
 1 

VALPROATE TREATMENT NORMALIZES EEG FUNCTIONAL CONNECTIVITY IN 

SUCCESSFULLY TREATED IDIOPATHIC GENERALIZED EPILEPSY PATIENTS 

 
1Clemens B., MD, PhD; 2Puskás S., MD, PhD; 3Besenyei M., MD; 1Kovács N.Zs.; 4Spisák T.; 
4Kis S.A., PhD; 4Emri M., PhD ; 5Hollódy K., MD, PhD;  6Fogarasi A., MD, PhD; 7Kondákor I, 

MD, PhD; 2Fekete I., MD, PhD. 
 

 

1 Kenézy Gyula County Hospital, Department of Neurology, Debrecen, Hungary 
2 University of Debrecen, Medical Center, Department of Neurology, Debrecen, Hungary 
3 University of Debrecen, Medical Center, Department of Pediatrics, Debrecen, Hungary 
4 University of Debrecen, Department of Nuclear Medicine, Debrecen, Hungary 
5 University of Pécs, Department of Pediatrics, Pécs, Hungary 
6 Epilepsy Center, Bethesda Children's Hospital, Budapest, Hungary 
7 Balassa János Hospital, Department of Neurology, Szekszárd, Hungary 

 

 

Corresponding author: Szilvia Puskás, MD, PhD.  

University of Debrecen, Medical Center, Department of Neurology, 

Debrecen, Hungary 

     Móricz Zsigmond krt. 22. 

     4032 Debrecen 

     HUNGARY 

  TEL: ++36 52 255255 

  Fax: ++36 52 255590 

  E-mail: szilvia.puskas@yahoo.com 

 

Running title: Valproate normalizes EEG functional connectivity 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 2 

Abstract 

 

Aim. To investigate the effect of chronic VPA treatment of EEG functional connectivity in 

successfully treated idiopathic generalized epilepsy (IGE) patients. 

Patients and Methods. 19-channel waking, resting-state EEG records of 26 IGE patients 

were analyzed before treatment (IGE) and after the 90th day of treatment (VPA), in seizure-

free condition. Three minutes of artifact-free EEG background activity (without epileptiform 

potentials) was analyzed for each patient in both conditions. A group of 26 age-matched 

healthy normative control persons (NC) was analyzed in the same way. All the EEG samples 

were processed to LORETA (Low Resolution Electromagnetic Tomography) to localize 

multiple distributed sources of EEG activity. Current source density time series were 

generated for 33 regions of interest (ROI) in each hemisphere for four frequency bands. 

Pearson correlation coefficients (R) were computed between all ROIs in each hemisphere, 

for four bands across the investigated samples. R values corresponded to intrahemispheric, 

cortico-cortical functional EEG connectivity (EEGfC). Group and condition differences were 

analyzed by statistical parametric network method. 

Main results. (p<0.05, corrected for multiple comparisons). 1. The untreated IGE group 

showed increased EEGfC in the delta and theta bands, and decreased EEGfC in the alpha 

band (as compared to the NC group). 2. VPA treatment normalized EEGfC in the delta, theta 

and alpha bands. 3. Degree of normalization depended on frequency band and cortical 

region.  

Conclusions. VPA treatment normalizes EEGfC in IGE patients. 
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Introduction 

 

Valproate (VPA) is an effective antiepileptic drug for idiopathic generalized epilepsy (IGE) 

syndromes. Its anticonvulsive mechanisms were thoroughly investigated at the molecular 

and cellular levels. Classic pharmacological research demonstrated that VPA binds to 

several neuronal and glial targets and modifies electric activity of these cells (Cotariu et al., 

1990; Löscher, 2002; Capek and Esplin, 1990). However, the results do not explain the full 

therapeutic effect of VPA. The best argument for this is the so-called delayed or carryover 

effect of VPA (Löscher, 2002) that contributes to its superior therapeutic efficacy in IGE 

(Nicolson et al., 2004). The delayed effect suggests that VPA causes re-arrangement of 

cerebral structure and/or function, which protects against seizures and is independent of the 

momentary serum level of the drug (Burr et al., 1984; Stefan et al., 1984). Recently, a few 

other studies supported the enduring effect of VPA on cerebral connectivity, which may give 

rise to beneficial or adverse effects. VPA inhibits effective connectivity among motor areas in 

healthy volunteers (Li et al., 2011). VPA alters expression of multiple genes in the CNS in 

rats (Fukuchi et al., 2009) and epilepsy patients as well (Tang et al., 2004). VPA modifies 

cortical excitability by modifying neuron-glia relationship (Wang et al., 2012), influences 

myelin production, repairs and alters neuronal connectivity (Rosenzweig et al., 2012). IGEs 

are increasingly realized as network disorders, so it is reasonable to suppose that VPA 

modifies abnormal cerebral connectivity. 

The aim of this study was to investigate the effect of chronic VPA administration on 

functional EEG connectivity (EEGfC) in IGE patients. The key-lock principle of pharmaco-

EEG (Saletu et al., 2002) suggests that if epilepsy results from abnormal cortical function, 

normalization of that function results in clinical improvement. We have tested the hypothesis 

that VPA reverses abnormal resting-state intrahemispheric, cortico-cortical EEGfC in 

successfully treated IGE patients. Targeting this part of cerebral connectivity is justified 

because abnormal intrahemispheric connectivity is the neurophysiological basis of seizure-

prone state and ictogenesis in experimental models (Timofeev and Steriade, 2004) and IGE 

syndromes as well (Holmes et al., 2004, 2010; Clemens et al., 2013). 

 

 

2. Patients and methods 

 

2.1. Patients and control persons 

 

The study design was approved by the Local Research Ethics Committee of Kenézy Gyula 

County Hospital, Debrecen, Hungary. All unmedicated IGE patients, who visited one of the 

collaborating epilepsy outpatient services, were potential candidates for the study. Patients 

with recent-onset IGE were diagnosed according to generally accepted criteria 

(Panayiotopoulos, 2005). No diagnostic procedure was indicated, missed, or postponed for 

study purposes only. Therapeutic decision has done after correct diagnosis was stated. The 

patients were informed about risks and benefits of the drug treatment, with special reference 
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to VPA-related risk for females of childbearing age. VPA was not the drug of first choice for 

those who desired to be pregnant within a few years. Also patients who had a well-

documented, longer history of IGE but did not take medication for any reason were 

potentially eligible for the study. Risk-benefit estimation was exposed to them as well and 

individual experience with prior drug treatment was taken into consideration. 

Inclusion criteria were: first seizure after the fifth year of life; clinically and 

electrographically unequivocal findings indicating one of the common IGE syndromes: 

idiopathic childhood absence or juvenile absence epilepsy (ABS), juvenile myoclonic 

epilepsy (JME), epilepsy with generalized tonic-clonic seizures exclusively (GTC); the 

decision to treat the patient with VPA monotherapy. Exclusion criteria were: significant 

neurological or psychiatric comorbidity, metabolic disorders, alcohol or substance abuse and 

any other medical condition that is known to significantly modify EEG activity. Patients having 

a generalized tonic-clonic seizure in the five days prior EEG investigation were excluded. 26 

patients entered the study (ABS = 14, JME = 7, GTC = 5). Age-and sex distribution were: 11 

males, 15 females, 7-54 years of age, mean age: 17.2 years). 17 patients had recent-onset 

IGE, 4 patients had long-lasting IGE, disease onset was uncertain in 5 patients. 

Baseline clinical and EEG evaluations were carried out at entry visit. Initial daily dose of VPA 

was 300 to 500 mg. The dose was increased until seizure freedom was reached. The final 

daily dose of VPA was 300 to 1500 mg. The second EEG was recorded 3 month after the 

first one because the initial, transient EEG effects of the drug disappear by this time (Sannita 

et al, 1989). The patients' general and neurological condition did not change from initial to 

control evaluation. No patient reported complaints indicating neurotoxicity. 

To evaluate the baseline EEGfC abnormality in the patient group, a group of healthy, 

normal control persons (NC) was created. Each patient was matched to a NC person of 

same age and sex. Mean age for the NC group was 16.9 years. 

 

2.2. EEG recording and sample selection 

 

EEG recordings were carried out in the morning, after a night of sufficient sleep, in a semi-

isolated room, with the same type of digital equipment, by trained personnel. Silver-silver 

chloride electrodes were placed according to the 19 sites of the 10-20 system and the 

earlobes, fixed by appropriate adhesive and conductive gel. Impedances did not exceed 10 

kOhm. EEG was recorded against Fpz sampling reference and recomputed against a 

mathematical linked ears reference. Additional bipolar derivations were used to differentiate 

between EEG and eye movement potentials and to detect myogenic activity. EEG filters 

were set at 0.1 and 33.6 Hz. Sampling rate was 256 per second, on-line digitization was 12 

bit. 30 minutes EEG was recorded in the waking-relaxed, eyes-closed condition. The state of 

vigilance was controlled by the EEG technician who gently aroused the patient when the 

posterior alpha rhythm disappeared. Thirty 2-second epochs were selected for analysis, 

according to our standard epoch selection protocol: 1. the presence of continuous alpha 

activity with voltage maximum in posterior regions, 2. the absence of artifacts, epileptiform 

potentials and other nonstationary elements, 3. the absence of patterns indicating 
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drowsiness or arousal. As to prevent unwanted selection bias, epoch selection was carried 

out by one of us who was blinded to the condition of the patient (untreated vs. treated) in 

which EEG was recorded. Final visual control of the selected epochs was carried out by the 

senior author as to ensure the quality of the sample. This electrographic definition of the 

relaxed-waking state refers to a narrow range of vigilance (Bente, 1979). Two reproducibility 

measures were used to minimize the effect of short- and long-term variability within the 

samples. Only samples with at least 95 percent of average split-half reliability and test-retest 

reliability (across the 19 channels) entered further analysis. This level of reliability was 

reached in all samples, so no records were excluded from analysis. 

 

2.3. Quantitative EEG analyses 

 

Quantitative EEG analyses were carried out by means of the NeuroGuide Deluxe (Version 

2.7.4) software (Thatcher, www.appliedneuroscience.com) and joined software as specified 

below.  

 

2.3.1. Localization of the sources of EEG activity 

 

Low Resolution Electromagnetic Tomography (LORETA) is a method for localizing multiple 

distributed sources of EEG activity in the three-dimensional space (Pascual-Marqui et al., 

1994). LORETA demonstrates the synchronously activated neuronal populations underlying 

EEG activity by computing their cortical localization from the scalp distribution of the electric 

field. The LORETA inverse solution is based on the "smoothness" assumption, which means 

that neighbouring EEG generators produce maximally correlated activity in terms of 

orientation and strength. The smoothness assumption is based on neuroanatomical and 

electrophysiological constraints. The brain compartment of this model is restricted to the 

cortical grey matter and hippocampus. The grey matter compartment is divided into 2394 

voxels, which allows a spatial resolution of 7 millimeters. Localization of voxels is based on 

coordinates of the Talairach Brain Atlas (Talairach and Tournoux, 1988). LORETA computes 

current source density (CSD; expressed as Ampers / meters squared) for each voxel, briefly 

called "LORETA activity" in the literature. The consistency of LORETA with physiology and 

localization has been validated by several authors (Pascual-Marqui, 2002). Importantly, 

LORETA based on 16 to 28 channel EEG recordings localizes the sources of maximum EEG 

activity concordantly to the reference localization methods (positron emission tomography, 

functional MRI, MRI diffusion spectral imaging, intracranial EEG recordings) when the 

electrical source distribution is "neurophysiologically smooth" (Pascual-Marqui et al., 2002; 

Oakes at, 2004). This is the case in the epileptic cortex where abnormally synchronized 

activity is distributed across a lot of cortical columns and even greater cortical areas via the 

dense network of intracortical connections (Chagnac-Amitai and Connors, 1989). 

Furthermore, LORETA localization with this number of electrodes is reliable when delta, 

theta, alpha and lower beta frequencies that subserve global integration of higher cerebral 

functions and penetrate the entire cerebral volume are investigated (Babiloni et al, 2006). 
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2.3.2. Analysis of resting-state EEG functional connectivity 

 

Correlating the activity of LORETA-localized sources (CSD = current source density) is a 

useful alternative to correlate quantitative EEG variables measured at scalp electrodes and 

offers a deeper understanding of intrahemispheric cortico-cortical connectivity (Thatcher et 

al., 2007; Schoffelen and Gross 2009). LORETA Source Correlation (LSC) analysis means 

computing the temporal covariance or correlation of LORETA-defined CSD between two 

cortical areas (region of interest, ROI), across successive 2-second epochs over the 

investigated sample. The Pearson product correlation coefficient (r) is a valid measure of 

oscillator coupling, especially when a relatively long interval of time is analyzed, as in this 

study. Authors who compared the sensitivity and reliability of several methods concluded that 

Pearson correlation is a robust method being sensitive to all the investigated coupling 

parameters and does not require specific assumptions about the model (Wendling et al., 

2009). Given the 19 scalp electrodes, the effect of the point spread on CSD estimates was 

minimized by clustering hundreds of nearby voxels into 33 ROIs in each hemisphere. Fig. 1. 

shows the flowchart of computing asymmetric EEGfC matrices (Thatcher et al., 2007, 

Clemens et al., 2013). This figure indicates that two correlation coefficients characterize the 

EEGfC between two ROIs, producing asymmetric connectivity matrices. 

 In order to avoid the asymmetry we have generated a set of symmetric source 

correlation matrices from the average of the two correlation coefficients between ROIs:  

, stand for group ( ), treatment ( ), hemisphere 

( ), band ( ) and subject indices ( ) 

respectively. A single element of an  matrix was denoted by   (where  

represents a connection between two regions). The number of rows and columns are equal 

with the number of ROIs (N=33) and with the number of correlation coefficients M=N (N-1)/2 

(M=528). All analyses were based on broad-band results of four frequency bands (delta: 0.5-

3.0 Hz, theta: 3.5-7.0 Hz; alpha: 7.5-12.0 Hz; beta: 12.5-25.0 Hz). 

 

2.3.3. Statistical inference of connections 

 

Statistical parametric network (SPN) terminology has been introduced (Ginestet et al., 2011). 

In our study we generated population and treatment-related differential SPNs which provide 

a statistical method to investigate differences of connections. SPNs were calculated from  

 matrices, using M mixed-effect models: 

 

  
 

where r are the correlation coefficients of interest, is a vector of fixed effect (group, 

treatment, hemisphere and band) which does not vary over subjects, is the subject-specific 

random effects (subject, age-group) and are the residuals.  
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In this study four age-groups were defined: child (less than 10 years), teenager (between 10 

and 20 years), young adult (between 20 and 40 years) and middle aged (more than 40 

years). The matrices X and Z contain the fixed-effect and the random-effect components of 

the linear model. The group and the treatment effects for all bands were evaluated by a post-

hoc Tukey test which produced  Student t-values for all edges, hemispheres and bands. 

These t-values were stored in N x N SPN matrices for visualization. Statistically significant 

differences of EEGfC at corrected p<0.05 level were thresholded by local false discovery rate 

(FDR) for multiple comparison (Efron 2004, 2007). 

 

2.3.5. Software 

 

For EEG sample selection and quantitative EEG analyses, we used NeuroGuide Deluxe 

(Version 2.7.7.; www.appliedneuroscience.com), LORETA (Pascual-Marqui et al., 1994) and 

LORETA Source Correlation (Thatcher et al., 2007). SPN were evaluated by home-

developed BrainNetTools software. For the visualization of differences between significant 

connections BrainCON (www.minipetct.com/braincon) was used (Spisák et al., 2013). 

 

 

2.3.6. Interpretation of the results in the topographic domain 

 

LORETA localization is the key feature of all the subsequent analyses. Because its 

localization accuracy is limited, activity of small ROIs may be falsely localized. However, a 

prior study demonstrated that VPA alters LORETA activity in widespread cortical regions 

(Clemens et al., 2007), so very precise localization was presumably not essential in this 

study. We discuss EEGfC results at sub-lobar, lobar and network levels, which is a usual 

approach in the neuroimaging literature (Anderson and Hamandi, 2011). 

 

 

3. Results 

 

3.1. Untreated IGE group vs. NC group 

 

Statistically significant differences between the untreated IGE and the NC groups 

demonstrate baseline EEGfC abnormality in IGE (Fig. 2., top row). The untreated IGE group 

showed overall greater delta and theta EEGfC than the NC group. No striking asymmetry 

and no opposite sense differences emerged in these bands. The untreated IGE group 

showed greater alpha EEGfC among frontal ROIs including the uncus (a temporal ROI) and 

less alpha EEGfC across the rest of the cortex as compared to the NC group. Greater beta 

EEGfC emerged among right frontal ROIs in the untreated patients than in the NC group. 

 

3.2. Treated vs. untreated conditions of the IGE group 
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Comparison of the treated and untreated IGE conditions shows drug effects (Fig. 2., middle 

row). VPA decreased delta EEGfC between most ROIs except the left and right paracentral 

lobules, cingulate gyri, and the right parietal lobe. VPA decreased theta EEGfC in the 

anterior parts of the hemispheres and increased theta EEGfC between the paracentral 

lobules and the parietal ROIs bilaterally. VPA increased alpha EEGfC between most ROIs 

but did not affect EEGfC between frontal ROIs (where increased EEGfC was found in the 

untreated patients) and even decreased EEGfC in the left lateral frontal area. VPA increased 

beta EEGfC between right frontal and temporal ROIs, and three increased EEGfC values 

were found in the left hemisphere. 

 

3.3. Treated IGE patients vs. NC group 

 

Comparison of the treated IGE group and the NC groups highlights the degree of the 

normalization in the four bands (Fig. 2., bottom row). Greater overall delta and theta EEGfC 

were found in the treated condition of the IGE group as compared to the NC group. Greater 

alpha and beta EEGfC were found between right frontal ROIs in the treated IGE group as 

compared to the NC group. Less alpha EEGfC was found in a few, fronto-parietal and fronto-

occipital connections in the treated IGE group as compared to the NC group. Greater alpha 

and beta EEGfC in the right frontal lobe (and in a few other connections) were found in the 

treated IGE group than in the NC group. 

 

3.4. VPA-related EEGfC normalization 

 

VPA treatment decreased abnormally high EEGfC and increased abnormally low EEGfC 

between most, but not all, pairs of ROIs in the delta, theta and alpha bands. VPA-related shift 

of a single abnormal EEGfC value towards the normative value means EEGfC normalization 

and is defined as follows. "Full normalization" of an abnormal connection means: abnormal 

baseline value + statistically significant difference between the untreated and treated 

conditions + no statistically significant difference between the treated condition and the NC 

group. "Partial normalization" means: abnormal baseline value   + statistically significant 

difference between the untreated and treated conditions + statistically significant difference 

between the treated condition and the NC group. "No normalization" is defined as: abnormal 

baseline value + no statistically significant difference between the untreated and treated 

conditions + statistically significant difference between the treated condition and the NC 

group. 

With this logic in mind, VPA treatment fully normalized delta EEGfC between several 

frontal ROIs bilaterally (medial frontal gyrus, orbital gyrus, straight gyrus, subcallosal and 

extra-nuclear areas) and the uncus. Lack of abnormal EEGfC in this area is better 

demonstrable in sagittal view (Fig. 3). VPA partially normalized delta EEGfC between ROIs 

in the rest of the cortex except the right parietal area. VPA partially normalized EEGfC 

between anterior ROIs in the theta band. Full EEGfC normalization occurred in most long-

range connections in the alpha band. On the other hand, there was no normalization of 
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abnormally increased baseline alpha EEGfC between frontal ROIs in the right hemisphere, 

while full or partial normalization occurred in the connections of the left frontal area. No 

EEGfC normalization occurred in the beta band. More increased EEGfC values were found 

in the treated than in the baseline condition. 

 

4. Discussion 

 

As far as is known, this is the first study to investigate the effect of therapeutic VPA 

administration on EEGfC in IGE patients. The findings confirmed the hypothesis that VPA 

reverses abnormal resting-state intrahemispheric, cortico-cortical EEGfC in successfully 

treated IGE patients. This means that VPA shifted most baseline EEGfC abnormalities 

towards normative values. However, the degree of normalization depended on frequency 

bands, cortical regions and the magnitude of baseline EEGfC abnormality. 

 

4.1. Changes in the delta and theta bands 

 

Delta, theta, alpha and beta bands reflect natural classes of brain oscillations (Buzsáki and 

Draghoun, 2004) generated by "selectively distributed neuronal systems" (Basar and 

Schürmann, 1999). Thus, it not surprising that VPA causes band-specific changes in 

electrical activity of the cortex. In this study we demonstrated decrease and normalization of 

EEGfC in the delta and theta bands. This finding is reminiscent of activity-dependent, 

normalizing effect of VPA on delta and theta spectral power in IGE patients. The effect was 

independent of the daily dose and serum level of VPA, so we concluded that it reflects 

enduring changes within the CNS (Clemens, 2008). Local EEG synchronization (expressed 

as voltage of the signal or CSD) depends on the dense intracortical circuitry modified by 

subcortical inputs (Nunez, 1995). Remote EEG synchronization (EEGfC, defined in Section 

2.3.2) means synchronized fluctuations of CSD in two great neuronal ensembles, in other 

words, two cortical areas. This effect is mediated by short- and long distance association 

fibers (Thatcher et al., 2007) and other, yet not fully known mechanisms (Margineanu, 2010). 

Estimates of local and remote EEG synchronization may change independently. However, 

VPA decreases and normalizes delta and theta activity at both spatial scales, which is in 

accord with the complexity of drug effects on the CNS (Margineanu, 2012). 

Little is known about the relationship of band-related EEGfC and epilepsy. Epilepsy 

patients show increased EEGfC in the delta band in the interictal state (Horstmann et al., 

2010). Recently, increased theta band synchronization was reported in epilepsy (Douw et al, 

2010). Increased delta and theta EEGfC were found in untreated JME patients in the 

interictal state (Clemens et al., 2013). These findings suggest that increased remote EEG 

synchronization in the slow frequency bands (delta and/or theta) is somehow related to 

epilepsy and is independent of the syndrome. An experimental study demonstrated that 

increased phase stability (another measure of remote EEG synchronization) in the theta 

band is a neurophysiological corollary of epileptogenesis and persists in the epileptic state 

(Ge et al., 2013). With this evidence in mind we suggest that VPA-related decrease of delta 
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and/ or theta EEGfC may be related to successful treatment. This argumentation is in accord 

with the key-lock principle of pharmaco-EEG (Saletu et al., 2002). However, alternative 

solutions cannot be excluded. VPA may cause connectivity changes in the CNS that do not 

modify seizure control (Rosenzweig et al., 2012). Demonstrating the lack of significant 

EEGfC drug effects in VPA-treated nonresponder patients might support the relationship 

between delta-theta EEGfC normalization and therapeutic efficacy. 

 

4.2. Changes in the alpha and beta bands 

 

VPA increased and normalized alpha band EEGfC between most ROIs that belong to the 

"classic" alpha system (Basar et al., 1989). Cortical generators of this system are mostly 

localized in posterior areas but some alpha activity may be recorded over the rest of the 

cortex. As far as is known, epileptogenesis and the epileptic condition do not significantly 

affect the alpha system, so the significance of alpha EEGfC normalization remains hidden.  

VPA did not normalize baseline alpha EEGfC among right frontal ROIs and partially 

normalized alpha EEGfC in the left frontal area. This unexpected finding demonstrated that 

drug effect may differentiate between neuronal systems that operate at the same frequency 

band at the same time. Our results are consistent with the opinion that the medial frontal 

alpha rhythm is not generated by the "classic" alpha system (Röschke et al., 1997; 

Feshchenko et al., 2001). 

VPA did not affect beta band EEGfC in the majority of connections. Treated condition 

of the IGE group showed somewhat more abnormal beta connectivity values than the 

untreated condition. This drug effect has no explanation at present. 

 

4.3. Limitations of the broad-band approach 

 

Besides the band-specific trends of EEGfC changes a few, topographically sporadic VPA 

effects occurred in this study (Fig. 2, middle row). These findings may be explained by inter-

individual variability of electrophysiological results. Individual variability may cause blurring of 

the broad band findings in group studies. Decreased left fronto-lateral alpha EEGfC actually 

might belong to strongly decreased theta EEGfC in the same region. Increased cingular-

parietal theta EEGfC is topographically similar to increased EEGfC in the neighbouring alpha 

band. Our unpublished personal experience with parallel broad band and very narrow band 

(VNB, 1 Hz bandwidth) analyses shows that strong topographical broad band patterns may 

intrude into neighbouring VNB of the next broad band. So, there is no obligatory need to 

search after neurophysiological basis and clinical importance of findings that seem to intrude 

from one broad band to the neighbouring one. If the finding seems to be important, narrow 

band analysis can highlight its exact spectral distribution (Szava et al., 1994). 

 

4.4. Regional differences of the VPA effect 
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Partial normalization of delta EEGfC was found between most ROIs but full normalization 

occurred in the medial-basal frontal area and the uncus in the temporal lobe. Potential 

importance of this finding is that the medial-basal frontal cortex is the seizure onset zone in 

ABS (Holmes et al., 2004) and JME (Holmes et al., 2010). 

Lack of VPA effect in the delta band and right cingular-parietal area was a peculiar 

finding. Major clinical and EEG manifestations are usually symmetrical in IGE syndromes. 

Whether the reported asymmetrical drug effect is specific to epilepsy or IGE or reflect 

general response of the human brain to repeated VPA administration remains hidden. We 

are not aware of any topographical EEG analysis of VPA effects in healthy persons and 

patient groups. 

VPA significantly decreased theta EEGfC between anterior but not posterior ROIs. 

This finding harmonizes with VPA-related decrease of local CSD in frontal but not posterior 

areas in IGE (Clemens et al., 2007). Baseline theta EEGfC abnormality was greater between 

anterior than between posterior ROIs. Furthermore, also neuroimaging studies found the 

main structural and functional abnormalities in the anterior parts of the brain in IGE 

syndromes (Anderson and Hamandi, 2011). 
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Legends to Figures 

 

Fig. 1 

 

The flowchart describes the steps of the calculation of the LORETA source correlation 

matrices and the evaluation of the connectivity matrices used in the SPN analysis (left (LH) 

and right (RH) hemispheres for four broad bands). The LSC flowchart was drawn after 

Thatcher et al. (2007) with permission of the author.  

 

Fig. 2. 

 

EEGfC group differences in four frequency bands. Top row: untreated IGE group (NAE) 

versus healthy controls (NC). Middle row: treated condition (VPA) versus untreated condition 

(NAE) of the IGE group. Bottom row: Treated condition of the IGE group (VPA) versus 

healthy controls (NC). Colour scale indicates t-values. Only statistically significant (p<0.05, 

FDR-corrected) differences are demonstrated. 

 

Fig. 3. 
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EEGfC differences in delta band between the treated IGE group and healthy controls. Middle 

plot of this figure (top view) shows the same results as the left plot in the bottom row of Fig. 

2. Lateral views demonstrate better the lack of statistically significant differences between 

frontal ROIs in the left and right hemispheres. 
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