Martinszkij- Kameny	969	250	719	12,3	0,058			n.a.
Nagyszőlősi-hg.	880	122	758	17,4	0,043	167,3	44,4	13 - 9
Avas	826	168	658	13,6	0,048	261,4	43,4	18 - 10,5
Beregszászi-vulkán	371	109	262	6	0,044	47,2	з	15,5 - 11
Dédai-hegy	165	108	57	0,95	0,060	0,55	0,011	n.a.
Bégányi-hegy	180	105	75	1,4	0,054	1,13	0,039	12,6
Kaszonyi-vulkán	220	104	116	2,6	0,045	6	0,25	15,5 – 16,6
Hömlöc	360	115	245	4,25	0,058	11,2	0,6	14 - 12
Fekete-hegy	565	137	428	5	0,086	18,3	2,65	12,5 - 11,5
Kápolna-hegy	140	106	34	1,3	0,026	1,1	0,013	12,5 - 11,5
* - a Vihorlát-Popricsr** - Vihorlát-Popricsn	uj csoport ego ij Ukrajnába	észe eső része						

7.1. táblázat. A kárpátaljai vulkánok térfogatának összehasonítása

A vizsgálatokból kitűnik, hogy a Szinyák a legnagyobb térfogatú vulkán a kárpátaljai vulkáni vonulatok erózióbázis feletti vulkanitjainak tekintetében. Ugyan a két szomszédos vulkánmorfológiai egység meghaladja a Szinyák köbtartalmát, azonban figyelembe kell venni, hogy a Makovicában a 146,1 km³-nyi anyagot mai ismereteink szerint legalább három, a Borlóban pedig a 166,7 km³-nyi anyagot pedig legalább négy sztratovulkán(?) hozta a felszínre. Sajnos megfelelő vulkanológiai térképek híján egyelőre nem lehet ezeket a vulkánokat lehatárolni, talán a Dechmanov kivételével, ami morfológiailag is jól elkülönül.

Összehasonlítva más Kárpát-medencei vulkánokkal nagyságrendileg a Hargitabeli Somlyóval (86,4 km³) lehetne összehasonlítani, bár ez utóbbi területe majd kétszer akkora, mint a Szinyák. A Tokaji-hegység vulkánjaihoz képest jóval nagyobb, hiszen itt a felszíni elterjedésből számított legnagyobb köbtartalmú vulkán (Simonka, 32,8km³) is kevesebb mint a fele a Szinyáknak. Ugyanakkor jóval kisebb, mint a Keleti-Kárpátok legnagyobb vulkánjai: a Kelemen (247,4 km³), a Fancsal (225,4 km³) vagy a Mezőhavas (161,6 km³), de jóval nagyobb, mint a Csomád (12,2 km³) vagy a Piliske (17,4 km³) (KARÁTSON, 2007).

8. A SZINYÁK VULKÁNI MŰKÖDÉSÉNEK ROKONSÁGI KAPCSOLATAI KLASZTERELEMZÉS ALAPJÁN

E fejezet célja annak lehetőségét elemezni, hogyan lehet párhuzamosítani, illetve csoportosítani a vulkáni működést főelem-geokémiai adatsorok alapján olyan területen, ahol nagyon kicsik a geokémiai különbségek. Miért is van erre szükség? Az egész kárpátaljai vulkáni vonulat erős adathiánnyal jellemezhető. A legtöbb adat főelemekből áll rendelkezésre, így kézenfekvő, hogy ezt az adatbázist tekintsem alapnak a további vizsgálatokhoz. A főelemgeokémiai csoportok területi eloszlásának vizsgálatával és K/Ar koradatokkal való párhuzamosítása alapján rekonstruáltam a Szinyák területén történt kitörések sorrendjének egy nagyon valószínű változatát, illetve típusfeltárásokkal bemutatom egy-egy szakasz kitörési termékeit.

A vázolt cél érdekében a szakirodalmi feldolgozásokat (MALEJEV, 1964; TOLSZTOJ, 1974; TOLSZTOJ, 1976; TYITOV, 1979) illetve a saját terepi bejárásainkat felhasználva azonosítottam a krátereket, kitörési központokat (lásd 4.3. fejezet, 4.3.1. ábra).

A kráterekből, illetve a lávatakarókból származó geokémiai elemzéseket adatbázisba rendeztem, majd kísérletet tettem a párhuzamosításukra. Abból indultam ki, hogy az ugyanabból a kürtőből, vagy egymáshoz közel eső kürtőkből származó minták geokémiai karaktere nagyon hasonló. Mivel a Szinyák területéről származó minták több mint 90 %-a bazaltos andezit és andezit, ezért szükséges volt olyan matematikai módszert keresni – más földtani adatok híján – amellyel az egyes adatsorok közös tulajdonságaik alapján egységekbe foglalhatók. Erre a hierarchikus klaszteranalízis tűnt alkalmasnak, amit SPSS szoftverrel végeztem el.

Az elemzéshez kialakított adatbázisba 120 minta SiO₂, TiO₂, Al₂O₃, Fe₂O₃, MnO, MgO, CaO, Na₂O, K₂O és P₂O₅ főelem adatai kerültek. Joggal merülhet fel a kérdés, hogy miért hagytuk ki a FeO-t. A kivétel oka, hogy 20 adatsornál csak Fe₂O₃ volt megadva. Valószínűsíthető, hogy összvasat értettek a háromértékű vas alatt, azonban ez nem került definiálásra. Az MnO 3, a P₂O₅ értéke pedig 52 helyen hiányzott. Mivel a szoftver nem tudja kezelni az adathiányt, így e két utóbbi esetben a hiányzó adatcellákat 0,01%-os értékkel töltöttük ki. Az érték megválasztását az a feltételezés indokolta, hogy az adathiányok valószínűleg az adott elem nagyon kis arányú előfordulását jelentik az adott mintában, tehát mennyiségük a kimutathatósági határ alá tartozott.

Fáciestanilag az adatsorok közül 1 szillből, 1 dómból, 3 extrúzióból, 5 piroklasztból, 10 szubvulkánból, 18 kürtőből, 87 pedig lávafolyásból származik. Összetétel szerint 9 dácitos, 45 bazaltos andezites, 56 andezites jellegű, 5 pedig andezit és riodácit tufa anyagú minta.

Az elemzés lefuttatása után 10 klasztert különítettem el. Ezek közül öt csoportból lehet következtetést levonni, mivel a másik öt klaszterbe mindössze 1-2 minta került.

A kitörési sorrend felállításához 10 db, a felszínről származó szakirodalmi (BAGDASZARJAN - DANYILOVICS, 1968; TOLSZTOJ ed., 1976; PÉCSKAY et al., 2000; SEGHEDI et al., 2001) és 8 db, szintén felszíni, saját mintából származó K/Ar kort használtam fel. Ezeket és az ezekhez tartozó főelemgeokémiai adatsorokat, biztos pontokként kezeltem a csoportosításnál. Vagyis ha egy csoportba olyan főelemadatsor került, aminek radiometrikus koradata is volt, az meghatározta az adott csoport korát. Előfordult, hogy ugyanabba a klaszterbe 12.7±1.5 és 8.9±0.4 millió éves minták is kerültek. Az idősebb minták bazaltos andezit, a fiatalabbak bazaltos andezit és andezit jellegűek voltak. Mivel a 49 kémiai adatsorra csak 8 K/Ar koradat jutott, így kizárólag koradatok alapján nem lehetett besorolni egy adott mintát az említett csoportok valamelyikébe, ezért diszkriminancia analízist alkalmaztam, amely algoritmusa megmondta, hogy matematikai alapon hány százalék esélye van annak, hogy adott minta az idősebb vagy a fiatalabb csoportba tartozik. Ennek eredményeképpen az egyezések minden esetben 80 % fölöttiek voltak, ezért valószínűsítek, hogy a csoportoknak erős létjogosultságuk van. A klaszterelemzés és a minták földrajzi elterjedéséből adódó területi elkülönülés alapján, a következő működési szakaszokat határoztam meg:

- 1. Szarmata alsó-pannon bazaltos andezites és andezites vulkanizmus (4. klaszter, típusszelvényeik 9.1. és 9.2. fejezetben)
- 2. Alsó-pannon dácitos vulkanizmus (1. klaszter)
- 3. Alsó-pannon bazaltos andezites vulkanizmus (2. klaszter, típusszelvénye 9.3. fejezetben)
- 4. Alsó-pannon bazaltos andezites és andezites vulkanizmus (2. klaszter, típusszelvénye 9.4. fejezetben)
- 5. Alsó-pannon andezites vulkanizmus (5. klaszter, típusszelvényei a 9.5. és 9.6. fejezetekben)
- 6. Alsó-pannon andezites és dácitos vulkanizmus (3. klaszter, típusszelvénye 9.7. fejezetben)

A klaszterelemzés eredményei (a részletes adatbázist a 2. melléklet 3. táblázata tartalmazza)

1. Szarmata – alsó-pannon bazaltos andezites és andezites vulkanizmus: a vulkáni működés a hegység DK-i részében indult. A bazaltos andezites és andezites lávák felszínre jutása két szakaszban történt. Mintegy 13 millió éve kezdődött vulkáni aktivitás (8.1. ábra, BAA1 jelű) egy fiatalabb szakaszban, kb. 10 millió éve folytatódott (8.1. ábra, BAA3 jelű). Elsőként egy szill alakult ki a hegység K-i peremén, Galambos környékén. Két kitörési centrumot tudtam azonosítani. Az egyik a Szerednyij Verh, amely bizonyíthatóan a fiatalabb működési szakasz tagja (10,1±0,4 millió év), a másik a MALEJEV (1964) által már feltételezett bányafalui vulkán, amelynek egyik parazita(?) kráterét az

elmúlt évek kőbányászata kezdte feltárni. Ez utóbbi működési idejét K/Ar koradatok hiányában sajnos nem tudtam rögzíteni.

2. Alsó-pannon dácitos vulkanizmus: savanyú vulkanitokat csak a Szinyák Ny-i részén, a Berdó-csúcson és a közvetlen környékén találunk. E csúcsból két dácit lávafolyás indul, melyek a hegység területének alig 1,5 %-át fedik le. Ezen kívül, elvétve, nagyon kisméretű feltárásokban riolit és savanyú tufa is megjelenik. A minták egyik része közvetlenül kapcsolódik a Berdóhoz, illetve a lávafolyásokhoz. Ezeket két földtani térkép is a legfiatalabb vulkanitok közé sorolja (TYITOV, 1979; KUZOVENKO, 2001). Ennek alapján e minták korát kérdőjellel, K/Ar koradat híján, 8,5 - 9,0 millió év környékére tettem relatív térbeli helyzete és jellege alapján, figyelembe véve a Szinyák és a kárpátaljai vulkáni egységek radiometrikus kor adatbázisát (5. melléklet). Ugyanakkor a szomszédos Makovica területén, a Határ vulkáni komplexum K-i részén jóval nagyobb területen vannak jelen savanyú vulkanitok (TYITOV, 1979; KUZOVENKO, 2001). A két tufa minta származhat akár innen is. Az itteni képződmények korát 11,5±0,5 millió évre datálják (PÉCSKAY et al., 2000). Sajnos, saját mintákból származó radiometrikus koradatot nem tudok e mintákhoz csatolni, de az elmondottak alapján nem zárható ki, hogy két dácitos működési szakasz lehetett, így e csoport a kitörési sorrendbe kérdőjellel és két szintbe került be (8.2. ábra, D1 és D2 jelű).

3. Alsó-pannon bazaltos andezites vulkanizmus: az alsó-pannóniai korszak elején szubvulkáni benyomulásokkal kísért bazaltos andezit lávaömlések kezdődtek a Szinyák központi részén. A szubvulkáni testek Bányafalu és Dubina környékén bizonyíthatóak. A Szinyák-vulkán központi kráteréből pedig lávaömlések indultak. Az aktivizáció végén szubvulkáni test nyomult be a Pliska csúcsrégiójába, Szarvaskút környékén és Dubinától D-re (8.3. ábra, BA jelű).

4. Alsó-pannon bazaltos andezites és andezites vulkanizmus: a továbbiakban bazaltos andezit és andezit lávaömléssel folytatódott a vulkanizmus. Bázisosabb sorozatokat szolgáltató centrumot ír le MALEJEV (1964) Szinyák falutól D-re (a szanatórium bejáratától 1 km-re). Andezites kitörési központok az Obavai Kő, a Dunauka és a Szerednyij Verh csúcsok. Tufaszórás köthető az Obavai vulkánhoz. A Szinyák és a Borló határán hialoandezit extrúzió képződött (8.4. ábra, BAA2 jelű).

5. Alsó-pannon andezites vulkanizmus: a kizárólag andezitekből és savanyú andezitekből álló csoport mintegy 10,3 millió éve képződött. Működési területe jórészt a hegység D-i, DNy-i részére jellemző, átlagosan 340 m tszf. magasságban. Két kisebb, mintegy 50 m átmérőjű kürtőt sikerült azonosítani, a szentmiklósit és a szélestóit (8.5. ábra, A jelű).

6. Alsó-pannon andezites és dácitos vulkanizmus: mintegy 10,5 millió évvel ezelőtt kezdődhetett egy andezites, savanyú andezites és dácitos jellegű vulkáni működés. Azonosítható kráterek a Dunauka és az Obavai Kő csúcsok, és e csoporton belülre esett a MALEJEV (1964) által definiált Turjasebesi vulkán is (8.6. ábra; AD jelű).

Következtetések

A fenti adatokból és elemzésekből a következő megállapítások vonhatók le:

- 1. A főelem-geokémiai adatok klaszteranalízise jól definiálható csoportokat hozott létre, melyek nagyrészt területileg is csoportosulnak.
- 2. A csoportok alapján hat szakaszra bonthatjuk fel a vulkáni működést.
- 3. A vulkáni működés paroxizmusa 10,5 10 millió éve volt.
- 4. Sem az eltérő geokémiai karakter, sem a koradatok, sem a domborzat, sem méretbeli analógiák nem utalnak arra, hogy a területen több vulkán működött volna. A klaszterek által mutatott különbségek egy rétegvulkán szakaszos működésével magyarázhatók. A kisebb kitörési centrumok pedig ennek mellékkráterei és parazitakúpjai. A Pliskacsúccsal és az Obavai-vulkánnal kapcsolatban SZTYEPANOV (1989) is valószínűsíti az egyszeri kitörést.

8.1. ábra. A szarmata – alsó-pannon bazaltos andezites és andezites vulkanizmus kitörési centrumai és vulkanitjainak elterjedése a Szinyák területén (saját szerkesztés)

Jelmagyarázat: 1. szintvonalak; 2. patakok; 3. műút; 4. dácitos minták és lávafolyások; 5. andezites minták és lávafolyások; 6. bazaltos andezites minták és lávafolyások; 7. szubvulkáni testek (a zöldek bazaltos andezites, a pirosak andezites összetételűek)

8.2. ábra. Az alsó-pannon dácitos vulkanizmus kitörési központja és az ide tartozó minták területi elterjedése, részben analógiák alapján (*saját*

szerkesztés)

Jelmagyarázat: 1. szintvonalak; 2. patakok; 3. műút; 4. dácitos minták és lávafolyások; 5. andezites minták és lávafolyások; 6. bazaltos andezites minták és lávafolyások; 7. szubvulkáni testek (a zöldek bazaltos andezites, a pirosak andezites összetételűek)

8.3. ábra. Az alsó-pannon bazaltos andezites vulkanizmus kitörési központjai és az ide tartozó minták területi elterjedése (*saját szerkesztés*) *Jelmagyarázat*: 1. szintvonalak; 2. patakok; 3. műút; 4. dácitos minták és lávafolyások; 5. andezites minták és lávafolyások; 6. bazaltos andezites minták és lávafolyások; 7. szubvulkáni testek (a zöldek bazaltos andezites, a pirosak andezites összetételűek)

8.4. ábra. Alsó-pannon bazaltos andezites és andezites vulkanizmus kitörési központja és az ide tartozó minták területi elterjedése részben analógiák alapján (saját szerkesztés)

Jelmagyarázat: 1. szintvonalak; 2. patakok; 3. műút; 4. dácitos minták és lávafolyások; 5. andezites minták és lávafolyások; 6. bazaltos andezites minták és lávafolyások; 7. szubvulkáni testek (a zöldek bazaltos andezites, a pirosak andezites összetételűek)

8.5. ábra. Az alsó-pannon andezites vulkanizmus kitörési központja és az ide tartozó minták területi elterjedése (*saját szerkesztés*)

Jelmagyarázat: 1. szintvonalak; 2. patakok; 3. műút; 4. dácitos minták és lávafolyások; 5. andezites minták és lávafolyások; 6. bazaltos andezites minták és lávafolyások; 7. szubvulkáni testek (a zöldek bazaltos andezites, a pirosak andezites összetételűek)

8.6. ábra. Az alsó-pannon andezites és dácitos vulkanizmus kitörési központjai és az ide tartozó minták területi elterjedése (*saját szerkesztés*) *Jelmagyarázat*: 1. szintvonalak; 2. patakok; 3. műút; 4. dácitos minták és lávafolyások; 5. andezites minták és lávafolyások; 6. bazaltos andezites minták és lávafolyások; 7. szubvulkáni testek (a zöldek bazaltos andezites, a pirosak andezites összetételűek)

9. A SZINYÁK VULKANIZMUSÁNAK BEMUTATÁSA TÍPUSFELTÁRÁSOK ALAPJÁN

A szakirodalmi források áttekintése, a térség adatainak összegyűjtése és rendezése, újraértékelése jó alapot nyújt arra, hogy ezek ismeretében egy új szemléletű reambulációs rekonstrukciót végezhessünk el a Szinvák-hegység miocén vulkáni komplexumában. Az ennek során elvégzett munkák részeredményeit legszemléletesebben a hegység nevezetes feltárásainak bemutatásával tudjuk reprezentálni. E kitüntetett helyeket úgy választottuk meg, hogy térben és időben lefediék a legfontosabb képződményeket, jelenségeket, a klaszteranalízis által képzett csoportokat, s általuk megválaszolhassunk olvan kérdéseket, amilyeneket főként ilyen léptékben lehet tisztázni. Ez által hegység petrográfiai mélyebbre hatolhattunk а és vulkánmorfológiai elemzésében, mint ahogy arra az elődöknek lehetősége nyílt.

A következőkben sorra vesszük az említett legjelentősebb feltárásokat, vizsgáljuk a bennük megjelenő fácieseket. Korszerű és nemzetközileg elfogadott normák szerint szeretnénk tisztázni a nevezéktani, perogenetikai és kronológiai adottságaikat. A feltárások hegységen belüli elhelyezkedése a 2.1. ábrán számmal jelölve azonosítható.

9.1. Szarmata – alsó-pannon bazaltos andezites és andezites vulkanizmus: a fedelesfalvi andezittufa feltárás

A szelvény a Viznyica-patak völgyében, a Fedelesfalva felé kanyarodó út Ny felé eső első 150 m-es szakaszán található. Központi koordinátái é.sz. 48° 36' 21,7", k.h. 22° 43' 48,5", tszf. magassága 375 m (2.1. ábra, 46).

A szelvény teljes hosszában egy változóan durvaszemcsés intraés extraklasztos andezittufa tárul fel amelyben kisebb jellegváltozások figyelhetők meg, de ezeknek a kisebb eltéréseknek aligha van genetikai jelentősége. A szelvénytől Ny felé még több mint 100 m-en követhető а Fedelesfalvai makadám út bevágásában ugyanez az andezittufa, de egyre romló feltártsággal. Valószínű, hogy ez itt

2.1. ábra. A Szinyák-hegység áttekintő térképe a bejárási útvonalakkal és a kutatás során vett minták sorszámával

kiterjedten felszínalkotó képződmény lehetett a Szinyák és a Határ vulkán későmiocén vulkanizmusának kezdetén.

A szelvény első 35 m-én egy durva szemcsés litoklasztos andezittufa bukkan elő. Viszonylag szilárd, kalapáccsal könnyen törhető, helyenként morzsálható. Néhol több darabba tört andezitblokkokat láthatunk a tufába ágyazódni (9.1. ábra), melyek átmérője 30-50-80 cm. A terepi helyszínen folyamatosan végigvizsgáltuk a feltárás kőzetanyagát, majd belőle hat jellemző mintát gyűjtöttünk. Ezek közül négy a tufamátrixot célozta meg, amelyben kisebb, vagy kis közepes méretű extra és intraklasztok voltak, kettő pedig a tufán áttörő sekély intrúzív és néhány m-rel feljebb effuzívvá váló andezit test anyagából lett begyűjtve. A legfontosabb jellemzőket a 9.1. táblázatban mutatom be.

9.1. ábra. Durvaszemcsés összesült andezittufa andezitblokkokkal (*Jelmagyarázat*: Ff 1-5 - mintavételi helyek) (*saját felvétel*)

9.1.1. A tufamátrix és a tufát áttörő andezit jellemzői

Ff 1, 2 sz. minták (az andezittufa mátrixa)

A benne lévő extraklasztok rendszerint arról ismerhetők meg, hogy vagy más anyagúak, de ezek száma igen csekély, vagy erősen agyagosak illetve elagyagosodottak, míg az intraklasztok többnyire világos közép és sötétszürke piroxén andezit darabkák, vékony reakciószegéllyel, vagy mállási burokkal (9.3. ábra).

Mind az intra-, mind az extraklasztoknál megfigyelhető helyenként, hogy a becsapódási irányt az jelöli ki, hogy a szemcse talprészénél az egykori kőzetüveg törmelék enyhén megpréselődött és kissé orientált struktúrát mutat, tömörebb szerkezetű.

Ff 3 minta (az andezittufa mátrixának üvegtörmeléke)

Már nehezen ismerhető fel, főleg agyagosodott volta miatt. Ugyanakkor sokkal kevébé bontott, kisméretű színes alkotók jelzik az andezites eredetet, bár

sok példányuk törött, fragmentálódott. Nehéz megállapítani, hogy e kristályok klasztokhoz köthetők, vagy a mátrix explózióval létrehozott izolált szemcséi csupán.

9.2. ábra. A mállott tufából kiszedett lekerekített litoklaszt (A), akkréciós lapilli és egyéb litikus szemcsék (B)

Ff 4, 5, 6 minta (a tufát áttörő andezit)

A kb. 70 m hosszúságú vizsgált szelvényszakasz 43. m-étől több méteren át folyamatosan követhető egy durvablokkos megjelenésű, sötétszürke színű andezittest, amelynek felülete itt kb.1-1,5 m magasságig látható. Oldalát lejtőtörmelék, felül talajráfolyás fedi le. A test egy extraklasztos andezittufán áttört kürtőszakasz, melynek felszínre jutott, ma már csonka lávafolyása feljebb az erdős lejtőoldalon válik láthatóvá. A feltárás szegélyének lefutásában jelentkező apofizaszerű kiékelődés és annak kontaktusa jelzi, hogy itt még sekélyintruziós szinten látható a test, míg 10 m-rel feljebb már a felszínre ömölhetett, mint effúzívum. A feltárás kőzete tehát egy kürtőkitöltés felső szakaszának szegélyfáciese lehet.

9.1.2. Következtetések

- ✓ A vizsgált szelvény a leülepedés jegyei alapján egy kitörési centrumcsoport környezetében létrejött piroklaszt ár felhalmozódásnak (NÉMETH – MARTIN, 2001) és kapcsolódó lávaképződményeinek együttesét tárja fel erősen erodált formában.
- ✓ A piroklasztot létrehozó robbanás felszínalatti voltára utal, hogy nagyon sok járulékos litikus szemcsét látunk a szövetében (NÉMETH – MARTIN, 2001).
- ✓ A piroklasztot létrehozó robbanás freatomagmás típusára utal az akkréciós lapillik léte (NÉMETH – MARTIN, 2001).

koherens andezit		osztályozatlan, döntően törmelék dominanciájú andezit breccsa		Fácies
alsó része durvablokkos, felső része pados elválású andezit	<i>litoklaszt 2:</i> néhány agyagos litoklaszt, agyagkő, palásodott agyagkő aljzat zárvány	<i>litoklaszt 1.</i> méret: szögletes blokk (30– 80 cm) bomba, ill. lapilli (2–15 mm, 15– 50 mm); alakjuk szabálytalan, gyakran lekerekített, szín szürke, vöröses barna, fekete	 mátrix: világossárgás, fakó kávébarna, szürkés sárga, 30–40%, apró szögletes <i>litoklasztok:</i> bimodális eloszlás mm–cm, 	Terepi jellemzők
1–5 mm szabálytalan, nem orientált hólyagüregek, vékony agyag kalcedon filmmel, porfíros alapanyag, a tufa felé horzsás alapanyag	üde zöldessárga, fénylő felületű	horzsásodott, vöröses alapanyag	diagenetikusan agyagosodott, alig felismerhető, üveg anyag litoklasztok mentén enyhén préselt	Szöveti sajátosságok
mikroholokristályos- porfíros alapanyag, néhol pilotaxitos	tuſogén montmorillonit, nontronit	salakos, oxihidratált porfíros alapanyag	agyagos (5–15%)	Alapanyag és elváltozások
3 különböző mérettartományban megjelenő plagioklászok (ikres, zónás), orto- és klinopiroxének			ortopiroxének és plagioklászok	Fenokristályok
kürtőkitöltés szegélyfácies + lávaár		andezites piroklaszt ár? centrumközeli, gyengén összesült explóziós piroklasztit		Értelmezés

9.1. táblázat. A fedelesfalvi andezittufa feltárás legfontosabb jellemzői

9.2. Szarmata – alsó-pannon bazaltos andezites és andezites vulkanizmus: a frigyesfalvi andezit feltárás

A vizsgált feltárás Munkácstól 5 km-re É-ra, a Viznyica-patak völgyében található Kölcsény és Frigyesfalva között a kettős útkanyarban (é.sz. 48°50',

2.1. ábra. A Szinyák-hegység áttekintő térképe a bejárási útvonalakkal és a kutatás során vett minták sorszámával

k.h. 22°75'), kb. 165 m tengerszint feletti magasságban (2.1. ábra, 47).

9.2.1. A feltárás és környezetének földtani adottságai

A földtani térképek (TYITOV, 1979; szubvulkáni KUZOVENKO ed., 2001) bazaltos-andezitként definiálják feltárásunkat, amely andezittufába nyomult be. Tőle Ny-ra a Zsornina vulkán, D-re andezit lávafolyások maradványai, ÉK-re hasonló kifejlődésű pedig testeket térképeztek. SZOBOLJOV (1955)feltételezése szerint a feltárástól K-re található sztratovulkán utolsó extrúzióinak egyikéről van szó. MALEJEV (1964) egy Ny-K-i törésvonalhoz köti a képződését (9.2.1. ábra).

9.2.1. ábra. A frigyesfalvi feltárás földtani térképe és helyszínrajza Jelmagyarázat: 1. andezit; 2. andezit tufa; 3. üledék; 4. utak; 5. Viznyica-patak; 6. fejtési front; 7. szintvonalak

A magmás test a völgy irányában több 100 m-en követhető, a patak eróziója gyakran feltárja. Az erózió magát a testet még alig támadta meg, de a burkolókőzetet már a test szegélyéig lepusztította.

A szelvényen belül jól elkülöníthető egy felső, folyásosságot mutató vulkáni és egy alsó, oszlopos elválású, sekélyszubvulkáni (kürtőkitöltés) szint (9.2.2. ábra).

9.2.2. ábra. A frigyesfalvi feltárás K-i része

Látható a befogadó mellékkőzet (C), az intrúzív test sajátos hűlési és oszlopos elválási résrendszere (B, D), valamint az erodált test tetejére folyt effúzív andezit lávafolyás megjelenési módja (A) A fal felső két méter vastag részén a kőzet vékonylemezes elválású, folyásos, vénás szövetű. A lemezek vastagsága 1-5 cm között változik (9.2.2. ábra, A).

Az É-D-i tengelyű test K-Ny-i csapású fejtési falának baloldali részén látható legjobban, hogy a hasadékmenti felnyomulás nem egy töréshez, hanem több lineáris centrumhoz kapcsolódik (9.2.3. ábra), amelyek közel párhuzamosan alakultak ki és egymással kommunikáltak. Az általunk látott szelvényben legalább három ilyen kinyomulást térképeztünk.

9.2.3. ábra. A frigyesfalvi feltárás Ny-i része a kinyomulási centrumokkal

A feltáruló oszlopok zömmel hatszöges elválást mutatnak. Jellemző a hűlési résrendszerben megjelenő sárgásbarna, mállás és hidratációs hatásra létrejövő kéreg (9.2.4. ábra, A). Az oszlopok szélén gyakran figyelhető meg egy 0,5-1 cm-es sötétebb, majdnem fekete színű külső zóna, ami az erősebb hűtőhatás okozta gyorsabb kristályosodással és nagyobb üvegtartalommal függhet össze (9.2.4. ábra, B).

9.2.4. ábra. A oszlopok szélén kialakult mállási kéreg (A) és hűlési szegély (B)

A szelvény egyes részein nagyon jól látható, hogy a vulkáni szinten több lávafolyás is megfigyelhető egymás felett. Ezt látszik alátámasztani a szelvény Ny-i végében látott kép, ahol az alsó, erodált felszínű sekélyszubvulkáni (kürtőkitöltés) szintre több fiatalabb lávafolyás települt (9.2.5. ábra).

9.2.5. ábra. A szubvulkáni test erodált felszínére települt lávafolyások a frigyesfalvi kőfejtő falának Ny-i szélén

Az andezit makro- és mikroszkópi jellemzőit a 9.2.1. táblázatban és a 9.2.6. ábrán mutatom be.

9.2.6. ábra. Első generációs hipersztén kristály (A) valamint első generációs zónás plagioklász és augitiker (B)

xenolitok az andezitben	koherens felső andezit koherens alsó andezit	Fácies
0,1-10 cm 1. tufogén 2. üledékes	vékonylemezes (1–5 cm), folyásos szövetű andezit vízszintes oszlopos elválású (Ø 20– 40 cm)	Terepi jellemzők
 világossárga, enyhén porózus szerkezetű akár 3 cm hosszú, lencse alakú, kőzetlisztes finomhomokkő 	alig észrevehető irányítottság, xenolitok szabálytalan, nem orientált hólyagüregek (1– 10 cm ³), vékony agyag kalcedon filmmel, porfíros alapanyag, a tufa felé horzsás alapanyag	Szöveti sajátosságok
hőhatásra dehidratált 0,1–1 mm olvadási szegély	mikroholokristályos- porfíros alapanyag mikroholokristályos- porfíros alapanyag, néhol pilotaxitos; az oszlopok falán mállásra és hidratációs hatásra létrejövő kéreg és 0,5–1 cm vastag sötétebb, üvegesebb zóna, itt-ott karbonátos átitatás	Alapanyag és elváltozások
 apró földpátkristályok apró kvarckristályok, nehézásványok 	 összesen 75–80%; 3 különböző mérettartományban megjelenő idiomorf plagioklászok, (zónás, ikres) max. 1–3 mm 2 különböző mérettartományban megjelenő idiomorf orto- és klinopiroxének, amfibol (oszlopos, tűs) összesen 75–80%; 3 különböző mérettartományban megjelenő idiomorf plagioklászok (zónás, ikres) max. 1–3 mm, korrodált mag, üde továbbnövekedési szegély 3 különböző mérettartományban megjelenő idiomorf orto- és klinopiroxének, anfibol (oszlopos, tűs), glomeroporfiros csomók, opak: magnetit, pirit (9.2.6. ábra) 	Fenokristályok
összesült andezittufa flis aljzat zárvány	több centrumból táplálkozó lineáris centrumhoz kötődő lávaár komplexum kürtőfácies	Értelmezés

9.2.1. táblázat. A frigyesfalvi feltárás fácieseinek jellemzése és értelmezése

9.2.2. A feltárás kora

A földtani térképeken (TYITOV, 1979; KUZOVENKO ed., 2001) levantei intrúziónak van feltüntetve a feltárás, amely hasonló korú andezittufába nyomult be. A K-i Paratethysre vonatkozó korbeosztás alkalmazása miatt használt nevezéktan tisztázása végett K/Ar radiometrikus koradatok készíttettünk a debreceni ATOMKI-ban a sekélyszubvulkáni (kürtőkitöltés) szintből. A 9,70±0,46 millió éves adat egyértelműen kora-pannon magmatizmust jelez. A szubvulkáni szint felszínén erős erózió nyomai láthatók. Több helyen vannak eróziós csatornák, amelyeket a felső vulkáni szint lávanyelvei kitöltöttek. Ebből kiindulva joggal feltételezhetjük, hogy a két szint kialakulása között akár több tízezer év időkülönbség is lehet, azonban a radiometrikus koradat hibahatárát valószínűleg nem éri el.

Hasonló korszakra, 10,7±0,4 és 10,3±0,4 millió évre datálta a feltárást KRASSAY (2010), aki összehasonlításul végeztetett K/Ar korvizsgálatot. Sajnos azt nem lehet tudni, hogy az elemzés melyik szintből készült, mindenesetre a pannon eleji működést alátámasztotta.

Következtetések

- A frigyesfalvi feltárás képződményei a Vihorlát-Gutin vulkáni vonulat magmatizmusának középső stádiumában képződtek.
- Egy hosszan elnyúló, kisebb centrumokkal jellemezhető hasadékvulkáni szerkezetet látunk, ami kipreparálódott a környezetéből, így láthatóvá válik mind a kürtőkitöltés, mind lávafolyások szintje.
- A felnyomuló magma lávatószerűen tölthette ki mai helyét és csupán legfelül folyt.
- Az olvadék felszínközelig tartó felnyomulása szakaszosan történt, amit a többgenerációs ásványkiválások támasztanak alá, de az utolsó stádiumban gyors lehűlés jellemezte.

9.3. Alsó-pannon bazaltos andezites vulkanizmus: a bányafalui feltárás

A Szinyák-hegység K-i, D-i és Ny-i peremén nagyszámú szubvulkáni magmás test található. Bányafalu környékén közülük több, relatíve kisméretű intrúzió preparálódott ki a felszínemelkedés és lepusztulás folyamata során (2.3. ábra, 5). Ezek egyikét a bányászat is feltárta, amelynek földtani-morfológiai

bejárási útvonalakkal és a kutatás során vett minták sorszámával

adottságait, petrográfiáját, környezetéhez való viszonyát itt mutatjuk be (Gönczy – McIntosh, 2010).

9.3.1. Földtani környezet

A vizsgált előfordulás földtani környezetének meghatározó vonása, három különböző hogy korú. összetételű, szerkezetű és felépítésű terület határán fekszik (9.3.1. ábra). Itt kapcsolódik egymáshoz a krétapaleogén flisből felépülő Szuhatakaró és a Szinyák szarmatapannon vulkáni komplexuma. A kettő közötti határt a Pienini-szirtöv képezi, amely KRUGLOV (1986) szerint feltárásunk környezetében egy nagyon keskeny sávban a felszín közelében található, és ami szerkezeti alapot nyújtott a vulkáni

működéshez (MALEJEV, 1964; KORONOVSZKIJ, 1965; SZTYEPANOV, 1989).

Esetünkben a szirt-öv törésrendszere mellett számolnunk kell azzal is, hogy a Szolyvai-medencében járunk, amely a szirtöv és a Latorcai (v. Munkácsi)-törésvonal találkozásánál alakult ki, vagyis a kárpátaljai aljzatot meghatározó öt legnagyobb törésvonalból kettő itt keresztezi egymást. Mindezt még bonyolultabbá teszi, hogy a Szuha-takaró tektonikus érintkezésű eocén és oligocén formációinak határa vizsgálati területünk közelében található (TYITOV, 1979; KRUGLOV, 1986).

Szakirodalmi források szerint a bányafalui andezit benyomulás egy ÉNy-DK-i irányú törésvonalhoz köthető lopolit. Az ellipszis alakú test hosszanti átmérője kb. 1 km, a rövidebb kb. 0,5 km. A szélei kiemelkedettek, a közepe pedig be van süllyedve. Vastagsága az egyetlen kutatófúrás adatai alapján (MALEJEV, 1964) kb. 100 m. A fúrás dokumentációja sajnos elérhetetlen, az illetékes szakmai szervezet, a Kárpátaljai Geológiai Expedíció, beregszászi munkatársai szerint holléte ismeretlen.

(TYITOV et al., 1979 nyomán, módosítva) Jelmagyarázat: szarmata-pannon: 1. effúziós andezit, 2. szubvulkáni andezit; oligocén: 3. flis; eocén: 4. flis; kréta: 5. karbonátos terrigén üledék; szerkezeti vonalak: 6. Latorcai törésvonal, 7. Pienini szirt öv feltolódása; 8. műút (E471)

A test kőzettani összetételére vonatkozólag kevés szakirodalmi forrásadat áll rendelkezésre, közülük eredeti közlésnek tekinthető az 1950-es-1960-as években készült regionális kutatások néhány publikált eredménye, amely szerint a magmás test bazaltos andezit összetételű, jelentős kőzetüveg tartalommal (SZOBOLJOV et al., 1955; KORONOVSZKIJ, 1964; MALEJEV, 1964).

9.3.2. Terepi megfigyelések

A Bányafalu É-i oldalán elnyúló, a Latorca felé kifutó ÉNy-DK-i csapású gerinc teljes hosszában azonos anyagú andezit feltárások bukkannak a felszínre. A feltárások jellegét két alapvető vonás határozza meg. Az egyik a test hengeres elválási rendszere, a másik a környezet üledékeibe való benyomulása. A héjszerű elválás és a gyűrt üledékek lazább rétegközi tereibe történt benyomulás alapján a magmás tömeg szubvulkáni testnek tekinthető (9.3.3. ábra), szélein in situ hialoklaszt és autobreccsa öv található (MCPHIE et al., 1993; Németh, 1999).

A terepi bejárások során a magmás test szegélyének üledékes képződményei közül legszembeötlőbb az 5-7 cm vastag rétegekkel jellemezhető flis (9.3.3. ábra, 1. kép) és az agyagpala (9.3.3. ábra, 2. kép). A szelvény magasabb részein sötét színű, bioeróziós nyomokat viselő, nagyon finom szemű aleurolitet (9.3.3. ábra, 3. kép) és keresztrétegzett homokkövet figyelhetünk meg (9.3.3. ábra, 4. kép).

9.3.3. ábra. A magmás test befogadó környezete (*saját felvételek*) 1. gyűrt homokkő, 2. agyagpala, 3. aleurolit, 4. keresztrétegzett homokkő

9.3.4. ábra. Hialoklaszt, autobreccsa és enyhén íves elválások a test szegélyén

koherens andezit	nem rétegzett, monomikt andezit breccsa	flis, agyagpala	homokkő	Fácies
kétirányú hűlési miatt oszlopos-pados durva blokkos elválású andezit	termokontakt hatásokat mutató breccsás andezitbe (0,5–2 m) a flis mellékkőzet darabjai ágyazódnak (9.3.6. ábra, A, B)	5–7 cm vastag rétegek, sötét színű bioeróziós nyomokat tartalmazó aleurit, keresztrétegzet homokkő	keresztrétegzett	Terepi jellemzők
1–5 mm szabálytalan, nem orientált hólyagüregek, vékony agyag kalcedon filmmel, porfíros alapanyag, a tufa felé horzsás alapanyag	világosszürke, középszürke, a kontaktus felé néhol salakos, hólyagüreges (3–5 cm)	változó szélességű átitatás (H2O, Fe, Mn tartalmú oldatok), kilúgozódás, elszíneződés	I	Szöveti sajátosságok
mikroholokristályos- porfíros alapanyag, néhol pilotaxitos, teljesen irányítatlan szövet, limonit, hematit mállási szegély (9.3.5. ábra, D)	a kontaktus felé mikrohorzsás, kriptokristályos kvarc csomók, lencsék, a földpátok szingenetikus agyagásványosodása, kalcit kiválás (9.3.5. ábra, C)	termokontakt újraolvadási jelenségek (mm–cm)		Alapanyag és elváltozások
idiomorf- hipidiomorf (9.3.5. ábra, A, B) opak szemcsék 0,5%	3 különböző mérettartományban megjelenő plagioklászok (ikres, zónás), orto- és Plinonimyának		1	Fenokristályok
az intrúzió belső koherens fáciese	intrúzió, in situ hialoklaszt, autobreccsa fáciese	kréta takarórendszer mellékkőzet	ős-Latorca völgyteraszüledék (SZIDORENKO, 1966)	Értelmezés

A test makro- és mikroszkópi vizsgálatait a 9.3.1. táblázatban foglaltam össze:

9.3.1. táblázat. A bányafalui andezit és környezetének vázlatos földtani jellemzői

9.3.5. ábra. A feltárás andezitjének jellemző szöveti részletei A: Piroxén penetrációs ikre (Sz1/A/2); B: Zónás, ikerlemezes plagioklász (Sz1/A/2); C: Kétgenerációs (karbonát, kvarc) üregkitöltés (SzSzKV); D: Bontott hipersztén (Sz1/A/2)

9.3.6. ábra. Az andezit és a mellékkőzet kontaktusának jellemző részletei A: Magmabehatolás menti illóvándorlás nyomai (Sz1/D); B: Kontaktus menti gyűrődés a mellékkőzetben (Sz1/D)

9.2.3. Következtetések

- ✓ A vizsgált testet a szakirodalom lopolitként definiálta. Ezt a terepi vizsgálatok annyiban támasztották alá, hogy az íves elválásrendszerek szubvulkáni testre engedtek következtetni.
- ✓ A kristályok három generációja három felnyomulást, ill. megrekedést jelez, az olvadék kemizmusának gyenge változása mellett, amire a viszonylag kevés zónás földpát utal.
- ✓ A Debreceni Atommagkutató Intézetben megvizsgáltattuk a kőzet korát, ami 11,22±1,37 millió évnek adódott. Ennek alapján azt lehet mondani, hogy a Bányafalu környéki sekélyszubvulkáni testek alsó-pannóniai korúak.

9.4. Alsó-pannon bazaltos andezites vulkanizmus: andezitfeltárás Kölcsény K-i határában

A feltárás a Szinyák DNy-i szegélyén található az E471-es számú főközlekedési út bevágásában (2.1. ábra, 12), Kölcsény területén, közvetlenül a Viznyica-patak völgyhídja után. A NyDNy-KÉK-i csapású szelvény középpontjának koordinátái é.sz. 48,47', k.h. 22,76'. Az útépítési munkák közben kialakított szelvény révén mintegy 110 m szélességben és 10-25 m magasságban tárul fel egy andezittest hűlési-elválási résrendszere.

2.1. ábra. A Szinyák-hegység áttekintő térképe a bejárási útvonalakkal és a kutatás során vett minták sorszámával

9.4.1. Kőzetföldtani adottságok

A Szinyák D-i elvégződésén műút Kölcsény átvágó és Beregszentmiklós között nagyrészt miocén andezittufa felszínen halad, amely a hegység e peremi részén szoknyaszerűen veszi körül а kisebb-nagyobb andezit központokat, szubvulkáni és vulkáni testeket. Az innen néhány kilométeres távolságban lefutó Viznyica-patak és Latorca anyagelszállító munkáját jelzi, a viszonylag laza tufafelszín erőteljes lepusztultsága, morfológiai tagolódása. Ezáltal takaródhattak ki beágyazó piroklaszt а tömeg anyagából a peremeken egykor feltört kisebb lávafolyások és

szubvulkáni testek. A vizsgált feltárás egy ilyen test D-i elvégződésének átvágásakor jött létre. A mintegy 700 m átmérőjű benyomulás - méretéből adódóan - az 1: 200 000-es léptékű földtani térképeken nem jelenik meg (9.4.1. ábra).

A feltárás a pannon andezittufába van ágyazódva, körül rajta több lávafolyást és intúziót is látunk. Az aljzatot kréta mészkő és paleogén homokkő blokkok alkotják, amelyek éppen a feltárás alatt kapcsolódnak egymáshoz. Mivel a Latorca völgyében járunk, az elsődleges szerkezeti tényező a Munkácsi-törésvonal (3.2. ábra), azonban nem becsülhetjük le a kisebb blokkokat elválasztó szerkezeti vonalak magmás aktivitásra gyakorolt hatását sem (TYITOV, 1979; KRUGLOV, 1986). A feltárásról 10 méterenként illeszthető digitális fotósorozatot készítettem, s ennek segítségével, illetve a terepi tapasztalatok alapján készült el a feltárás annak vázlatos szelvényrajza (9.4.2. ábra).

9.4.1. ábra. A feltárás földtani környezete (TYITOV, 1979) és helyszínrajza Jelmagyarázat: 1. bazaltos andezit (pannon); 2. bazaltos andezit intrúzió (pannon); 3. andezittufa (pannon); 4. a Szinyák-hegység határa; 5. a feltárás helye; 6. feltárás; 7. E471-es számú út; 9. szintvonalak (saját szerkesztés)

Az alsó 5-12 m-es szakaszon, a feltárás teljes hosszában az egykori beágyazó környezet agglomerátumos tufára emlékeztető agyagos vulkanoszedimentje hol egy, hol két szintre különválva ágyazódik be a csaknem K-Ny-i csapású lineáris test szegélyébe. Ahol az andezit közvetlenül érintkezik ezzel a mellékkőzettel, becsípve annak anyagát a benyomulási zónák közé, ott a hűtőhatás és hidratáció következtében, kifelé haladva az andezit-testből mindinkább vékonylemezessé válik a kőzet É-ÉNy felé. A becsípett mellékkőzet fokozatos eltűnésével a vékonylemezességet felváltja az egyre vastagabb lemezes, majd pados, végül oszlopos elválás a hűlés mértékének és jellegének függvényében.

A centrális rész, illetve a felső kétharmad kőzete teljesen oszlopos elválású. A lemezes illetve pados elválás az oszlopok tengelyére merőlegesen jött létre, hasonló tagolódás följebb az oszlopok belsejében is megfigyelhető, fölfelé ritkuló számban.

A szelvény K-i széléhez közel, annak alsó szakaszán több helyütt közvetlenül megfigyelhető a mellékkőzet hatása és hozzákeveredése a benyomuló andezit anyagához. Az itt felszabaduló illók mozgása elszíneződő, elbontódó sávokat hozott létre az érintkezés környezetében. E kölcsönhatás az andezit elválási felületein szélesebb reakciószegélyekben, annak közelében hólyagüregek megjelenésében és helyenként elagyagosodás formájában mutatkozik meg (PARFITT – WILSON, 2008).

9.4.2. ábra. A feltárás helyszínrajza a mintavételi pontokkal (saját felvételek és szerkesztés)

Fácies andezit lapillitufa –	Terepi jellemzők mátrix: világossárgás, fakó kávébarna, szürkéssárga, 30-40%,	Szöveti sajátosságok diagenetikusan agyagosodott, alig felismerhető üveg	elvá agyago	anyag és Itozások)s (5–15%)
	<i>mátrix:</i> világossárgás, fakó kávébarna, szürkéssárga, 30–40%, apró szögletes litoklasztok mm–cm			
nem rétegzett, monomikt törmelék dominanciájú andezit breccsa	<i>litoklasztok:</i> méret: (5– 20 cm) blokk, ill. lapilli (2–15, 15–50 ?), alakjuk szabálytalan, szegély érdes, salakos, horzsás, gyakran lekerekített, szín szürke, vöröses barna, fekete	1–10 mm szabálytalan, nem orientált hólyagüregek, vékony agyag kalcedon filmmel, porfíros alapanyag, a tufa felé horzsás alapanyag	mikroho porfíros néhok, p átitatás, p bontotta koheren:	lokristályos- alapanyag, limonitos lagioklászok bbak mint a s változatnál
koherens andezit	oszlopos, vastaglemezes vékonypados elválású	középszürke, lilásbarna	mikroho porfíros al 70%), né jellegű (9 oszlop felületér reakciós	lokristályos- apanyag (50– hol trachitos 2.4. ábra, A) 2.4. ábra, A) ok elválási 1 világosabb zegély (0,5–

A kőzetminták makro- és mikroszkópi jellemzését a 9.4.1. táblázatban összesítettem:

9.4.1. táblázat. A kölcsényi feltárás földtani jellemzői

A: Másodikgenerációs plagioklászcsomó, ikerlemezes, gyengén zónás, kristályok, szórványos továbbnövekedési szegéllyel, trachitosan irányított mikroholokristályos alapanyagban (KaIII/1)

B: Augitkristályok ikresedett példányai irányított mikrolitos alapanyaggal körülvéve (KaIII/2)

9.4.2. Következtetések

A szerkezeti vonalak mentén mintegy 600 m hosszan fenyomuló sekélyintrúzió kisebb lávafolyásai vagy víz alatti üledékbe, vagy nagyon nagy nedvességtartalmú vulkanoszedimentbe nyomultak be. Ahol érintkezett a környezettel, ott vékony hialoklaszt réteget hozott létre. A viszonylag lassan hűlő központi részen oszlopos, míg a hialoklasztizált és az oszlopos rész között lemezes zóna képződött. Mindez legalább 2-3 alkalommal megismétlődhetett.

9.4.4. ábra. A vizsgált feltárás értelmezett vázlata

Jelmagyarázat: 1. mészkő; 2. homokkő; 3. oszlopos elválású andezit; 4. lemezes elválású andezit; 5. hialoklasztizálódott réteg; 6. vulkanoszediment

9.5. Alsó-pannon andezites vulkanizmus: a dunkófalvi kőbánya

Dunkófalva határában lévő kőbányában egy ÉK–DNy-i csapású dombgerinc DNy-i végében klasszikusan szép, hengeres elválású magmás test tárul elénk. A földtani térképek egy lávafolyás részének írják le, azonban a terepen látottak alapján inkább egy nyúlt alkatú lakkolitnak felel meg. Arra keressük a választ, hogy e feltárást magába foglaló magmás test önálló centrumból táplált, hasadékmenti felnyomulás, ami megrekedt sekélyszubvulkáni-extruziós szinten, vagy a szomszédos lávafolyás elszakadt és

2.1. ábra. A Szinyák-hegység áttekintő térképe a bejárási útvonalakkal és a kutatás során vett minták sorszámával

részben befedett leágazása?

9.5.1. Földrajzi és földtani adottságok

Dunkófalva település ÉK-re. a Munkácstól 11 km-re Szinyák-hegység D-i részén található (2.1. ábra, 36). A bánya a településtől K-re 1 km-re működött az 1990-es évekig. az azt működtető kolhozrendszer széthullásáig. Bejáratának é.sz. 48°30'38", k.h. koordinátái 22°49'0.4". Α feltárás feitési talpának tengerszint feletti magassága 280 m. Α tagolt alaprajzú kőfejtő központi fejtési falának szelvénymagassága 8-12 m, szélessége ~ 15 m.

A földtani térkép (9.5.1. ábra) szerint a feltárás egy 11 km hosszú lávafolyás része (TYITOV, 1979; KUZOVENKO ed., 2001). E feltűnően hosszú andezites lávafolyás kiindulási központja az Obavai Kő (é.sz 48°34′59″; k.h. 22°48'57") nevű 978 m magas hegycsúcs. Az egykori lávaár kőzetei ebből a központból körkörösen több irányban követhetők, de az egykor rendelkezésre álló lejtők - mint lehetséges lefutási útvonalak - különbözőségei és az eltérő anyagutánpótlás miatt változó hosszúságúak. A vizsgált dunkófalvi feltárás a leghosszabb, D-i irányba elnyúló, kettős nyelv formájú nyúlvány része a korábbi elképzelések szerint. Ismerve a neutrális lávák viszkozitását, ez a lávaár nem csak feltűnően hosszú, hanem néhol túl keskeny, néhol irreálisan széles és lefutása is lépcsőkkel szabdalt.

Egyes kutatók már korábban feltételezték, hogy a központi kráter (9.5.1. ábra) kialakulásában egy ÉNy–DK-i mélytörés és egy ezt harántoló É–D-i csapású vetőrendszer játszotta a fő szerepet (MALEJEV, 1964). A részben érckutatási célú áttekintő leírások (MALEJEV, 1964; SZTYEPANOV, 1989) szerint a lávafolyás kőzetanyaga kétpiroxénes, durvaporfiros szövetű andezit. A lávaár vastagsága a kráter környékén eléri a 200 m-t, amiből a felső 40 m-es rész fel van tárva. A centrumtól D-re 5 km-re pedig az 1p kutatófúrás adatai (SZTYEPANOV, 1989) alapján a lávakőzet vastagsága még mindig több mint 60 m (9.5.1. ábra).

9.5.1. ábra. Az obavai feltárás helye és földtani

(TYITOV, 1979; KUZOVENKO ed., 2001 felhasználásával, *saját szerkesztés*) *Jelmagyarázat*: 1. kráter; 2. lávanyelv; 3. üledék; 4. andezittufa; 5. képződményhatár; 6. lávaformációk határa; 7. vízrajz; 8. mintavételi pont; 9. fúrás

<u>вр</u>)
n
is
g (a
SO
Ħ
san
g és ok
`

A makro- és mikroszkópi jellemzőket a 9.5.1. táblázatban foglaltam össze:

9.5.1. táblázat. A dunkófalvi feltárás földtani jellemzői

9.5.2. ábra. A dunkófalvi kőbánya fejtési frontjának (jobbra) és elválási kőzetfelületeinek (balra) rajza a mintavételi pontokkal (saját felvétel és szerkesztés)

9.5.3. ábra. Változó mértékben rezorbeált ikerlemezes és zónás plagioklász fenokristályok, körülöttük a harmadik és negyedik generáció példányaival, idiomorf hipersztén (A); Az augitok szegélyén mállási koszorú, ami a hiperszténeknél hiányzik (B)

9.5.2. Következtetések

A dunkófalvi kőbánya feltárásainak részletes helyszíni, valamint mintáinak laboratóriumi vizsgálata során megállapítottuk, hogy a feltárt kőzettömeg nem része a nagyméretű lávaárnak, bár annak csapásirányában helyezkedik el és bukkan felszínre. Ennek oka egy vulkanotektonikus mélytörés sorozat lehet, amely mentén több ponton történt magma felnyomulás és ezek összekapcsolódása kelti az egységes lávaár látszatát.

A kőbányában nem tárulnak fel a lávaárakra jellemző salakos és blokkos szegélyzónák. A test geometriája egy kissé torzult hengerszimmetriát mutat az említett mélytörés orientációja szerinti tengellyel.

A szöveti vizsgálatok igazolták, hogy a mikroholokristályos porfíroshoz közel álló megjelenés mellett teljesen hiányzik az amorf kőzetüveg fázis.

Összességében megállapítható, hogy a dunkófalvi kőbánya területén feltárt test egy a kráter radiális törése mentén elnyúló, hasadékmenti magmafelnyomulás eredménye. A nyugati oldalában látható szabályos alkatú kitüremkedés telérszerű anyagkinyomulás kezdeti stádiumban befagyott maradványa. A kristályok többgenerációs volta szakaszos felnyomulásra enged következtetni, az alapanyag relatíve nagy mennyisége pedig arra, hogy mindez viszonylag gyorsan játszódott le.

9.6. Alsó-pannon andezites vulkanizmus: a beregszentmiklósi kettős andezittest vizsgálata

A vizsgált útbevágás a Szinyák-hegység D-i szegélyén található (2.1. ábra, 37) Beregszentmikós község területén, Munkácstól 6 km-re ÉK-re. A NyDNy-KÉK-i csapású szelvény 180–190 m tszf-i magasságban található. Hossza csaknem 200 m, magassága 3-15 m. A szelvény középpontjának koordinátái é.sz. 48°29'18" és a k.h. 22°48'57".

A földtani térképeken (TYITOV, 1979; KUZOVENKO ed., 2001) és más szakirodalmi forrásokban (MALEJEV, 1964: SZOLODKOVA. 1964: KORONOVSZKU SZTYEPANOV, 1989) az általunk vizsgált szelvényt egy 11 km hosszú lávafolyás részeként jellemzik. Azonban az elsődleges terepi vizsgálatoknál egy aszimmetrikus jellegű kettős testet láttunk, amelynek Ny-i része oszlopos-pados fáciesekkel, a K-i pedig kürtőbreccsával jellemezhető. Ennek fényében az a kérdés merül fel, hogy a szelvény két része genetikailag összetartozik-e?

9.6.1. Földtani, szerkezeti és morfogenetikai

jellemzők

A földtani térképek által mutatott lávafolyás kőzetanyaga kétpiroxénes andezit (MALEJEV, 1964; KORONOVSZKIJ – SZOLODKOVA, 1964; SZTYEPANOV, 1989), ami viszonylag vastag andezit tufával van fedve, csak az útépítés tárta fel.

9.6.1. ábra. A beregszentmiklósi feltárás földtani környezete és helyszínrajza (TYITOV, 1979 nyomán, *saját szerkesztés)*

Jelmagyarázat: 1. andezit (levantei); 2. andezit tufa (levantei); 3. üledék; 4. főút; 5. mellékút; 6. Obava-patak; 7. feltárás; 8. szintvonalak; 9. benzinkút

Szelvényünk egy 200 m tsz.f.-i abszolút magasságú domb és egy ugyanilyen magasságú nyúlvány közötti nyeregben helyezkedik el. A szelvény környezetében a térszínkülönbségek jelentéktelenek, többnyire 10 - 30 m-en belüliek (9.6.1. ábra).

9.6.2. Terepi megfigyelések

Az útbevágás É-i oldala jobban feltárt falát szelvényeztük (9.6.2. ábra). A keleti szárnyon egy korábbi felnyomulás szerkezete tárul fel, a felső kupolarésszel és a kontaktusokkal. E közel 90 m széles, boltív szerű szerkezet a felszín alá bukva a szárnyain még láthatóan szélesedik. Centrumában mintegy 35 m szélességben blokkos, breccsás kőzettest található. A blokkláva lávabreccsa központi részén a fragmentumok mérete 10-20 cm-től 1-2 m-ig terjed és kevésbé esett szét, mint az őt körülvevő 10-25 m szélességű, felaprózott burok, amely kifejezett szabályossággal, héjszerű sávozottsággal rendeződik el a test felső szakaszán.

A lávabreccsa Ny-i szegélyén egy lávafolyást láthatunk, amely magasabbra nyomulhatott a már fellazult és átgőzölt mellékkőzetbe, mint az előbbiekben vázolt lávabreccsa.

A szelvény középső részén a mellékkőzet kontaktizált, közbecsípett maradványaival ketté van választva mintegy 10-12 m széles zónában. A fiatalabb intrúzió az előző tömeg szegélyén felhatolva annak ívesen görbült felületére nyomult rá, közécsípve az eredeti kontaktus. Ez a vonszolódási szegély kb. 1-3 m széles övben látható. A fiatalabb test felé haladva egy zavart zóna következik. Alulról fölfelé nyomuló üde szürke, helyenként vöröses felületű andezit nyelvek nyúlnak bele egy vörös salakos testbe, amely szintén övként borul rá a korábbi intrúzió hengerszerű felületére. Ezt az anyagot a lávafolyás olvadéka részben maga előtt préselte egy egyenetlen érintkezési felület mentén, részben magába ágyazta annak darabjait. Az üde szürke andezit tömeg anyagában jellegzetes, kihűlésből származó elválási felületek láthatóak, a feltárás csaknem függőleges falán.

A kontaktus közelében a fiatalabb test már egy átfűtött illószegényebb környezetbe nyomulva a korábbi fragmentált lakkolit szegélyzónáját szétszabdalta, megemelte és apofízaszerű benyomulásokkal átjárta. Ez arra utal, hogy kürtője az előbbi labiális csatorna Ny-i oldalán, azzal közel párhuzamosan alakulhatott ki. Érintkezési zónájukban jól megfigyelhető az illómozgások okozta elbontódás hatása. Ez, a kontaktus közelében felnyomott és becsípett apofízák közé zárt anyagban egy vörösessárgás elszíneződést, salakosodást és erőteljes agyagosodást idézett elő. Ennek kiterjedése azonban korlátozott, néhány dm-m vastagságú sávot érint csupán. A fiatalabb kőzettest felé haladva e vegyes salakos öv után már olyan, már oszlopos elválású andezit következik és K-re hajló görbületével követi a korábbi intrúzió felszínét. A bontott intruzív lávabreccsa tömege DK felé keskenyedik, tehát centruma az út É-i oldalán lehet, míg a másodikként felnyomuló üde andezit az előbbi oldalához simulva az útbevágás D-i oldalán szélesebb. A test Ny-i szegélye mentén az andezit vékonylemezessé válik. Innen K felé haladva a lemezes elválás padosságba megy át, amely mindinkább egy gyengén látható oszlopos elválással párosul. Ebben az üdébb andezitben illódúsulás nyomai nem láthatók.

9.6.2. ábra. A beregszentmiklósi feltárás vázlata a mintavételi pontokkal Jelmagyarázat: SzMa-I/1 - blokkos andezit; SzMa-I/2 - andezitbreccsa; SzMa-I/3 - bontott andezit; SzMa-I/4 - erősen bontott andezit; SzMa-I/5 - lemezes andezit; SzMa-I/6 - salak; SzMa-I/7 - kissé mállott oszlopos andezit

A feltárás kőzettípusainak makro- és mikroszkópi, valamit terepi és fáciestani jellemzőit a 9.6.1. táblázatban foglaltam össze:

9.6.1. táblázat. A feltárás földtani jellemzői

9.6.3. ábra. Elsőgenerációs hipersztén (A), zárványkoszorú mentén bontott zónás plagioklász (B)

9.6.3. Következtetések

A Beregszentmiklósi útbevágás kettős andezittestje eltérő képződésű, de azonos magmakamrából származó felszíni, illetve sekélyszubvulkáni képződmény.

Az idősebb test egy felszín közelben megrekedt intrúzív felnyomulás, amely a nedves vulkanoszediment környezetben befulladt és fölfelé legyezőszerűen szétnyíló lávabreccsa tömeggé változott. Csökkenő szemcseméret mellett a kőzet bontottsága - a mállással arányosan - a szegélyek felé fokozódik. Az augitos hiperszténandezit mikroholokristályos porfíros szövete is fedett körülmények között történő megszilárdulást tükröz.

A fiatalabb magmás test az előbbivel szemben egy D felé mozgó lávaárból származhat, amely részben ráfolyt a kismértékben még fedett intrúzívum tetejére, részben pedig Ny felől megkerülte azt. A két test érintkezési szegélyén felismerhető egy keskeny, erősen átsütött kontakt zóna, amely az agyagosodott andezit és a vele szinte elkülöníthetetlenül összefogazódott mellékkőzet anyagából. A lávaár az intrúzívumhoz közelebb eső részen gyenge oszlopos elválást mutat, a kivékonyodó Ny-i perem felé pedig lemezes kőzetváltozatba megy át. Kiterjedése az intrúzív test megkerülésével D felé ismét szélesedik.

Az elmondottak alapján e két andezittest képződését a következő folyamatsorral tartjuk modellezhetőnek.

Az aljzat törésrendszerét a központi hegységrész kalderaszerű beszakadásakor köríves és radiális mélytörések határozták meg.

A vulkanotektonikus mozgások és rengések közepette az aljzat említett törései többszörösen megújulva, reaktiválódva, a centrális vulkáni komplexum felépítményének képződményeire átöröklődve, a felszínig keresztülmetszették azokat.

A felszínre kifutó vulkanotektonikus törések által fellazított sávokban intenzívebbé vált a felszíni erózió, s így olyan árkos lejtőirányú mélyedések alakultak ki, amelyekben orientáltan történt a lágyabb tufafelszínek és az aprózódó lávaár-szegélyek anyagának kihordódása, már a működés szüneteiben is.

A fenti módon létrejött mélytörések, potenciális magma-felnyomulási síkokká válhattak, míg a felszínükön kialakult eróziós árkok a lávaárak levezető csatornáivá formálódtak.

A vizsgált kőzettesteket ugyanaz a magmás folyamat hozhatta létre, s a központi részen kialakult kamra olvadékai a mélytörés mentén kialakult, egymást követő parazitakürtőkön keresztül nyomultak a felszínre.

A két folyamat időben nagyon közel lehetett egymáshoz, így a nedves tufa-tufit környezet illótartalmának hatása mindkét test anyagában jól kimutatható és különösen az intrúziónál igen erőteljes.

A Ny-i rész környezetének relatív felfűtöttségét és illószegénységét jelzi, hogy a második intrúzió anyaga tömegesebb, kompaktabb és üdébb. Jellemzően oszlopos és pados, alárendelten a peremek felé lemezes elválású, sekélyszubvulkáni jellegű.

A fentiek szerint tehát azonos centrumból a radiális törések mentén több parazitafelnyomulás is történhetett, amely ugyanannak a lineáris szerkezetnek vált a részévé. Köztük sekély intruzívumok és lávát felszínre juttató kitörési központok egyaránt lehettek, így végül egy hosszan elnyúló, változó vastagságú és szélességű összefüggőnek tűnő ál-lávaár alakult ki, amelynek több anyagszolgáltatási központja volt. E központoknál általában többletanyag jelenik meg, kiszélesedés, kivastagodás jellemző, ezért a gerincen akár tereplépcsők is kialakulhattak.

A viszonylag szabályos alkatú csatornákban lefutó lávaár kihűlési, elválási résrendszere a folyóvizek izoceleriszeire emlékeztető teleszkópikus rajzolatot alakít ki ellapuló ellipszisek formájában. Ahol az útbevágáséhoz hasonló intrúzív testbe, vagy egyéb akadályba ütközött, ott féloldalas szimmetriájúvá vált, mint esetünkben is. A két test határán pedig egy két oldalról transzvaporizált és átsütött zóna jött létre, közbecsípett mellékkőzet maradványokkal.

A földtani térképeken jelzett lávafolyás centruma 11 km-re található a vizsgált feltárástól. Vastagsága a szelvényünkben 15 m, tőle 2 km-re 90 m, 5,5 km-re pedig 50 m (SZTYEPANOV, 1989 fúrásból származó adatok). Ennek alapján nem valószínű, hogy egységes lávafolyásról lenne szó, inkább hasadékmenti felnyomulások sorozatával állunk szemben, amelyek anyaga helyenként sekélyszubvulkáni, másutt vulkáni szintre jutott felnyomulás közben.

9.7. Alsó-pannon andezites és dácitos vulkanizmus: az erdőpataki kőbánya feltárásai

Az erdőpataki kőbánya (2.1. ábra, 35) a Szinyák és a Makovica morfológiai határát képező Viznyica-patak völgyében található, Munkácstól légvonalban 11 km-re ÉÉK felé.

vett minták sorszámával

egymást a korábban említettekkel.

Az andezit lávafolyásokba mélvített feltárások 5 km-es környezetében MALEJEV (1964) 14 ponton jelölt be andezitet és savanyú andezitet szolgáltató kitörési központokat, ezen kívül egy hipabisszikus test és egy salakkúp meglétét jelzi. А kitörési központok közül 5 található a Szinyák, 9 a Makovica területén. A hipabisszikus test a Szinyákban, a salakkúp pedig a Makovicában lelhető fel.

TYITOV (1979) hat kitörési központot térképezett, melyek közül kettő a Szinyák, négy pedig a Makovica területén működött. E vizsgálatsorozat szerint ezek elsősorban savanyú andezitet szolgáltattak, de alárendelten dácit is megjelenik. A TYITOVféle központok jobbára fedik

A MALEJEV (1964) által összeállított térkép és magyarázó számos helyen jelöl kitörési centrumokat anélkül, hogy ezekről információkat közölne, vagy megindokolná, hogy milyen vizsgálatok, vagy elvi megfontolások alapján jelölte ki, illetve határolta le őket.

Saját, módszeres terepi bejárásaink alapján a MALEJEV (1964)-féle felfogást számos esetben nem láttuk bizonyíthatónak. Így csupán valószínűsíthetjük, hogy főleg morfológiai megfontolások, illetve makroszöveti bélyegek alapján határolta le az általa feltételezett központokat. Ez alól kivételt képez az erdőpataki kőbányától ÉK-re 3 km-re fekvő Berdó-hegy (9.7.1. ábra). Itt 630 m tszf-i magasságban mélyítették a 30 T jelű kutatófúrást, melynek hiányos adatsorából is kirajzolódik, hogy andezit láva és tufarétegek váltakoznak egymással, rétegvulkáni szerkezetet építve fel (9.7.2. ábra).

A Berdó-hegy környezetében 600-660 m-es magasságban még foltokban előbukkannak tufa felszínek lávafolyások alól. A fúrásban viszont tengerszint

alatt több mint 100 m-ig követhetők andezittufa "szintek", így egészében csaknem 800 m vastagságú összletben találkozhatunk az andezittufa változó vastagságú közbetelepüléseivel.

9.7.1. ábra. Az erdőpataki kőbánya földtani környezete (TYITOV et al., 1979 adatainak felhasználásával átdolgozva) *Jelmagyarázat:* 1. dácit, 2. savanyú andezit, 3. andezit, 4. andezit tufa

Az egyik ilyen andezittufa "szint" tárul fel az erdőpataki bánya völgyoldalában az andezit test burkoló képződményeként, több mint 50 m virtuális vastagságban. Ennek az andezites vulkáni sorozatnak a képződményeibe vágódik be a Viznyica-patak völgye. A bánya magasságában (9.7.3. ábra), a völgytalptól (240 m tszf) a bányaudvar feletti gerincig (360 m) andezittufából áll az a befogadó környezet, amelybe ágyazva a bányászott andezittestek megtalálhatók.

A földtani szórványadatokból és térképváltozatokból, valamint kevés forrásadatból és az új elemzési eredményekből kirajzolódik a bánya környezetének az az elvi rétegoszlopa, amelybe a terület vulkanitjai települési sorrendben beilleszthetők. Az összlet egyik nagytömegű bázisképződménye a már említett települési helyzetű andezittufa, amelynek ma már nagyon szeszélyes a térbeli eloszlása az erózió következményeként.

A tufa összletet áttörő andezitek alkotják az időrendben másodikként létrejövő fő kőzettípust. Viszonylag nagy területi elterjedésben találhatók, számos centrumból származnak, amelyek egy adott időintervallumon belül voltak aktívak, nem egyetlen kitörési folyamat termékei. Az MTA ATOMKIban készíttetett radiometrikus koradat nagyon fiatal (8,0±? millió év) vulkáni működést mutat, de sajnos nem tudjuk a hibahatárt, így az adat csak tájékoztató jellegűnek fogadható el.

A 30 T fúrás 660 és 1148 m-es mélységtartományából származó andezit mintákon hat db K/Ar radiometrikus korvizsgálat történt, amelyek 9,3-11,6 millió év közötti aktivitási intervallumot adtak, ±0,5-0,8 millió év hibahatárral (PÉCSKAI et al., 2000). A vizsgált kőzetpéldányok bazaltos andezitek és piroxénandezitek, részben lávafolvások termékeként. részben intrúzív testekként lettek meghatározva szövet alapján. Ezek egymásra következése azonban sem geokémiai jelleg, sem fácies, sem kor szempontjából nem mutat következetes sorrendiséget, igazolva ezzel az általunk előbbiekben vázolt képet, amelyben az áttörő és intrúzívumként megrekedt magmás testek bonyolult összefonódásban találhatók a tufaösszlet belsejében. Feltehető, hogy a tufaösszletet áttörő andezit is sekélyintrúzív test, amelyből kisebb lávafolyások indultak.

9.7.2. ábra. A 30 T jelű kutatófúrás rétegsorának magvétellel harántolt része az MTA ATOMKI-ban készült K/Ar koradatokkal (A Kárpátaljai Geológiai Expedíció adattára, PÉCSKAY et al., 2000 adatainak felhasználásával)
A kisebb intrúzív tömegek környezeti hűtőhatás következtében nem csak szegélyeiken, hanem esetenként teljes terjedelmükben hialoklasztizálódhatnak, vagy üveges, mikrolitos, porfíros szövetet mutatnak, ami nem reprezentálja saját valóságos fácieskörnyezetüket. Számos példát ismerünk ezekre a Tardonai-dombság befulladt, részben blokkosodott, breccsásodott, hialoklasztizálódott andezit felnyomulásainak anyagában, valamint kisebb szubvulkáni testek szegélyén a Tokaji-hegységben (KOZÁK – Rózsa, 1981; KOZÁK et al., 1998).

A földtani térkép harmadik nagyobb képződménycsoportja az ún. savanyú andezit, amely szintén összevont kategória, mivel több centrumból származó, változatos települési helyzetű andeziteket foglal magába. Létrejöttükben a magmás differenciáció és kontamináció játszott szerepet.

A negyedik, már csupán kis kiterjedésben és fedőhelyzetben található andezites karakterű dácitok az előbb említett fokozatosan savanyodó differenciációs sor utolsó termékei a területen.

9.7.1. Terepi felvételezés, mintavételek

A bányaudvar kétszintű, több mint 250 m hosszú, a fejtési homlokfrontok vonala többször megtörik. Az alsó udvar magassága 8-12 m, a felsőé ezt néhol jelentősen meghaladja. Mivel a kitűnő feltárásokat jelentő bányaudvarok területéről semmilyen térképi dokumentáció nem maradt, így a jobb eligazodás érdekében szükségszerűen el kellett készítenünk azok helyszínrajzát (9.7.3. ábra). E helyszínrajzon négy nagyobb szelvény (EpI;, EpII; EpIII; EpIV) van feltüntetve, de ebben a munkában, mint típusszelvényt csak az EpI-t részletezem (GÖNCZY – KOZÁK, 2007).

9.7.3. ábra. Az erdőpataki kőbánya helyszínrajza (*saját felvétel*) *Jelmagyarázat:* 1. utak; 2. szintvonalak; 3. a bányaterület határa; 4. fejtési frontok a feldolgozott szelvények sorszámával

Ezt követte fejtési frontok kőzetfelszíneinek makroszkópos a szemrevételezése és a láva mozgásából és hűléséből származó elválási felületek meghatározása, az elkülönülő részegységek megkülönböztetése, értelmezett rajzi dokumentálása (9.7.4. ábra) és átfogó jellemzése. Ennek részeként meghatároztuk a lávamozgási centrumokat, az együtt, egy rendszerben mozgó képződött kőzettestek kiterjedését, kőzetváltozatainak lávatömegekből genetikai-szöveti típusait.

9.7.4. ábra. EpI szelvény. Erdőpataki kőbánya, alsó udvar É-i része a mintavételi pontokkal

9.7.2. Az Ep (Erdőpatak) I szelvény terepi jellemzői

A bánya É-i részén található alsó bányaudvar ÉNy–DK-i csapású fejtési fala egy kettős lávaárszerkezetet tár fel, amelynek a bányászat leművelte a tetejét. A szelvénysík az egykori mozgás irányára csaknem merőlegesen metszi át a kőzettömeget. A 110 m szélességű fejtési fronthomlok mindkét szélén salakos, bontott, erősen blokkosodott zóna található. A kettős lávaár alsó zónája láthatóan összefügg egymással, de a középvonal mentén összetorlódás és különválás figyelhető meg. Valószínűleg salakból képződött terepakadály miatt válhatott szét majd egyesült a lávaár két része. A lávaár hűlési szegélyein a falhatás miatt lassabban mozgó anyag a szürke lemezes változatból tömbös fekete, majd vörös salakos szegélyfáciesbe megy át (9.7.1. táblázat), hasonlóan a tokaji Nagy-hegy lávaárjaihoz (KOZÁK – RÓZSA, 1981; MCINTOSH et al., 2012).

vöröses törmelék dominanciájú autobreccsa	vöröses törmelék dominanciájú autobreccsa	fekete, tömbös, néhol oszlopos elválású koherens andezit	vékonylemezes koherens andezit	Fácies
vörös salakos, kézzel morzsolható	vörhenyes színű, változóan bontott, könnyen törhető, a mozgás közbeni breccsásodás miatt mikro fragmentált szakaszok	masszív pados (20– 40 cm)	néhány mm–cm vastagságú lemezekre széteső andezit, folyásossága a lemezekkel párhuzamos	Terepi jellemzők
limonittal minden részletében átitatott, helyenként agyagos	hólyagüreges vörhenyes szürke andezit klasztokat porózus vöröses salakos mátrix zár magába	ua.	üde, középszürke	Szöveti sajátosságok
még agyagosabb, szin- és posztgenetikus hidratáció miatt limonittal egyenletesen átitatott	szemcseméret azonos, de bontott, agyagos	ua.	mikroholokristályos porfíros-pilotaxitos közötti átmenet	Alapanyag és elváltozások
ua., de reliktumok formájában (9.7.5. ábra, D)	 3 különböző mérettartományban megjelenő hipidiomorf plagioklászok (ikres, zónás), max. 1–3 mm, korrodált mag, üde továbbnövekedési szegély 3 különböző mérettartományban megjelenő orto- és klinopiroxén, amf (oszlopos, tűs) glomeroporfíros esomók, opak: magnetit, pirit (9.7.5. ábra, C) 	ua., (9.7.5. ábra, B)	3 különböző mérettartományban megjelenő hipidiomorf plagioklászok (ikres), max. 2–3 mm, továbbnövekedés szegély, tűs mikrolitok opx<1–2% mikrolit, közöttük opak (9.7.5. ábra, A)	Fenokristályok
vöröses salakos, autbreccsás szegélyfácies	vöröses salakos, autbreccsás szegélyfácies	lávaárfácies belső tömbös zónája	lávaár disztális alsó, gyorsan lehűlt szegélyzónája	Értelmezés

9.7.1. táblázat. Az erdőpataki feltárás földtani jellemzőinek vázlata

Ezt a képet zavarja azonban a saját anyagú sárgás és vörhenyes salakanyag, illetve a körbeágyazó andezittufa nagy tömegben történő hozzákeveredése. Ezek a környezetből és szegélyfáciesekből bekerült morzsalékos, néhol agyagos "meddő" anyagok zárványként értelmezhetők.

Az elmondottaknak megfelelően a szelvényekben négy különböző kőzetfácies figyelhető meg: 1. szürke, vékonylemezes, oszlopos andezit (9.7.4. ábra, EpI/1 minta). 2. fekete, tömbös elválású andezit (9.7.4. ábra, EpI/2 minta). 3. vöröses salakos szegélyfácies (9.7.4. ábra, EpI/3 minta). 4. "extraklasztos" andezittufa-zárvány blokkok (9.7.4. ábra, EpI/4 minta).

9.7.5. ábra. Az erdőpataki feltárás EpI jelű szelvénye kőzetváltozatainak mikroszkópi jellemzői

A: Mikroholokristályos porfíros szövet földpát mikrolitokkal és hipersztén (001) szerinti metszetével. A mikrolitos lécek között apró opakszemcsék figyelhetők meg; B: A fekete tömbös andezit sötétebb sávjának pilotaxitos szövetű, limonitosan színezett alapanyagában irányított plagioklász mikrolitok és ikres augit látható; C: Második generációs erodált, bontott hipersztén az erősen oxihidratált vörös salakos szegély kőzetéből; D: Korrodált földpátok és földpátreliktumok az "extraklasztos" andezittufa-zárvány blokkból

9.7.3. Következtetések

A vizsgálataink alapján az Erdőpatak és Felsőviznice között bányászattal feltárt sekélyszubvulkáni-vulkáni vonulat magmaanyaga kora-pannóniai korú.

Nagyobb mélységben megindult korai kristályosodását jelzik a színes és színtelen alkotók első generációja által képezett glomeroporfíros szemcse aggregátumok, melyeknek magját gyakran piroxének képezik.

A földpátok egyidejűleg zónás és ikerlemezes megjelenése, gyakori alapanyag és színes alkotó anyagú zárványossága, zónás továbbnövekedésein a magma többszakaszú kristályosodását, illetve fölnyomuló mozgását jelzik.

A kőzettest hosszan elnyúló, enyhén elliptikus, helyenként kiszélesedő és oldalkinvomulásokkal megielenő alkata centrolabiális hasadékmenti felnyomulásra utal. A leágazások és a centrális rész rövidtávon történt folyásosságát a szövet és a kihűlési-elválási rendszer igazolja. Ugyanakkor azonban a beágyazó extraklasztos andezittufa környezet nem csupán alizatát képezte, hanem oldalirányú, határoló kereteit is megszabta a magmamozgásnak. Ugyancsak bizonyítható, hogy a tufaanyag egy része kezdetben felülről is beburkolta változó vastagságban a magmatömeget, amelybe kisebb-nagyobb blokkjai beleszakadtak, illetve változó mélységben hozzákeveredtek, szemmel is jól elkülöníthető testeket alkotva. Ezáltal a magmatest részben sekélyszubvulkáni, részben lávafolyásokra emlékeztető szerkezetet és szövetet mutat.

Ezek genetikailag összefüggő, hasonló anyagi minőségű lávafolyások, amelyek vagy közös centrumból származnak, de közrezárt tufa és salakkúpok választották szét őket a mozgásuk során, vagy egymáshoz közeli, önálló centrumokhoz kötött effúzivumok, amelyek azonban közös kamrából táplálkoztak.

9.8. A Szinyák típusfeltárásainak helye egy rétegvulkáni komplexumban

hely a	fő litofáciesek	kisebb	egyéb jellemzők
komplexumon		litofáciesek	
belül			
fő kürtő	láva dóm(ok), kisebb	vékony lávaárak,	hidrotermális
	intrúziók (lávadugó)	laharok	elváltozások
	tefra, kürtőbreccsák		
vulkáni kúp	nagyméretű koherens,	hullott tufa,	a képződmények a
_	külső részükön	dájkok, szillek,	korábbi völgyeket töltik
	autobreccsásodott	blokk és hamuár	ki, vulkanosztratigráfiai
	lávaárak, laharok	üledékek	inverzió
törmelék palást	intenzív erózió,	törmelék lavinák,	a kúppalást
_	kitöréssel egyidejű	lávaárak, lösz	képződményeinek
	vulkanoklasztikus		feltártságát és
	törmelékár üledékek		értelmezését az erózió
	(laharok), hullott tufák		jelentősen befolyásolja
parazita kürtők	az aljzattektonika által	áthalmozott	freatomagmás kitörések
	meghatározott	üledékek,	nagyobb aránya
	irányokban, lávaárak,	disztális hullott	
	intrúziók, tufagyűrűk,	tefra	
	salakkúpok		

Egy rétegvulkáni komplexum elvi fácieseit a szakirodalom nagyon szépen leírja (9.8.1. táblázat).

9.8.1 táblázat. Egy rétegvulkán főbb litofáciesei a komplexumon belüli helyzet szerint (Williams-Mcbirney, 1979; Hackett – Houghton, 1989; Davidson – De Silva, 1999; Karátson, 2007; Németh – Martin, 2007)

Sajnos, a Szinyák esetében nem olyan fokú a megkutatottság, hogy pontosan be lehetne határolni a centrális (vulkáni kúp) és a proximális (törmelékpalást) fácieseket, így az itt képződött szubvulkáni testeket és lávafolyásokat sem lehet egyértelműen szétválasztani. Ennek megfelelően, az egyes szelvényeket a következőképpen soroltam be egy elvi rétegvulkáni komplexumba (9.8.1. ábra):

1. A *fedelesfalvi andezittufa feltárás* fáciestanilag viszonylag könnyen beazonosítható, mivel a hegység peremi részén, a Makovica és a Szinyák morfológiai határán található, benne kisebb lávafolyással egy eróziósan kipreparálódott völgyoldalban. A képződmény korát sajnos csak közvetetten tudtam meghatározni, aminek alapján a legidősebb komplexumként definiáltam, amely a rétegvulkáni komplexum proximális és a disztális fáciesének a határán található.

2. A *frigyesfalvi andezitfeltárás* fáciestani beazonosítása már sokkal nehezebb feladat. A földtani térképek (TYITOV, 1979; KUZOVENKO ed., 2001) a feltárás 5 km-es sugarában 6 krátert jelölnek. Ezek átlagos átmérője 0,5–1,3 km. Így, egyrészt nem lehet eldönteni, hogy melyikkel lehetett kapcsolatban, másrészt ezek maguk is kisebb parazitacentrumok lehetnek, hiszen a Kárpát-medencében az átlagos kráterátmérő 2 km körül van (KARÁTSON, 1996). Azon

kívül, a központi krátertől több mint 12 km-re vagyunk, így reálisabbnak látszott a felhasznált modell proximális fáciesébe helyezni a feltárást.

3. A *bányfalui feltárás* a centrális fáciesbe került. Ennek oka, hogy a legközelebbi bizonyítható centrum, a Szerednyij Verh, alig 5 km-re van, ezen kívül nagy valószínűséggel számolnunk kell a MALEJEV (1964) által feltételezett bányafalui vulkánnal is, melynek egyik központja mintegy 2 km-re található.

4. A *kölcsényi feltárás* a hegység peremén található. A környéken nincs nagyobb kráter, nem nagy vastagságú lávafolyás, valószínű, hogy egy kisebb parazitacentrum lehetett a forrása. Az elmondottak alapján a proximális fáciesbe soroltam be.

5. A *dunkófalvi kőbánya* az egyik legfiatalabb andezites centrumtól, az Obavai Kő-től mintegy 5 km-re található. A földtani térképek (TYITOV, 1979; KUZOVENKO ed., 2001) az innen kiinduló lávafolyás részeként értékelik, bár én ezt nem láttam bizonyítottnak. Azonban a centrumhoz közeli helyzet és az innen kiinduló vulkanotektonikus törések alátámasztják a centrális fáciesbe való besorolását.

6. A *beregszentmiklósi kettős andezittest* szintén a hegységperemi feltárásokat gyarapítja. A legközelebbi bizonyítható centrum 11 km-re van. A feltárás K-i része azonban maga is kürtőbreccsával jellemezhető, a Ny-i rész lávájának pedig nem bizonyítható a kiindulási központja, így a proximális fáciesbe soroltam.

7. Ahogy a 9.7. fejezetben részleteztem, nem tudtam beazonosítani *az erdőpataki kőbánya* láváinak kiindulási centrumát. A hegységperemi helyzet, a különböző feltártságú tufában megrekedt helyzet és az alacsony tengerszintfeletti magasság miatt soroltam a proximális fáciesbe.

9.8.1. ábra. A Szinyák típusszelvényei egy rétegvulkáni komplexum elvi fáciessorrendjében

10. A SZINYÁK MAGMÁS KOMPLEXUMÁNAK GEOKÉMIÁJA

A Szinyák területéről származó 56 db főelemgeokémiai adatsor mellé, a korábbi szerzők által kevésbé vagy egyáltalán nem kutatott területekről begyűjtött mintákból 59 db főelemsor készült a DE Ásvány- és Földtani Tanszékének laboratóriumában, így a továbbiakban 115 db adatsorral dolgoztam (2. melléklet). A nyomelemek és ritkaföldek tekintetében elsősorban a SEGHEDI (et al., 2001) által publikált 7 adatsorra támaszkodtam, ehhez 4 elemzést készíttettem a MÁFI laboratóriumában, így 11 adatsort elemezhettem a továbbiakban. A geokémiai elemzést a klaszteranalízis által kiadott csoportosítás szerint végeztem.

A saját mintákból kapott és irodalomból összeszedett adatok alapján elmondható, hogy a Szinyák kőzettípusai a bazaltos andezit és andezit mezőben mozognak, néhány minta átnyúlik a dácit mezőbe is, azonban ezek aránya nem jelentős (10.1 ábra). A típusos mészalkáli kőzetek (10.2. ábra) közepes és magas kálium tartalmú sorozatai közé tartoznak (10.3. ábra).

10.1. ábra. A Szinyák kőzetmintáinak helyzete a TAS diagramban

10.2. ábra. A Szinyák kőzetmintáinak helyzete az AMF diagramban (Irvin – Baragar, 1971) (a jelmagyarázat a 10.1. ábrán)

10.3. A Szinyák-hegység andezitjeinek megoszlása a kálium tartalom alapján (Gill, 1981) (a jelmagyarázat a 10.1. ábrán)

A Harker féle variációs diagramban a K_2O és a K_2O/Na_2O kivételével az SiO₂ függvényében csökkenő tendenciák érvényesülnek, a differenciációs folyamat előrehaladásának megfelelően (10.4 ábra).

A Ti a Fe és Mg koncentrációk az olvadék savanyodásának növekedésével folyamatosan csökkennek, a piroxének kiválásával. Az elsősorban bázisos plagioklászok jelenlétének köszönhetően a Ca mutat csökkenő tendenciát. A Na viszonylag konstans, a földpátok nagy arányának és a kevésbé savanyú tagok jelenléte miatt. A K növekedése egyértelmű, mivel a bázisos rendszerben erősen inkompatibilis. Összességében bázisos plagioklász, olivin(?), piroxén, magneiti és ilmenit frakcionáció jellemző.

10.3. ábra. A Szinyák kőzetmintáinak helyzete a Harker diagramban (a jelmagyarázat a 10.1. ábrán)

A nyomelemek vizsgálatakor kondritra és óceánközépi hátságra normálva, sokelemes diagrammon lehet jó áttekintést kapni az adott területről (SUN–MCDONOUGH, 1989). A Szinyák esetében a könnyű ritkaföldek a differenciáció mentén dúsultak a nehézritkaföldekhez képest (La_N/Yb_N 3,2-4,9 egy mintánál 7,7). A trenden egy viszonylag jelentős változás látszik, az Eu negatív anomáliája (10.4/A ábra), ami a földpátok frakcionációjának a következménye. Ennek mértéke Eu/Eu* 0,94 – 0,66.

10. 4. ábra. A Szinyák kőzetmintáinak ábrázolása kondrithoz (A) és óceánközépi hátsághoz viszonyítva (SEGHEDI, 2001, UA13, UA14, UA15, UA16, UA17, UA21, UA33) (a jelmagyarázat a 10.1. ábrán)

A vizsgált mintákon erős Nb illetve enyhe Y és P veszteséget mutat. Ezen kívül nagymértékű K és Pb többletet illetve kismértékű Sr, Nd, Dy, Yb, Lu növekedés figyelhető meg (10.4/B ábra). Ezek az eltérések azt mutatják, hogy a magma forrása heterogén, magmakeveredés, vagy kontamináció eredménye. Az erős Nb veszteség a kontinentális kéreg jellegzetessége, akár a kéreganyag bekerülésének a mutatója is lehet (ROLLINSON, 1993; SEGHEDI ET AL., 2001).

A modális elemzések és a csiszolatvizsgálatok alkalmával színes ásványok közül csak monoklin és rombos piroxéneket találtam, így feltételeztem, hogy amfibol frakcionáció nem történt. Ezt támasztja alá a La/Y vs Y diagram, ahol az érték 1,5 alatt marad, összehasonlítva a Nyugati- vagy a Keleti-Kárpátok mintáival (GMÉLING, 2009) ahol az amfibol (gránát) frakcionáció értéke 2-5 közötti.

10. 5. ábra. Az ásványi komponensek a La/Y vs Y diagrammon (az ábrában lévő kép GMÉLING (2009) dolgozatából származik) (a jelmagyarázat a 10.1. ábrán)

ÖSSZEFOGLALÓ

Kárpátalja természetföldrajzi szempontból a Kárpát-medence ÉK-i részén, politikai szempontból pedig Ukrajnában helyezkedik el. Az ország legnyugatibb megyéjeként Magyarországgal, Szlovákiával, Lengyelországgal és Romániával határos, országon belül pedig a Lvivi és az Ivano Frankivszki megyékkel.

A térség földtani szakirodalma és maga a régió, mint kutatási terület a XX. század drasztikus történelmi eseményei miatt a magyar és a nemzetközi érdeklődő szakmai körök számára nehezen hozzáférhető területté vált. A szovjet határövezeti státusz, valamint az ott előforduló miocén színes- és nemesfémes ércesedések és a velük párhuzamosan megjelenő agyagos, alunitos, kvarcitos kísérőzónák ipari jelentősége még az intézményesített államközi együttműködéseket is ellehetetlenítette. Így, kevés és alig kontrollálható földtani információ került ki nemzetközi színtérre. Ezek jobbára áttekintő jellegű, szűrt információtartalmú, nagyszerkezeti, rétegtani, ill. vulkanológiai közlések voltak, megbízható térképmellékletek és helyszínrajzok nélkül. Nagyobb hangsúlyt fektettek a törések és a mélyszerkezet megismerésére, a törésvonalak mentén képződött, vulkanitokhoz kapcsolódó ércesedés felkutatására.

A felsorolt problémákból adódóan az egyes kárpátaljai vulkáni egységekkel kapcsolatosan is nagyon nehéz szakirodalmi adatokhoz jutni. Az ezekben a kiadványokban megjelenő, a kémiai összetételre, illetve az egyes formációk, komplexumok korára, területi kiterjedésére, felszíni gyakoriságára, tömegére vonatkozó konkrét adatmennyiség sem jelentős. További nehézséget jelent, hogy nem lehet tudni, honnan származnak azok a minták, amelyekből geokémiai vagy radiometrikus kor adatokat készítettek, továbbá a publikációkban a legritkább esetben tüntetik fel az adatok előállítási módszerét.

A meglévő adatokhoz, adattári munkákhoz, kutatási jelentésekhez nagyon nehéz hozzáférni. A nehézséget nem csak a szovjet rendszer örökségeként megmaradt titkosítások okozzák, hanem az is, hogy a rossz gazdasági helyzet miatt bezárják és megszüntetik az adattárakat.

Az itt felsorolt okok miatt indokoltnak láttuk egy olyan dolgozat elkészítését, amely egyrészt betekintést ad a kárpátaljai vulkáni egységek fejlődéstörténetébe, másrészt bemutat egy részletesebben feldolgozott vulkáni egységet, ami jelen esetben a Szinyák-hegység.

Az utolsó vulkanológiai kutatások a Szinyák területén az 1960-as évek elején befejeződtek. A földtani térképek újraértékelése az 1970-es években történt meg. Ennek megfelelően, felmerült a hegység újratérképezésének gondolata is, ami természetesen egy ilyen munka keretébe nem helyezhető be, de kísérletet tettem a minél részletesebb terepbejárások, mintavételezések és szelvényezés alapján a hegység vulkanizmusának újraértékelésére.

Vulkanológiai-kőzettani vizsgálataink eredményeit az alábbiakban foglaljuk össze:

Kialakítottam Kárpátalja digitális földtani térképét a magmás, az üledékes és a metamorf képződményekre vonatkozóan. Az Északkeleti-Kárpátok területén végzett földtani tárgyú kutatások egyik legfontosabb hátráltatója, hogy nincsenek hozzáférhető térképek. A volt Szovjetunió területén általános gyakorlat volt, hogy a térképekhez csak külön engedéllyel lehetett hozzájutni. Amelyek forgalomba kerültek, azok bizonyos értelemben használhatatlanok voltak, mert nem kerültek fel rá azonosítási pontok vagy koordináták és nincs rajtuk kilométerháló sem. Ukrajnában 2000-ben oldották fel az 1:100 000 méretarányú topográfiai térképek titkosítását, melyeken a kiadáskor feltüntették a kilométerhálót. Földtani térképek 1:200 000 méretarányban hozzáférhetőek, azonosítási pontok nélkül. Egy földtani térkép munkapéldánya alapján tudtam azonosítási pontokat találni, majd georeferálni, összekapcsolni a topográfiai térképpel, végül GeoMedia Professional szoftver segítségével kiépíteni az adatbázist.

Kialakítottam Kárpátalja magmás komplexumainak geokémiai és radiometrikus kor adatbázisát. A főelem adatbázis kialakításához az 1950–2013 közötti szakirodalmat dolgoztam fel. Ennek eredményeképpen 293 adatsort találtam. Ehhez a Debreceni Egyetem Ásvány- és Földtani Tanszékének laboratóriumában 59, a Szinyák-hegység terültéről származó kőzetmintából készíttettem elemzéseket, így az adatbázis 352 főelem adatsort tartalmaz.

A legtöbb adat származási helyét nem, vagy csak nagy vonalakban adták meg a szerzők. Több éves kutatómunka és a Kárpátaljai Geológiai Expedíció szakembereinek szóbeli közlése alapján sikerült a szakirodalmi adatok több mint 90 %-át 1 km²-en belül lokalizálni. Az elmondottaknak megfelelően a területi trendek kialakításánál jól használhatók, a kisebb képződmények elemzésénél kellő óvatossággal kell eljárni.

A felhasznált publikációk közül csak egyben találtam utalást arra nézve, hogy milyen módszerrel készültek a geokémiai adatsorok, bár a szerző megjegyzi, hogy nincs egységesen használt eljárás. Valószínű azonban, hogy az elemzések túlnyomó többsége a Magyarországon és a volt szocialista országokban elvileg egységes nedveskémiai módszerrel készült.

A nyomelemek és ritkaföldek esetében sokkal nagyobb hiányosságok tapasztalhatók. Az elmúlt három évtizedben Kárpátalja magmás komplexumairól egy publikáció közölt 34 elemzést, melyekhez hozzáadódik a Szinyák területéről általam gyűjtött mintákból készíttetett öt adatsor, így 39 nyomelem sor került az adatbázisba.

Ehhez hasonlóan elkészült a kárpátaljai magmás komplexumok radiometrikus kor adatbázisa is. A 153 db szakirodalmi adathoz 8, saját mintából az ATOMKI-ban készíttetett, a Szinyák-hegység területére eső adatot tudtam hozzátenni. Így összesen 161 abszolút kort tudtam adatbázisba rendezni, melyből 29 esik a Szinyák területére, ezek közül 22 felszíni, 7 pedig fúrásból származik.

Vizsgálataim azt mutatták, hogy a szakirodalmi adatokkal ellentétben a Szinyák területén csak egy rétegvulkán működött, melynek központi kráterátmérője megfelel a Kárpát-medencei átlagnak. A Szinyák-hegység központi részét a szakirodalom sommavezúvió típusú kalderás szerkezetű vulkánnak, vagy kettős kráteres kifejlődésű vulkánnak ábrázolja. A területén tíz 300–800 m átmérőjű krátert, valamint negyven egyéb kitörési centrumot azonosítottak, melyeket a szakirodalom 12 kisebb-nagyobb vulkánhoz sorol.

Vizsgálataim során sem a méretbeli, sem a földtani és vulkanológiai eredmények nem utaltak arra, hogy a területen több sztratovulkán működött volna. A terepen és a különbféle vizsgálatok által kimutatott különbségek egy parazitakúpokkal és intrúziókkal kísért rétegvulkán szakaszos működésével magyarázhatók.

A hegység területén a vulkáni működés a szarmatában kezdődik és a pannon legelején fejeződik be. A szovjet-ukrán földtani térképek a kárpátaljai vulkáni egységek fő felszínalkotóinak korát levanteiként határozzák meg. Az egész Kárpátalja területéről összegyűjtött magmás komplexumokra vonatkozó K/Ar korokat tartalmazó adatbázisból azonban egy sem esik a pliocén (5,33 millió év – 2,4 millió év) kor idejére. Konkrétan, a Szinyák területéről származó, elsősorban saját koradatok 13,3±1,5 millió év és 8,88±0,39 millió év közé esnek, így a vulkanizmus szarmata– alsó-pannóniai korú.

A főelem-geokémiai adatokból klaszteranalízissel jól definiálható egységeket hoztam létre, melyek nagyrészt területileg is összpontosulnak. A csoportosítás elsősorban az SiO₂ tartalmon alapul. Amint fentebb említettem, az egész kárpátaljai vulkáni vonulat erős adathiánnyal jellemezhető. A legtöbb adat főelemekből áll rendelkezésre, így kézenfekvő, hogy ezt az adatbázist tekintsem alapnak egy olyan modell kialakításához, amely reprezentálja a hegység vulkáni működésének szakaszosságát.

A főelemekből hierarchikus klaszteranalízissel csoportokat hoztam létre, melyeket párhuzamosítottam a koradatokkal. Ennek alapján a Szinyák területén történt kitöréseket hat nagyobb szakaszba soroltam a kor és a SiO₂ tartalom szerinti, valamint a területi eloszlás alapján.

A Szinyák vulkanizmusának működési szakaszaiban jól megfigyelhető differenciációs folyamatok mentek végbe, hiszen a kitörések bazaltos andezittel kezdődnek és andezittel folytatódnak, majd savanyú andezittel, esetleg dácittal fejeződtek be. Elsősorban bázisos plagioklász, olivin(?), piroxén, magnetit és ilmenit frakcionáció történt. A főelem és a K/Ar kor adatbázisból kialakított kitörési sorrend kőzettípusainak változása azt mutatja, hogy az egymás után következő működési szakaszok két esetben ismétlődnek úgy, hogy a bázisosabb kitörési termékektől a savanyúbbak felé tendálnak.

A különböző frakcionációkhoz kapcsolódó megállapításokat a Harker-féle diagramokból vontam le. A főelemeket a SiO₂ függvényében ábrázolva a TiO₂ csökken (titanomagnetit és ilmenit frakcionáció), az Al_2O_3 csökken (bázisos plagioklász frakcionáció), a Fe és a Mg csökken (piroxén frakcionáció), a CaO csökken (plagioklász, esetleg klinopiroxén frakcionáció), a Na₂O nem mutat trendet, a K₂O pedig növekszik a differenciáció előrehaladásának megfelelően.

A Szinyák a legnagyobb térfogatú vulkán a kárpátaljai vulkáni vonulatok erózióbázis feletti vulkanitjainak tekintetében, ugyanakkor Kárpát-medencei viszonylatban az átlagnak felel meg. Összehasonlító térfogatszámítási vizsgálatokat végeztem Kárpátalja vulkánmorfológiai egységein, illetve ahol sikerült elkülöníteni a palástot a szomszédos vulkánoktól, ott egy-egy vulkánra külön-külön is elvégeztem a számítást. Ennek eredményeképpen a Szinyák erózióbázis feletti vulkanitjainak térfogata 74 km³. A két szomszédos vulkánmorfológiai egység térfogata meghaladja a Szinyák köbtartalmát, azonban figyelembe kell venni, hogy az egyikben a mai ismereteink szerint legalább három, a másikban pedig legalább négy sztratovulkán(?) hozta a felszínre a nagyobb anyagmennyiséget.

Más Kárpát-medencei vulkánokkal összevetve a Hargitabeli Somlyóhoz (86,4 km³) hasonlít leginkább. Ugyanakkor jóval kisebb, mint a Keleti-Kárpátok legnagyobb vulkánjai: a Kelemen (247,4 km³), a Fancsal (225,4 km³) vagy a Mezőhavas (161,6 km³), de jóval nagyobb, mint a Csomád (12,2 km³) vagy a Piliske (17,4 km³).

SUMMARY

In terms of natural geography Transcarpathia is situated in the northeastern part of the Carpathian Basin, politically in the state of Ukraine. As the westernmost region of the country it borders on Hungary, Slovakia, Poland and Romania and also on the L'viv and Ivano-Frankivs'k regions within the state.

Geological professional literature of Transcarpathia and the region itself as a research area has become hardly accessible for the Hungarian and international inquisitive technical circles due to drastic historical events of the 20th century. The Soviet borderland status, the Miocene base and precious metal mineralizations and the industrial significance of the accompanying zones of clay minerals, alunite and quartzite have hindered even the official international cooperations. Thus, only little and barely controllable pieces of geological information have reached the international scene. These were mainly overview style publications with filtered information in the field of tectonics, stratigraphy or volcanology without reliable map appendices and profiles. They have emphasized the recognition of deep structures and the quest for mineralization by the fault-lines connected with the volcanites.

As a sequel of the problems listed above it is very difficult to find professional data on certain Transcarpathian volcanic units. The factual information in these publications regarding the chemical composition, the age of individual formations and complexes, their areal distribution, surficial abundance and volume is not significant either. A further difficulty occurs from the fact that the exact localities of the geochemically analyzed and radiometrically dated samples are often uncertain, and what is more, the publications almost never indicate the analytical details of the relevant data.

It is also very troublesome to access the existing information, data data repository materials and research reports. Difficulties are caused not only by classifying the results as a legacy of the Soviet system but also by closing and putting down the data repositories through the bad economic situation.

Due to the reasons listed above we considered it reasonable to prepare a disseration which on one hand gives an insight into the evolution of the Transcarpathian volcanic units, and on the other hand presents a detailed invetigation of a significant volcanic unit, which in our case is the Syniak Mountains.

The latest volcanological explorations in the Syniak area were finished in the beginning of the 1960s. Re-evaluation of the geological maps took place in the 1970s. Accordingly, the idea of re-mapping the mountain range has occurred, what, of course, cannot fit in the frame of such a work, but we attempted to re-evaluate the volcanism of the mountains based on more detailed field work, sampling and profile segmentations.

Volcanological-petrographical results of the present study can be summarized as it flows:

I developed a digital geological map of Transcarpathia concerning igneous, sedimentary and metamorphic formations. One of the main problems in the geological research of the North-eastern Carpathians is the lack of available maps. In the former USSR, it was a common practice that maps could be accessed only with special permission. The ones that were available for public, in a certain sense were useless, because neither identification points or coordinates, nor kilometre-grids were denoted on them. In Ukraine, the secrecy of 1:100 000 scale topographic maps was lifted in

2000, and they were published with kilometre-grids indicated. Geological maps are available in 1:200 000 scale, without identification points. I could find identification points based on a working copy of a geological map then georeference and connect them with a topographic map, and finally, with the help of GeoMedia Professional software I was able to build the database.

I developed a geochemical and radiometric age database of the igneous complexes of Transcarpathia. To develop the major element database, I reviewed the literature between 1950 and 2013. As a result, I found 293 data sets. Moreover, I analyzed 59 rock samples from the territory of the Sinyak Mountain, in the laboratory of the Department of Mineralogy and Geology, at the University of Debrecen. Thus the database includes 352 major element data sets.

The localities of most of the -analysed samples were vague or not given by the authors at all. Based on a several year research and oral communications with the specialists of the Transcarpathian Geological Expedition, it was managed to localize 90% of the literature data within 1 square kilometre. According to the discussions, the data can be used in the study of regional trends, but caution should be exercised in studying smaller formations.

The results of the investigation suggest that, in contrast with the results of earlier studies, only one composite volcano (stratovolcano) existed in the area of Syniak. The diameter of the central crater of Syniak composite volcano corresponds with the average diameter of the Carpathian Basin's volcanic craters.

Certain studies describes the Syniak composite volcano as Somma-Vesuvio type caldera or double craters, and ten craters with 300-800 m diameters and forty other volcanic centers belonging twelve bigger or smaller volcanoes were identified earlier.

Neither volcanological nor geological results of my detailed studies indicate activity of more than one composite volcanoes were active in the Syniak. The differences observed in the field and indicated by the results of other investigations can be explained as a consequence of a periodic activity of composite volcano associated with parasite cones and intrusions.

The volcanic activity in the Syniak began in the Sarmatian and ceased in the Early Pannonian. On Soviet-Ukrainian geological maps the age of the main volcanic units of Transcarpathia is regarded as Levantine. In the database concerning igneous complexes of Transcarpathia, however, there are no K/Ar data indicating Pliocene age (5.33-2.4 myrs); data coming from the Syniak range from Sarmatian (13,3 \pm 1,5 myrs) to Early Pannonian (8,88 \pm 0,39 myrs).

The geochemical units were defined by cluster analysis from major element database, which largely concentrated regionally. The classification is based primarily on the SiO_2 content. As mentioned above the whole Transcarpathian Volcanic Chain is characterized by significant lack of data. The database was consisting mainly of major element analysis so it was obvious that was used as basis to develop a geochemical model which represents the multi-phase volcanic activity of the mountains.

The grouping was based on hierarchical clustering of major elements analysis which paralleled with radiometric (K-Ar) dating database. On this basis (areal distribution, SiO_2 content, K/Ar dating) the eruptions of Syniak Mountains were classified into six main eruption phases.

The differentiation processes shows a well-defined SiO_2 enrichment during main eruption phases. The phases were started by basaltic andesite, continued with andesite

and completed by acidic andesite or infrequent dacite. The rock-forming mineral fractionation processes were represented by calcic plagioclase, olivine(?) clino- and orto-pyroxene, magnetite and ilmenite.

The alternating of the rock types in the geochemical (major element) and radiometric dating based eruptional sequence showed the successive eruptional events repeated in two cases from basic intermediate products toward to more acidic rocks.

The following findings related to geochemical trends in Harker diagrams where the major elements were plotted as the function of SiO₂: The following elements showed a well pronounced depletion as the function of the given rock forming minerals fractionation: TiO₂:- titano-magnetite, ilmenite, Al_2O_3 - calcic plagioclase, Fe and Mg-pyroxene fractionation. The K₂O had a very incompatible nature, while the Na₂O concentrations did not show any clear differentiation trend.

The Syniak has the largest volume above the erosion base amongst Trans Carpathian Volcanic Chains which represents an average value in the Carpathian – Pannonian Region

Comparative volumetric measurements were carried out on the volcano – geomorphological units of Trans Carpathia. Where the volcanic subunits were managed to isolate from the nearby cones the calculation performed separately. As a result the total volume of Szinyak Mountains above erosional base level is 74 km³. The volume of the two adjacent volcano-geomorphological units exceeds the Syniak data but at least 3 composite volcanos operated simultaneously in the first (Borlo), and four in the another unit (Makovica) resulted in greater effusion of intermediate lavas.

Comparing with another palaeo volcanoes of Carpathian – Pannonian Region, the Syniak is very similar in size to Somlyó, Hargita, Transylvania. However, much smaller than the largest volcanoes in the Eastern Carpathians: the Kelemen (247.4 km³), the Fancsal (225.4 km³) or the Mezőhavas (161.6 km3), but much voluminous than the Csomád (12.2 km3) or Piliske (17.4 km³).

FELHASZNÁLT IRODALOM

- 1. Adamenko O. M. Gorodeckaja G. D. (Адаменко О. М. Городецкая Г. Д.) 1987: Анропоген Закарпатья. Издательсво Штиинца, Кишинев.
- Afanaszjev G. D. Zikov Sz. I. (Афанасьев Г. Д. Зыков С. И.) 1975: Геохронологическая шкала фанерозоя в свете новых значений постоянных распада. – Наука, Москва.
- Almási B. Csámer Á. Farkas J. Rózsa P. 2006: Web-alapú modális elemzési értékelő program (MACALC). – Földtani Közlöny, 136. 4,591 – 598.
- 4. Andruszov D. (Андрусов, Д.) 1960: Зона Утесов (клиппенов) в Карпатской системе. Материалы Карпато-Балканскя Геологическая Ассоциация. Издательсво Академии Наук УССР. Киев.
- 5. **Ваbak V. К. (Бабак В. К.) 1966:** Минералогические и технологические особенности руд Беганського месторождения и пути их комплексного использования. Сборник "Проблемы геологии и рудоносности неогена Закарпатья". Издательсво Львов.
- 6. **Bagdaszarjan G. P. Danyilovics L. G. (Багдасарян, Г. П.** Данилович, Л. Г.) 1968: Новые данные об абсолютном возрасте вулканических образований Закарпатья. – Академии Наук СССР. Серия геологическая. Москва.
- 7. **Водпа́г V. (Боднар В.) 1987:** Природні багатства Закарпаття. Карпати. Ужгород.
- Bojko A. K. Kruglov Sz. Sz. Kulcsickij J. O. Matkovszkij O. I. – Merlics B. V. Szpitkovszkaja Sz. M. – Fiskin M. U. – Cony O. V. – Csedzsemov G. H. (Бойко А. К. – Круглов С. С. – Кульчицкий Я. О. – Матковский О. И. – Мерлич Б. В. – Спитковская С. М. – Фишкин М. Ю. – Цьонь О. В. – Чеджемов Г. Х.) 1967: Абсолютная геохронология главнейших комплексов Украинских Карпат. – Академии Наук СССР. Труды XV сессии комиссии по определению абсолютного возраста геологических формаций. 202 – 226.
- 9. **Вигоv V. Sz. Seremeta V. G. (Буров В. С. Шеремета В. Г.) 1959:** Верхнеплиоценовые отложения Советского Закарпатья. – Геология и разведка, №7.
- 10. **Сізг Р. М. (Цись П. М.) 1962:** Геоморфология УРСР. Видавніцтво Львівского Університету. 244с.
- 11. **Császár G. 2005:** Magyarország és környezetének regionális földtana I. Paleozoikum-paleogén. ELTE Eötvös Kiadó, Budapest, 328p.
- Császár G. szerk. 2000: Magyarország litosztratigráfiai alapegységei. Magyar Állami Földtani Intézet, MRB. Budapest. ISBN 963 671 2263. p129.

- 13. Danyilovics L. G. Danyilovics J. Р. (Данилович Л. Г. Данилович Ю. П.) 1963: Приконтактові брекчії масиву гранодіорит-порфірів у хребеті Аваш (Закарпаття). Геологічний журнал. Том XXI, випуск 3.
- 14. Danyilovics L. G. Ivanova P. G. Матчејеvа А. А. (Данилович Л. Г. Иванова Р. Г. Матвеева А. А.) 1966: Характер развития миоценового вулканизма в Закарпатском внутреннем прогибе. В сб. Тектоника Карпат, серия Геология и геохимия горючих ископаемых. Наукова думка.
- 15. **Danyilovics L. G. (Данилович Л. Г.) 1963:** Геолого петрографична характеристика вулканичного комплексу хребет Оаш. Видавництво Академии Наук УРСР, Київ. 94с.
- 16. **Davidson J. De Silva S. 1999:** Composite Volcanoes. in H. Sigurdsson eds: Encyclopedia of volcanoes. Academic Press, 663-683
- 17. **Duran B. S. Odell P. L.** (Дюран Б. Оделл П.) 1977: Кластерный анализ. Перевод с английского Демиденко Е. З. Статистика, Москва. 128с.
- 18. **Fülöp J. 1981:** Bevezetés Magyarország geológiájába. Akadémiai Kiadó, Budapest. 246p.
- 19. Gabinyet M. P. Kulcsickij Cs. O. Matkovszkij O. I. Jaszinszkaja A. A. (Габинет М. П. – Кульчицкий Ч. О. – Матковский О. И. – Ясинская А. А.) 1977: Геология и полезные ископаемые Украинских Карпат. – Издательсво объединение " Вища школа", Львов. 200с.
- Gill J. B. (1981): Orogenic andesites and plate tectonics. Berlin : Springer - Verlag . in Gill R. (2010): Igneus Rocks and Process. A Practical Guide. – A John Wiley & Sons Ltd. ISBN 9781444330656.
- 21. Glusko V. V. Kruglov Sz. Sz. ed. (Глушко В. В. Круглов С. С. ред.) 1986: Тектоника Украинских Карпат М 1 : 200 000. Министерство геологии Украинской ССР, Украинский научно-исследовательский геологоразведочный институт. Киев.
- 22. Glusko V. V. (Глушко В. В.) 1968: Тектоника и нефтегазность Карпат и прилегающих прогибов. Издательсво Недра. 284с.
- 23. Gméling K. 2010: A Kárpát-Pannon térség miocén-kvarter mészalkáli vulkáni kőzeteinek bór geokémiai összetétele és kapcsolata a szubdukciós folyamatokkal: promt-gamma aktivációs analitikai vizsgálatok. Doktori (PhD) értekezés. ELTE, Budapest. 161p.
- 24. Gnilko O. M. (Гнилко O. M.) 2011: Тектонічне районування Карпат у світлі терейнової тектоніки. Частина 1. Основні елементи карпатської споруди. Геодинаміка: науковий журнал. Видавництво Львівської політехніки, 2011. № 1 (10). 47-57. Львів. <u>http://ena.lp.edu.ua:8080/handle/ntb/11825</u>

- Gönczy S. Kozák M. 2007: Petrogenetic observations in the valley of the Viznyica stream. – Acta Geographica ac Geologica et Meteorologica Debrecina. Geology, Geomorphology, Physical Geography Series. Debrecen Vol. 2, 133–141.
- Gönczy S. McIntosh R. W. 2010: Petrology of the andesite outcrop in Bányafalu (Transcarpathia, Ukraine). – Acta Geographica ac Geologica et Meteorologica Debrecina. Geology, Geomorphology, Physical Geography Series. Debrecen. Vol. 4-5, 31-41.
- 27. **Gönczy S. 2006:** Kárpátalja tektono-vulkanológiája a kutatási statisztikák tükrében. Acta Geographica ac Geologica et Meteorologica Debrecina. 85-99.
- Gönczy S. 2009: Földtani viszonyok, domborzat. In: Baranyi B. szerk.: Kárpátalja. A Kárpát-medence régiói 11. MTA RKK Dialóg Campus Kiadó, Pécs-Budapest. 108-117.
- 29. Gribble C. D. Hall A. J. 1985: A Praktical Introduction to Optical Mineralogy. George Allen & Unwin. ISBN 0045490074. 249p.
- 30. **Gyalog L. szerk. 1996:** A földtani térképek jelkulcsa és a rétegtani egységek rövid leírása. MÁFI alkalmi kiadvány. Budapest. 187p.
- 31. Hackett W. R. Houghton B. F. 1989: A facies model for a Quaternary andesitic composite volcano: Ruapehu, New Zealand. – Bulletin of Volcanology 51, 51-68
- **32. Harangi Sz. 1990:** Sokváltozós matematikai módszerek alkalmazása vulkáni kőzetsorozatok vizsgálatában. Általános Földtani Szemle, 25, 179-192.
- 33. **Негепсѕик К. І. szerk. (Геренчук К. І. ред.)** 1981: Природа Закарпатської області. Вища школа, Львів.
- 34. **Higgins M. D. 2006:** Quantitative Textural Measurements in Igneous and Metamorphic Petrology. Cambridge University Press. ISBN 9780511241185. 265.
- 35. Irvine T. M. Baragar W. R. A. 1971: A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sci., 8, 523-548.
- 36. Jambu M. (Жамбю М.) 1988: Иерархический кластер-анализ и соответствия. – Перевод с французского Б. Г. Миркина. Финансы и статистика. Москва. 342с.
- Járai A. Kozák M. Rózsa P. 1993: A mikroszkópi modális analízis optimális módszerének kiválasztása. – Acta Geographica ac Geologica et Meteorologica Debrecina 30-31,113-132.
- 38. Járai A. Kozák M. Rózsa P. 1997: Comparison of the Methods of Rock-Microscopic Grain-Size Determination and Quantitative Analysys. – Mathematical Geology 29, 8, 977-991.
- 39. Karátson D. 1996: Rates and factors of stratovolcano degradation in a continental climate: a complex morphometric analysis for nineteen

Neogene/Quaternary crater remnants in the Carpathians. – Journal of Volcanology and Geothermal Research 73, 65-78.

- 40. Karátson D. 2007: A Börzsönytől a Hargitáig. Typotex kiadó, ISBN 978-963-9664-66-1. 462p.
- 41. **Ка́гра́taljai terület, 1993.** (Закарпатська область). Загальногеографічна карта М 1: 200 000. Головне управління Геодезії, Картографії та Кадастру при кабінеті міністрів України. Київ, 1993.
- 42. **Ка́гра́taljai terület, 1999.** (Закарпатська область). Загальногеографічна карта М 1 : 200 000. Військово-картографічна фабрика. Київ, 1999.
- 43. Ketskeméty L. Izsó L. 1996: Az SPSS for Windows programrendszer alapjai. Felhasználói utmutató és oktatási segédlet. SPSS Partner Bt., Budapest. 118.p.
- 44. **Кіјеvi Katonai Térképészeti Hivatal (Киевская военнокартографическая фабрика)** (2000): Топографическая карта масштаба 1 : 100 000 на районы Украины. № 144, 145, 163, 164, 165, 182, 183, 184, 201, 202, 203). Киев.
- 45. **Когопоvszkij N. В. Milanovszkij E. Е.** (Короновский Н. Б. Милановский Е. Е.) 1966: К вопросу о возрасте стратовулканов Синяк и Борлов Дил (Закарпатье). В кн. Очерки по геологии Советских Карпат.
- 46. **Когопоvszkij N. В. Szolodkova N. А. (Короновский Н. Б. Солодкова Н. А.) 1964:** Строение и история формирования вулкана Синяк (Закарпатье). Казахский институт минерального сырья. – Труды лаборатории палеовулканологии, вып. 3. Алма-Ата.
- 47. **Когопоvszkij N. В. (Короновский, Н. Б.) 1965:** Геологическое строение и история формирования средней части Выгорлат-Гутинской вулканической гряды (стратовулканы Синяк и Борлов-Дил, Советское Закарпатье). – Карпато-Балканскя Геологичесская ассоциация, VII конгресс София. Доклады, часть I.
- 48. Kosztyjuk V. P. Szaszin G. G. (Костюк, В. П. Сасин, Г. Г.) 1958: Новые данные о возрасте гранатовых липарито-дацитов Советского Закарпатья. – Доклады Академии Наук СССР. Том 118, №2.
- 49. **Kosztyjuk V. P. (Костюк, В. П.) 1958:** Минералогическая характеристика магматического граната в вулканитах Закарпатья. Минералогический сборник Львовского геологического общества.
- 50. Kozák M. Püspöki Z. Csámer Á. Csathó B. Pécskay Z. Barta I. 1998: Volcanology and geochronology of the East-Borsod Basin. – XVI. CBGA Conference, Wien.

- 51. Kozák M. Rózsa P. 1981: A Tokaji-Nagyhegy földtani fejlődéstörténete és morfogenetikai vázlata. Acta Geogr. ac Geologica et Meteor. Debrecina, 20. 167-190.
- 52. **Kozák M. 1979:** Lehordási modellterület felépítésének és kőzetanyag transzportjának földtani vizsgálata. Doktori értekezés. Kossuth Lajos Tudományegyetem, Ásvány- és Földtani Tanszék, Debrecen. 179p.
- 53. **Krassay Z. 2010:** Large-scale Miocene igneous activity at the NE part of the Carpathian-Pannonian Region, Central Europe. Geochemical implications for tectonic processes. Graduate School of Science and Technology. Chiba University. 112p.
- 54. **Kruglov Sz. Sz. (Круглов С. С. ред.) 1995:** Легенда до геологічної карти масштабу 1 : 200 000 Карпатськой серії паланшетів. Фонды ЗГРЄ.
- 55. Kruglov Sz. Sz. ed. (Круглов С. С. ред.) 1986: Тектоника Украинских Карпат. – Объяснительная записка к тектонической карте Украинских Карпат, масштаб 1:200 000. – Министерство геологии Украинской ССР, Украинский научно-исследовательский геологоразведочный институт. Киев. 152с.
- 56. **Kubovics I. 1993:** Kőzetmikroszkópia I-II. Nemzedék Tudása Tankönyvkiadó, Budapest. 955p.
- 57. **Kulcsár L. 1943:** A Mezőkaszonyi szigetvulkánok. Különlenyomat a TISIA VI. kötetéből. Debrecen. p.23.
- **58. Kulcsár L. 1968:** A Magyar-Szovjet határmenti vulkánosság a legújabb Szovjet és hazai kutatások tükrében. Acta Geographica Debrecina. XIV/VII. 143-160.
- 59. **Киtasz P. I. (Кутас P.I.) 2011:** Відображення тектоніки схидних Карпат в тепловому полі. Геодинаміка: науковий журнал. Видавництво Львівської політехніки, № 2 (11). 147-149. Львів. <u>http://ena.lp.edu.ua:8080/handle/ntb/11926</u>
- 60. **Киzovenko V. V. ed. (Кузовенко В. В. ред.) 2001:** Геологічна карта дочетвертинних утворень. Карпатська серія. М-34-XXXV (Ужгород), L-34-V (Сату Маре). М 1:200 000. Західукргеологія.
- 61. Lazarenko E. Glinko M. Zajceva V. (Лазаренко Э. Глинко М. Зайцева В.) 1968: Металлогения Закарпатья. Издательсво Львовского Университета.
- 62. Lazarenko E. A. Maligina O. A. (Лазаренко Э. А. Малыгина O. А.) 1966: Особенности рудоносности вулканогенных формаций Закарпатья. Современный вулканизм. Труды второго всесоюзного вулканологического совещания. 3-17 сентября, 1964 г. Том І. Издательсво Наука, Москва.
- 63. Lazarenko E. K. Lazarenko E. A. Barisnyikov E. K. Maligina O. A. (Лазаренко Е. К. Лазаренко Э. А. Барышников –

Малыгина О. А.) 1963: Минералогия Закарпатья. – Издательство Львовского Універсітета. 614с.

- 64. Le Bas M. J. Le Maitre R. W. Streckeisen A. Zanettin B. 1986: A chemical classification of volcanic rocks based on the total alkali – silica diagram. – Journal of Petrology. Oxford. Vol.27, 745–750p.
- 65. Le Maitre, R. W. Bateman P. Dudek A. Keller J. Le Bas M. J. Sabine P. E. Schmid R. Sorensen H. Streckeisen A. Woolley A. R. Zanettin B. 1989: A Classification of Igneous Rocks and Glossary of Terms. Blackwell Sci. Publ., Oxford, London. 193p.
- 66. Lescsuh P. J. Gocanjuk G. I. Sajnoga I. V. (Лещух Р. Й. Гоцанюк Г. І. – Шайнога І. В.) 2001: Нові дані про геологічну історію Українських Карпат і суміжних територій у юрський період. – Вісник Львівського уеіверсітету. Серія геологична. Вип.15, 32-40.
- 67. Lozinjak P. Miszjura J. (Лозиняк П. Місюра Я.) 2010: Особливості геологічної будови донеогенового фундаменту Закарпатського прогину. – Геологія і геохімія горючих копалин. 2010. № 3–4, 152–153. ISSN 0869-0774.
- 68. Lozinjak P. Petraskevics М. (Лозиняк П. Петрашкевич М.) 2007: Основні принципи і схема тектонічного районування Українських Карпат. – Праці наукового товариства ім. Шевченка: Геологічний збірник. 50-62. <u>http://ena.lp.edu.ua:8080/handle/ntb/8451</u>
- 69. **M Tóth T. Engi M. 1997:** A new cluster analysis method for altered rock samples. Schweizerische Mineralogische und Petrograpische Mitteilungen 77. 439-447.
- Mackenzie W. S. Donaldson C. H. Guilford C. 1982: Atlas of Igneus Rocks and Their Textures. – Longman Group UK Ltd. ISBN 0582026415.
- 71. **Маlejev Е. F.** (Малеев Е. Ф.) 1960а: Основные черты геологического строения Выгорлат-Гутинской гряды. Материалы Карпато-Балканской ассоциации. Изд. Академии наук УССР, Киев.
- 72. **Malejev E. F. (Малеев Е. Ф.) 1960b:** Главнейшие этапы развития неогенового вулканизма в Советских Карпатах и связан с ними металлогения. Международный геологический конгресс, XXI сессия. Доклады советских геологов.
- 73. **Маlejev Е. F. (Малеев Е. Ф.) 1960с:** Кучавско-Быстрицкая группа вулканов в Закарпатье. Академии Наук СССР. Труды лаборатории вулканологии, вып. 18.
- 74. **Маlejev Е. F. (Малеев Е. Ф.) 1963а:** Развитие типов вулканизма на примере Восточных Карпат. Доклады Академии Наук СССР. Том 148, №6.

- 75. **Маlejev Е. F. (Малеев Е. Ф.) 1963b:** О приуроченностьи оруднения к вулканическим образованиям Закарпатье. ДАН СССР, т. 142, №1.
- 76. **Malejev E. F.** (**Малеев E. Φ.**) **1963с:** О связи рудообразования с вулканизмом в Закарпатье. Сов. Геология, №1.
- **77. Malejev E. F. (Малеев Е. Ф.) 1964:** Неогеновый вулканизм Закарпатья. Наука, Москва. 251с.
- 78. **Маlejev Е. F. (Малеев Е. Ф.) 1965:** Вулкано-плутонические и рудные формации Закарпатья. Академии Наук СССР. Серия геологическая, №10.
- 79. McIntosh R. W. Plásztán J. Radnai G. Gönczy S. Szepesi J. Kozák M. 2012: Védendő geológiai értékek a Tokaji-Nagyhegyen. – Calandrella, Hortobágyi Nemzeti Park ismeretterjesztő folyóirata. 51-72.
- McPhie J. Doyle M. Allen R. 1993: Volcanic Textures. A guide to the interpretation of textures in volcanic rocks. – Centre for Ore Deposit and Exploration Studies, University of Tasmania. ISBN 0 85901 522 X. 196p.
- Merlics B. V. Szpitkovszka Sz. М. (Мерліч Б. В. Спітковска С. М.) 1958а: Схема розвитку третинного вулканізму Радянских Карпат. – Питання Геол., вип 9. Издательсво Львів. Ун.ту.
- Merlics B. V. Szpitkovszka Sz. М. (Мерліч Б. В. Спітковска С. М.) 1958b: Про вік гіпабісальних інтрузій Вишковського району в Закарпатті. – Академии Наук УРСР, геологічній журнал, т. XVIII, вип 3.
- 83. Merlics B. V. Szpitkovszkaja Sz. М. (Мерлич Б. В. Спитковская С. М.) 1965: Особенностьи верхненеогенового магматизма глубинных разломов Закарпатья. – Геол. Сборник Львовск. Геол. Об.ва. №9, Издательсво Недра.
- 84. Merlics B. V. Szpitkovszkaja Sz. М. (Мерлич Б. В. Спитковская С. М.) 1974: Глубинные разломы, неогеновый магматизм и оруднение Закарпатья. – Іп Резвой Д. П.: Проблемы тектоники и магматизма глубинных разломов. Издательсво Вища школа, Лвов. 173р.
- 85. **Merlics B. V. (Мерлич, Б. В.) 1958:** Тетонические факторы локализации неогенового оруднения в Закарпатье. Геол. Сборник Львовск. Геол. Об.ва. № 5.-6.
- 86. Merlics B. V. (Мерлич, Б. В.) 1965: Связ верхненеогнового магматизма и рудогенеза Закарпатья с глубинными разломами. Карпато-Балканскя геологичесская ассоциация, VII конгресс София. Доклады, часть I.

- 87. Molnár B. Geiger J. 1981: Homogénnek látszó rétegsorok tagolási lehetősége szedimentológiai, őslénytani és matematikai módszerek kombinált alkalmazásával. – Földtani Közlöny 111. 238-257.
- Molnár J. Molnár D. I. 2005: Kárpátalja népessége és magyarsága a népszámlálási és népmozgalmi adatok tükrében. – A Kárpátaljai Magyar Pedagógusszövetség Tankönyv- és Taneszköztanácsa, Beregszász. 120p.
- 89. **Molnár J. 2003:** A légnyomási mező szerkezete és módosulása a Kárpát-medence térségében. Doktori (PhD) értekezés. Debreceni Egyetem, Debrecen. 166p.
- Nemerkényi A. (1986): A Kárpátok vulkáni vonulatának távérzékelési módszerekkel végzett tűzhányó-felszínalaktani vizsgálata. Földrajzi Közlemények, XXXIV.4. 305-323.
- 91. Németh K. Martin U. (2001): Gyakorlati vulkanológia. Kézirat. Magyar Állami Földtani Intézet, Budapest. p.142.
- 92. Németh K. Martin U. 2007: Practical Volcanology. Geological Institute of Hungary. Budapest. p.221. ISBN 978-963-671-259-4.
- 93. Németh K. 1999: A vízalatti vulkanizmus jelenségei, üledékképződési folyamatai és kapcsolatai a szárazföldi vulkáni folyamatokkal: áttekintés. Földtani Közlöny, 129/3, pp.419-443.
- 94. **Parfitt E. A. Wilson L. 2008:** Fundamentals of Physical Volcanology. Blackwell Science Ltd. ISBN 978-0-63205443-5.
- 95. **Peccerillo A. Taylor S. R. 1976:** Geochemistry of the Eocene calcalkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology. Vol.58, 63–81.
- 96. Pécskay Z. Seghedi I. Downes H. Prychodko M. Mackiv B. 2000: K/Ar dating of neogene calc-alkaline volcanic rocks from Transcarpathian Ukraine. Geologica Carpathica, 51, 2, 83-89.
- 97. Radzivill A. J. Radzivill V. J. Tokovenko V. Sz. (Радзивилл А. Я. Радзивилл В. Я. Токовенко В. С.) 1986: Тектономагматические структуры неогея. – Наукова думка, Киев. 158с.
- Rollinson H. R. 1993: Using geochemical data: Evaluation, Presentation, Interpretation. Longman Group UK Limited. ISBN 0 582 06701 4. 352p.
- 99. **Rózsa P. 1993:** Kárpátaljai andezitek kőzettani és kőzetfizikai vizsgálata. Építőanyag. 45, 6, 204-209.
- 100. Sablij (Шаблій О. І.) 1991: Закарпатська область. Атлас. Комітет геодезії і картографії СРСР. Москва.
- 101. Sakin V. A. szerk. (Шакин В. А. ред.) 1976: Геологическая карта Украинских Карпат М 1 : 200 000. УКрНТРА.
- 102. Seghedi I. Downes H. Pécskay Z. Thirwall F. M. Szakács A.
 Prychodko M. Mattey D. 2001: Magmagenesis in a subduction-

related post-collisional volcanic arc segment: the Ukrainian Carpathians. – Lithos 57. 237-262.

- 103. Skljanka V. M. Szabó Gy. V. Terleckij A. V. (Шклянка В. М. Сабов Ю. В. Терлецкий А. В.) 1974: Отчет о поисковоревизионных работах с целью оценки золотоносности Береговского рудного района закарпатской области за 1971-1974 г. – Фонды ЗГР€.
- 104. Sun S. S. McDonough W. F. 1989: Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders A. D. – Norry M. J. (eds.) Magmatism in the Ocean Basins. Geological Society Special Publication 42, 313-345.
- 105. **Székyné Fux V. 1970:** Telkibánya ércesedése és kárpáti kapcsolatai Akadémiai Kiadó, Budapest. 266p.
- 106. **Szepesházy K. 1976:** Kárpátalja mélytörései neogén magmatizmusa és ércesedése. Általános Földtani Szemle 8, 61-84.
- 107. Szidorenko A. V. ed. (Сидоренко А. В. ред.) 1966: Геология СССР. Том XLVIII, Карпаты. Часть I, Геологическое описание. Недра, Москва. 540с.
- 108. Szoboljov V. Sz. Kosztyuk V. P. Borbicsevics A. P. Gorbacsevszkaja O. N. – Szpitkovszkaja Sz. M. – Fiskin M. J. (Соболев В. С. – Костюк В. П. – Бобричевич А. П. – Горбачевская О. Н. – Спитковская С. М. – Фишкин М. Ю.) 1955: Петрография неогеновых вулканических и гипабиссальных пород Советских Карпат. – Издательсво Академии Наук УССР, Киев. 248с.
- 109. Szöőr Gy. Rózsa P. Balázs É. 1990: A nagyszőlősi kőbánya anyagának ásvány-kőzettani vizsgálata. Kéziratos jelentés, nyíregyházi KÉV adattára.
- 110. Szöőr Gy. Rózsa P. Balázs É. 1990a: A Munkács, frigyesfalvi kőbánya anyagának ásvány-kőzettani vizsgálata. – Kéziratos jelentés, nyíregyházi KÉV adattára.
- 111. Szpitkovszkaja Sz. М. (Спитковская С. М.) 1958: Неогеновые габро диабазы в вулканогенной гряде Закарпатья. Геологический сборник Львовского геологического общества, № 5-6.
- 112. Sztyepanov V. А. (Степанов В. А.) 1989: Эволюция и рудоносность тектоно-магматического центра Синяк (Закарпатье).
 Диссертация на соискание ученой степени кандидата геолого-минералогических наук. Академии Наук УССР, Институт геохимии и физики минералов. Киев. 226с.
- 113. **Šzubbotyin Šz. I.** (Субботин, С. И.) 1955: Глубинное строение Советских Карпат и прилегающих територий по данным геофизических иследований. Издательсво Академии Наук УССР.

- 114. Tolsztoj M. I. Gaszanov J. L. Zsukov N. N. Moljavko V. G. -Osztafijcsuk I. M. – Prodajvoda G. T. – Szerga A. J. – Szuhorada A. V. (Толстой М. И. – Гасанов Ю. Л. – Жуков Н. Н. – Молявко В. Г. – Остафийчук И. М. – Продайвода Г. Т. – Серга А. Ю. – Сухорада А. В.) 1974: Отчет по хозтеме №103-72 «Геохимические и петрофизические особенности характерных вулканогенных Выгорлат-Гутинской образований гряды Закарпаттья. ИХ сравнительная характеристика и сопоставление». - МВССО УССР, Киевский университет им. Т. Г. Шевченко, геол. фак., проблемная лаборатория физико-химических иследований горных пород. Мин.геол. УССР, Киевгеология, Закарп. геологическая экспедиция. c.962.
- 115. Tolsztoj M. I. ed. Gaszanov J. L. Moljavko V. G. Osztafijcsuk I. M. – Prodajvoda G. T. – Szerga A. J. – Szuhorada A. V. – Tolsztoj M. I. (Толстой М. И. ред. Гасанов Ю. Л. – Молявко В. Г. – Остафийчук И. М. – Продайвода Г. Т. – Серга А. Ю. – Сухорада А. В. – Толстой М. И.) 1976: Геохимия, петрофизика и вопросы генезиса новейших вулканитов Советских Карпат. – Издательское Объединение «Вища Школа». Издательство при Киевском Университете. Киев. 188с.
- 116. **Туерlov V. Р. (Теплов В. П.) 1969:** Проект на производство комплексной геологической сьемки и поисков масштаба 1 : 50 000 на территории листов М-34-141-Б, М-34-142-А, Б, В, Г и /-34-10-Б на 1963-1968 г. УТГФ.
- 117. Туіточ Е. М. Кагроч V. І. Georgijev G. А. Saporev P. А. Туіточа V. І. (Титов Є. М. – Карпов В. И. – Георгиев Г. А. – Шапорев П. А. – Титова В. И.) 1969: Отчет о геологической сьемке м-бов 1 : 50 000 и 1 : 25 000 и гидрогеологической сьемке масштаба 1:50 000 в Береговском рудном районе Закарпатья на территории листов М-34-141-Б, М-34-142-А, Б, В, Г и /-34-10-Б/ 1963-65 г./ – Фонды ЗГРЄ.
- 118. Tyitov E. M. Mackiv B. V. Tyitova V. I. Belik T. I. (Титов Э. М. Мацкив Б. В. Титова В. И. Белик Т. И.) 1979: Геологическая карта Закарпатьа, М 1:200 000. – СЕВУКРГЕОЛОГИЯ, Закарпатская Геологическая Экспедиция.
- 119. Ukrajna Geodéziai és Kataszteri Főhivatala (Головне Управління Геодезії та Кадастру при Кабінеті Міністрів України) 1993: Закарпатська область. Загальногеографична карта. М 1 : 200 000. Київ.
- 120. Vaszilenko O. M. (Василенко О. М.) 1993: Закарпатська область. Загальногеографічна карта М 1 : 200 000. – Головне Управління Геодезії, Картографії та Кадастру при Кабінеті Міністрів України. Київ.

- 121. Venglinszkij I. V. (Венглинский И. В.) 1975: Форфминиферы и биостратиграфия миоценовых отложений Закарпатского прогиба. Наукова Думка. Киев. 264с.
- 122. Verescsagin V. N. ed. (Верещагин В. Н. ред.) 1982: Стрстиграфический словарь СССР. – Палеоген, неоген, четвертичная система. Изд. Недра, Ленинград.
- 123. Vjalov O. Sz. (Вялов О. С.) 1960: Краткий очерк тектоники восточных Советских Карпат. Материалы КБГА. Издательсво Академии Наук УССР, Киев.
- 124. Volgina N. I. Rudenko I. Sz. Szossza R. I. (Волгина Н. И. Руденко И. С. – Сосса Р. И.) 1987: Украинские Карпаты. Атлас туриста. – Главное управление геодезии и картографии при совете министров СССР. Москва.
- 125. Voznyeszenszkij А. І. (Вознесенский А. И.) 1988: История формирования неогеновых отложений Закарпатского прогиба. Академии Наук СССР, Наука, Москва. 109с.
- 126. Williams H. McBirney A. R. 1979: Volcanology. San Francisco: Freeman, Cooper and Company. 397p.
- 127. Zaliscsak B. L. Burilina L. V. Кірагепко R. I. (Залищак Б. Л. Бурилина Л. В. Кипаренко Р. И.) 1981: Определение породообразующих минералов в шлифах и иммерсионных препаратов. Недра, Москва.
- 128. **Zolotuhin V. V. (Золотухін В. В.) 1960:** Геолого-петрографічні дослідження Чорної Гори та прилеглих районів Закарпаття. Академии Наук УРСР, Київ.
- 129. **Zsarnyikova R. Sz. (Жарникова Р. С.) 1989:** Результаты поисков термальных вод для санатория-профилактория "Косино" Береговского р-на Закарпатской обл. УССР. Отчет за 1986-89г. Берегово.

Internetes források

http://lazarus.elte.hu/hun/digkonyv/topo/200e/40-49.jpg

Köszönettel tartozom

- Dr. Kozák Miklósnak, akinek a szakmai, erkölcsi és anyagi támogatása nélkül ez a munka nem készülhetett volna el
- ✓ Dr. Rózsa Péternek és Dr. Szepesi Jánosnak a szakmai tanácsokért
- ✓ Papp Istvánnak a geokémiai elemzésekért
- ✓ Simon Istvánnak a csiszolatok elkészítésében nyújtott segítségért
- Dr. Molnár Józsefnek a terepi munkában és a szovjet-ukrán nevezéktan megértésében nyújtott segítségért
- ✓ Németh Gábornak a térképészti munkában nyújtott segítségért
- Mihail Prihogykónak és Bogdan Mackivnak a Beregszászi Geológiai
 Expedíció munkatársainak az adattári kutatásokban nyújtott segítségért
- Dr. Dobosi Gábornak, a szakmai tanácsokért, és azért, mert hozzászólásaival új oldaláról mutatta be nekem a dolgozatomat

FÜGGELÉK

1. sz. melléklet. A kutatás során vizsgált minták száma és az anyagvizsgálatok típusai A sorszámokhoz tartozó helyszínrajz a 2.1. ábrán található. A geokémiai adatbázis a 2. mellékletben található, a hozzátartozó térkép a 6. mellékletben. A K/Ar adatokat az 5. melléklet tartalmazza

m	N⁰	1	A mintavétel					Anyagviz	sgálatok	k típusa			
sorszá	Mintaazonosító a szelvényeken	a geokémiai adatbázisban	földrajzi helye	xy (U	JTM)	z (m)	makroszk.	mikroszk.	főelem	nyomelem	K/Ar		
1	D1	Sz16	Dubina É-i része	4632245,08	5381160,85	550	+	+	+				
2	D2	Sz53	Dubina D-i része	4632913,38	5379524,44	350	+	+	+	+			
3	D3		Dubina D-i része	4633094,74	5379017,56	360	+	+		+			
4	Szinyák-Zvesznik	Sz18	Zvesznij csúcs	4637449,06	5382329,96	720	+	+	+				
	SzSzKV	Sz20		4642467,49	5380487,41	210	+		+	+	+		
	SZDNY I SZDNy 1/B						+	+					
	SZDNY 1/D						+	+					
5	SzDNy 1/D		Bányafalu	4642394,61	5380825,07	240	+	+					
	SzDNy 1/E						+	+					
	SzDNy 1/F						+	+					
	Sz-1/A	Sz21					+	+	+	+			
6	SZT1	Sz23	Királyfiszállástól Ny-ra, a Teszánik-patak felső	4642058,30	5386174,77	450	+	+	+				
-	K1	S724	Toryasa	4636374 43	5391238 51	740	+	+	+		+		
7	K2	Sz106	Kruglaja-hegy, csúcs	4636560.12	5391306.93	660	+	+	+		1		
8	IVP/1	Sz25	Obavai Kő, csúcs	4634035,52	5384963,24	960	+	+	+				
9	SZM 1400/1	Sz33	A Szinyák szanatórium kocsibejárójától 1400m-re	4636011,67	5382305,60	350	+	+	+				
	SZM 1400/2		D-re	4636011,68	5382305,61	350	+	+					
	SZM II/1	Sz34	A Szinvák ozonotánium haralta i a dita (1.1000			330	+	+	+		+		
10	SZIVI II/I Kövér 11	SZ110	A Szinyak szanatorium köcsibejárojátol 1800m-re	4636193,06	5381150,35	340 340	+	+	+				
	Kövér 12		D-10			340	+	+					
1.1		S-26	Szentmiklós, a Matekovka-patak alsó folyása, bal	1626100 71	5275075 05	010							
11	Szentmiklos-1	5250	parti bánya	4030190,74	<i>3313915,</i> 96	210	+	+	+				
	Ka-III/1	Sz45					+	+	+				
	Ka-III/2	Sz46					+	+	+				
	Kalli malladek	5291					+	ļ	+				
12	KaIII/3/b	Sz92	Kölcsény	4630391,00	5372604,09	140	+	+	+				
	KaIII/3/c		, ,	,	,		+						
	KaIII/3/d						+						
	KaIII/4	Sz93					+	+	+				
12	Kalll/4/a	Sz94	Ealtánáa Dánasafalatál ÉV na	4641910 60	5201202 10	210	+		+				
13	B2 B3/a	Sz109	Feitaras Banyaralutol EK-re	4641819,69	5381283,16	310	+	+					
	B3/b	Sz109					+	+	+				
14	B3/c		Kőbánya Bányafalutól ÉNy-ra	4640721,58	5381818,47	420	+	+					
	B3/d	Sz67					+	+	+				
1.7	B3/e				5 201020.21	100	+	+					
15	B4			4640678,55	5381828,24	430	+	+					
10	B6			4640400,16	5382416 30	400 500	+	+					
18	B0 B7	Sz68	A Szerednyij Verh-csúcstól D-re	4639718.21	5382719.77	600	+	+	+		+		
19	B8	Sz75	Szerednyij Verh-csúcs közeléből	4639311,04	5384729,61	960	+	+	+				
20	B9	Sz76	Szerednyij Verh-csúcs közeléből	4638973,90	5384447,50	870	+	+	+				
21	B10	Sz77	Szerednyij Verh-csúcs közeléből	4638722,26	5384098,86	820	+	+	+				
22	B11	Sz69	A Szerednyij Verh-csúcstól DNy-ra	4638263,61	5383880,26	800	+	+	+				
23	Szg1	Sz70	A Szerednyij Verh-csúcstól Ny-ra	4637661,10	5385136,81	690	+	+	+				
24	SZg2	SZ/8	Szerednyij Verh-csúcstól ENy-ra	4637634,57	5385435,27	690	+	+	+				
23 26	SzgJ Szg4	Sz79	A DUZA-CSUCS DK-1 lejtője Rúza-csúcs DK-i leitőie	4636739 21	5386416 84	770	+	+	+				
27	Szg5	Sz80	Szerednyij Verh-csúcstól Nv-ra	4638801.85	5384778.67	770	+	+	+				
28	Szg6	Sz41	Szerednyij Verh, csúcs	4639305,90	5384951,11	970	+	+	+		+		
29	Szg7	Sz81	Szerednyij Verh-csúcs közeléből	4639093,67	5385309,25	950	+	+	+				
30	Szg8	Sz82	A Szolocsinszkij Dol csúcstól Ny-ra	4638563,09	5386675,50	990	+	+	+				
31	Szg9	Sz83	Dunauka csúcsától DDK-re	4638476,87	5387099,97	990	+		+				
32	Szg10	Sz84	Dunauka csúcsától DDK-re	4638384,02	5387252,51	990	+	+	+				
33	Szg11	Sz85	Dunauka, csúcs	4638019,24	5387769,83	970	+	+	+		+		
34	Szg12 En I/1	Sz86	Dunauka csúcsától DNy-ra	4637667,73	5387259,14	820	+	+	+				
	Ep 1/1 En $1/2$	SZ20 Sz27					+	+	+		+		
	Ep I/3	Sz87		4628056,90	5381088,31	270	+	+	+				
	Ep I/4	3237 3237 4 Sz88 4 Sz100 /1 Sz89 /2 Erdőpatak /3 Image: Superstand state		,	·		+	+	+				
	Ep I/4						+		+				
35	Ep II/1 Ep II/2			1678167 26	5381024 27	270	+	+	+				
	ер II/2 Ер II/3			+020102,30	5501054,57	270	+	ļ					
	Ep III/1			4600000 44	5200007 70	200	+	+	+				
	Ep III/2			4628058,44	5380987,78	260	+						
	Ep IV1			4628162.36	5381034 37	300	+						
L	Ep IV2	0.102				2.30	+						
36	Obava 1 Obava 1a	SZ102 Sz103	Dunkáfalvai kőhánva	4634612 52	5377167 94	320	+	+	+				
50	Obava 1a Obava 1b	52105		1037012,33	5577107,05	520	+	+	+				

	SzMa I/1	Sz95					+	+	+		
	SzMa I/2	Sz96	1				+	+	+		
	SzMa I/3	Sz98	Szontmiklós, oz Oboyo potak välgybojórotának K				+	+	+		
37	⁷ SzMa I/4	Sz105	Szentinikios, az Obava-patak volgybejaratanak K-	4634368,85	5374551,95	210	+	+	+		
	SzMa I/5	Sz99	oidaia				+	+	+		
	SzMa I/6						+				
	SzMa I/7						+				
38	3 SzMIII/1	Sz101	Matekovka-patak völgye, Szentmiklóstól É-ra 1,5 km-re	4636077,70	5380564,88	340	+	+	+		
39	KCs 1	Sz104	Kruglaja-hegy K-i lejtője	4636951,44	5391384,42	590	+	+	+		
40	Berdó 1	Sz107	Erdőrotak D. i. váza	1629029 72	5292162.02	240	+	+	+		
40	Berdó 1A		Erdopatak D-1 vege	4028038,73	5582162,05	340	+	+			
41	Matekovka 1		Matekovka-patak völgye, a szanatóriumtól D-re	###########	##########	365	+	+			
42	Pliska 1		Pliska csúcs	4633824,92	5388430,54	980	+	+			
43	3 Szkakalo		Szkakalo vízesés	4635297,19	5378721,11	335	+	+			
	Lahar A				í í		+	+			
44	Lahar B		Matekovka-patak völgye 46		5380894,99	340	+	+			
	Lahar C		· · ·				+	+			
45	5 SzF		Matekovka-patak völgye	4635975,00	5882256,00	360	+	+			
	Ff 1						+				
	Ff 2						+				
10	. Ff 3		To deleafelue	162665 22	5296679 77	270	+	+			
40	Ff 4		Fedelestatva	4020005,52	5580078,77	370	+				
	Ff 5		1				+	+			
	Ff 6						+	+			
	KOL 1 (lemezes)					180	+	+	+		
47	KOL 1 (oszlopos)		Frigyesfalva	4629747,73	5376320,37	160	+	+	+	+	+
	KOL 1 (málladék)										
48	Berdó 3						+	+			
49	Berdó 5						+	+			
50) Berdó 8						+	+			

A vizsgálatok készítési helyei: a makro- és mikroszkópi vizsgálatok, főelemanalízis a DE Ásvány- és Földtani TSz.; a D2, D3, SzSzKV, Sz1/A, KOL 1 oszlopos mintákból főelem és nyomelem: MFGI (MÁFI) és DE Ásvány- és Földtani TSz.; a K/Ar: MTA ATOMKI, Debrecen

						2. me	ellékle	t														
		1	l. táblázat. A V	/ihorlát-Po	pricsnij cs	oport i	nagm	atitjain	ak főele	emgeo	okémia	ai adat	tbázisa	l								
N⁰	Mintavétel helye	Elemzés forrása	Kőzettípus	Fácies	K/Ar Ma	SiO2	TiO2	Al2O3	Fe2O3	FeO	MnO	MgO	CaO	Na2O	K2O	P2O5	SO3	H2O-	H2O+	CO2	izz.veszt.	Σ
P1	Szirova-patak völgye	Tolsztoj ed. 1976, 15. tábl., 15.	bazaltos andezit	láva	12,7±1,0	56,58	0,53	20,54	3,11	2,15	0,08	2,52	8,03	3,00	1,85	0,15	n.a.	n.a.	0,86	n.a.	0,60	100,00
P2	Ókemencei kőbánya	Tolsztoj ed. 1976, 15. tábl., 29.	bazaltos andezit	láva	15,5±1,1	56,53	0,74	18,28	2,40	4,94	0,10	4,09	6,97	2,19	1,75	0,18	n.a.	1,16	n.a.	n.a.	1,08	100,41
Р3	Szirova-patak völgye	Pécskay et al., 2000; Seghedi et al., 2001, UA2	bazaltos andezit	láva	13,1±0,6	55,27	1,14	18,37	7,87	n.a.	0,15	4,52	8,39	2,27	1,53	0,18	n.a.	n.a.	n.a.	n.a.	n.a.	99,69
P4	Szirova-patak völgye	Pécskay et al., 2000; Seghedi et al., 2001, UA3	dácit	dájk	13,1±0,6	64,75	0,47	16,97	5,14	n.a.	0,15	1,48	4,37	3,63	2,55	0,19	n.a.	n.a.	n.a.	n.a.	n.a.	99,70
Р5	Szirova-patak völgye	Pécskay et al., 2000; Seghedi et al. 2001, UA1	bazaltos andezit	láva	12,0±0,6	56,94	0,96	20,24	6,26	n.a.	0,11	2,30	8,23	2,85	1,65	0,15	n.a.	n.a.	n.a.	n.a.	n.a.	99,69
P6	Szirova-patak völgye	Pécskay et al., 2000; Seghedi et al., 2001, UA4	andezit	láva	12,4±0,5	58,01	0,81	19,18	5,66	n.a.	0,07	2,66	7,46	3,46	2,19	0,19	n.a.	n.a.	n.a.	n.a.	n.a.	99,69
P7	Felsődomonya	Tolsztoj ed. 1976, 15. tábl. 26.	andezit	láva	n.a.	60,17	0,70	20,52	2,02	1,17	0,01	1,11	7,01	3,04	2,24	0,19	n.a.	0,85	n.a.	n.a.	1,01	100,04
P8	Felsődomonya	Tolsztoj ed. 1976, 15. tábl. 27.	andezit	láva	n.a.	57,97	0,87	19,33	4,78	1,17	0,12	1,40	7,50	2,78	1,82	0,18	n.a.	1,30	n.a.	n.a.	1,02	100,24
Р9	A Potasnya-patak felső folyása	Tolsztoj ed. 1976, 15. tábl. 33.	dácit	dóm	14,8±1,0	68,29	0,15	16,19	1,25	0,72	0,04	0,41	3,00	2,62	3,06	0,49	n.a.	1,35	n.a.	n.a.	2,50	100,07
P10	Viszokaja-hegy	Tolsztoj ed. 1976, 15. tábl. 31.	dácit	dóm	n.a.	68,90	0,15	18,76	2,11	0,49	0,03	0,41	3,00	3,26	3,94	0,08	n.a.	0,71	n.a.	n.a.	0,65	102,49
P11	Buben-hegy	Tolsztoj ed. 1976, 15. tábl. 32.	dácit	dóm	n.a.	71,59	0,08	15,79	0,81	0,27	0,02	0,31	2,15	2,80	2,98	0,04	n.a.	0,79	n.a.	n.a.	1,91	99,54
P12	Perecsenytől Ny-ra	Malejev 1964, 24. tábl., 110	bazaltos andezit	láva	n.a.	56,94	0,78	20,13	2,99	3,05	0,03	2,19	8,32	2,29	1,62	9,11	n.a.	n.a.	0,72	n.a.	1,04	109,21
P13	Szirova-patak	Malejev 1964, 22. tábl., 103	dácit	dóm	n.a.	63,63	0,42	19,81	2,32	2,71	0,08	0,21	4,71	3,10	1,85	0,09	0,17	n.a.	0,95	n.a.	1,40	101,45
P14	Nevickei kőbánya	Tolsztoj ed. 1976, 15. tábl. 25.	bazaltos andezit	extrúzió	n.a.	55,51	0,66	18,35	4,02	3,50	0,04	4,23	7,71	2,28	1,46	0,16	n.a.	1,03	n.a.	n.a.	0,97	99,92
P15	Ungvári kőbánya	Tolsztoj, 1974. 58.	andezit	láva	n.a.	58,54	0,86	20,54	1,84	2,29	0,05	1,65	7,29	2,58	2,04	0,13	n.a.	0,80	n.a.	n.a.	n.a.	98,61
P16	Nevickei kőbánya, extrúzió	Tolsztoj, 1974. 43.	bazaltos andezit	tufa	n.a.	54,81	0,71	19,25	6,41	0,63	0,05	2,82	4,49	1,50	1,08	0,13	n.a.	4,68	n.a.	n.a.	n.a.	96,56
P17	A Potasnya-patak felső folyása	Tolsztoj, 1974, 47	dácit	dóm	n.a.	66,13	0,22	16,14	1,51	1,58	0,08	1,36	2,26	2,22	3,08	0,01	n.a.	1,89	n.a.	n.a.	n.a.	96,48
P18	Bercsényifalva 25-ös fúrás, 76m	Merlics-Szpitkovszkaja, 1974. 32 tábl., 70.	granodiorit	intrúzió	12,2±1,3	72,48	0,16	13,72	0,73	1,00	0,11	0,52	2,12	0,64	4,01	0,12	n.a.	0,52	n.a.	1,10	3,13	100,36
P19	Perecseny	Merlics-Szpitkovszkaja, 1974. 32 tábl., 60a.	diorit	intrúzió	n.a.	58,33	1,05	17,33	1,45	4,80	0,12	4,25	8,05	1,06	0,58	0,22	n.a.	0,70	n.a.	n.a.	1,96	99,90
P20	Perecseny	Merlics-Szpitkovszkaja, 1974. 32 tábl., 61a.	diorit	intrúzió	n.a.	54,52	0,72	21,50	2,72	1,86	0,03	3,87	10,81	1,76	0,50	0,09	n.a.	0,53	n.a.	n.a.	0,91	99,82
P21	Perecseny	Merlics-Szpitkovszkaja, 1974. 32 tábl., 62a.	diorit	intrúzió	n.a.	55,75	0,72	14,90	3,07	4,60	0,13	5,39	8,95	2,10	1,47	0,10	n.a.	1,20	n.a.	n.a.	1,22	99,60
P22	Perecseny	Merlics-Szpitkovszkaja, 1974. 32 tábl., 63.	diorit	intrúzió	n.a.	54,34	0,75	16,06	1,48	6,03	0,14	7,17	9,51	2,18	1,02	0,10	n.a.	0,51	n.a.	n.a.	0,84	100,13
P23	Perecseny	Merlics-Szpitkovszkaja, 1974. 32 tábl., 64.	diorit	intrúzió	n.a.	54,90	0,73	17,40	0,92	3,30	0,08	6,59	11,68	1,32	0,95	0,08	n.a.	0,52	n.a.	n.a.	1,74	100,21
P24	Perecseny	Merlics-Szpitkovszkaja, 1974. 32 tábl., 65.	diorit	intrúzió	n.a.	52,98	0,56	19,59	0,84	2,91	0,03	5,90	12,35	1,33	0,33	n.a.	n.a.	0,24	n.a.	n.a.	2,26	99,32
P25	Perecseny	Merlics-Szpitkovszkaja, 1974. 32 tábl., 66.	granodiorit	intrúzió	n.a.	70,20	n.a.	14,30	0,97	0,97	0,07	0,76	1,97	2,72	2,06	0,05	n.a.	1,85	n.a.	n.a.	4,09	100,01
P26	Perecseny	Merlics-Szpitkovszkaja, 1974. 32 tábl., 67.	granodiorit	intrúzió	n.a.	74,02	n.a.	14,65	0,46	n.a.	n.a.	0,43	0,91	0,65	2,51	0,04	n.a.	3,08	n.a.	n.a.	2,95	99,70
P27	Újkemence	Merlics-Szpitkovszkaja, 1974. 32 tábl., 68.	riolit	láva	n.a.	72,28	0,11	14,96	1,54	1,22	n.a.	0,13	2,73	2,43	2,60	0,04	n.a.	1,11	n.a.	n.a.	0,38	99,53
P28	Újkemence	Merlics-Szpitkovszkaja, 1974. 32 tábl., 69.	riolit	láva	n.a.	71,08	0,12	16,60	1,00	0,36	n.a.	0,22	3,20	2,91	2,54	0,07	n.a.	0,82	n.a.	n.a.	0,95	99,87
P29	Perecseny	Malejev 1964, 13. tábl., 92.	granodiorit	extrúzió	n.a.	67,52	0,21	17,81	2,13	0,44	0,04	0,26	3,17	2,60	2,52	n.a.	n.a.	1,14	2,55	n.a.	n.a.	100,39
P30	Perecseny	Malejev 1964, 13. tábl., 26.	granodiorit	extrúzió	n.a.	71,54	0,01	16,25	0,20	0,67	0,01	0,37	1,45	3,23	3,53	n.a.	n.a.	1,56	1,56	n.a.	n.a.	100,38

			2. tábl	ázat. A Ma	kovica ma	gmatit	jainal	k főelem	ngeokér	niai a	datbá	zisa										
N⁰	Mintavétel helye	Elemzés forrása	Kőzettípus	Fácies	K/Ar Ma	SiO2	TiO2	Al2O3	Fe2O3	FeO	MnO	MgO	CaO	Na2O	K2O	P2O5	SO3	H2O-	H2O+	CO2	izz.veszt.	Σ
M1	Makovica-csúcs	Tolsztoj ed. 1976, 15. tábl., 12.	andezit	láva	n.a.	57,98	0,63	17,30	3,61	3,68	0,14	3,70	6,72	2,06	2,10	0,14	n.a.	0,77	n.a.	n.a.	0,93	99,76
M2	Antalóci Poljana csúcs	Tolsztoj ed. 1976, 15. tábl., 13.	bazaltos andezit	láva	10,8±0,8	53,95	0,86	20,15	4,17	2,87	0,07	3,39	8,87	2,20	1,12	0,18	n.a.	0,97	n.a.	n.a.	0,99	99,79
M3	Antalóci Poljana DK-i lejtő	Tolsztoj ed. 1976, 15. tábl., 14.	bazaltos andezit	láva	n.a.	55,64	0,77	16,31	4,20	3,86	0,09	5,66	8,30	1,92	1,56	0,13	n.a.	0,97	n.a.	n.a.	0,92	100,33
M4	Antalóci Poljana ÉNy-i lejtő	Tolsztoj ed. 1976, 15. tábl., 28.	bazaltos andezit	láva	n.a.	56,88	0,60	17,63	3,26	4,04	0,10	3,83	7,15	2,34	1,82	0,15	n.a.	1,23	n.a.	n.a.	1,09	100,12
M5	Radvánci bánya	Tolsztoj ed. 1976, 15. tábl., 17.	bazaltos andezit	láva	11,5±1,6	55,09	0,86	19,18	1,84	4,80	0,05	2,67	8,73	2,50	1,72	0,32	n.a.	0,21	n.a.	n.a.	2,10	100,07
M6	A Szlatina-patak jobb partja	Tolsztoj ed. 1976, 15. tábl., 21.	bazaltos andezit	láva	n.a.	55,05	0,63	17,99	2,95	3,95	0,08	4,73	7,87	2,44	1,72	0,14	n.a.	1,27	n.a.	n.a.	0,85	99,67
M7	Ilkóc	Lazarenko 1960, 1. tábl.	riodácit tufa	tufa	n.a.	65,70	0,20	15,29	3,19	0,00	0,07	0,00	0,72	1,17	2,49	0,02	n.a.	n.a.	n.a.	3,84	6,85	99,54
M8	Az Ökemencei kőbányával szemben, az Ung bal partján	Tolsztoj ed. 1976, 15. tábl., 30.	bazaltos andezit	láva	n.a.	54,39	0,71	19,48	2,41	4,04	0,08	4,32	8,67	2,48	1,40	0,15	n.a.	0,93	n.a.	n.a.	0,54	99,60
M9	Ungvár	Lazarenko et al., 1963, 11. tábl.	bazaltos andezit	láva	n.a.	55,80	1,34	17,90	1,55	5,85	0,13	2,48	8,43	2,32	2,08	0,21	n.a.	n.a.	0,32	n.a.	1,83	100,24
M10	Ungvár	Tolsztoj ed. 1976, 15. tábl., 16.	andezit	láva	n.a.	58,54	0,86	20,54	1,84	2,29	0,05	1,65	7,29	2,58	2,04	0,13	n.a.	n.a.	0,80	n.a.	1,40	100,01
M11	Tokárnya-hegy	Tolsztoj ed. 1976, 15. tábl., 20.	andezit	láva	n.a.	59,90	0,63	17,13	4,12	2,96	0,11	2,37	5,15	2,63	2,44	0,18	n.a.	n.a.	1,02	n.a.	1,11	99,75
M12	Nevickei vulkán	Malejev 1964, 19. tábl., 64.	agglomerátumos tufa	tufa	n.a.	55,26	0,68	17,20	7,69	2,37	0,03	4,84	8,03	1,60	1,31	n.a.	n.a.	n.a.	1,29	n.a.		100,30
M13	Nevickei vulkán	Malejev 1964, 19. tábl., 50.	agglomerátumos tufa	tufa	n.a.	55,62	0,58	17,39	8,22	0,50	0,06	4,30	8,72	1,04	1,04	n.a.	n.a.	n.a.	n.a.	0,47	1,80	99,74
M14	Szerednye, Osztraja-hegy D-i lejtő	Tolsztoj ed. 1976, 15. tábl., 18.	dácit	láva	n.a.	64,77	0,21	19,41	1,31	0,99	0,04	0,78	3,65	2,81	2,78	0,07	n.a.	0,88	n.a.	n.a.	1,56	99,26
M15	Putka-hegy, Korláthelmec É	Tolsztoj ed. 1976, 15. tábl., 19.	andezit	láva	n.a.	60,61	0,53	16,95	5,84	0,36	0,12	2,67	4,72	2,46	1,90	0,11	n.a.	1,94	n.a.	n.a.	1,48	99,69
M16	A Szlatina-patak bal partja	Tolsztoj ed. 1976, 15. tábl., 23.	bazaltos andezit	láva	n.a.	55,13	0,68	18,22	2,96	4,04	0,08	5,22	7,83	2,13	1,33	0,14	n.a.	1,21	n.a.	n.a.	1,41	100,38
M17	Ilkóc	Lazarenko 1960, 1. tábl.	agglomerátumos tufa	tufa	n.a.	68,60	0,20	17,55	1,18	0,32	0,00	0,36	1,86	2,50	3,63	0,06	n.a.	n.a.	n.a.	1,61	2,05	99,92
M18	Perecseny	Malejev 1964, 19. tábl., 310.	agglomerátumos tufa	tufa	n.a.	56,40	1,46	16,70	3,73	3,73	0,12	4,81	7,78	2,15	0,96	0,10	n.a.	n.a.	n.a.	1,20	1,43	100,57
M19	Perecseny	Malejev 1964, 20. tábl., 304.	bazaltos andezit	láva	n.a.	54,96	1,46	16,64	1,16	7,76	0,13	2,20	7,45	2,33	1,24	n.a.	n.a.	n.a.	n.a.	0,18	3,98	99,49
M20	Perecseny	Malejev 1964, 20. tábl., 140.	bazaltos andezit	láva	n.a.	56,24	0,75	18,46	1,85	4,52	0,07	3,11	8,42	1,64	1,32	0,11	n.a.	n.a.	n.a.	0,51	2,20	99,20
M21	Köblér	Malejev 1964, 19. tábl., 2391.	agglomerátumos tufa	tufa	n.a.	61,73	0,68	16,83	1,49	3,55	0,03	1,81	5,00	1,56	4,00	n.a.	n.a.	n.a.	0,32	n.a.	2,03	99,03
M22	Nagygajdostól K-re	Malejev 1964, 20. tábl., 2390.	andezit	láva	n.a.	60,58	0,81	17,31	1,97	3,97	0,04	2,89	6,02	1,92	1,73	n.a.	n.a.	n.a.	0,56	n.a.	1,27	99,07
M23	Ilkóc	Lazarenko 1960, 1. tábl.	andezit	láva	n.a.	57,24	0,80	16,51	1,01	7,47	0,15	2,53	5,47	1,87	1,78	1,08	n.a.	n.a.	n.a.	1,90	2,97	100,78
M24	llkóc	Lazarenko 1960, 1. tábl.	andezit	láva	n.a.	60,00	0,80	17,39	3,28	3,88	0,11	0,72	5,30	1,48	1,56	0,12	n.a.	n.a.	n.a.	1,36	3,53	99,53
M25	Hegyret	Lazarenko 1960, 1. tabl.	dacit	lava	n.a.	72,76	0,10	15,42	1,15	0,00	0,00	0,22	1,12	1,18	4,68	0,03	n.a.	n.a.	n.a.	1,43	1,84	99,93
M27	Fedelesfalva	Malejev 1964, 23. tabl., 1-C. Malejev 1964, 23. tábl. 1316	dácit	láva	11.a.	69,40	0,27	14,12	2,15	0,29	0,00 n a	0,29	2,42	4,29	4,74	n a	n a.	n a	0.93	n.a.	1.82	99.56
M28	Borhalom	Malejev 1964, 20 tábl 2018	andezit	láva	n.a.	59 38	0,21	17 64	2,61	4 12	0.07	3 49	6 79	1 66	1 99	n a	n.a.	n a	0,28	n.a.	0.96	99.76
M29	Beregszőlős	Malejev 1964, 20. tábl., 1973.	andezit	láva	n.a.	59,65	0,81	16,50	3,38	3,97	0.05	3,08	5,60	1,84	2,64	n.a.	n.a.	n.a.	0,99	n.a.	1,24	99.75
M30	Kőbány Kölcsény É-i végében	Saját minta, MAFI elemzés	andezit	kürtő	9,7±0,46	61,80	0,81	15,20	1,44	4,47	0,11	3,13	5,51	2,37	3,24	0,15	0,15	n.a.	n.a.	0,13	1,45	99,96
M31	Kirovi bánya, a Viznica-patak jobb partia	Малеев, Е. Ф. 1964, 20. tábl., 3424.	andezit	láva	n.a.	58,10	0,98	17,68	3,79	4,14	0,12	2,61	6,58	1,90	2,06	n.a.	n.a.	n.a.	0,66	n.a.	1,05	99,67
M32	Kol-1(lemezes)	DE, Ásv és Föld. Tanszék	andezit	láva	n.a.	60,93	0,79	15,27	5,08	n.a.	0,06	3,13	5,35	2,37	3,73	0,13	n.a.	n.a.	0,13	1,45	n.a.	98,42
M33	Kol-1(oszlopos)	DE, Ásv és Föld. Tanszék	andezit	kürtő	n.a.	61,80	0,81	15,20	6,00	n.a.	0,07	3,13	5,51	2,37	3,24	0,13	n.a.	n.a.	0,13	1,45	n.a.	99,84
M34	A Szlatina-patak jobb partja	Tolsztoj ed. 1976, 15. tábl., 22.	bazaltos andezit	kürtőközeli	n.a.	55,84	0,92	19,51	4,16	2,64	0,07	2,53	7,40	2,48	1,72	0,21	n.a.	1,16	n.a.	n.a.	n.a.	98,64
M35	A Szlatina-patak jobb partja	Tolsztoj ed. 1976, 15. tábl., 24.	bazaltos andezit	extrúzió	n.a.	55,19	0,63	18,35	3,42	3,86	0,08	4,53	7,73	2,24	1,28	0,16	n.a.	1,49	n.a.	n.a.	1,50	100,46
M36	A Lovacska-hegy	Malejev 1964, 20. tábl., 3352	bazaltos andezit	láva	n.a.	56,09	0,72	18,06	3,56	3,38	0,03	3,23	7,24	1,92	3,01	n.a.	n.a.	n.a.	0,89	n.a.	2,44	100,57

				3. táb	lázat. A Sz	inyák mag	matitj	ainak	főelem	geokém	iai ad	latbáz	isa										
	N⁰	Mintavétel helye	Elemzés forrása	Kőzettípus	Fácies	K/Ar Ma	SiO2	TiO2	Al2O3	Fe2O3	FeO	MnO	MgO	CaO	Na2O	K2O	P2O5	SO3	H2O-	H2O+	CO2	izz.veszt.	Σ
	Sz109	Kőbánya Bányafalutól ÉNy-ra	DE, Ásv és Föld. Tanszék	bazaltos andezit	kürtő	n.a.	54,56	0,96	19,75	5,61	n.a.	0,07	4,20	8,05	2,08	1,96	0,10	n.a.	0,62	1,83	n.a.	n.a.	99,79
	Sz41	Szerednyij Verh-csúcs	DE, Ásv és Föld. Tanszék	bazaltos andezit	láva	10,14±0,37	55,85	0,84	17,36	6,73	n.a.	0,00	6,79	7,33	1,73	2,62	0,12	n.a.	0,41	0,37	n.a.	n.a.	100,15
	Sz56	Szarvaskút	Malejev 1964, 24. tábl., 140	agglomerátumos tufa	kürtő	n.a.	55,71	0,68	17,24	5,78	3,34	0,07	2,06	9,94	2,70	1,36	n.a.	n.a.	0,23	n.a.	n.a.	1,28	100,39
	Sz58	Szentmiklós	Seghedi et al., 2001 UA14	bazaltos andezit	láva	10,6±0,6	0,95	20,47	6,98	n.a.	0,11	3,22	8,84	3,03	1,48	0,24	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	45,32
snurs	Sz59	Galambos	Seghedi et al., 2001 UA13	bazaltos andezit	szill	13,3±1,5	0,85	20,07	7,10	n.a.	0,14	3,42	8,94	2,62	1,52	0,21	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	44,87
caniz	Sz60	Szentmiklós	Seghedi et al., 2001 UA15	bazaltos andezit	láva	11,4±0,4	0,68	16,56	8,53	n.a.	0,15	5,31	8,57	2,27	1,48	0,18	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	43,73
es vull	Sz61	Szoleni Mlaki, 30 fúrás, 1148 m.	Seghedi et al., 2001 UA 33	andezit	láva	11.6±0,6	0,85	19,24	8,07	n.a.	0,14	1,86	6,88	2,95	2,09	0,17	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	42,25
ezite	Sz62	Dunkófalvi kőbánya	Seghedi et al., 2001 UA17	andezit	láva	10.7±0,5	0,86	17,54	8,47	n.a.	0,20	2,98	6,46	2,77	2,15	0,30	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	41,73
és and	Sz63	Kárpáti szanatórium, 7T fúrás, 396 m.	Seghedi et al., 2001 UA21	andezit	láva	12.9±1,1	0,74	17,07	7,75	n.a.	0,15	2,77	5,96	2,79	2,38	0,17	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	39,78
ezites	Sz67	Kőbánya Bányafalutól Ény-ra	DE, Ásv és Föld. Tanszék	bazaltos andezit	kürtő	n.a.	56,36	1,02	18,95	6,46	n.a.	0,06	3,48	7,35	1,92	2,25	0,11	n.a.	0,33	1,91	n.a.	n.a.	100,21
os and	Sz77	Szerednyij Verh-csúcs közeléből	DE, Ásv és Föld. Tanszék	bazaltos andezit	láva	n.a.	56,73	0,77	16,55	6,88	1,00	0,13	6,13	7,92	2,05	1,71	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	99,87
bazalto	Sz88	Köbánya Erdőpatak D-1 végében	DE, Ásv és Föld. Tanszék	bazaltos andezit	láva	n.a.	56,74	1,99	18,63	6,70	1,21	0,18	2,63	7,03	2,19	1,16	n.a.	n.a.	n.a.	0,05	n.a.	n.a.	98,51
nonn	Sz91	Útbevágás Kölcsénytől K-re	DE, Ásv és Föld. Tanszék	bazaltos andezit		n.a.	56,70	1,03	20,32	6,66	0,62	0,04	0,54	7,47	2,14	1,76	n.a.	n.a.	1,35	1,45	n.a.	n.a.	100,08
alsó-pê	Sz100	Kőbánya Erdőpatak D-i végében	DE, Ásv és Föld. Tanszék	bazaltos andezit	láva	n.a.	56,74	1,99	18,63	6,70	1,21	0,18	2,63	7,03	2,19	1,16	n.a.	n.a.	n.a.	0,05	n.a.	0,23	98,74
ata – a	Sz105	Szentmiklós, az Obava-patak völgybejáratának K-i oldala	DE, Ásv és Föld. Tanszék	andezit	láva	n.a.	57,11	0,79	20,01	9,70	n.a.	0,03	1,12	6,86	1,58	2,23	n.a.	n.a.	n.a.	0,25	n.a.	1,10	100,77
Szarn	Sz108	Kőbánya Bányafalutól ÉNy-ra	DE, Ásv és Föld. Tanszék	bazaltos andezit	kürtő	n.a.	55,85	1,02	18,51	6,71	n.a.	0,03	4,53	7,15	2,10	2,07	0,11	n.a.	0,43	1,04	n.a.	n.a.	99,56
1.	Sz106	A Kruglaja-hegy csúcsa	DE, Ásv és Föld. Tanszék	andezit	láva	n.a.	58,96	0,74	16,77	6,56	n.a.	0,08	4,92	6,75	1,42	3,17	0,10	n.a.	0,44	0,30	n.a.	0,47	100,69
	Sz128	Szidorfalva	DE, Ásv és Föld. Tanszék	bazaltos andezit	láva	n.a.	54,32	0,55	20,98	6,19	n.a.	n.a.	4,22	7,93	1,67	1,63	n.a.	n.a.	0,84	n.a.	n.a.	1,23	99,56
	Sz107	Erdőpatak D-i végében	DE, Ásv és Föld. Tanszék	andezit	láva	n.a.	58,39	0,63	17,68	5,72	n.a.	0,08	3,30	7,60	2,10	3,08	0,11	n.a.	0,30	1,82	n.a.	n.a.	100,80
	Sz127	Ff6	DE, Asv és Fold. Tanszék	andezit	làva	n.a.	57,31	0,81	16,22	6,60	n.a.	n.a.	2,76	7,57	2,61	2,20	n.a.	0,85	n.a.	n.a.	1,30	n.a.	98,24
	Sz129	SzF1	DE, Ásv és Föld. Tanszék	bazaltos andezit	láva	n.a.	56,10	0,92	17,18	8,11	n.a.	n.a.	4,54	6,59	1,71	1,87	n.a.	n.a.	0,89	n.a.	n.a.	1,15	99,07
	Sz29	A Berdó-hegytől EK-re, a Pudulki dűlőben	Lazarenko 1960, 1. tábl.	riodácit tufa	tufa	n.a.	72,76	0,10	15,42	1,15	n.a.	n.a.	0,22	1,12	1,18	4,68	0,03	n.a.	n.a.	1,43	n.a.	0,83	98,92
snuz	Sz31	A Berdő-hegytől EK-re, a Pudulki dűlőben	Lazarenko et al. 1963, 12. tábl.	riodácit	láva	n.a.	68,87	0,28	16,74	2,14	0,00	0,00	0,32	0,44	0,28	4,06	0,10	n.a.	2,41	n.a.	n.a.	4,18	99,82
kani	Sz44	Viznica-patak felső folyása Szojya-patak a Borló Gyil É-i	Malejev 1964, 22. tábl., 4-L	dácit	láva	n.a.	68,87	0,28	16,74	2,14	n.a.	n.a.	0,32	0,44	0,28	4,06	0,10	n.a.	n.a.	2,41	n.a.	4,10	99,74
s vul	Bgy17	lejtője	Tolsztoj, 1974, 70	hialoandezit	extrúzió	n.a.	65,49	0,36	17,86	2,23	0,63	0,03	0,51	2,43	2,32	2,62	0,18	n.a.	1,41	n.a.	n.a.	n.a.	96,07
citos	Sz11	Berdo-hegy	Tolsztoj ed. 1976, 15. tábl., 40	dácit	dóm	n.a.	67,96	0,17	16,25	0,83	2,15	0,05	0,93	3,72	2,88	3,56	0,29	n.a.	0,28	n.a.	n.a.	0,47	99,54
non dá	Sz12	Berdo-hegy, Felső Viznicétől E ra	Malejev 1964, 22. tábl., 8018-a	dácit	kürtő	n.a.	69,40	0,20	15,46	3,25	0,54	0,02	0,36	5,50	1,71	2,60	n.a.	n.a.	n.a.	0,40	n.a.	1,83	101,27
ó-panr	Sz28	A Berdó-hegytől ÉK-re, a Pudulki dűlőben	Lazarenko 1960, 1. tábl.	dácit	láva	n.a.	67,78	0,10	16,81	0,72	1,51	0,06	0,37	4,47	1,87	2,61	0,06	n.a.	n.a.	0,25	n.a.	n.a.	96,61
Als	Sz40	Felső Viznice területe	Malejev 1964, 22. tábl., 3419	dácit	láva	n.a.	67,23	0,23	17,05	0,10	1,00	0,04	1,05	3,50	2,42	3,83	n.a.	n.a.	n.a.	9,45	n.a.	4,18	110,08
2.	Sz42	Viznica-patak felső folyása	Malejev 1964, 22. tábl., 3-L	dácit	láva	n.a.	67,18	0,10	16,81	0,72	1,51	0,06	0,37	4,47	1,87	2,61	0,06	n.a.	0,25	n.a.	n.a.	3,29	99,30
	Sz43	Vıznıca-patak felső folyása	Malejev 1964, 22. tábl., 2	dácit	láva	n.a.	68,60	0,20	17,55	1,18	0,32	0,10	0,36	1,86	2,50	3,63	0,06	n.a.	n.a.	1,61	n.a.	2,05	100,02
	Sz/3	Berdo-hegy	Tolsztoj ed. 1974, 63	dác1t	láva	n.a.	67,80	0,20	16,27	2,36	1,26	0,04	0,62	3,58	2,74	3,92	0,05	n.a.	0,61	n.a.	n.a.	n.a.	99,45
	N⁰	Mintavétel helye	Elemzés forrása	Kőzettípus	Fácies	K/Ar Ma	SiO2	TiO2	Al2O3	Fe2O3	FeO	MnO	MgO	CaO	Na2O	K2O	P2O5	SO3	H2O-	H2O+	CO2	izz.veszt.	Σ
------------	-------	---	--------------------------------------	------------------------------	-------------------------	----------	-------	------	-------	-------	------	------	------	------	------	------	------	------	------	------	------	------------	--------
	Sz20	Bányafalutól K-re	DE, Ásv és Föld. Tanszék	bazaltos andezit	szubvulkán	11.6±1.1	53,30	0,87	18,90	1,62	5,37	0,10	2,42	8,18	2,34	1,58	0,15	0,15	n.a.	0,59	n.a.	4,59	100,16
	Sz21	Bányafalutól K-re	DE, Ásv és Föld. Tanszék	bazaltos andezit	szubvulkán	n.a.	53,30	0,87	19,00	1,51	5,52	0,13	2,55	8,35	2,44	1,48	0,15	0,15	n.a.	0,27	n.a.	4,44	100,16
	Sz54	Kölcsény	Malejev 1964, 24. tábl., 3322	bazalt	láva	n.a.	51,68	1,00	18,08	3,42	8,19	0,11	3,49	8,33	1,50	1,70	n.a.	n.a.	0,54	n.a.	n.a.	1,82	99,86
	Sz16	Dubina É-i része	saját minta, MÁFI elemzés	bazaltos andezit	szubvulkán	n.a.	53,90	1,05	18,40	3,54	5,50	0,16	4,39	8,73	2,39	1,21	0,15	0,15	n.a.	0,41	n.a.	n.a.	99,98
	Sz74	Pliska-csúcs	Tolsztoj, 1974. 69/a	bazaltos andezit	láva	11.7±0.8	52,38	0,63	18,22	3,27	5,47	0,14	5,25	9,87	2,10	0,88	0,22	n.a.	1,17	n.a.	n.a.	n.a.	99,60
	Sz19	Szentmiklós, a Latorca jobb partja	Malejev 1964, 20. tábl., 1558	bazaltos andezit	láva	n.a.	55,63	0,75	16,75	2,76	5,60	0,17	5,43	8,31	2,14	1,41	n.a.	n.a.	0,69	n.a.	n.a.	1,83	101,47
	Sz46	Útbevágás Kölcsénytől K-re	DE, Ásv és Föld. Tanszék	bazaltos andezit	láva	n.a.	56,03	1,00	19,61	0,00	4,39		5,23	8,57	2,12	1,47	n.a.	n.a.	n.a.	n.a.	n.a.	1,23	99,67
	Sz55	Szarvaskút D-i extrúzió	Malejev 1964. 24. tábl. 1631	bazaltos andezit	szubvulkán	n.a.	52,76	1,03	20,11	0,96	6,00	0,09	1,63	8,07	2,13	1,58	n.a.	n.a.	0,79	0,93	n.a.	5,21	101,29
	Sz65	Szarvaskút D-i extrúzió	Malejev 1964, 24. tábl., 1631	bazaltos andezit	szubvulkán	n.a.	52,76	1,03	20,11	0,96	6,00	0,09	1,63	8,07	2,13	1,58	n.a.	n.a.	0,79	n.a.	n.a.	5,21	100,36
	Sz52	Szélestő	Danyilovics 1963, 10. tábl.	bazaltos andezit	láva	12.7±1.5	56,32	0,79	16,22	3,37	7,39	0,20	2,43	6,26	2,47	2,07	0,32	n.a.	1,82	n.a.	n.a.	n.a.	99,66
s	Sz97	Felső Viznice	Lazarenko et al.,1963, 11. tábl.,8	hiperszténes hialoandezit	láva	n.a.	56,02	0,86	21,86	2,51	2,59	0,05	1,52	7,81	1,82	1,33	0,10	1,66	1,52	n.a.	n.a.	2,22	101,87
nizmu	Sz90	Kőbánya Erdőpatak D-i végében	DE, Ásv és Föld. Tanszék	andezit	láva	n.a.	57,55	0,79	19,51	3,40	3,83	0,10	2,60	6,14	3,14	1,62	n.a.	n.a.	n.a.	0,86	n.a.	n.a.	99,54
ites vulka	Sz14	Matekovaka-patak jobb partja, Szinyák szanatóriumnál	Tolsztoj ed. 1976, 15. tábl., 45	bazaltos andezit	láva	9.9±0.9	56,59	0,72	18,33	2,10	5,56	0,14	2,78	7,01	2,16	1,72	0,17	n.a.	0,18	n.a.	n.a.	4,44	101,90
andezi	Sz37	Felső Viznicététől Ny-ra	Malejev 1964, 20. tábl., 3414	bazaltos andezit	láva	n.a.	56,34	0,91	18,85	3,27	4,06	n.a.	2,97	7,48	2,12	2,58	n.a.	n.a.	n.a.	0,75	n.a.	1,23	100,56
zaltos	Bgy18	Szojva-patak, a Borló Gyil É-i lejtője	Tolsztoj, 1974, 70	hialoandezit	extrúzió	n.a.	56,03	0,71	18,48	2,18	5,88	0,17	2,98	6,72	2,16	1,82	0,17	n.a.	0,80	n.a.	n.a.	1,34	99,44
ion ba	Sz53	Dubina D-i része	DE, Ásv és Föld. Tanszék	bazaltos andezit	szubvulkán	n.a.	56,85	0,96	17,92	7,30		0,12	3,01	7,43	2,62	1,56	0,12	n.a.	1,21	0,73	n.a.	n.a.	99,83
ó-panr	Sz99	Szentmiklós, Obava-patak völgybejárat K-i old.	DE, Ásv és Föld. Tanszék	andezit	láva	n.a.	57,20	0,72	17,96	3,16	5,16	0,15	3,05	8,73	1,96	1,71	n.a.	n.a.	n.a.	0,54	n.a.	n.a.	100,33
3. Als	Sz87	Kőbánya Erdőpatak D-i végében	DE, Ásv és Föld. Tanszék	bazaltos andezit	láva	n.a.	55,99	1,86	18,62	2,99	3,12	0,11	2,98	8,28	2,54	1,45	n.a.	n.a.	n.a.	0,40	n.a.	n.a.	98,34
	Sz89	Kőbánya Erdőpatak D-i végében	DE, Ásv és Föld. Tanszék	bazaltos andezit	láva	n.a.	56,44	0,78	20,21	4,09	1,95	0,08	3,02	8,40	2,55	1,51	n.a.	n.a.	n.a.	0,02	n.a.	n.a.	99,05
	Sz8	Dunkófalva, kőbánya	Malejev 1964, 24. tábl., 197	bazaltos andezit	láva	n.a.	56,37	0,98	18,21	2,77	4,31	0,08	3,42	7,84	2,12	1,79	n.a.	n.a.	0,56	n.a.	n.a.	0,90	99,35
	Sz112	1km-re D-re a Szinyák szanatórium bejáratától	Malejev 1964. 11. tábl., 137	bazaltos andezit	kürtő	n.a.	55,96	0,85	18,11	1,46	5,07	0,14	3,11	9,10	1,64	1,55	n.a.	n.a.	0,20	n.a.	n.a.	2,22	99,41
	Sz76	Szerednyij Verh-csúcs közeléből	DE, Ásv és Föld. Tanszék	andezit	láva	n.a.	57,83	0,80	18,16	4,26	2,70	0,15	3,79	7,47	2,75	1,99	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	99,90
	Sz78	Szerednyij Verh-csúcstól ENy- ra	DE, Ásv és Föld. Tanszék	bazaltos andezit	láva	n.a.	55,18	1,48	20,86	2,73	4,17	0,11	3,47	8,95	1,56	2,03	n.a.	n.a.	n.a.	0,02	n.a.	n.a.	100,57
	Sz13	Szidorfalva É-i része	Tolsztoj ed. 1976, 15. tábl., 42	bazaltos andezit	láva	n.a.	55,04	0,63	18,53	2,49	5,21	0,05	4,13	7,57	2,02	1,90	0,27	n.a.	0,88	n.a.	n.a.	1,41	100,13
Ļ	Sz79	Búza-csúcs DK-i lejtője	DE, Ásv és Föld. Tanszék	andezit	láva	n.a.	57,02	0,77	17,80	7,77	n.a.	0,09	4,24	7,93	2,21	1,78	n.a.	n.a.	n.a.	1,13	n.a.	n.a.	100,73
	Sz49	Szinyák szanatórium területe	Malejev 1964, 19. tábl., 348	agglomerátumos tufa	tufa	n.a.	56,52	0,81	18,41	1,88	4,47	0,09	4,08	8,67	2,51	1,61	n.a.	n.a.	0,73	n.a.	n.a.	0,64	100,42
	Sz17	Latorca jobb part	Lazarenko et al., 1963, 11. tábl., 2	bazaltos andezit	láva	n.a.	54,52	1,15	17,92	5,08	4,50	0,18	4,53	8,83	0,84	0,83	n.a.	n.a.	0,35	n.a.	n.a.	n.a.	98,73
	Sz4	Obavai vulkán	Malejev 1964, 19. tábl., 45	andezittufa	agglomerátu mos tufa	n.a.	57,54	0,79	18,09	1,18	4,68	0,09	4,04	7,34	1,87	1,87	n.a.	n.a.	n.a.	0,62	n.a.	1,66	99,77
	Sz80	Szerednyij Verh-csúcstól Ny-ra	DE, Ásv és Föld. Tanszék	andezit	láva	n.a.	58,31	0,82	16,68	3,13	4,35	0,13	5,01	7,41	1,91	1,97	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	99,71

s	N₂	Mintavétel helye	Elemzés forrása	Kőzettípus	Fácies	K/Ar Ma	SiO2	TiO2	Al2O3	Fe2O3	FeO	MnO	MgO	CaO	Na2O	K2O	P2O5	SO3	H2O-	H2O+	CO2	izz.veszt.	Σ
mizmu	Sz82	Szolocsinszkij Dol-csúcstól Ny- ra	DE, Ásv és Föld. Tanszék	bazaltos andezit	láva	n.a.	55,87	0,78	18,23	2,80	4,69	0,13	4,68	9,59	1,57	1,38	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	99,73
es vulka	Sz104	Kruglaja-hegy K-i lejtő	DE, Ásv és Föld. Tanszék	andezit	láva	n.a.	57,73	0,72	17,58	n.a.	6,93	0,07	5,38	6,97	1,73	2,15	n.a.	n.a.	n.a.	0,51	n.a.	n.a.	99,78
ndezit	Sz86	Dunauka-csúcsától DNy-ra	DE, Ásv és Föld. Tanszék	bazaltos andezit	láva	n.a.	55,98	1,68	18,72	2,86	4,84	0,17	5,72	5,56	2,21	1,72	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	99,46
caltos a	Sz75	Szerednyij Verh-csúcs közeléből	DE, Ásv és Föld. Tanszék	andezit	kürtő	n.a.	58,94	1,83	17,66	2,03	4,80	0,08	5,49	5,77	2,31	1,65	n.a.	n.a.	n.a.	0,01	n.a.	n.a.	100,57
non baz	Sz110	Zveszvij csúcstól DNy-ra	DE, Ásv és Föld. Tanszék	andezit	láva	9,9±0,4	57,58	0,84	16,34	2,16	4,37	0,16	3,04	9,16	1,56	3,10	0,13	n.a.	1,17	0,73	n.a.	0,19	100,54
ó-panr	Sz66	Szarvaskút kőbánya	Malejev 1964, 24. tábl., 1624	bazaltos andezit	szubvulkán	n.a.	56,00	1,49	19,69	1,36	6,94	0,52	0,77	6,60	0,82	0,84	n.a.	n.a.	n.a.	0,82	n.a.	4,89	100,74
3.Als	Sz81	Szerednyij Verh-csúcs közeléből	DE, Ásv és Föld. Tanszék	andezit	kürtő	n.a.	57,09	1,58	21,21	1,77	4,31	0,13	4,43	4,79	1,87	1,81	n.a.	n.a.	n.a.	0,03	n.a.	n.a.	99,02
sn	Sz22	Lamovanya-patak középső folyása, jobb part	Tolsztoj ed. 1976, 15. tábl., 46	bazaltos andezit	láva	n.a.	53,01	0,63	17,41	2,51	6,42	0,13	5,25	9,87	1,60	0,84	0,11	n.a.	0,75	n.a.	n.a.	1,28	99,81
anizm	Sz27	Kőbánya Erdőpatak D-i végében	DE, Ásv és Föld. Tanszék	bazaltos andezit	láva	8.0±?	57,81	0,75	17,54	1,90	4,07	0,12	1,98	9,16	1,83	3,05	0,13	n.a.	n.a.	2,07	n.a.	n.a.	100,39
tites vulk	Sz34	Szinyák szanatórium kocsibejárójától 1500m-re D-re	DE, Ásv és Föld. Tanszék	andezit	láva	9.9±0.4	57,58	0,84	16,34	2,16	4,37	0,16	3,04	9,16	1,56	3,10	0,13	n.a.	1,17	0,73	n.a.	n.a.	100,35
Idez	Sz38	Felső Viznice területe	Malejev 1964, 20. tábl., 6	andezit	láva	n.a.	57,24	0,80	16,51	1,01	7,47	0,15	2,53	5,47	1,87	1,78	0,08	n.a.	n.a.	1,90	n.a.	2,97	99,78
s és ar	Sz45	Útbevágás Kölcsénytől K-re	DE, Ásv és Föld. Tanszék	bazaltos andezit	láva	n.a.	56,84	0,95	17,63	0,27	5,46	0,11	2,10	9,90	2,11	2,85	0,17	n.a.	1,08	0,72	n.a.	n.a.	100,17
ndezite	Sz47	A Szinyák vulkán központi krátere	Malejev 1964, 19. tábl., 167	bazaltos andezit	neck, klasztoláva	n.a.	54,86	0,81	16,35	2,35	4,90	0,10	5,89	9,16	1,67	1,32	n.a.	n.a.	0,92	n.a.	n.a.	1,68	100,01
altos a	Bgy22	Latorca bal part, Kárpáti szanatórium körül	Tolsztoj, 1974, 26	bazaltos andezit	láva	n.a.	55,76	0,63	18,53	1,35	5,92	0,10	4,23	7,57	2,30	2,10	0,29	n.a.	0,88	n.a.	n.a.	1,16	100,82
Daz	Sz5	Obavai Kő csúcs	Malejev 1964, 20. tábl., 39-a	andezit	kürtő	n.a.	58,67	0,63	16,32	1,44	4,77	0,09	4,86	8,18	2,13	2,14	n.a.	n.a.	n.a.	0,31	n.a.	0,23	99,77
nnon l	Sz50	DK-re a Szinyák szanatóriumtól	Malejev 1964, 20. tábl., 125	bazaltos andezit	láva	n.a.	53,48	0,87	18,27	1,83	6,33	0,12	4,60	9,58	1,84	1,52	n.a.	n.a.	0,58	n.a.	n.a.	0,27	99,29
lsó-pa	Sz51	Fehér Kő, a Szinyák szanatóriumtól É-ra	Malejev 1964, 20. tábl., 90	bazaltos andezit	láva	n.a.	56,55	0,66	16,67	1,87	5,23	0,12	5,43	9,04	1,78	1,69	n.a.	n.a.	n.a.	0,44	n.a.	0,80	100,28
•. A	Sz6	Obavai Kő csúcs	Malejev 1964, 20. tábl., 39	andezit	kürtő	n.a.	59,01	0,64	15,81	2,02	4,35	0,09	4,84	7,40	1,84	2,31	n.a.	n.a.	0,75		n.a.	1,24	100,30
4	Sz7	Pliska-csúcs	Tolsztoj ed. 1976. 15. tábl., 34	bazalt	szubvulkán	9.5±0.5	51,43	0,60	18,50	3,26	5,83	0,16	5,35	10,01	1,86	0,90	0,12	n.a.	0,70	n.a.	n.a.	0,84	99,56
	Sz85	Dunauka-csúcs	DE, Åsv és Föld. Tanszék	andezit	kürtő	8.9±0.4	57,23	0,72	17,19	1,61	5,15	0,24	5,94	8,51	1,56	1,71	n.a.	n.a.	n.a.	n.a.	n.a.	0,54	100,41
nizmus	Sz102	Dunkófalvai kőbánya	DE, Ásv és Föld. Tanszék	andezit	szubvulkán	n.a.	59,45	0,49	17,41	4,72	n.a.	0,06	4,50	4,77	2,00	3,63	0,07	n.a.	0,45	0,84	n.a.	0,84	99,24
, vulka	Sz113	Szkakalo vízesés	DE, Ásv és Föld. Tanszék	andezit	láva	n.a.	62,51	0,57	16,78	4,99	n.a.	n.a.	3,06	5,51	2,09	2,72	n.a.	1,22	n.a.	n.a.	0,90	n.a.	n.a.
dezites	Sz130	Lahar, A	DE, Ásv és Föld. Tanszék	andezit	láva	n.a.	62,09	0,48	18,62	4,31	0,00	0,00	3,44	5,15	1,95	2,37	n.a.	0,61	n.a.	n.a.	1,12	n.a.	n.a.
non an	Sz57	Kölcsényi kőbánya	Seghedi et al., 2001 UA16	andezit	kürtő	10.3±0,4	62,44	0,74	15,40	5,89	n.a.	0,11	3,36	5,47	2,68	3,45	0,16	n.a.	n.a.	n.a.	n.a.	n.a.	99,70
lsó-panı	Sz98	Szentmiklós, az Obava-patak völgybejáratának K-i oldala	DE, Ásv és Föld. Tanszék	andezit	láva	n.a.	62,37	0,78	18,38	5,77	2,29	0,07	2,06	3,01	1,56	3,15	n.a.	n.a.	n.a.	0,30	n.a.	n.a.	99,74
5. A	Sz95	Szentmiklós, az Obava-patak völgybejáratának K-i oldala	DE, Ásv és Föld. Tanszék	andezit	kürtő	n.a.	62,47	0,51	14,75	6,32	2,63	0,06	2,73	6,19	2,27	1,36	n.a.	n.a.	n.a.	0,03	n.a.	n.a.	99,33

	N⁰	Mintavétel helye	Elemzés forrása	Kőzettípus	Fácies	K/Ar Ma	SiO2	TiO2	Al2O3	Fe2O3	FeO	MnO	MgO	CaO	Na2O	K2O	P2O5	SO3	H2O-	H2O+	CO2	izz.veszt.	Σ
	Sz1	Obavai Kő csúcs	Tolsztoj ed. 1976, 15. tábl., 35	andezit	kürtő	n.a.	62,38	0,41	17,30	3,02	2,38	0,07	1,65	5,01	2,26	2,70	0,10	n.a.	1,37	n.a.	n.a.	0,90	99,55
	Sz10	Mlinszkij-patak	Tolsztoj ed. 1976, 15. tábl., 39	andezit	láva	n.a.	58,94	0,54	17,81	4,16	3,05	0,24	2,78	6,15	2,22	2,56	0,12	n.a.	0,96	n.a.	n.a.	1,10	100,63
	Sz101	Matekovka-patak völgye, Szentmiklóstól É-ra 1.5 km-re	DE, Ásv és Föld. Tanszék	andezit	láva	n.a.	61,18	0,65	18,82	0,86	3,85	0,07	3,39	5,70	2,01	2,70	n.a.	n.a.	n.a.	n.a.	n.a.	1,24	100,46
	Sz111	A Turjasebesi vulkán	Malejev 1964. 19. tábl. 3496-a	andezit	kürtő	n.a.	62,58	0,68	16,43	0,36	4,48	0,13	2,39	6,16	1,53	2,65	2,47	n.a.	0,04	n.a.	n.a.	0,97	100,87
	Sz15	A Buza-hegy Ny-i lejtője	Tolsztoj ed. 1976, 15. tábl., 44	andezit	láva	9.5±0.5	59,35	0,54	17,67	1,66	4,49	0,13	1,60	6,25	2,34	2,66	0,19	n.a.	0,91	n.a.	n.a.	2,85	100,64
	Sz18	Zvesznij csúcs	DE, Ásv és Föld. Tanszék	andezit	láva	n.a.	59,51	0,92	15,78	3,11	4,27	0,15	2,20	6,92	1,80	3,09	0,18	n.a.	0,50	1,27	n.a.		99,69
	Sz2	Obavai Kő csúcs	Tolsztoj ed. 1976, 15. tábl., 37	andezit	kürtő	n.a.	59,65	0,53	17,30	2,74	3,41	0,12	2,78	6,29	2,22	2,56	0,12	n.a.	0,85	n.a.	n.a.	1,16	99,73
r)	Sz23	Királyfiszállástól Ny-ra, a Teszánik-patak felső folyása	DE, Ásv és Föld. Tanszék	andezit	láva	n.a.	60,48	0,71	13,74	1,13	4,57	0,12	4,12	8,34	1,41	3,21	0,14	n.a.	1,01	0,60	n.a.	n.a.	99,58
szte	Sz24	A Kruglaja-hegy csúcsa	DE, Ásv és Föld. Tanszék	andezit	láva	11.7±0.5	60,28	0,73	14,54	4,63	1,67	0,12	3,57	7,72	1,71	3,02	0,14	n.a.	0,75	1,23	n.a.	n.a.	100,10
klas	Sz25	Obavai Kő csúcs	DE, Ásv és Föld. Tanszék	andezit	kürtő	n.a.	61,27	0,59	14,28	3,46	2,74	0,10	3,54	7,31	1,80	3,51	0,10	n.a.	0,72	0,62	n.a.	n.a.	100,04
ıs (3.]	Sz26	Kőbánya Erdőpatak D-i végében	DE, Ásv és Föld. Tanszék	andezit	láva	n.a.	58,78	0,78	17,59	1,81	4,31	0,09	2,03	8,25	1,99	2,94	0,14	n.a.	0,39	0,73	n.a.	n.a.	99,83
zmı	Sz3	Obava patak felső folyása	Tolsztoj ed. 1976, 15. tábl., 36	andezit	láva	n.a.	60,75	0,56	16,92	2,91	3,23	0,10	3,19	6,38	2,32	2,66	0,10	n.a.	0,58	n.a.	n.a.	0,90	100,60
ılkaniz	Sz30	A Berdó-hegytől ÉK-re, a Pudulki dűlőben	Lazarenko 1960, 1. tábl.	andezit	láva	n.a.	59,00	0,80	19,01	1,93	3,30	0,09	2,24	7,01	1,59	1,83	0,10	n.a.	n.a.	0,74	n.a.	2,56	100,20
itos vu	Sz32	A Berdó-hegytől ÉK-re, a Pudulki dűlőben	Lazarenko et al. 1963, 12. tábl., 8	biotitos-dácitos- andezit	láva	n.a.	63,64	0,50	17,58	1,43	2,41	0,17	0,65	5,55	2,23	2,79	n.a.	0,09	1,60	1,26	n.a.	n.a.	99,90
s és dác	Sz33	A Szinyák szanatórium kocsibejárójától 1400m-re D-re	DE, Ásv és Föld. Tanszék	andezit	láva	n.a.	60,57	0,94	16,52	1,18	5,04	0,17	1,85	7,14	1,78	3,53	0,17	n.a.	0,19	0,74	n.a.	n.a.	99,81
dezite	Sz35	Felső Viznice	Lazarenko 1963, 11. tábl., 7	hipersztén- andezit	láva	n.a.	59,61	0,77	17,15	4,78	3,59	0,08	1,09	5,74	1,24	2,00	0,10	n.a.	1,13		n.a.	4,10	101,38
annon an	Sz36	Szentmiklós, a Matekovka- patak alsó folyása, bal parti bánya	DE, Ásv és Föld. Tanszék	dácit	láva	n.a.	63,38	0,62	14,96	1,33	3,46	0,07	1,99	6,59	1,81	3,88	0,12	n.a.	0,91	0,89	n.a.	n.a.	99,99
ó-p	Sz39	Felső Viznice területe	Malejev 1964, 20. tábl., 8	andezit	láva	n.a.	59,00	0,80	19,01	1,93	3,93	0,09	2,24	7,01	1,59	1,83	0,10	n.a.		0,74	n.a.	2,60	100,87
Als	Sz48	Frigyesfalva	Malejev 1964, 24. tábl., 78	andezit	láva	n.a.	60,32	0,61	14,99	4,68	2,62	0,03	3,03	7,14	2,09	3,00		n.a.	0,43		n.a.	1,33	100,27
6.	Sz64	Frigyesfalva	Rózsa, 1993	andezit	láva	n.a.	58,13	0,76	16,89	4,27	4,44	0,18	2,50	5,86	2,37	2,08	0,20	n.a.	1,07	0,30	n.a.	0,28	99,33
	Sz68	A Szerednyij Verh-csúcstól D- re	DE, Ásv és Föld. Tanszék	andezit	láva	11.2±1.4	58,15	0,68	14,39	1,25	5,32	0,13	4,25	8,33	1,49	2,71	0,12	n.a.	0,09	2,73	n.a.	n.a.	99,64
	Sz69	A Szerednyij Verh-csúcstól DNy-ra	DE, Ásv és Föld. Tanszék	andezit	láva	n.a.	59,83	0,79	16,59	0,00	6,06	0,09	2,78	7,41	1,85	3,26	0,15	n.a.	0,33	1,05	n.a.	n.a.	100,19
	Sz70	A Szerednyij Verh-csúcstól Ny- ra	DE, Ásv és Föld. Tanszék	andezit	láva	n.a.	59,80	0,76	16,32	3,41	2,66	0,11	2,70	7,08	1,91	3,05	0,15	n.a.	0,88	1,11	n.a.	n.a.	99,92
	Sz71	A Búza-csúcs DK-i lejtője	DE, Ásv és Föld. Tanszék	andezit	láva	n.a.	59,67	0,74	14,46	2,73	3,58	0,12	3,99	8,00	1,56	3,00	0,16	n.a.	1,00	0,67	n.a.	n.a.	99,65
	Sz72	Szentmiklós környéke	Malejev 1964. 13. tábl. 1625	andezit	láva	n.a.	61,19	0,89	18,94	2,35	1,26	0,06	1,79	4,88	2,13	2,32		n.a.	1,81	n.a.	n.a.	2,46	100,08
	Sz9	A Dunauka-hegy D-i lejtője	Tolsztoj ed. 1976, 15. tábl., 38	andezit	extrúzió	n.a.	60,74	0,59	16,07	1,18	5,12	0,13	3,39	6,58	1,98	2,42	0,22	n.a.	0,30	n.a.	n.a.	1,42	100,14
lt adatok	Sz103	Dunkófalvai kőbánya	DE, Ásv és Föld. Tanszék	andezit	szubvulkán	n.a.	59,83	0,46	14,76	n.a.	6,75	0,06	4,63	8,04	1,24	1,84	0,08	n.a.	1,21	1,23	n.a.	n.a.	100,14
naszná	Sz83	A Dunauka-csúcsától DDK-re	DE, Ásv és Föld. Tanszék	bazaltos andezit	láva	n.a.	56,78	1,93	15,95	3,41	5,60	0,17	6,71	5,35	1,55	2,01	n.a.	n.a.	n.a.	0,01	n.a.	n.a.	99,46
ml	Sz84	A Dunauka-csúcsától DDK-re	DE, Ásv és Föld. Tanszék	bazaltos andezit	láva	n.a.	54,89	1,97	16,60	2,51	5,63	0,43	8,30	5,92	2,21	1,80	n.a.	n.a.	n.a.	0,01	n.a.	n.a.	100,26
mél ne	Sz92	Útbevágás Kölcsénytől K-re	DE, Ásv és Föld. Tanszék	bazaltos andezit	láva	n.a.	53,15	1,36	20,33	4,10	3,10	0,10	9,83	5,38	1,77	0,51	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	99,62
nzések	Sz93	Útbevágás Kölcsénytől K-re	DE, Ásv és Föld. Tanszék	bazaltos andezit	láva	n.a.	52,77	1,53	19,34	6,22	2,80	0,08	9,61	4,68	1,51	0,62	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	99,16
len	Sz94	Útbevágás Kölcsénytől K-re	DE, Ásv és Föld. Tanszék	bazalt	láva	n.a.	50,87	1,82	28,80	5,05	3,62	0,08	3,23	2,84	1,96	1,05	n.a.	n.a.	0,03	0,10	n.a.	n.a.	99,45
Az ε	Sz96	Szentmiklós, az Obava-patak völgybejáratának K-i oldala	DE, Ásv és Föld. Tanszék	andezit	láva	n.a.	57,75	0,52	17,88	7,08	n.a.	0,11	9,30	3,53	1,26	2,27	n.a.	n.a.	n.a.	0,20	n.a.	n.a.	99,89

			4. tá	blázat. A B	orló magn	natitja	inak f	őelemge	eokémia	ai ada	tbázis	sa										
N⁰	Mintavétel helye	Elemzés forrása	Kőzettípus	Fácies	K/Ar Ma	SiO2	TiO2	Al2O3	Fe2O3	FeO	MnO	MgO	CaO	Na2O	K2O	P2O5	SO3	H2O-	H2O+	CO2	izz.veszt.	Σ
BGy1	Borló-Gyil	Lazarenko et al. 1963, 11. tábl., 4.	andezit	láva	n.a.	56,30	0,50	18,50	2,98	4,84	n.a.	3,32	7,12	2,86	1,81	n.a.	n.a.	0,93	n.a.	n.a.	0,53	99,69
BGy2	Borló-Gyil	Malejev 1964, 24. tábl., 5079.	bazaltos andezit	láva	n.a.	55,88	0,92	22,91	2,29	3,73	0,09	1,62	8,54	1,00	1,24	n.a.	n.a.	n.a.	0,60	n.a.	0,88	99,70
BGy3	Hát-gerinc	Lazarenko et al. 1963, 14. tábl., 1.	hialoandezit	láva	n.a.	56,84	1,60	16,92	4,92	3,11	n.a.	2,50	6,92	3,63	2,86	n.a.	n.a.	0,78	n.a.	n.a.	0,24	100,32
BGy4	Kislécfalva	Malejev 1964, 24. tábl., 6004.	bazaltos andezit	láva	n.a.	56,20	0,92	20,90	3,21	5,03	0,09	1,31	8,20	1,60	1,21	n.a.	n.a.	n.a.	0,60	n.a.	0,60	99,87
BGy5	Németkucsova	Malejev 1964, 24. tábl., 5160.	andezit	neck	n.a.	57,20	0,94	22,15	3,47	4,08	0,04	0,18	7,00	2,04	0,91	n.a.	n.a.	n.a.	0,72	n.a.	0,80	99,53
BGy6	Borló-Gyil	Lazarenko et al. 1963, 12. tábl., 2.	olivintartalmú andezit	láva	n.a.	65,36	0,75	16,32	3,24	4,09	0,13	1,05	4,61	2,49	2,14	n.a.	n.a.	n.a.	n.a.	n.a.	0,22	100,40
BGy7	Beregpapfalva	Malejev 1964, 22. tábl., 52.	dácit	láva	n.a.	63,10	n.a.	17,54	0,47	4,63	n.a.	1,12	3,91	4,43	2,94	n.a.	n.a.	n.a.	0,86	n.a.	1,49	100,49
BGy8	Sztánfalva	Malejev 1964, 11. tábl., 19.	bazaltos andezit	láva	n.a.	53,19	1,47	15,76	8,28	4,77	0,21	4,01	8,17	2,09	1,26	n.a.	n.a.	0,36	n.a.	n.a.	0,36	99,93
BGy9	Bilke	Malejev 1964, 11. tábl., 122-a.	bazaltos andezit	dóm?	n.a.	53,44	1,20	20,43	1,72	5,90	0,25	1,05	8,78	2,87	1,85	0,15	n.a.	0,35	0,30	1,72	0,83	100,84
BGy10	Maszárfalva	Malejev 1964, 11. tábl., 6556.	bazaltos andezit	láva	n.a.	53,90	1,14	18,86	0,89	6,71	0,16	5,04	8,30	1,03	1,94	n.a.	n.a.	0,90	0,71	n.a.	n.a.	99,58
BGy11	Bucsora-csúcs	Danyilovics 1963, 6. tábl.	bazaltos andezit	láva	n.a.	53,24	0,85	16,01	5,04	4,45	n.a.	5,15	9,30	2,40	1,30	n.a.	n.a.	0,99	n.a.	n.a.	0,71	99,44
BGy12	Bucsora-csúcs	Tolsztoj ed. 1976, 15. tábl., 47.	bazaltos andezit	láva	n.a.	56,11	0,63	19,23	1,80	5,07	0,16	2,30	7,59	2,30	2,42	0,14	n.a.	0,21	n.a.	n.a.	2,12	100,08
BGy13	Buzsora-csúcs	Lazarenko et al. 1963, 14. tábl., 3.	bazaltos andezit	láva	n.a.	53,24	0,85	16,91	5,04	4,45	n.a.	5,15	9,30	2,47	1,30	n.a.	n.a.	0,99	n.a.	n.a.	0,71	100,41
BGy14	Beregkisfalud, bánya	Malejev 1964, 24. tábl., 510.	bazaltos andezit	láva	n.a.	51,52	1,19	17,78	1,43	8,24	0,02	4,99	9,20	3,60	0,63	n.a.	n.a.	0,30	n.a.	n.a.	1,06	99,96
BGy15	Beregkisfalud, bánya	Malejev 1964, 24. tábl., 94-a.	bazaltos andezit	láva	n.a.	52,34	2,20	16,45	2,40	7,04	0,56	4,93	9,10	2,52	1,77	n.a.	n.a.	0,16	0,70	n.a.	n.a.	100,17
BGy16	Beregkisfalud, bánya	Malejev 1964, 24. tábl., 94.	bazaltos andezit	láva	n.a.	53,02	1,14	18,18	0,91	7,83	0,27	2,35	8,58	2,51	1,88	0,21	n.a.	0,35	0,40	n.a.	n.a.	97,63
BGy19	Borló-Gyil	Malejev 1964, 24. tábl., 6103-a.	bazaltos andezit	láva	n.a.	52,28	0,90	20,06	5,30	5,31	0,09	2,54	11,20	1,38	0,87	n.a.	n.a.	n.a.	2,60	n.a.	n.a.	102,53
BGy20	Ilosva környéke, 945 m mélyről	Malejev 1964, 5. tábl., 47.	dácit	láva	n.a.	65,54	0,07	10,13	3,95	0,18	0,04	0,55	1,59	4,29	0,96	n.a.	n.a.	6,08	6,07	n.a.	n.a.	99,45
BGy21	Beregpapfalva	Malejev 1964, 22. tábl., 5175.	bazaltos andezit	láva	n.a.	54,82	1,00	19,40	6,13	3,13	0,19	1,01	7,24	2,70	2,30	n.a.	n.a.	n.a.	n.a.	n.a.	1,40	99,32
BGy23	Munkácstól K-re, Nagyhegy	Malejev 1964, 13. tábl., 3854	dácit	láva	n.a.	68,68	0,25	15,44	3,03	0,30	0,04	0,72	2,46	2,64	4,75	n.a.	n.a.	0,73	n.a.	n.a.	0,51	99,55
BGy24	Beregbükkös	Malejev 1964, 13. tábl., 6337-a	dácit	láva	n.a.	64,00	0,47	18,14	0,70	6,14	0,29	0,18	4,22	2,71	2,49	n.a.	n.a.	n.a.	n.a.	n.a.	0,20	99,54
BGy25	Latorca, bal part	Danyilovics 1963, 8. tábl.	bazaltos andezit	láva	n.a.	54,52	1,15	17,92	5,08	4,50	n.a.	4,53	8,83	0,84	0,83	n.a.	n.a.	0,35	n.a.	n.a.	0,97	99,52
BGy26	Szinyánka-patak felső folyása	Tolsztoj ed. 1976, 15. tábl., 48.	bazaltos andezit	láva	9,5±0,5	52,45	0,78	18,23	2,19	6,37	0,15	5,67	7,88	2,00	1,48	1,18	n.a.	0,65	n.a.	n.a.	2,03	101,06
BGy27	Szinyánka-patak felső folyása	Tolsztoj ed. 1976, 15. tábl., 49.	bazaltos andezit	láva	12,7±0,9	52,17	0,68	17,71	2,42	6,37	0,17	5,77	9,51	2,00	1,10	0,20	0,65	1,12	99,87	n.a.	n.a.	199,74
BGy28	Kis-Szinyák-hegy csúcsa	Lazarenko et al. 1963, 14. tábl., 4.	bazaltos andezit	láva	n.a.	53,30	0,93	20,60	2,72	4,25	n.a.	2,97	9,25	3,33	1,49	n.a.	n.a.	0,82	n.a.	n.a.	0,42	100,08
BGy29	Beregkisfalud, bánya	Seghedi et al., 2001, UA11	bazaltos andezit	neck	11±0,6	54,28	1,01	17,56	9,11	n.a.	0,16	4,77	8,3	2,51	1,74	0,22	n.a.	n.a.	n.a.	n.a.	n.a.	99,66
BGy30	Beregkisfalud, bánya	Seghedi et al., 2001, UA12	bazaltos andezit	láva	10,7±0,5	54,02	1,12	17,56	9,59	n.a.	0,16	4,51	8,19	2,71	1,63	0,22	n.a.	n.a.	n.a.	n.a.	n.a.	99,71

			5. táblázat.	A Nagysző	lősi-hegysé	ég mag	matit	jainak f	őelemg	eokén	niai ac	latbáz	zisa									
N⁰	Mintavétel helye	Elemzés forrása	Kőzettípus	Fácies	K/Ar Ma	SiO2	TiO2	Al2O3	Fe2O3	FeO	MnO	MgO	CaO	Na2O	K2O	P2O5	SO3	H2O-	H2O+	CO2	izz.veszt.	Σ
S 3	Vár-patak	Tolsztoj ed. 1976, 20. tábl., 55.	bazaltos andezit	láva	n.a.	56,39	0,76	19,46	3,37	3,78	0,06	2,16	7,27	3,29	1,90	0,26	n.a	0,77	n.a	n.a	0,76	100,23
S5	Tolsztaja-hegy csúcsa	Tolsztoj ed. 1976, 20. tábl., 50.	bazaltos andezit	láva	10,1±1,3	56,79	0,63	19,96	3,35	2,69	0,01	2,18	7,08	3,44	1,90	0,20	n.a	0,88	n.a	n.a	0,55	99,66
S 6	Nyiros-patak	Tolsztoj ed. 1976, 20. tábl., 5378.	bazaltos andezit	láva	n.a.	53,78	0,90	19,41	4,51	3,77	0,04	2,70	7,80	3,34	1,40	0,26	n.a	1,07	n.a	n.a	0,65	99,63
S 7	Huszt, Viszelicsnaja-hegy	Tolsztoj ed. 1976, 20. tábl., 60.	bazaltos andezit	láva	n.a.	52,52	0,65	20,51	3,17	4,40	0,05	3,63	9,25	2,58	1,20	0,22	n.a	0,79	n.a	n.a	0,65	99,62
S 8	Huszt, Viszelicsnaja-hegy	Malejev 1964, 11. tábl., 97-B	bazalt	neck	n.a.	51,20	0,78	19,89	5,50	2,83	0,08	4,06	11,13	2,31	1,08	n.a.	n.a	n.a	n.a	n.a	1,17	100,03
S9	Bisztra-patak felső folyása	Tolsztoj ed. 1976, 20. tábl., 62.	bazaltos andezit	láva	n.a.	55,75	0,87	18,13	5,20	3,23	0,02	3,22	6,76	2,80	1,90	0,19	n.a	1,19	n.a	n.a	0,99	100,25
S10	A Bisztra-patak első jobboldali mellékvize	Tolsztoj ed. 1976, 20. tábl., 64.	bazalt	láva	n.a.	51,93	0,83	18,89	3,95	5,52	0,07	4,48	7,99	2,58	1,20	0,41	n.a	1,19	n.a	n.a	0,77	99,81
S11	Nagyrákóc ÉK-i részén lévő bánya	Tolsztoj ed. 1976, 20. tábl., 66.	andezit	láva	n.a.	57,52	0,81	17,81	3,67	3,68	0,06	3,43	6,45	2,94	2,00	0,42	n.a	0,82	n.a	n.a	0,72	100,33
S13	Rakasz, kőbánya	Tolsztoj ed. 1976, 20. tábl., 59.	andezit	láva	n.a.	61,89	0,59	16,54	3,48	2,98	0,11	1,90	5,14	3,40	2,52	0,22	n.a	0,81	n.a	n.a	0,81	100,39
S14	Jurica-hegy	Tolsztoj ed. 1976, 20. tábl., 61.	andezit	láva	10,3±0,7	57,38	0,77	18,32	3,94	3,50	0,02	2,91	6,21	2,96	2,20	0,19	n.a	1,01	n.a	n.a	0,83	100,24
S15	Vár-patak, Keselymezői- masszívum	Tolsztoj ed. 1976, 20. tábl., 52.	dácit	láva	12,9±0,9	70,33	0,26	14,78	1,98	1,08	n.a.	0,22	2,34	3,32	3,82	0,07	n.a	0,66	n.a	n.a	0,66	99,52
S16	Vár-patak	Tolsztoj ed. 1976, 20. tábl., 58.	dácit	láva	n.a.	60,16	0,51	19,05	1,78	3,10	0,02	1,45	6,21	3,70	2,40	0,19	n.a	0,16	n.a	n.a	1,14	99,87
S17	Keselymező	Malejev 1964, 23. tábl., 374.	obszidián	láva	n.a.	70,46	0,27	14,84	0,55	3,55	0,03	0,19	2,23	2,76	4,06	0,11	n.a	0,39	n.a	n.a	0,23	99,67
S18	Szelszkij-patak, Kisrákóci- masszívum	Tolsztoj ed. 1976, 20. tábl., 51.	dácit	láva	n.a.	70,81	0,20	15,38	1,80	0,49	n.a.	0,26	1,95	3,44	3,82	0,04	n.a	0,70	n.a	n.a	0,90	99,79
S19	Rakasztól Ny-ra	Malejev 1964, 23. tábl., 2-C	perlit	láva	n.a.	70,82	0,20	15,49	1,10	0,24	n.a.	0,24	2,33	3,82	3,37	n.a.	n.a	n.a	n.a	n.a	2,24	99,85
S20	Rakasztól K-re	Malejev 1964, 24. tábl., 8014-a.	andezit	extrúzió	n.a.	59,40	0,60	18,81	7,09	0,83	0,01	0,36	6,01	3,78	2,23	n.a.	n.a	n.a	n.a	n.a	0,60	99,72
S25	Vár-patak, Keselymezői- masszívum	Tolsztoj ed. 1976, 20. tábl., 53.	dácit	láva	13,0±1,0	69,30	0,23	14,23	1,68	1,35	0,01	0,45	2,65	3,24	3,96	0,07	n.a	0,76	n.a	n.a	1,55	99,48
S26	Szelszkij-patak	Tolsztoj ed. 1976, 20. tábl., 57.	andezit	láva	n.a.	61,49	0,54	18,50	3,58	1,62	0,01	1,25	5,64	3,80	2,30	0,18	n.a	0,65	n.a	n.a	0,49	100,05
S27	Porubiscse-hegy	Tolsztoj ed. 1976, 20. tábl., 56.	dácit	láva	n.a.	66,23	0,44	15,75	2,73	0,62	0,06	2,16	7,27	3,29	1,90	0,26	n.a	0,77	n.a	n.a	0,76	102,24
S28	Rakasz	Lazarenko et al., 1963, 11. tábl., 5.	. andezit	láva	n.a.	61,58	0,79	17,01	1,70	6,00	0,13	1,59	5,15	2,99	1,93	n.a.	n.a	0,58	1,18	n.a		100,63
S29	Rakasztól Ny-ra	Malejev 1964, 23. tábl., 301.	obszidián	láva	n.a.	68,60	0,25	13,85	0,16	3,74	n.a.	0,65	2,32	4,58	3,53	n.a.	n.a	n.a	0,50	n.a	1,12	99,30
S 30	Rakasztól Ny-ra	Malejev 1964, 23. tábl., 304.	dácit	láva	n.a.	69,82	0,07	13,65	0,25	2,80	0,28	0,65	1,12	5,85	1,87	n.a.	n.a	n.a	n.a	n.a	2,30	98,66
S31	Huszt, Viszelicsnaja-hegy	Malejev 1964, 11. tábl., 97-6	bazalt, agglomerátumos tufából	láva	n.a.	50,44	0,78	18,98	7,39	2,54	0,07	3,70	9,70	1,81	1,00	n.a.	n.a	1,18	n.a	n.a	1,93	99,52
S32	Bisztra-patak középső folyása	Tolsztoj ed. 1976, 20. tábl., 63.	bazaltos andezit	láva	n.a.	55,18	0,86	17,99	3,28	5,12	0,05	4,13	7,43	2,64	1,90	0,16	n.a	0,95	n.a	n.a	0,84	100,53
S 33	A Bisztra-patak bal partján, Misztice falu	Tolsztoj ed. 1976, 20. tábl., 65.	andezit	láva	n.a.	57,79	0,83	17,09	4,99	2,87	0,02	2,92	6,03	2,94	2,20	0,60	n.a	1,23	n.a	n.a	1,02	100,53
S34	Zárnya	Malejev 1964, 5. tábl., 46.	tufa	tufa	n.a.	75,65	0,39	12,22	1,71	0,26		0,41	0,60	1,32	3,63	n.a.	n.a	2,33	1,91	n.a	100,43	200,86
S35	Iza	Malejev 1964, 11. tábl., 103.	andezit	neck	n.a.	52,35	0,68	19,80	8,43	0,93	0,06	1,39	9,70	2,75	1,48	n.a.	n.a	n.a	1,62	n.a	1,00	100,19
\$36	Rakaszi kőbánya	Zolotuhin, 1960, 97. old.	biotitos hipersztén- andezit	láva	n.a.	62,97	1,22	15,73	4,77	2,05	0,01	1,84	4,85	2,36	2,18	n.a.	n.a	n.a	1,00	n.a	0,52	99,50
A33	Rakaszi kőbánya	Danyilovics 1963, 12. tábl.	andezit	láva	n.a.	62,97	1,22	15,73	4,77	2,05	0,01	1,48	4,85	2,36	2,18	n.a.	n.a	n.a	1,00	n.a	0,52	99,14
S37	Rakaszi kőbánya	Seghedi et al 2001 UA9	andezit	láva	10,6±0,5	62,58	0,72	16,54	6,42	n.a.	0,14	2,01	4,81	3,69	2,51	0,28	n.a	n.a	n.a	n.a	n.a.	99,70

			6. tábláz	at. Az Avas	s-hegység n	nagma	titjair	nak főel	emgeok	kémiai	i adatl	bázisa	,									
N⁰	Mintavétel helye	Elemzés forrása	Kőzettípus	Fácies	K/Ar Ma	SiO2	TiO2	Al2O3	Fe2O3	FeO	MnO	MgO	CaO	Na2O	K2O	P2O5	SO3	H2O-	H2O+	CO2	izz.veszt.	Σ
A1	Tiszakirva	Tolsztoj ed. 1976, 20. tábl., 67.	andezit	láva	n.a.	60,00	0,66	16,97	1,78	3,95	0,04	3,14	6,39	2,50	2,96	0,21	n.a.	0,38	n.a.	n.a.	1,54	100,52
A2	Veléte	Danyilovics 1963, 10. tábl.	bazaltos andezit	láva	n.a.	56,69	1,16	17,33	7,77	0,66	n.a.	2,08	6,40	1,79	1,16	n.a.	n.a.	n.a.	0,51	n.a.	2,11	97,66
A3	Csarnatő falu	Danyilovics 1963, 10. tábl.	bazaltos andezit	láva	n.a.	56,80	0,60	18,39	5,83	4,12	0,12	0,36	6,72	3,00	1,41	n.a.	n.a.	n.a.	n.a.	n.a.	2,40	99,75
A4	Visk, Morongos-hegy	Malejev 1964, 20. tábl., 609.	bazaltos andezit	láva	n.a.	55,42	0,80	17,16	2,47	5,32	0,13	5,18	8,11	1,68	1,26	0,16	n.a.	n.a.	1,03	n.a.	1,14	99,86
A5	Tiszakirva Ny-i rész	Tolsztoj ed. 1976, 20. tábl., 68.	dácit	láva	n.a.	70,94	0,24	15,33	1,12	0,54	n.a.	0,34	2,03	3,32	3,82	0,08	n.a.	0,95	n.a.	n.a.	0,98	99,69
A6	Királyháza	Tolsztoj ed. 1976, 20. tábl., 69.	dácit	láva	n.a.	70,05	0,27	14,42	2,13	0,63	0,02	0,23	2,33	3,30	3,82	0,11	n.a.	0,99	n.a.	n.a.	2,08	100,38
A7	Szár-hegy	Tolsztoj ed. 1976, 20. tábl., 71.	dácit	láva	10,6±0,9	70,45	0,27	14,78	1,61	0,18	0,01	0,56	2,03	3,14	3,96	0,08	n.a.	1,57	n.a.	n.a.	1,10	99,74
A8	Szár-hegy, a Tisza bal partján	Tolsztoj ed. 1976, 20. tábl., 70.	dácit	láva	n.a.	67,13	0,41	15,33	3,11	0,67	0,01	0,78	3,43	3,60	3,28	0,15	n.a.	1,17	n.a.	n.a.	0,65	99,72
A9	A Batár-patak jobboldali mellékvize mentén	Tolsztoj ed. 1976, 20. tábl., 72.	andezit	láva	n.a.	61,14	0,59	16,90	1,91	3,50	0,08	2,91	5,61	2,72	2,80	0,16	n.a.	0,66	n.a.	n.a.	1,25	100,23
A10	A Batár-patak felső folyása	Tolsztoj ed. 1976, 20. tábl., 73.	andezit	láva	n.a.	60,53	0,59	16,35	1,62	4,85	0,07	3,03	5,45	2,90	2,60	0,15	n.a.	0,68	n.a.	n.a.	1,06	99,88
A11	Csepétől K-re, a Batár-patak mentén	Tolsztoj ed. 1976, 20. tábl., 74.	andezit	láva	n.a.	61,55	0,65	16,53	2,29	3,86	0,06	2,91	4,99	2,82	2,76	0,15	n.a.	0,81	n.a.	n.a.	0,81	100,19
A12	Veléte, Verbőci-hegy	Danyilovics 1963, 12. tábl.	andezit	láva	n.a.	58,82	0,50	18,36	4,71	2,87	n.a.	3,82	7,60	1,17	1,32	n.a.	n.a.	n.a.	0,36	n.a.	1,00	100,53
A13	Veléte, Szilszkij-p. felső folyása	Danyilovics 1963, 12. tábl.	andezit	láva	n.a.	58,91	1,51	17,99	5,74	2,74	0,09	2,72	6,19	1,51	1,41	n.a.	n.a.	n.a.	0,92	n.a.	0,67	100,40
A14	Csarnatő	Danyilovics 1963, 12. tábl.	andezit	láva	n.a.	59,56	0,56	17,47	3,93	3,67	0,10	3,67	6,00	1,96	2,05	n.a.	n.a.	n.a.	n.a.	n.a.	1,60	100,57
A15	Csarnatő, a Batár-patak mentén	Danyilovics 1963, 12. tábl.	andezit	láva	n.a.	62,96	0,82	16,22	4,01	1,58	n.a.	2,45	6,54	0,92	2,14	n.a.	n.a.	n.a.	1,36	n.a.	1,00	100,00
A16	Sósújfalu	Malejev 1964, 19. tábl., 975.	agglomerátumos tufa	tufa	n.a.	50,76	0,12	20,70	5,44	4,11	0,00	4,18	11,00	1,79	0,31	n.a.	n.a.	n.a.	n.a.	n.a.	2,00	100,41
A17	Visk	Malejev 1964, 19. tábl., 11	agglomerátumos tufa	tufa	n.a.	53,76	0,71	15,87	1,76	7,04	0,21	4,23	8,51	1,83	1,42	0,14	n.a.	0,59	n.a.	n.a.	4,06	100,13
A18	Sósújfalu	Danyilovics 1963, 8. tábl.	bazaltos andezit	láva	n.a.	53,45	0,84	18,99	5,56	3,17	n.a.	4,19	7,49	1,53	0,95	n.a.	n.a.	n.a.	0,95	n.a.	2,59	99,71
A19	Veléte	Malejev 1964, 11. tábl., 257.	bazaltos andezit	láva	n.a.	56,69	1,16	17,33	7,77	0,66	n.a.	2,08	6,40	1,79	1,16	n.a.	n.a.	0,51	n.a.	n.a.	2,11	97,66
A20	Frászin-csúcs	Danyilovics 1963, 6. tábl.	andezit	láva	n.a.	57,83	0,30	18,64	7,37	2,38	n.a.	3,21	6,58	1,34	0,89	n.a.	n.a.	0,55	n.a.	n.a.	0,45	99,54
A21	Frászin-csúcs	Danyilovics 1963, 8. tábl.	bazaltos andezit	láva	n.a.	53,48	0,14	21,31	5,66	4,27	n.a.	4,18	9,24	1,04	0,66	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	99,98
A22	Klin-patak felső folyása	Danyilovics 1963, 8. tábl.	bazaltos andezit	láva	n.a.	54,17	1,25	19,34	5,50	2,87	n.a.	#####	9,43	0,68	0,47	n.a.	n.a.	n.a.	0,90	n.a.	0,19	484,80
A23	A Holt-patak első jobboldali mellékvize	Tolsztoj ed. 1976, 20. tábl., 77.	bazaltos andezit	láva	n.a.	55,48	0,92	19,62	4,12	3,14	0,07	2,24	7,64	3,08	1,80	0,26	n.a.	1,07	n.a.	n.a.	0,78	100,22
A24	Bukovoj-patak, közel a vízválasztóhoz	Danyilovics 1963, 6. tábl.	bazaltos andezit	láva	n.a.	51,91	0,39	21,08	6,16	3,67	0,02	2,87	10,38	1,07	0,82	n.a.	n.a.	0,43	n.a.	n.a.	1,00	99,80
A25	Veléte	Danyilovics 1963, 6. tábl.	bazaltos andezit	láva	n.a.	52,42	0,30	19,00	8,24	2,45	n.a.	3,21	9,47	1,80	1,12	n.a.	n.a.	0,70	n.a.	n.a.	1,24	99,95
A26	Frászin-hegy, ÉNy-i lejtő	Danyilovics 1963, 6. tábl.	bazaltos andezit	láva	n.a.	54,66	0,15	18,88	7,04	3,52	0,01	3,88	8,04	1,43	0,91	n.a.	n.a.	0,61	n.a.	n.a.	0,43	99,56
A27	Kistarna	Danyilovics 1963, 6. tábl.	bazaltos andezit	láva	12,2±0,9	51,23	0,26	24,76	5,74	5,15	n.a.	2,84	6,82	0,81	1,15	n.a.	n.a.	0,63	0,70	n.a.	n.a.	100,09
A28	Kistarna, 1. kőbánya	Danyilovics 1963, 18. tábl.	granodiorit	intrúzió	n.a.	61,80	0,80	16,20	5,53	2,30	0,00	1,80	5,02	4,12	1,49	n.a.	n.a.	n.a.	0,24	n.a.	1,16	100,46
A31	Sósújfalu	Danyilovics 1963, 6. tábl.	bazalt	láva	n.a.	50,76	0,12	20,70	5,44	4,11	0,00	4,18	11,00	1,79	0,31	n.a.	n.a.	n.a.		n.a.	2,00	100,41
A32	Pajan-patak felső folyása	Danyilovics 1963, 10. tábl.	andezit	láva	n.a.	52,60	0,60	22,07	5,39	0,98	0,00	0,46	1,96	0,14	0,27	n.a.	n.a.	n.a.	5,04	n.a.	10,48	99,99
A34	Kruglják-hegy	Danyilovics 1963, 17. tábl.	kvarc diorit	intrúzió	n.a.	63,80	0,13	15,44	4,83	1,20	0,04	2,55	5,33	1,92	1,28	n.a.	n.a.	n.a.	1,21	n.a.	2,02	99,75
A35	A Holt-patak telső folyása	1 olsztoj ed. 1976, 20. tábl., 75.	olivin bazalt	làva	n.a.	49,54	0,66	19,14	2,24	7,45	0,20	4,96	10,28	2,16	1,00	0,16	n.a.	0,30	n.a.	n.a.	2,40	100,49
A36	Mistarnatol K-re, a Holt-patak mentén	Tolsztoj ed. 1976, 20. tábl., 766.	olivin bazalt	láva	n.a.	51,00	0,72	20,53	4,50	4,04	0,06	3,47	10,13	2,18	1,00	0,19	n.a.	1,34	n.a.	n.a.	1,31	100,47
A37	Kıstarna, 1. kőbánya	Danyilovics 1963, 18. tábl.	granodiorit	intrúzió	n.a.	61,69	0,74	15,24	4,77	2,80	0,06	2,46	5,19	1,92	1,92	n.a.	n.a.	n.a.	1,48	n.a.	1,18	99,45
A38	Kistarna, I. Kobanya	Danyilovics 1963, 18. tabl.	granodiorit	intruzio	n.a.	59.00	0,91	17,56	4,15	1,00	0.10	3,45	0,04	0,57	0,95	n.a.	n.a.	n.a.	1,91	n.a.	1,9/	99,78
A39	Nistailla	Danynovics 1905, 18. tabl.	granouiont	muuzio	II.ä.	50,92	0,30	∠∠,00	5,04	0,10	0,10	0,50	1,20	1,33	1,40	n.a.	n.a.	n.a.	1,00	11.a.	0,00	100,31

N⁰	Mintavétel helye	Elemzés forrása	Kőzettípus	Fácies	K/Ar Ma	SiO2	TiO2	Al2O3	Fe2O3	FeO	MnO	MgO	CaO	Na2O	K2O	P2O5	SO3	H2O-	H2O+	CO2	izz.veszt.	Σ
A40	Kistarna	Danyilovics 1963, 18. tábl.	mállott granodiorit	intrúzió	n.a.	64,00	0,12	20,47	3,33	0,06	0,01	0,72	0,70	0,70	1,90	n.a.	n.a.	n.a.	1,02	n.a.	7,00	100,03
A41	Kistarna	Danyilovics 1963, 18. tábl.	mállott granodiorit	intrúzió	n.a.	62,68	0,11	18,39	7,20	0,60	0,98	0,00	1,80	1,00	1,80	n.a.	n.a.	n.a.	0,92	n.a.	4,90	100,38
A42	Veléte, Szelszkij-patak felső folyása	Malejev 1964, 11. tábl.ő 189.	andezit	láva	n.a.	58,91	1,51	19,99	5,74	2,74	0,09	2,72	6,19	1,51	1,41	n.a.	n.a.	0,92	n.a.	n.a.	0,67	102,40
A43	Veléte	Malejev 1964, 11. tábl., 165.	bazaltos-andezit	láva	n.a.	52,42	0,30	19,00	8,24	2,45	n.a.	3,21	9,47	1,86	1,12	n.a.	n.a.	0,70	n.a.	n.a.	1,24	100,01
A44	Tiszakirva	Malejev 1964, 23. tábl., 112.	dácit	láva	n.a.	72,21	0,50	15,42	0,65	0,29	0,07	0,31	2,32	3,91	3,82	n.a.	n.a.	0,18	0,61	n.a.	n.a.	100,29
A45	Tiszakirva	Malejev 1964, 23. tábl., 5.	dácit	láva	n.a.	72,76	0,10	15,42	1,15	n.a.	n.a.	0,22	1,12	1,18	4,68	0,03	n.a.	n.a.	1,43	n.a.	1,84	99,93
A46	Tiszakirva	Malejev 1964, 11. tábl., 422.	andezit	láva	n.a.	57,28	0,64	17,01	7,47	1,13	0,13	3,31	5,86	2,38	1,41	n.a.	n.a.	n.a.	2,38	n.a.	1,41	100,41
A47	Veréce	Zolotuhin, 1960. 126. old	hipersztén dácit	láva	n.a.	66,96	0,98	13,12	6,71	0,07	0,06	1,42	3,82	2,44	2,56	n.a.	n.a.	99,58	0,93	n.a.	0,51	199,16
A48	Királyházi-hegy	Zolotuhin, 1960. 28. tábl.	dácit	láva	n.a.	72,90	0,37	15,31	3,18	n.a.	0,12	0,79	2,95	1,48	1,53	n.a.	n.a.	99,84	0,52	n.a.	0,69	199,68
A49	Avas	Seghedi et al 2001 UA7	dácit	láva	10,8±0,5	67,54	0,42	15,61	4,43	n.a.	0,10	1,09	3,40	3,82	3,11	0,18	n.a.	n.a.	n.a.	n.a.	n.a.	99,70
A50	Avas, Fekete hegy	Seghedi et al 2001 UA8	dácit	láva	$10,2\pm0,4$	67,19	0,39	15,40	4,91	n.a.	0,11	0,79	3,01	4,59	3,18	0,14	n.a.	n.a.	n.a.	n.a.	n.a.	99,71
A51	Visk	Seghedi et al 2001 UA10	andezit	szill	10,7±0,6	59,23	0,79	17,21	7,49	n.a.	0,14	3,58	6,16	3,04	1,85	0,22	n.a.	n.a.	n.a.	n.a.	n.a.	99,71

			7. táblázat.	A Beregszá	szi-dombs	ág mag	gmatit	jainak 1	főelemg	eokén	niai a	datbáz	zisa									
N₂	Mintavétel helye	Elemzés forrása	Kőzettípus	Fácies	K/Ar Ma	SiO2	TiO2	Al2O3	Fe2O3	FeO	MnO	MgO	CaO	Na2O	K2O	P2O5	SO3	H2O-	H2O+	CO2	izz.veszt.	Σ
B1	Hajas-hegy, Bene	Malejev 1964, 10. táblázat, 11.	riolit	láva	n.a.	72,70	0,16	14,69	3,00	0,12	0,01	0,13	1,82	3,71	2,32	n.a.	n.a.	1,52	0,05	n.a.	n.a.	100,23
B2	Hajas-hegy, Bene	Malejev 1964, 10. táblázat, 9.	riolit	láva	n.a.	72,78	0,08	13,43	2,78	0,19	n.a.	0,36	2,22	4,00	2,72	n.a.	n.a.	0,38	1,44	n.a.	n.a.	100,38
B3	Hajas-hegy, Bene	Malejev 1964, 10. táblázat, 14.	riolit	láva	n.a.	74,50	0,21	14,21	1,50	0,12	0,07	0,22	1,50	2,38	3,10	n.a.	0,45	n.a.	1,33	n.a.	1,16	100,75
B4	Ardói-hegy, Beregszász	Tolsztoj ed. 1976. 10. táblázat, 4.	riolit	láva	n.a.	73,60	0,18	13,49	1,70	0,54	n.a.	0,30	2,24	3,78	3,40	0,08	n.a.	0,40	n.a.	n.a.	0,49	100,20
В5	Ardói-hegy, Beregszász	Lazarenko et al., 1963, 9. táblázat, 2.	vitrofírosodott riolit	láva	n.a.	73,70	0,08	14,89	1,82	0,12	0,01	0,27	0,76	4,58	3,06	n.a.	n.a.	0,80	0,33	n.a.	n.a.	100,42
B6	Ardói-hegy, Beregszász	Malejev 1964, 10. táblázat, 3.	riolit	láva	n.a.	73,20	0,08	13,08	2,21	0,12	0,01	0,26	2,04	4,26	2,61	n.a.	n.a.	1,63	0,58	n.a.	n.a.	100,08
B7	Kis Aranyos-hegy	Lazarenko et al., 1963, 9. táblázat, 5.	riolit	láva	n.a.	73,90	0,07	13,37	2,99	0,42	0,04	0,50	1,00	4,29	1,56	0,01	n.a.	0,73	1,25	n.a.	n.a.	100,13
B8	Kis-hegy	Malejev 1964, 10. táblázat, 8.	riolit	láva	n.a.	72,80	0,07	13,28	3,09	0,05	0,01	0,25	2,04	4,50	2,44	n.a.	n.a.	0,69	1,00	n.a.	n.a.	100,22
B9	Hajas-hegy, Bene	Tolsztoj ed. 1976. 10. táblázat, 1.	riolit	láva	n.a.	72,62	0,23	13,85	2,63	0,27	n.a.	0,30	1,40	2,66	3,36	0,06	n.a.	1,15	n.a.	n.a.	1,42	99,95
B10	Ardaói-hegy, Beregszász, falusi bánya	Malejev 1964, 10. táblázat, 2.	riolit	láva	n.a.	73,70	0,08	14,89	1,82	0,12	0,01	0,27	0,76	4,58	3,06	n.a.	n.a.	0,33	0,80	n.a.	n.a.	100,42
B12	Ardói-hegy, Beregszász	Malejev 1964, 10. táblázat, 130-a.	riolit	láva	n.a.	75,92	0,16	13,77	0,94	0,12	0,02	0,18	1,60	2,99	3,50	n.a.	0,30	n.a.	0,47	n.a.	0,54	100,51
B13	Nagymuzsaly	Lazarenko et al., 1963, 9. táblázat, 4.	vitrofírosodott riolit	láva	n.a.	70,88	0,25	15,25	0,73	0,56	n.a.	0,55	1,70	2,73	1,97	n.a.	0,25	0,28	3,76	n.a.	n.a.	98,91
B14	Nagymuzsaly	Lazarenko et al., 1963, 9. táblázat, 6.	litoklasztos tufa, ignimbrithez hasonló	tufa	n.a.	74,50	1,04	14,00	0,90	0,39	n.a.	0,14	2,03	2,18	2,10	n.a.	n.a.	0,20	2,85	n.a.	n.a.	100,33
B15	Nagymuzsaly	Lazarenko et al., 1963, 9. táblázat, 7.	riolittufa	tufa	n.a.	71,64	0,23	13,07	1,50	0,50	0,01	1,18	1,44	1,21	1,62	n.a.	0,20	3,70	4,66	n.a.	n.a.	100,96
B16	Nagymuzsaly	Lazarenko et al., 1963, 9. táblázat, 9.	riolittufa	tufa	n.a.	70,30	0,30	14,28	1,49	0,18	0,02	0,55	0,92	2,15	2,26	n.a.	0,30	3,72	3,87	n.a.	n.a.	100,34
B17	Ardói-hegy, Beregszász	Lazarenko et al., 1963, 9. táblázat, 1.	vitrofírosodott riolit	láva	n.a.	74,34	0,08	13,98	1,56	0,26	0,02	0,39	1,10	4,56	3,61	n.a.	n.a.	0,24	0,78	n.a.	n.a.	100,92
B18	Nagymuzsaly	Malejev 1964, 10. táblázat, 7.	dácit	láva	n.a.	70,88	0,25	15,25	0,73	0,65	n.a.	0,55	1,70	2,73	1,97	n.a.		3,76	0,28	n.a.	n.a.	98,75
B19	Aranyos-hegy	Malejev 1964, 10. táblázat, 12.	riolit	láva	n.a.	74,58	0,19	13,02	0,43	0,80	0,02	0,19	1,27	3,34	3,36	0,03	0,07	0,75	1,26	n.a.	n.a.	99,31
B20	Kerek-hegy	Malejev 1964, 10. táblázat, 1.	dácit	láva	n.a.	70,80	0,25	15,26	0,73	0,56	n.a.	0,55	1,70	2,73	2,97	n.a.	0,34	n.a.	0,28	n.a.	4,08	100,25
B21	Nagy-hegy	Malejev 1964, 10. táblázat, 14.	riolittufa	tufa	n.a.	74,50	1,04	14,00	0,90	0,39	n.a.	0,14	2,04	2,18	2,10	n.a.	n.a.	n.a.	0,20	n.a.	2,85	100,34
B22	Nagy-hegy	Malejev 1964, 10. táblázat, 84.	riolit	láva	n.a.	74,03	0,90	13,71	0,90	0,56	0,02		1,03	0,81	3,63	n.a.	n.a.	n.a.	5,40	n.a.	n.a.	100,99
B23	Vári, 30 fúrás, 1148m	Seghedi et al 2001 UA34	bazalt	láva	n.a.	50,16	1,02	18,98	12,02	n.a.	0,18	3,36	10,97	2,05	0,71	0,25	n.a.	n.a.	n.a.	n.a.	n.a.	99,70
B24	Nagyborzsova, 4T fúrás, 510m	Seghedi et al 2001 UA22	andezit	láva	11,6±1,7	57,36	0,93	16,78	8,16	n.a.	0,17	4,36	7,32	2,79	1,61	0,24	n.a.	n.a.	n.a.	n.a.	n.a.	99,72
B25	Nagybégány, bánya	Seghedi et al 2001 UA6	riolit	láva	12,6±0,6	73,26	0,25	14,08	2,33	n.a.	0,02	0,62	2,28	3,61	3,15	0,12	n.a.	n.a.	n.a.	n.a.	n.a.	99,72
B27	Mezőkaszony, bánya	Seghedi et al 2001 UA5	riolit	láva	12,6±0,5	73,77	0,23	13,88	2,22	n.a.	0,02	0,50	2,06	3,76	3,18	0,09	n.a.	n.a.	n.a.	n.a.	n.a.	99,71

N⁰	Mintavétel helye	Elemzés forrása	Kőzettípus	Fácies	K/Ar Ma	SiO2	TiO2	Al2O3	Fe2O3	FeO	MnO	MgO	CaO	Na2O	K2O	P2O5	SO3	H2O-	H2O+	CO2	izz.veszt.	Σ
B28	Hajas-hegy, bánya	Seghedi et al 2001 UA26	riolit	láva	12,4±0,8	74,51	0,21	13,58	1,69	n.a.	0,01	0,79	1,59	3,71	3,47	0,15	n.a.	n.a.	n.a.	n.a.	n.a.	99,71
B29	Beregszászvégardói (Beregszász É-i városrésze) bánya	Seghedi et al 2001 UA30	riolit	láva	12,2±0,7	74,58	0,17	13,46	1,89	n.a.	0,02	0,48	1,54	3,89	3,57	0,10	n.a.	n.a.	n.a.	n.a.	n.a.	99,70
B30	Kovászó, 302 fúrás, 409m	Seghedi et al 2001 UA38	bazaltos andezit	láva	n.a.	56,23	1,00	17,17	8,51	n.a.	0,18	3,73	8,33	2,74	1,61	0,20	n.a.	n.a.	n.a.	n.a.	n.a.	99,70
B31	Beregszász, 320 fúrás, 306m	Seghedi et al2001 UA41	bazaltos andezit	láva	12,9±0,7	56,29	1,12	17,47	9,13	n.a.	0,16	3,93	7,11	3,03	1,21	0,26	n.a.	n.a.	n.a.	n.a.	n.a.	99,71
B32	Kovászó, 375 fúrás, 550m	Seghedi et al 2001 UA19	bazaltos andezit	láva	n.a.	56,64	0,81	17,54	8,16	n.a.	0,14	4,22	8,27	2,66	1,08	0,17	n.a.	n.a.	n.a.	n.a.	n.a.	99,69
B33	Beregszászvégardó (Beregszász É-i városrésze), 423 fúrás, 391m	Seghedi et al 2001 UA20	andezit	láva	12,1±0,7	61,03	0,94	16,98	6,60	n.a.	0,15	3,03	5,87	2,70	2,15	0,26	n.a.	n.a.	n.a.	n.a.	n.a.	99,71
B34	Makkosjánosi, 3T fúrás, 356m	Merlics-Szpitkovszkaja, 1974. 14 tábl., 7.	andezit	láva	n.a.	59,42	0,94	17,44	3,04	4,31	0,18	2,30	5,97	3,10	1,76	0,10	0,05	n.a.	n.a.	n.a.	1,50	100,11
B35	Makkosjánosi, 3T fúrás, 365m	Merlics-Szpitkovszkaja, 1974. 14 tábl., 6.	andezit	láva	n.a.	56,63	0,91	17,93	3,02	5,70	0,22	1,50	7,12	2,95	1,73	n.a.	0,06	0,06	n.a.	0,93	0,72	99,48
B36	Bene, 13 fúrás, 109m	Merlics-Szpitkovszkaja, 1974. 14 tábl., 14.	bazaltos andezit	láva	n.a.	52,24	1,16	16,08	4,19	5,04	0,16	4,58	7,60	2,38	0,86	n.a.	1,15	2,08	n.a.	0,07	2,10	99,69
B37	Bene, 14 fúrás, 89m	Merlics-Szpitkovszkaja, 1974. 14 tábl., 15.	andezit	láva	n.a.	56,02	1,09	16,52	2,41	4,97	0,19	3,60	7,39	2,48	1,88	n.a.	n.a.	0,84	n.a.	n.a.	1,78	99,17
B38	Bene, 19 fúrás, 236m	Merlics-Szpitkovszkaja, 1974. 14 tábl., 16.	bazalt	láva	n.a.	50,52	1,05	17,74	3,11	7,00	0,21	3,97	7,32	2,85	1,60	n.a.	n.a.	1,16	n.a.	0,60	2,26	99,39
B39	Makkosjánosi, 52 fúrás, 440m	Merlics-Szpitkovszkaja, 1974. 14 tábl., 17.	andezit	láva	n.a.	58,44	1,10	16,24	2,43	4,86	0,17	2,23	5,87	3,30	1,88	n.a.	0,05	0,43	n.a.	0,51	1,79	99,30
B40	Makkosjánosi, 52 fúrás, 468m	Merlics-Szpitkovszkaja, 1974. 14 tábl., 18.	andezit	láva	n.a.	56,92	0,99	16,25	2,32	6,19	0,22	2,33	6,13	3,55	2,53	n.a.	0,05	0,31	n.a.	1,35	0,67	99,81
B41	Pelikán-hegy, 128 fúrás, 200m	Merlics-Szpitkovszkaja, 1974. 14 tábl., 19.	bazaltos andezit	láva	n.a.	53,84	1,06	15,68	2,61	6,83	0,21	3,80	7,94	2,90	1,48	n.a.	0,05	0,83	n.a.	0,75	1,36	99,34
B42	Kovászó, 136 fúrás, 385m	Merlics-Szpitkovszkaja, 1974. 14 tábl., 21.	bazaltos andezit	láva	n.a.	53,22	1,02	17,04	3,53	4,93	0,24	2,28	7,94	2,50	1,54	n.a.	0,05	1,74	n.a.	2,14	1,52	99,69
B43	Bene, 617 fúrás, 38,2m	Merlics-Szpitkovszkaja, 1974. 14 tábl., 22.	bazalt	láva	n.a.	49,24	1,10	17,28	3,22	8,28	0,38	3,83	10,88	2,34	0,53	n.a.	0,05	0,64	n.a.	1,56	n.a.	99,33
B44	Bene, 617 fúrás, 238m	Merlics-Szpitkovszkaja, 1974. 14 tábl., 23.	bazaltos andezit	láva	n.a.	51,66	0,87	17,06	3,46	5,12	0,18	3,18	5,97	1,89	2,14	n.a.	0,07	1,40	n.a.	2,78	3,76	99,54
B45	Asztély, 66 fúrás, 165m	Merlics-Szpitkovszkaja, 1974. 18 tábl., 26.	dácit	láva	n.a.	67,15	0,14	13,03	6,10	n.a.	0,12	1,20	2,75	2,80	2,00	n.a.	n.a.	n.a.	n.a.	n.a.	4,28	99,57
B46	Asztély, 67 fúrás, 191,1m	Merlics-Szpitkovszkaja, 1974. 18 tábl., 27.	dácit	láva	n.a.	72,00	0,35	14,13	3,85	n.a.	0,09	0,55	2,75	3,11	2,40	n.a.	n.a.	n.a.	n.a.	n.a.	1,68	100,91
B47	Asztély, 67 fúrás, 95,6m	Merlics-Szpitkovszkaja, 1974. 18 tábl., 28.	dácit	láva	n.a.	66,70	0,30	15,28	4,80	n.a.	0,22	2,21	2,78	3,00	2,20	n.a.	n.a.	n.a.	n.a.	n.a.	1,58	99,07
B48	Asztély, 66 fúrás, 347m	Merlics-Szpitkovszkaja, 1974. 18 tábl., 29.	dácit	láva	n.a.	66,29	0,65	15,09	3,10	1,72	0,14	1,06	3,80	3,90	2,32	n.a.	n.a.	0,97	0,55	n.a.	n.a.	99,59
B49	Asztély, 7 fúrás, 261m	Merlics-Szpitkovszkaja, 1974. 18 tábl., 37.	dácit	láva	n.a.	66,44	0,60	15,39	3,11	1,01	0,12	0,80	3,74	3,35	2,24	n.a.	n.a.	1,00	n.a.	0,24	2,27	100,31
K1	Kaszonyi-hegy	Tolsztoj ed. 1976, 10. táblázat, 2.	dácit	láva	n.a.	71,45	0,23	14,39	2,18	0,72	n.a.	0,71	2,66	3,64	2,94	0,08	n.a.	0,67	n.a.	n.a.	0,53	100,20
K2	Kaszonyi-hegy	Tolsztoj ed. 1976, 10. táblázat, 3.	dácit	láva	n.a.	72,23	0,24	14,03	2,14	0,45	0,02	0,40	2,38	3,68	3,12	0,09	n.a.	0,74	n.a.	n.a.	0,43	99,95
K3	Zápszony	Lazarenko et al., 1963, 9. táblázat, 3.	vitrofírosodott riolit	láva	n.a.	72,36	0,19	15,59	1,04	n.a.	n.a.	0,07	2,29	2,73	3,14	0,14	0,20	0,60	1,60	n.a.	n.a.	99,95
K4	Mezőkaszony	Malejev 1964, 10. táblázat, 87.	dácit	láva	n.a.	72,94	0,15	13,94	1,79	0,72	0,02	0,22	2,21	3,61	3,15	n.a.		0,78	0,52	n.a.	n.a.	100,05
K6	Mezőkaszonytól EK-re	Malejev 1964, 10. táblázat, 6.	dácit	láva	n.a.	71,04	0,17	15,84	1,92	n.a.	0,02	0,06	3,16	6,34	3,04	0,14	0,26	0,88	0,60	n.a.	n.a.	103,47
K7	Beregsom - Mezokaszonytól D- re	Malejev 1964, 10. táblázat, 4.	dácit	láva	n.a.	72,72	0,15	14,89	1,04	n.a.	0,03	0,06	2,04	2,29	3,42	0,15	0,29	1,92	0,92	n.a.	n.a.	99,92
K8	Nagybégány, 252 fúrás, 136m	Merlics-Szpitkovszkaja, 1974. 19 tábl., 41.	bazaltos andezit	láva	n.a.	52,93	1,06	18,90	4,40	2,51	0,15	5,12	6,78	3,40	3,00	n.a.	n.a.	0,90	n.a.	0,30	1,30	100,75
K9	Nagybégány, 254 fúrás, 196m	Merlics-Szpitkovszkaja, 1974. 19 tábl., 42.	bazalt	láva	n.a.	47,92	1,12	19,32	3,99	5,46	0,20	4,05	12,80	2,35	1,20	n.a.	n.a.	0,06	n.a.	1,88	0,41	100,76

			8. táblázat.	A Csap kör	rnyéki elter	netett	magm	atitok f	főelemg	geokér	niai a	datbáz	zisa									
N⁰	Mintavétel helye	Elemzés forrása	Kőzettípus	Fácies	K/Ar Ma	SiO2	TiO2	Al2O3	Fe2O3	FeO	MnO	MgO	CaO	Na2O	K2O	P2O5	SO3	H2O-	H2O+	CO2	izz.veszt.	Σ
Cs1	50c fúrás	Tolsztoj ed. 1976, 10. táblázat, 10.	andezit	láva	n.a.	59,96	0,63	16,55	1,59	3,86	0,03	1,81	5,61	3,10	2,20	0,21	n.a.	0,31	n.a.	n.a.	3,74	99,60
Cs2	52c fúrás	Tolsztoj ed. 1976, 10. táblázat, 11.	andezit	láva	n.a.	59,16	0,77	16,73	2,32	4,58	0,04	2,82	6,17	2,88	2,06	0,20	n.a.	0,15	n.a.	n.a.	2,34	100,22
Cs3	128c fúrás	Tolsztoj ed. 1976, 10. táblázat, 12.	bazaltos andezit	láva	n.a.	55,04	0,84	16,91	2,72	5,52	0,05	4,23	7,29	2,22	1,74	0,19	n.a.	0,24	n.a.	n.a.	3,08	100,07
Cs4	66c fúrás	Tolsztoj ed. 1976, 10. táblázat, 13.	dácit	láva	n.a.	66,37	0,47	14,57	4,07	0,63	0,02	0,91	3,36	3,40	2,48	0,15	n.a.	1,08	n.a.	n.a.	2,02	99,53
Cs5	10-cs fúrás, 644m	Merlics-Szpitkovszkaja, 1974. 14 tábl., 10.	bazaltos andezit	láva	n.a.	53,09	1,00	17,63	3,99	5,45	0,18	2,11	9,35	2,73	1,00	n.a.	n.a.	0,60	n.a.	3,67	n.a.	100,80
Cs6	10-cs fúrás, 731-737m	Merlics-Szpitkovszkaja, 1974. 14 tábl., 11.	bazaltos andezit	láva	n.a.	54,09	0,51	18,93	1,80	6,29	0,15	2,88	8,87	2,94	1,00	0,22	0,01	0,24	n.a.	1,58	1,01	100,52
Cs7	10-cs fúrás, 799,5-801,5m	Merlics-Szpitkovszkaja, 1974. 14 tábl., 12.	bazalt	láva	n.a.	50,00	1,24	20,02	3,12	5,49	0,19	1,90	10,75	2,40	0,54	n.a.	n.a.	0,48	n.a.	3,73	0,22	100,08
Cs8	10-cs fúrás, 1334-1334,3m	Merlics-Szpitkovszkaja, 1974. 14 tábl., 13.	bazaltos andezit	láva	n.a.	51,10	0,87	19,34	1,56	6,88	0,25	3,96	9,95	2,48	0,44	n.a.	n.a.	0,68	n.a.	2,13	0,22	99,86
Cs9	15-cs fúrás, 1052-1058m	Merlics-Szpitkovszkaja, 1974. 18 tábl., 34.	dácit	láva	n.a.	68,11	0,31	13,59	2,60	1,18	0,04	0,50	2,29	2,15	2,69	0,07	n.a.	2,88	n.a.	n.a.	3,16	99,57
Cs10	18-cs fúrás, 708-710,9m	Merlics-Szpitkovszkaja, 1974. 18 tábl., 35.	dácit	láva	n.a.	68,76	0,30	14,55	1,84	1,63	0,06	0,20	2,66	3,86	3,24	0,07	n.a.	0,75	n.a.	1,73	n.a.	99,65
Cs11	18-cs fúrás, 993-1005m	Merlics-Szpitkovszkaja, 1974. 18 tábl., 36.	dácit	láva	n.a.	63,90	0,37	16,69	0,68	1,93	0,06	0,80	3,78	2,99	1,64	n.a.	n.a.	2,78	n.a.	3,74	n.a.	99,36
Cs12	18-cs fúrás, 1118m	Merlics-Szpitkovszkaja, 1974. 14 tábl., 9.	andezit	láva	n.a.	57,69	0,55	17,29	2,73	4,76	0,11	3,52	7,23	3,07	0,58	0,45	0,06	0,43	n.a.	0,70	1,48	100,65
Cs13	15-cs fúrás, 779,2-782m	Merlics-Szpitkovszkaja, 1974. 18 tábl., 39.	andezit	láva	n.a.	59,71	0,70	16,71	2,98	2,81	0,10	1,22	6,06	2,55	2,69	0,14	n.a.	0,29	3,48	n.a.	n.a.	99,44
Cs14	15-cs fúrás, 779,2-782m	Merlics-Szpitkovszkaja, 1974. 18 tábl., 40.	andezit	láva	n.a.	59,88	0,70	16,24	3,11	3,17	0,11	1,98	6,08	2,43	2,58	0,13	0,10	0,38	3,80	n.a.	n.a.	100,69
Cs15	15-cs fúrás, 983m	Merlics-Szpitkovszkaja, 1974. 19 tábl., 43.	andezit	láva	n.a.	56,94	0,91	18,74	3,00	2,84	0,12	0,91	8,05	2,99	2,16	n.a.	n.a.	0,48	0,60	1,73	n.a.	99,47
Cs16	15-cs fúrás, 1001-1006m	Merlics-Szpitkovszkaja, 1974. 19 tábl., 44.	andezit	láva	n.a.	56,56	0,57	11,76	1,31	5,58	0,12	2,57	8,01	3,25	2,26	0,26	0,05	0,16	n.a.	n.a.	0,69	93,15
Cs17	16-cs fúrás, 168-171m	Merlics-Szpitkovszkaja, 1974. 19 tábl., 45.	andezit	láva	n.a.	57,63	0,45	17,70	1,17	5,44	0,23	3,89	7,35	2,87	1,45	0,45	0,06	0,50	n.a.	n.a.	1,02	100,21
Cs18	16-cs fúrás, 168-171m	Merlics-Szpitkovszkaja, 1974. 19 tábl., 46.	andezit	láva	n.a.	57,08	0,66	17,03	2,13	5,06	0,21	3,87	8,18	2,62	1,31	1,14	n.a.	0,62	n.a.	n.a.	0,62	100,53
Cs19	16-cs fúrás, 472-476m	Merlics-Szpitkovszkaja, 1974. 19 tábl., 47.	andezit	láva	n.a.	56,25	0,46	17,64	3,06	3,74	0,06	4,66	7,58	3,12	1,23	0,41	0,05	1,08	n.a.	0,18	1,12	100,64
Cs20	16-cs fúrás, 915m	Merlics-Szpitkovszkaja, 1974. 14 tábl., 8.	bazaltos andezit	láva	n.a.	55,64	0,60	17,52	1,99	6,01	0,14	4,35	7,41	2,43	1,00	0,40	0,04	0,11	n.a.	1,06	1,14	99,84
Cs21	Uzs-3 fúrás, 1297m	Merlics-Szpitkovszkaja, 1974. 14 tábl., 5.	bazaltos andezit	láva	n.a.	53,32	1,10	17,26	1,01	5,64	0,13	2,24	8,95	2,63	1,38	0,06	0,07	0,51	n.a.	5,24	n.a.	99,54

		9. tábláz	zat. A Kárpáta	ljai-síkságo	on elszórt s	szigeth	egyek	magma	titjaina	ak főe	lemge	okémi	iai ada	tbázisa	a							
N⁰	Mintavétel helye	Elemzés forrása	Kőzettípus	Fácies	K/Ar Ma	SiO2	TiO2	Al2O3	Fe2O3	FeO	MnO	MgO	CaO	Na2O	K2O	P2O5	SO3	H2O-	H2O+	CO2	izz.veszt.	Σ
SzV1	Nagyszőlősi Fekete-hegy	Tolsztoj ed. 1976, 10. táblázat, 16.	dácit	láva	n.a.	60,00	0,60	18,63	4,34	1,97	0,12	2,00	5,55	3,34	2,00	0,23	n.a.	0,96	n.a.	n.a.	0,76	100,50
SzV2	Nagyszőlősi Fekete-hegy	Tolsztoj ed. 1976, 10. táblázat, 15.	bazaltos andezit	láva	n.a.	53,86	0,84	18,49	3,45	5,56	0,16	4,62	8,03	2,72	1,26	0,27	0,70	0,40	100,36	n.a.	n.a.	200,72
SzV3	Nagyszőlősi Fekete-hegy	Malejev 1964, 11. táblázat, 10-3.	bazaltos andezit	láva	n.a.	53,87	2,05	16,91	7,55	2,00	0,09	3,57	7,93	2,02	1,20	n.a.	n.a.	n.a.	3,00	n.a.	n.a.	100,19
SzV4	Nagyszőlősi Fekete-hegy	Malejev 1964, 11. táblázat, 11-3.	bazaltos andezit	láva	n.a.	54,30	0,89	15,74	10,02	1,24	0,17	3,66	8,34	2,24	0,94	n.a.	n.a.	n.a.	1,31	n.a.	0,98	99,83
SzV5	Nagyszőlősi Fekete-hegy, Ny-i lejtő	Malejev 1964, 11. táblázat, 17-3.	bazaltos andezit	láva	n.a.	56,73	2,11	14,72	11,96	n.a.	1,10	0,95	7,45	1,59	1,79	n.a.	n.a.	n.a.	1,47	n.a.	0,87	100,74
SzV6	Nagyszőlősi Fekete-hegy	Zolotuhin, 1960, 50.old	bazaltos andezit	láva	n.a.	54,30	0,89	15,75	10,02	1,24	0,17	3,66	8,34	2,24	0,94	n.a.	n.a.	n.a.	1,31	n.a.	0,98	99,84
SzV7	Nagyszőlősi Fekete-hegy	Zolotuhin, 1960. 7. táblázat	bazalt tufa	tufa breccsa	n.a.	53,87	2,05	16,91	7,55	2,00	0,09	3,57	7,39	2,02	1,20	n.a.	n.a.	n.a.	3,00	n.a.	0,83	100,48

N⁰	Mintavétel helye	Elemzés forrása	Kőzettípus	Fácies	K/Ar Ma	SiO2	TiO2	Al2O3	Fe2O3	FeO	MnO	MgO	CaO	Na2O	K2O	P2O5	SO3	H2O-	H2O+	CO2	izz.veszt.	Σ
SzV8	Nagyszőlősi Fekete-hegy, központi rész	Zolotuhin, 1960. 8. táblázat	andezit	láva	n.a.	61,70	1,26	16,98	4,57	2,73	0,03	1,47	5,87	2,12	1,21	n.a.	n.a.	n.a.	1,11	n.a.	0,51	99,56
SzV9	Nagyszőlősi Fekete-hegy, Ény- i lejtő	Zolotuhin, 1960. 56. old.	bazaltos andezit	láva	n.a.	55,44	2,05	14,74	7,31	4,07	0,26	4,05	8,02	1,91	1,08	n.a.	n.a.	n.a.	0,62	n.a.	n.a.	99,55
SzV10	Salánki-hegy v. Hömlöc	Zolotuhin, 1960. 61. old.	andezit	láva	n.a.	57,40	1,10	17,74	5,66	2,06	0,07	2,48	7,00	2,78	1,62	n.a.	n.a.	n.a.	1,10	n.a.	1,11	100,12
SzV11	Nagyszőlősi Fekete-hegy, ÉK-i lejtő	Zolotuhin, 1960, 15. táblázat	olivínes andezit	láva	n.a.	61,67	1,19	17,85	4,74	1,89	0,01	1,41	5,91	2,32	1,64	n.a.	n.a.	n.a.	0,73	n.a.	0,29	99,65
SzV12	Nagyszőlősi Fekete-hegy, Ny-i lejtő	Zolotuhin, 1960. 17. táblázat	dácit	láva	n.a.	63,44	0,55	18,55	6,21	0,29	0,02	1,81	5,49	1,05	0,48	n.a.	n.a.	n.a.	0,87	n.a.	0,87	99,63
SzV13	Nagyszőlősi Fekete-hegy, ÉK-i rész	Zolotuhin, 1960. 108. old.	olivín dácit	láva	n.a.	65,86	0,91	15,29	5,20	0,22	0,02	1,66	4,29	2,22	2,13	n.a.	n.a.	n.a.	1,10	n.a.	0,60	99,50
SzV14	Nagyszőlősi Fekete-hegy, központi rész	Zolotuhin, 1960. 113. old	dácit	láva	n.a.	68,34	0,66	15,88	3,35	0,20	0,02	0,86	3,11	2,35	2,37	n.a.	n.a.	n.a.	1,08	n.a.	1,36	99,58
SzV15	Nagyszőlősi Fekete-hegy, Ny-i lejtő	Zolotuhin, 1960. 31. táblázat	olivínes, piroxénes, biotitos andezit	láva	n.a.	56,73	2,11	14,72	11,96	n.a.	1,10	0,95	7,45	1,59	1,79	n.a.	n.a.	n.a.	1,47	n.a.	0,87	100,74
SzV16	Salánk, 316 fúrás, 125 m	Seghedi et al 2001 UA39	bazaltos andezit	láva	n.a.	55,13	1,00	18,79	8,10	n.a.	0,15	3,69	8,00	3,05	1,55	0,25	n.a.	n.a.	n.a.	n.a.	n.a.	99,71
SzV17	Dercen, 327 fúrás, 587 m	Seghedi et al 2001 UA18	andezit	szill	n.a.	59,05	0,84	16,70	7,51	n.a.	0,08	4,20	6,33	3,11	1,64	0,24	n.a.	n.a.	n.a.	n.a.	n.a.	99,70
SzV18	Salánk, út menti bánya	Seghedi et al 2001 UA24	andezit	láva	n.a.	59,57	1,05	19,06	5,21	n.a.	0,08	3,03	6,30	3,27	1,84	0,29	n.a.	n.a.	n.a.	n.a.	n.a.	99,70
SzV19	Salánk, 438 fúrás, 228 m	Seghedi et al 2001 UA23	andezit	láva	n.a.	60,31	0,84	16,83	7,15	n.a.	0,16	3,11	5,98	3,06	2,04	0,23	n.a.	n.a.	n.a.	n.a.	n.a.	99,71
SzV20	Derceni vulkán, Gát község	Seghedi et al 2001 UA37	dácit	láva	n.a.	67,21	0,50	15,88	4,39	n.a.	0,12	0,85	3,89	4,17	2,52	0,17	n.a.	n.a.	n.a.	n.a.	n.a.	99,70
SzV21	Salánk, 316 fúrás, 286 m	Seghedi et al 2001 UA40	andezit	láva	n.a.	58,33	0,91	19,24	6,73	n.a.	0,12	2,47	7,27	2,84	1,60	0,19	n.a.	n.a.	n.a.	n.a.	n.a.	99,70
SzV22	Nagyszőlős, Vin-2 fúrás, 1419m	Merlics-Szpitkovszkaja, 1974. 14 tábl., 1.	bazalt	láva	n.a.	48,70	0,98	19,51	1,47	7,62	0,11	3,92	9,65	2,56	0,18	n.a.	n.a.	1,28	n.a.	3,00	1,41	100,39
SzV23	Nagyszőlős, Vin-3 fúrás, 1888m	Merlics-Szpitkovszkaja, 1974. 14 tábl., 2.	bazalt	láva	n.a.	47,84	1,34	15,78	4,39	7,26	0,20	4,59	9,92	2,17	0,78	n.a.	n.a.	1,08	n.a.	3,96	1,13	100,44
SzV24	Dercen, 50 fúrás, 592m	Merlics-Szpitkovszkaja, 1974. 14 tábl., 24.	andezit	láva	n.a.	56,87	1,02	17,24	2,07	5,66	0,18	2,02	6,64	3,30	1,52	0,08	0,05	0,64	n.a.	0,27	1,87	99,43
SzV25	Dercen, 50 fúrás, 592m	Merlics-Szpitkovszkaja, 1974. 14 tábl., 25.	bazaltos andezit	láva	n.a.	53,03	0,92	16,68	2,30	6,78	0,27	2,57	6,66	2,74	1,24	0,04	0,10	0,92	n.a.	2,56	2,68	99,49
SzV26	Dercen, 50 fúrás, 647m	Merlics-Szpitkovszkaja, 1974. 14 tábl., 4.	andezit	láva	n.a.	57,64	0,94	17,65	1,75	5,85	0,20	2,16	6,48	3,15	1,49	n.a.	0,06	0,22	n.a.	0,49	1,25	99,33
SzV27	Dercen, 50 fúrás, 648m	Merlics-Szpitkovszkaja, 1974. 14 tábl., 3.	andezit	láva	n.a.	58,08	0,90	18,17	2,45	4,15	0,17	2,16	7,16	2,85	1,26	n.a.	n.a.	0,59	n.a.	0,64	n.a.	98,58
SzV28	Csikósgoron, 352 fúrás, 157m	Merlics-Szpitkovszkaja, 1974. 18 tábl., 38.	dácit	láva	n.a.	64,82	0,60	15,94	3,15	2,48	0,08	1,17	5,14	3,42	1,98	n.a.	n.a.	n.a.	n.a.	1,00	0,23	100,01
SzV29	Dercen, bánya	Merlics-Szpitkovszkaja, 1974. 19 tábl., 48.	andezit	láva	n.a.	59,82	0,44	17,06	1,98	4,39	0,12	3,50	6,15	2,89	1,90	0,23	0,02	0,23	0,01	0,18	1,65	100,57
SzV30	Dercen, bánya	Merlics-Szpitkovszkaja, 1974. 19 tábl., 49.	andezit	láva	n.a.	60,80	0,41	17,29	2,94	3,21	0,14	3,09	6,15	3,38	0,42	0,24	0,01	0,60	0,01	0,18	0,69	99,56
SzV31	Salánk, 140 fúrás, 121m	Merlics-Szpitkovszkaja, 1974. 19 tábl., 50.	andezit	láva	n.a.	60,64	0,94	16,44	2,15	4,84	0,14	1,36	5,54	3,52	1,88	0,13	0,04	n.a.	n.a.	1,93	2,46	102,01

Magyar név	ukrán név	orosz név	
Aknaszlatinai- (v.		Мармарошская котпорица	
Máramarosi-) medence	Мармарошська улоговина	Мармарошская когловина	
Aknaszlatinai-formáció	Солотвинська світа	Солотвинская свита	
Almási-formáció	Алмашська світа	Алмашская свита	
Alsóremete	Нижні Ремети	Нижние Реметы	
Antalóci Poljána	г. Анталовська Поляна	г. Анталовецкая Поляна	
Antalóci-hegy	Анталовецька гора	Анталовецкая гора	
Apsicai-formáció	Апшицька світа	Апшицкая свита	
Apsica-patak	р. Апшиця	р. Апшица	
Aranyos-hegy	г. Золотиста	г. Золотистая	
Ardói-hegy	г. Ардов	г. Ардов	
Avas-hegység	хр. Оаш	хр. Оаш	
Bányafalu	Сусково	Сусково	
Barkaszó	Баркасово	Баркасово	
Baszheui-formáció	світа Басгевська	свита Басхевская	
Bátyú	Батьово	Батево	
Bégányi-hegy	г. Бийгань	г. Быйгань	
Bercsényifalva	Дубринич	Дубринич	
Berdó-hegy	г. Бердо	г. Бердо	
Beregkisalmás	Залужжя	Залужье	
Beregkisfalud	Сільце	Сельце	
Beregkövesd	Кам'янське	Каменское	
Beregpapfalva	Ділок	Дилок	
Beregszász	Берегово	Берегово	
Beregszászi-dombság	Берегівське горбогір'я	Береговское холмогорье	
Beregszőlős	Лохово	Лохово	
Bilke	Білки	Белки	
Bisztrij-patak	Бистрий потік	ручей Бистрий	
Bliznyica-csúcs	г. Близниця	г. Близница	
Borhalom	Бобовище	Бобовище	
Borló-Gyil-hegység	хр. Великий Діл, хр. Борлів	хр. Великий Дил, хр. Борилов	
Dorgan folyó		дил	
Borzsa-Ioiyo	р. Боржава	р. Боржава	
Borzsa-navas	хр. Полонина Боржава	хр. Полонина Боржава	
Dukovoj-patak Durkolći formáciá	Буковии поттк	Буковой поток	
Durkaloi-iorinacio	Буркальська світа	Буркаловская свита	
Dustyallaza	Буштино	Буштино	
Buza-negy	Г. Буза	Г. Буза	
Buzsora	Бужора	Бужора	
Cigany-patak	р. Цигань	р. Цыгань	
Csalhoi-takaro	покрив Чалго	покров Чалхо	
Csap	Чоп	Чоп	
Csap1-tormáció	Чопська світа	Чопская свита	
Csap-Munkácsi-síkság	Чоп-Мукачівська низовина	Чоп-Мукачевская низменность	
Csarnatő	Чорна	Черна	

4. melléklet. A dolgozatban szereplő földrajzi nevek és kifejezések adatbázisa

Magyar név	ukrán név	orosz név
Csepe	Чепа	Чепа
Csepka-hegy	г. Чепка	г. Чепка
Cserepec-hegy	г. Черепець	г. Черепец
Cservonij-patak	Червоний потік	ручей Червоный
Csornohora	хр. Чорногора	хр. Чорногора
Csornohora-takaró	Чорногірський покрив	Черногорский покров
Dechmanov	Дехманів	Дехманов
Dédai-hegy	г. Дийда	г. Дыйда
Dercen	Дерцен	Дерцен
Derceni-hegy (v.	Партан	- Партан
Kápolna-hegy)	г. дерцен	г. дерцен
Dolha	Довге	Долгое
Drágabártfalvi-formáció	Доробратівська світа	Доробратовская свита
Dubina	Дубино	Дубино
Dukla-takaró	Дуклянський покрив	Дуклянский покров
Dunauka	Дунаука	Дунаука
Duszinka-patak	р. Дусинка	р. Дусинка
Erdőpatak	Лісарня	Лесарня
Fedelesfalva	Крите	Крытое
Fehér Kő	Білий Камінь	Белый Камень
Fekete-Cseremos	Чорний Черемош	Чорный Черемош
Fekete-hegy	Чорна гора	Чорная гора
Felsőapsa	Верхнє Водяне	Верхнее Водяное
Felsődomonya	Оноківці	Оноковцы
Felsőremete	Верхні Ремети	Верхние Реметы
Felsőveresmart	Велика Копаня	Великая Копаня
Felsőviznice	Верхня Визниця	Верхняя Визница
Fraszin	Фрасин	Фрасин
Frigyesfalva	Кленовець	Кленовец
Galambos	Голубине	Голубиное
Gát	Гать	Гать
Gorgánok	хр. Горгани	хр. Горганы
Gorond	Горонда	Горонда
Codent Vánnátala	Складчасті Карпати, Флішові	Складчатые Карпаты,
Gyurt-Karpatok	Карпати	Флишовые Карпаты
Hajas (v. Szőlő)-hegy	г. Гайаш	г. Хаеш
Hát-gerinc	хр. Гат	хр. Хат
Havasi-vonulat	Полонинський хребет	Полонинский хребет
Hegyrét	Герцівці	Герцовцы
Hizsa-hegy	г. Хижа	г. Хижа
Hlibokij-patak	потік Глибокий	ручей Глубокий
Holt-patak	р. Мертвиця	р. Мертвица
Hosszú-hegy	г. Довга	г. Длинная
Hoverla-csúcs	г. Говерла	г. Говерла
Hömlőc	Холмовець	Холмовец
Huszt	Хуст	Хуст

Magyar név	ukrán név	orosz név
Huszti járás	Хустський район	Хустский район
Huszti-kapu	Хустські ворота	Хустские ворота
Husztközi-tufák	нанківськи туфи	нанковские туфы
Husztsófalva	Данилово	Данилово
Ilkóc	Ільківці	Ильковцы
Ilosva	Іршава	Иршава
Ilosvai járás	Іршавський район	Иршавский район
Ilosvai-kismedence	Іршавська улоговина	Иршавская котловина
Ilosva-patak	р. Іршава	р. Иршава
Iványi	Іванівці	Ивановцы
Iza	Іза	Иза
Izai-formáció	Ізянська світа	Изанская свита
Izsnyéte	Жнятино	Жнятино
Jávor-hegy	г. Явор	г. Явор
Jurica-hegy	г. Юриця	г. Юрица
Kamenka-havas	полонина Камя'нка	полонина Каменка
Kámeny csúcs	г. Камінь	г. Камень
Kápolna-hegy (Derceni-	в Порион	ъ Порион
hegy)	г. дерцен	г. дерцен
Kapuszög	Ворочово	Ворочево
Kárpátaljai-síkság	Закарпатська рівнина	Закарпатская равнина
Kaszony	Косонь	Косонь
Kaszonyi-dombság	Косонські горби	Косонские холмы
Keleti-Beszkidek	Східні Бескиди	Восточные Бескиды
Kerek-hát	г. Керек Хат	г. Керек Хат
Kerek-hegy	г. Керек	г. Керек
Keselymező	Кошельово	Кошелево
Keselymezői-formáció	Кошелівська світа	Кошелевская свита
Kicsera	Кичера	Кичера
Királyfiszállás	Солочин	Солочин
Királyháza	Королево	Королево
Kis-hegy	г. Мала	г. Малая
Kis-Kelemen-hegy	г. Малий Калімен	г. Малый Калимен
Kislécfalva	Лецовиця	Лецовица
Kisrákóc	Малий Раковець	Малый Раковец
Kistarna	Хижа	Хижа
Klin-patak	р. Клин	р. Клин
Korláthelmec	Холмці	Холмец
Kovácsi-tufa	Ковачські туфи	Ковачские туфы
Kovászó	Квасово	Квасово
Köblér	Кибляри	Кибляры
Kölcsény	Кольчино	Кольчино
Kőrösmezői-kismedence	Ясинська улоговина	Ясинская котловина
Kövesligeti-formáció	Лрагівська світа	Драговская свита
Kraszna-havas	полонина Красна	полонина Красна
Kriva-hegy	г. Крива	г. Крива
	I I ''	r "

Magyar név	ukrán név	orosz név	
Krosznói-takaró	Кросненський покрив	Кросненский покров	
Kruhla-hegy	г. Кругла	г. Круглая	
Kuklya bánya	рудник Кукйа	рудник Кукйа	
Lamovanya-patak	потік Ламованя	ручей Ламованя	
Lapos-hegy			
Latorca-folyó	Латориця	Латорица	
Lohó	Лохово	Лохово	
Lonka	Луг	Луг	
Lovacska-hegy	г. Ловачка	г. Ловачка	
Lukovai-formáció	Луківська світа	Луковская свита	
Magura-takaró	Магурський покрив	Магурский покров	
Makovica	г. Маковиця	г. Маковица	
Máramarosi-masszívum	Мармарошський масив	Мармарошский массив	
Máramarosi-szirtöv	зона Мармароських стрімчаків	зона Мармарошских утесов	
Marangos-patak	потік Марангош	ручей Марангош	
Martinszkij Kameny	Мартинський Камінь	Мартынский Камень	
Maszárfalva	Негрово	Негрово	
Maszárfalvi-formáció	Негрівська світа	Негровская свита	
Matekova-patak	р. Матековка	р. Матековка	
Melnyicsnyij-patak	Мельничний потік	ручей Мельничный	
Minaji-formáció	Минайська світа	Минайская свита	
Misztice	Імстичово	Имстичево	
Mlinszkij-patak	Млинський потік	ручей Млинский	
Morongos-hegy	г. Марангош	г. Марангош	
Munkács	Мукачево	Мукачево	
Munkács melletti	D	D	
Nagyhegy	г. Велика	г. Великая	
Nádaspatak	Тростянець	Тростянец	
Nagyág-folyó	р. Рика	р. Рика	
Nagybégány	Велика Бийгань	Великая Быйгань	
Nagyborzsova	Боржава	Боржава	
Nagydobrony	Велика Добронь	Великая Добронь	
Nagygajdos	Гайдош	Гайдош	
Nagy-hegy	г. Надь	г. Надь	
Nagy-Kelemen-hegy	г. Великий Калімен	г. Великий Калимен	
Nagylucska	Великі Лучки	Великие Лучки	
Nagymuzsaly	Мужієво	Мужиево	
Nagy-Pinya patak	Велика Пиня	Великая Пиня	
Nagyrákóc	Великий Раковець	Великий Раковец	
nagyszőlősi Fekete-hegy	Чорна гора	Чорная гора	
Nagyszőlősi-hegység (v.	Великий Шолес	Великий Шолес	
Nagy-Sollesz)	TI		
INENFOVEC-havas	полонина Негровець	полонина Негровец	
Nemetkucsova	Кучава	Кучава	
Nevicke	Невицьке	Невицкое	

Magyar név	ukrán név	orosz név	
Novoszelicai-formáció		Hopocomulan opuro	
(v. Taracújfalui-f.)	повоселицька світа	повоселицкая свита	
Nyéresháza	Нересниця	Нересница	
Nyiros-patak	р. Нірош	р. Нирош	
Obava	Обава	Обава	
Obavai-kő	Обавський Камінь	Обавский Камень	
Obava-patak	р. Обава	р. Обава	
Ókemence	Кам'яниця	Каменица	
Oláhcsertész	Підгірне	Подгорное	
Ósándorfalva	Олександрівка	Александровка	
Oszava-patak	р. Мала Осава	р. Малая Осава	
Ölyvös	Вільхівка	Ольховка	
Öreg-patak	р. Стара	р. Старая	
Pajan-patak	р. Паян	р. Паян	
Pelikán-hegy	г. Пелікан	г. Пеликан	
Perecseny	Перечин	Перечин	
Perecsenyi-kismedence	Перечинська котловина	Перечинская котловина	
Pienini-szirtöv	зона Пенінських стрімчаків	зона Пенинских утесов	
Pliska	Плишка	Плишка	
Porubiscse-hegy	г. Порубище	г. Порубище	
Potasnya-patak	р. Поташня	р. Поташня	
Pudulki-dűlő	ур. Подулки	ур. Подулки	
Putka-hegy	г. Путка	г. Путка	
Radvánc	Радванка	Радванка	
Rafajnaújfalu	Рафайново	Рафайново	
Rahói-masszívum	Рахівський масив	Раховский массив	
Rahói-takaró	Рахівський покрив	Раховский покров	
Rakasz	Рокосово	Рокосово	
Róna-havas	хр. Полонина Рівна	хр. Полонина Ровная	
Rónahavas-csúcs	г. Полонина Рівна	г. Полонина Ровная	
Saján	Шаян	Шаян	
Salánk	Шаланки	Шаланки	
Salánki-hegy v. Hömlöc	г. Шаланський Гельмець	г. Шаланский Гельмец	
Skitena	г. Шкитена	г. Шкитена	
Sopurka-patak	р. Шопурка	р. Шопурка	
Szár-hegy	г. Саргеть	г. Саргеть	
Szarvaskút	Оленьово	Оленево	
Szeklence	Сокирниця	Сокирница	
Szélestő	Шелестово	Шелестово	
Szelszkij-patak	Сільський потік	Сельский поток	
Szentmiklós	Чинадієво	Чинадиево	
Szerednye	Середнє	Среднее	
Szerednyij Verh	Середній Верх	Средний Верх	
Szernye-mocsár	Чорний Мочар	Чорный Мочар	
Szidorfalva	Грабово	Грабово	
Szihlanszkij-csúcs	г. Сигланський	г. Сигланский	

Magyar név	ukrán név	orosz név	
Szilszkij-patak	Сільський потік	Сельский поток	
Szinyák	Синяк	Синяк	
Szinyák-hegység	хр. Синяк	хр. Синяк	
Szinyánka-patak	р. Синянка	р. Синянка	
Szirova-patak	р. Сирий Потік	р. Сырой Поток	
Szkakalo-vízesés	вдсп. Скакало	вдп. Скакало	
Szlatina-patak	Солотвинський потік	ручей Солотвинский	
Szoleni Mlaki	Солені Млаки	Соленые Млаки	
Szolocsinszkij Dol csúcs	г. Солочанський Діл	г. Солочанский Дол	
Szolyva	Свалява	Свалява	
Szolyvai-kismedence	Свалявська улоговина	Свалявская котловина	
Szolyva-patak	р. Свалявка	р. Свалявка	
Sztánfalva	Станово	Станово	
Sztoj-csúcs	г. Стій	г. Стой	
Szuha-takaró	Поркулецький покрив	Поркулецкий покров	
Szuszkóújfalu	Сусково	Сусково	
Szuszkovo	Сусково	Сусково	
Szvidovec	хр. Свидовець	хр. Свидовец	
Talaborfalui-formáció	Тереблянська світа	Тереблянская свита	
Talabor-folyó	р. Теребля	р. Теребля	
Tarac-folyó	р. Тересва	р. Тересва	
Taracközi-formáció	Тересвянська світа	Тересвянская свита	
Taracújfalui-formáció			
(v. Novoszelicai-f.)	Новоселицька світа	новоселицкая свита	
Tatár-hágó	пер. Яблуницький	пер. Яблоницкий	
Técső	Тячів	Тячево	
Teresuli-formáció	Терешулська світа	Терешулская свита	
Teszánik-patak	р. Тесяник	р. Тесяник	
Tiszakirva	Крива	Крива	
Tokárnya-hegy	г. Токарня	г. Токарня	
Tolsztaja-hegy	г. Товста	г. Толстая	
Toronyai-hágó	пер. Торунський	пер. Торунский	
Tupoj	Тупий	Тупой	
Tupoj-csúcs	г. Тупий	г. Тупой	
Turja-patak	р. Тур'я	р. Турья	
Turjasebes	Тур'я Бистра	Турья Бистрая	
Újkemence	Новоселиця	Новоселица	
Újlucska	Нові Лучки	Новые Лучки	
Ung-folyó	р. Уж	р. Уж	
Ungvár	Ужгород	Ужгород	
Uzsoki-hágó	пер. Ужоцький	пер. Ужокский	
Vár-hegy	г. Вар-Хедь	г. Вар-Хедь	
Vári	Вари	Вары	
Vár-patak	p. Bap	p. Bap	
Veléte	Велятино	Велятино	

Magyar név	ukrán név	orosz név
Vereckei-hágó	пер. Середній Верецький	пер. Средний Верецкий
Verhovinai-folyosó	Верховина	Верховина
Viborlót Gutin vulkóni	Вигорлат-Гутинська	Вигорлат-Гутинская
	вулканічна гряда,	вулканическая гряда,
vonulat	Вулканічний хребет	Вулканический хребет
Vihorlát-Popricsnij	Вигорлат-Попричний	Вигорлат-Попричный
Visk	Вишково	Вышково
Viszelnaja-hegy	г. Висельна	г. Висельная
Vitrova Szkala	Вітрова Скеля	Ветровая Скала
Viznyica-patak	р. Визниця	р. Визница
Vízválasztó-vonulat	Вододільний хребет	Водораздельный хребет
Zápszonyi-hegy	Запсонська гора	Запсонская гора
Zárnya	Приборжавське	Приборжавское
Zvesznij-csúcs	г. Звесний	г. Звесный
Zsornina	Жорнина	Жорнина
Zsukó	Жуково	Жуково
Zvesznij-csúcs	г. Звесний	г. Звесный
Zsornina	Жорнина	Жорнина
Zsukó	Жуково	Жуково

5. meléklet. A kárpátaljai magmás képződmények radiometrikus kor adatbázisa (a kőzetek megnevezésénél követtem az irodalomban megadottakat)

	A Vihorlát-Popricsnij csoport magmás képződményeinek kor adatbázisa				
	A mintavétel helye	A minta anyaga	Fácies	K/Ar (millió év)	Az adat származása
1	Potasnya-patak	riodácit	láva	15,8±1,0	Tolsztoj et al., 1976 (2. táblázat)
2	Ókemencei kőbánya	bazaltos andezit	láva	15,5±1,1	Tolsztoj et al., 1976 (2. táblázat)
3	Perecseny	gabbró-diabáz	extrúzió	18,0±2,0	Merlics – Szpitkovszkaja, 1974 (27. táblázat)
4	Perecseny	gabbró-porfirit	extrúzió	22,0±4,0	Merlics – Szpitkovszkaja, 1974 (27. táblázat)
5	Perecseny	gabbró-diabáz	extrúzió	36,0±8,0	Merlics – Szpitkovszkaja, 1974 (27. táblázat)
6	Szirova-patak	bazaltos andezit	láva	12,7±1,0	Tolsztoj et al., 1976 (2. táblázat)
7	Ókemence	diorit	intrúzió	13,4±0,6	Pécskay et al., 2000 (546)
8	Újkemence	piroxén andezit	láva	12,3±0,5	Pécskay et al., 2000 (153)
9	Perecsenytől ÉNy-ra	riolit	dóm	12,2±0,5	Pécskay et al., 2000 (341)
10	Szirova-patak völgye	piroxén andezit	láva	12,0±0,6	Pécskay et al., 2000 (UA- 1)
11	Szirova-patak völgye	piroxén bazaltos andezit	láva	13,1±0,6	Pécskay et al., 2000 (UA- 2)
12	Szirova-patak völgye	amfibol-biotit dácit	dájk	13,1±0,6	Pécskay et al., 2000 (UA- 3)
13	Szirova-patak völgye	piroxén andezit	láva	12,1±0,5	Pécskay et al., 2000 (UA- 4)
14	A Potasnya- patak felső folyása	gánátos dácit	láva	14,9±1,0	Merlics-Szpitkovszkaja, 1974, 109 old.
15	Bercsényifalva, 25 fúrás	mikrograno- diorit	intrúzió	14,2±0,4	Bojko et al., (1967), 6. táblázat, 3.
16	Bercsényifalva, 25 fúrás, 76m	mikrograno- diorit	intrúzió	12,2±1,3	Merlics-Szpitkovszkaja (1974), 34. táblázat, 17.

	A Makovica vulkáni körzet magmás képződményeinek kor adatbázisa				
	A mintavétel helye	A minta anyaga	Fácies	K/Ar (millió év)	Az adat származása
17	Radvánci kőbánya	bazaltos andezit	láva	11,5±1,6	Tolsztoj et al., 1976 (2. táblázat)
18	Antalóci-hegy csúcsa	bazaltos andezit	láva	10,8±0,8	Tolsztoj et al., 1976 (2. táblázat)
19	Makovica (alja)	bazaltos andezit	láva	14,0±1,0	Tolsztoj et al., 1976 (2. táblázat)
20	Kölcsény	piroxén- bazaltos andezit	láva	10,7±0,4	Pécskay et al., 2000 (976)
21	Kölcsény	piroxén andezit	intrúzió	10,3±0,4	Pécskay et al., 2000 (UA- 16)
22	Nevicke	piroxén andezit	láva	9,5±0,6	Pécskay et al., 2000 (349)
23	Zsornina-hegy	dácit	láva	11,6±0,5	Pécskay et al., 2000 (75)
24	Viznyica-patak völgye	riolit	láva	11,4±0,4	Pécskay et al., 2000 (756)
25	Lohó, 265 fúrás 330m	piroxén andezit	láva	12,2±0,6	Pécskay et al., 2000 (265)

	A Szinyák vulkáni körzet magmás képződményeinek kor adatbázisa				
	A mintavétel helye	A minta anyaga	Fácies	K/Ar (millió év)	Az adat származása
26	Szélestő (ma Kölcsény része)	andezit	láva	12,7±1,5	Tolsztoj et al., 1976 (2. táblázat)
27	Matekovka- patak	bazaltos andezit	láva	9,9±0,9	Tolsztoj et al., 1976 (2. táblázat)
28	Pliska-hegy	bazaltos andezit	láva	11,7±0,8	Tolsztoj et al., 1976 (2. táblázat)
29	Pliska-csúcs	bazalt	láva	9,5±0,5	Tolsztoj et al., 1976 (2. táblázat)
30	Pliska-hegy	bazaltos andezit	láva	9,5±0,5	Bagdaszarjan – Danyilovics, 1968
31	Pliska-hegy	kétpiroxénes andezit	láva	11,7±?	Bagdaszarjan – Danyilovics, 1968
32	Búza-csúcs Ny-i lejtő	bazaltos andezit	láva	9,5±0,5	Bagdaszarjan – Danyilovics, 1968
33	Szinyák, C-30T fúrás 660m	piroxén andezit	intrúzió	9,3±0,6	Pécskay et al., 2000 (30-1)
34	Szinyák C-30T fúrás 819m	piroxén- bazaltos andezit	láva	11,5±0,8	Pécskay et al., 2000 (30-2)
35	Szinyák C-30T fúrás 910m	piroxén- bazaltos andezit	intrúzió	9,8±0,7	Pécskay et al., 2000 (30-3)
36	Szinyák C-30T fúrás 976m	piroxén andezit	láva	11,2±0,5	Pécskay et al., 2000 (30-4)
37	Szinyák C-30T fúrás 1145m	piroxén andezit	láva	10,8±0,5	Pécskay et al., 2000 (30-5)

38	Szinyák C-30T fúrás 1148m	piroxén andezit	láva	11,6±0,6	Pécskay et al., 2000 (UA- 33)
39	Obavai kőbánya	piroxén andezit	láva	10,7±0,5	Pécskay et al., 2000 (UA- 17)
40	Szentmiklós	bazaltos andezit	láva	10,6±0,5	Pécskay et al., 2000 (UA- 14)
41	Szentmiklós	bazaltos andezit	láva	11 , 4±0 , 4	Pécskay et al., 2000 (UA- 15)
42	7T fúrás, 396m (22°´52´24´´ - 48°´31´49´´)	piroxén andezit	intrúzió	12,9±1,1	Pécskay et al., 2000 (UA- 21)
43	Galambos	bazaltos andezit	szill	13,3±1,5	Seghedi et al., 2001 (UA- 13)
44	Obavai Kő, Kölcsényi bánya	andezit	láva	10,3±0,4	Seghedi et al., (2001) (UA16)
45	Obavai Kő, Galambos	bazaltos andezit	láva	13,3±1,5	Seghedi et al., (2001) (UA13)
46	Kol_1	andezit	?	10,7±0,4	Krassay Z., 2010
47	Kol_1	andezit	?	10,3±0,4	Krassay Z., 2010
48	Bányafalu, 22°53'36,354'' - 48°33'42,262''	andezit	láva	11,22±1,37	Saját minta, ATOMKI, elemző Pécskay Z.
49	Kölcsény, 22°45'24,120'' - 48°30'01,310''	andezit	kráter	9,70±0,46	Saját minta, ATOMKI, elemző Pécskay Z.
50	Kruglják-hegy csúcsa, 22°51'01,457'' - 48°38'21,959''	andezit	láva	11,74±0,51	Saját minta, ATOMKI, elemző Pécskay Z.
51	Matekovka- patak völgye, 22°50'40,365'' - 48°32'54,096''	andezit	láva	9,88±0,39	Saját minta, ATOMKI, elemző Pécskay Z.
52	A Dunauka-hegy csúcsa, 22°52'18,727'' - 48°36'27,102''	andezit	láva	8,88±0,39	Saját minta, ATOMKI, elemző Pécskay Z.
53	Szerednyij Verh csúcsa, 22°53'16,938'' - 48°34'54,255''	andezit	kráter	10,14±0,37	Saját minta, ATOMKI, elemző Pécskay Z.
54	Bányafalu, 22°55'45,110'' - 48°32'28,398''	bazaltos andezit	lakkolit	11,61±1,06	Saját minta, ATOMKI, elemző Pécskay Z.
55	Erdőpatak, 22°44'02,785'' - 48°32'58,762''	andezit	láva	8,0±?	Saját minta, ATOMKI, elemző Pécskay Z.

5. melléklet.

A Szinyák-hegység K/Ar koradatainak területi eloszlása (a saját gyűjtésű minták elemzését Dr. Pécskay Z. végezte az ATOMKI-ban)

	A Borló-Gyil vulkáni körzet magmás képződményeinek kor adatbázisa				
	A mintavétel helye	A minta anyaga	Fácies	K/Ar (millió év)	Az adat származása
56	Buzsora-csúcs, Szinyánka-patak	bazalt	láva	11,4±0,8	Tolsztoj et al., 1976 (2. táblázat)
57	Buzsora-csúcs, Szinyánka-patak	bazalt	láva	12,7±0,9	Tolsztoj et al., 1976 (2. táblázat)
58	Buzsora-csúcs, Szinyánka-patak	bazalt	láva	9,5±0,7	Tolsztoj et al., 1976 (2. táblázat)
59	Buzsora-csúcs, Szinyánka-patak	bazalt	láva	11,0±1,0	Tolsztoj et al., 1976 (2. táblázat)
60	Ilosvai járás, Kamenka falu, Szinyánka-patak	bazaltos andezit	láva	9,5±0,5	Bagdaszarjan – Danyilovics, 1968
61	Ilosvai járás. Kamenka falu, Szinyánka-patak	olivin bazalt	láva	11,4±0,2	Bagdaszarjan – Danyilovics, 1968
62	Ilosvai járás. Kamenka falu, vasútállomás	durvaporfíros andezit	láva	11,0±1,0	Bagdaszarjan – Danyilovics, 1968
63	Szolyva, 1 fúrás, 752m	gránátos- leukokrát dácit	láva	13,4±3,0	Merlics – Szpitkovszkaja, 1974 (34. táblázat)
64	Szolyva, 1 fúrás	gránátos- leukokrát dácit	láva	15,7±3,4	Bojko et al. 1967 (6. táblázat)
65	Szolyva	piroxén andezit	intrúzió	11,2±0,8	Pécskay et al., 2000 (886)
66	Ilosva 997 fúrás 51m	piroxén- bazaltos andezit	láva	11,0±0,7	Pécskay et al., 2000 (997)
67	Oláhcsertész kőbánya	piroxén- bazaltos andezit	láva	10,7±0,5	Pécskay et al., 2000 (UA12)
68	Beregkisfalud kőbánya	piroxén- bazaltos andezit	intrúzió	11,0±0,6	Pécskay et al., 2000 (UA11)

A	A Nagyszőlősi-hegység vulkáni körzet magmás képződményeinek kor adatbázisa							
	A mintavétel helye	A minta anyaga	Fácies	K/Ar (millió év)	Az adat származása			
69	Bisztrij-patak	bazaltos andezit	láva	11,8±2,1	Tolsztoj et al., 1976 (2. táblázat)			
70	Jurica-hegy	andezit	láva	10,3±0,7	Tolsztoj et al., 1976 (2. táblázat)			
71	Vár-hegy	savanyú andezit	láva	12,9±1,3	Tolsztoj et al., 1976 (2. táblázat)			
72	Vár-patak	riodácit	láva	12,9±0,9	Tolsztoj et al., 1976 (2. táblázat)			

73	Tolsztaja-hegy	bazaltos andezit	láva	10,1±1,3	Tolsztoj et al., 1976 (2. táblázat)
74	Rakasz kőbánya	piroxéndácit	láva	10,6±0,5	Pécskay et al., 2000 (UA9)
75	Ölyvös	piroxén andezit	láva	9,1±1,3	Pécskay et al., 2000 (476)

	Az Avas vulkáni körzet magmás képződményeinek kor adatbázisa						
	A mintavétel helye	A minta anyaga	Fácies	K/Ar (millió év)	Az adat származása		
76	Hizsa-hegy	bazalt	láva	12,2±0,9	Tolsztoj et al., 1976 (2. táblázat)		
77	Szár-hegy	dácit	láva	10,6±0,9	Tolsztoj et al., 1976 (2. táblázat)		
78	Kriva-hegy	bazaltos andezit	láva	10,2±0,8	Tolsztoj et al., 1976 (2. táblázat)		
79	Tiszakirva, Melnyicsnyij- patak felső folyása	riodácit	extrúziv dóm	10±?	Bagdaszarjan – Danyilovics, 1968		
80	Visk, 651 fúrás, 996,5 m.	kvarcmentes dioritporfirit	intrúzió	10,5±0,5	Bagdaszarjan – Danyilovics, 1968		
81	Visk, 651 fúrás, 995m	kvarctartalmú dioritporfirit	intrúzió	9,6±3,3	Merlics – Szpitkovszkaja, 1974 (34. táblázat)		
82	Visk, kőbánya	granodiorit- porfirit	intrúzió	14,0±3,0	Merlics – Szpitkovszkaja, 1974 (34. táblázat)		
83	Visk, Marangos- patak 445 fúrás, 361m	granodiorit- porfirit	intrúzió	11,0±3,0	Merlics – Szpitkovszkaja, 1974 (34. táblázat)		
84	Visk, Cserepec- hegy	kvarctartalmú dioritporfirit	intrúzió	13,4±3,4	Merlics – Szpitkovszkaja, 1974 (34. táblázat)		
85	Visk, Cserepec hegy	granodiorit- porfirit	extrúziv dóm	12,5±0,5	Bagdaszarjan – Danyilovics, 1968		
86	Visk, Sütő-patak	berezit		14,2±2,7	Merlics – Szpitkovszkaja, 1974 (34. táblázat)		
87	Visk, Vár-hegy	kvarctartalmú dioritporfirit	intrúzió	9,0±3,0	Merlics – Szpitkovszkaja, 1974 (34. táblázat)		
88	Visk, Kruliák- hegy	kvarctartalmú dioritporfirit	intrúzió	9,0±2,0	Merlics – Szpitkovszkaja, 1974 (34. táblázat)		
89	Visk, Kruliák- hegy	földpát		10,0±?	Szemenyenko et al., 1969 (10. táblázat)		
90	Visk, Kruliák - hegy	földpát		13,0±?	Szemenyenko et al., 1969 (10. táblázat)		
91	Visk, Lapos- hegy 603 fúrás, 480m	leukokrát granodiorit- porfirit	extrúzió	8,0±2,0	Merlics – Szpitkovszkaja, 1974 (34. táblázat)		

92	Visk, Lapos- hegy 611 fúrás, 545m	leukokrát granodiorit- porfirit	extrúzió	11,2±2,0	Merlics – Szpitkovszkaja, 1974 (34. táblázat)
93	Visk, Lapos- hegy 603 fúrás, 440m	leukokrát granodiorit- porfirit	extrúzió	8,0±2,0	Merlics – Szpitkovszkaja, 1974 (34. táblázat)
94	Visk, 611 fúrás	leukokrát dácit	láva	14,6±2,2	Bojko et al., 1967 (6. táblázat)
95	Visk, Lapos- hegy 603 fúrás	leukokrát dácit	láva	14,5±3,6	Bojko et al., 1967 (6. táblázat)
96	Bustyaháza, 13. fúrás, 636 m. A novoszelicai tufák II. szintjéből	riodácit tufa	piroklaszt	16,5±0,5	Bagdaszarjan – Danyilovics, 1968
97	Huszti járás, Bustyaháza, 5t fúrás, 387 m.	riolittufa (sós rétegek fölötti II. szint)	piroklaszt	18,0±1,0	Bagdaszarjan – Danyilovics, 1968
98	Saján	Földpát, leukokrát- granodiorit- porfirit	extrúzió	13,0±?	Szemenyenko et al., 1969 (10. táblázat)
99	Visk, Nagy Saján-hegy, 96. fúrás	granodiorit- porfirit	extrúzió	6,0±?	Szemenyenko et al., 1969 (10. táblázat)
100	Visk, Nagy Saján	leukokrát granodiorit- porfirit	extrúzió	12,2±2,8	Merlics – Szpitkovszkaja, 1974 (34. táblázat)
101	Visk, Fekete- hegy	piroxéndácit	láva	10,2±0,4	Pécskay et al., 2000 (UA8)
102	Visk	piroxén andezit	szill	10,7±0,6	Pécskay et al., 2000 (UA10)

	A beregszászi vulkáni körzet magmás képződményeinek kor adatbázisa						
	A mintavétel helye	A minta anyaga	Fácies	K/Ar (millió év)	Az adat származása		
103	Kaszonyi-hegy	plagioriolit	láva	11,32±1,9	Tolsztoj et al., 1976 (2. táblázat)		
104	Kaszonyi-hegy	plagioriolit	láva	15,5±1,1	Tolsztoj et al., 1976 (2. táblázat)		
105	Kaszonyi-hegy	riolit	láva	9,0±2,0	Merlics – Szpitkovszkaja, 1974 (11. táblázat)		
106	Kaszony	riolit	láva	13,2±1,2	Merlics – Szpitkovszkaja, 1974 (11. táblázat)		
107	Kaszonyi kőbánya	fluidális plagioriolit	láva	18,5±3,5	Bojko et al., 1967 (7. táblázat)		

108	Kaszony környéke	riolit	láva	17,3±4,2	Bojko et al., 1967 (7. táblázat)
109	Kaszony környéke	riolit	láva	15,2±2,8	Bojko et al., 1967 (7. táblázat)
110	Kaszony környéke	kvarcosodott, adulárosodott tufa	piroklaszt	13,4±1,3	Bojko et al., 1967 (7. táblázat)
111	Kaszony környéke	kvarcosodott, adulárosodott tufa	piroklaszt	13,3±1,8	Bojko et al., 1967 (7. táblázat)
112	Kaszonyi kőbánya	riolit	láva	12,6±0,5	Pécskay et al., 2000 (UA5)
113	Bégányi-hegy	riolit	láva	12,6±0,6	Pécskay et al., 2000 (UA6)
114	Ardói kőbánya	riolit	láva	12,2±0,7	Pécskay et al., 2000 (UA30)
115	Hajas-hegy	riolit	dóm	12,4±0,8	Pécskay et al., 2000 (UA26)
116	Hajas-hegy a kupola központjából	kvarcnélküli plagioliparit	láva	12,5±2,7	Merlics – Szpitkovszkaja, 1974 (11. táblázat)
117	Hajas-hegy, Nagy bánya, a dóm központi részéből	kvarcmentes, afanitos plagioriolit	láva	14,8±2,7	Szemenyenko et al., 1969 (10. táblázat)
118	Hajas-hegy, Nagy bánya, a dóm központi részéből	kvarcmentes, afanitos plagioriolit	láva	15,5±2,7	Bojko et al., 1967 (7. táblázat)
119	Hajas-hegy, K-i lejtő, lávafolyás	kvarcmentes, afanitos plagioriolit	láva	12,8±3,5	Szemenyenko et al., 1969 (10. táblázat)
120	Hajas-hegy, a kupola széléről	kvarcmentes, afanitos plagioriolit	láva	13,4±3,5	Merlics – Szpitkovszkaja, 1974 (11. táblázat)
121	Hajas-hegy	afanitos plagioriolit	láva	16,5±4,2	Bojko et al., 1967 (7. táblázat)
122	Hajas-hegy	plagioliparit	láva	15,7±1,1	Tolsztoj et al., 1976 (2. táblázat)
123	Pelikán-hegy, Nagymuzsaly	perlit	láva	10,0±2,0	Tolsztoj et al., 1976 (2. táblázat)
124	Pelikán-hegy kőbánya	riolit (perlit)	láva	12,8±0,5	Pécskay et al., 2000 (UA28)
125	Nagymuzsaly, Pelikán-hegy, perlit üzem	breccsásodott perlit	extrúzív dóm széle	13,0±1,0	Bagdaszarjan – Danyilovics, 1968
126	Pelikán-hegy	perlit	láva	9,0±2,0	Merlics – Szpitkovszkaja, 1974 (11. táblázat)

127	Pelikán-hegy	riolit	láva	10,0±2,0	Merlics – Szpitkovszkaja, 1974 (11. táblázat)
128	Nagymuzsaj, Kuklya bánya, 8 fúrás 595 m.	riodácit tufa	piroklaszt	12,0±1,0	Bagdaszarjan – Danyilovics, 1968
129	Nagymuzsaly Kerek-hegy	riolitos obszidián törmelék	agglomerá tumos tufa	15,3±2,7	Merlics – Szpitkovszkaja, 1974 (11. táblázat)
130	Nagymuzsaly Kerek-hegy	riolitos obszidián törmelék	agglomerá tumos tufa	14,7±2,7	Szemenyenko et al., 1969 (10. táblázat)
131	Kis Aranyos- hegy	felzites plagioriolit, kvarc zárvánnyal	láva	10,2±3,9	Szemenyenko et al., 1969 (10. táblázat)
132	Hosszú-hegy	plagioliparit	láva	14,3±4,6	Merlics – Szpitkovszkaja, 1974 (11. táblázat)
133	Hosszú-hegy	riolitos obszidián	láva	12,5±1,2	Merlics – Szpitkovszkaja, 1974 (11. táblázat)
134	Hosszú-hegy, csúcs	kvarczárványos plagioriolit	láva	13,6±4,6	Szemenyenko et al., 1969 (10. táblázat)
135	Hosszú-hegy, hegylábi terület	riolitos obszidián	láva	11,9±1,2	Szemenyenko et al., 1969 (10. táblázat)
136	Nagybégány, 252-fúrás, 106m	bazalt	láva	8,0±0,3	Bagdaszarjan – Danyilovics, 1968
137	Zápszony. 365 fúrás, 225 m	dácitos tufoláva	láva	11,0±1,0	Bagdaszarjan – Danyilovics, 1968
138	Beregszász, 304 fúrás 243m	riolit	láva	11,5±0,5	Pécskay et al., 2000 (304)
139	Beregszász,435 fúrás 213m	dácit	láva	11,7±0,5	Pécskay et al., 2000 (435)
140	Beregszászi- dombság, Nagy- Kelemen-hegy, 409 fúrás 151m	piroxén bazaltos andezit	láva	12,9±0,6	Pécskay et al., 2000 (409)
141	Beregszászi- dombság, Nagy- Kelemen-hegy, 408 fúrás 283m	piroxén- bazaltos andezit	láva	13,8±1,2	Pécskay et al., 2000 (408)
142	Beregszászi- dombság, Nagy- Kelemen-hegy, 295 fúrás 154m	piroxén andezit	láva	12,7±1,1	Pécskay et al., 2000 (295)
143	Beregszászi- dombság, Nagy- Kelemen-hegy, 320 fúrás 306m	piroxén- bazaltos andezit	láva	12,9±0,7	Pécskay et al., 2000 (UA41)

144	Kovászó, 21 fúrás 30m	riolittufa	piroklaszt	18,6±1,4	Bojko et al., 1967 (7. táblázat)
145	Kovászó, 137 fúrás 192 m	riolittufa	piroklaszt	13,0±1,4	Bojko et al., 1967 (7. táblázat)
146	Kovászó, 361 fúrás, 220 m	riolit	láva	13,4±1,2	Bojko et al., 1967 (7. táblázat)
147	Kovászó, 138 fúrás, 216 m	riolittufa	piroklaszt	16,3±2,3	Bojko et al., 1967 (7. táblázat)

	A Kárpátaljai-síkságon elszórt szigethegyek vulkanitjainak és az eltemetett magmás komplexumok kor adatbázisa						
	A mintavétel helye	A minta anyaga	Fácies	K/Ar (millió év)	Az adat származása		
148	Salánk, Hömlöc- hegy	bazaltos andezit	láva	13,8±1,0	Tolsztoj et al., 1976 (2. táblázat)		
149	Nagyszőlősi Fekete-hegy, tiszai bánya	savanyú andezit	láva	12,5±0,9	Tolsztoj et al., 1976 (2. táblázat)		
150	Nagyszőlősi Fekete-hegy	bazaltos andezit	láva	11,3±1,6	Tolsztoj et al., 1976 (2. táblázat)		
151	Dercen, 327 fúrás 588m	piroxén andezit	szill	12,6±0,6	Pécskay et al., 2000 (327)		
152	Dercen, 327 fúrás 587m	piroxén andezit	szill	12,5±0,8	Pécskay et al., 2000 (UA18)		
153	Salánk, Hömlöc- hegy, 316 fúrás 125m	bazaltos andezit	láva	12,3±0,5	Pécskay et al., 2000 (UA39)		
154	Salánk, Hömlöc- hegy, 316 fúrás 286m	bazaltos andezit	láva	11,8±0,9	Pécskay et al., 2000 (UA40)		
155	Salánk, Hömlöc- hegy, 438/228m	piroxén andezit	láva	9,5±0,8	Pécskay et al., 2000 (UA23)		
156	Gát, 407 fúrás 195m	piroxéndácit	dóm	11,4±0,5	Pécskay et al., 2000 (UA37)		
157	Csap, 16 fúrás	granodiorit	intrúzió	11,1±3,1	Bojko et al., 1967 (7. táblázat)		
158	Rafajnaújfalu, 854 fúrás	riolit	láva	15,7±2,4	Merlics – Szpitkovszkaja, 1974 (11. táblázat)		
159	Nagydobrony, Nagydobrony 1 fúrás, 2447m	gabbró	intrúzió	12,2±3,5	Merlics – Szpitkovszkaja, 1974 (34. táblázat)		
160	Nagydobrony, Nagydobrony 1 fúrás, 2801m	granodiorit	intrúzió	14,3±2,6	Merlics – Szpitkovszkaja, 1974 (34. táblázat)		
161	Nagydobrony, 16 fúrás, 1063m	granodiorit	intrúzió	11,0±3,0	Merlics – Szpitkovszkaja, 1974 (34. táblázat)		

6. melléklet

A Szinyák főelem geokémiai adatainak térbeli megoszlása (*saját szerkesztés*) (a számokhoz tartozó adatsorokat a 2.sz. melléklet tartalmazza)