Diagnostic and clinical significance of Crohn’s disease-specific anti-MZGP2 pancreatic antibodies by a novel ELISA

Polychronis Pavlidis a,b, Zakera Shums c, Andreas L. Koutsoumpas a,b, Jay Milo c, Maria Papp d, Takeji Uemure e, Peter Lakatos d, Daniel S. Smyk a, Dimitrios P. Bogdanos a,b,1, Alastair Forbes b,2,1, Gary L. Norman c,*1

a Division of Transplantation Immunology and Mucosal Biology, King’s College London School of Medicine at King’s College Hospital, Denmark Hill Campus, London SE5 9RJ, UK
b Department of Gastroenterology and Clinical Nutrition, University College Hospital, 250 Euston Road, London NW1 2PG, UK
c Inova Diagnostics, Inc., San Diego, CA 92131, USA
d 2nd Department of Medicine, University of Debrecen, Debrecen, Hungary
e Department of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, Japan
f Department of Medicine, School of Health Sciences, University of Thessaly, Larissa 40500, Greece

Abstract

Background: We developed a new IgA and IgG anti-MZGP2 antibody ELISAs based on recombinant isoform-4 of human zymogen granule protein-2 (GP2), which is the major autoantigen of Crohn’s disease (CdD)-specific pancreatic autoantibodies and assessed their clinical relevance in the largest inflammatory bowel disease (IBD) cohort tested to date.

Methods: 832 sera were studied, including 617 consecutive IBD patients from 323 CdD and 294 ulcerative colitis (UC) follow-up in a tertiary centre, and 112 pathological and 103 normal controls.

Results: Sensitivity of IgA anti-MZGP2 for CdD in the IBD population was 15% and specificity was 98% (95, 99), while the sensitivity and specificity of IgG anti-MZGP2 were 27% and 97%. IgA and IgG anti-MZGP2 combined testing led to a sensitivity of 31% and a specificity of 96%. Positivity for either ASCA (IgA or IgG) or anti-MZGP2 (IgG or IgG) showed a sensitivity of 75% (70, 80) and a specificity of 84% (79, 89). IgA anti-MZGP2 antibodies were more prevalent in CdD patients with early disease onset (p = 0.011). Also, anti-MZGP2 positive patients more frequently had extensive disease with ileal involvement. Patients with longer disease duration were more likely to have IgG anti-MZGP2 antibodies.

Conclusions: Our novel ELISA confirms the high specificity of anti-MZGP2 antibodies for CdD and their association with disease severity phenotypes.

© 2014 Published by Elsevier B.V.

11 Article info

Article history:
Received 29 October 2014
Received in revised form 1 December 2014
Accepted 5 December 2014
Available online xxxx

Keywords:
Autoantibody
Bowel disease
Marker
Sensitivity
Specificity

11 A R T I C L E I N F O

1 Introduction

The exact mechanisms responsible for the induction of Crohn’s disease (CdD) as well as ulcerative colitis (UC), the other form of inflammatory bowel disease (IBD), remain poorly understood [1–4]. Both diseases are characterised by antibody seropositivity against distinct antigens, which complement the endoscopic and histological examinations used for the prompt diagnosis of patients with suspected IBD [5,6].

The most widely used antibody marker for CdD is anti-Saccharomyces cerevisiae antibody (ASCA), while the serological marker for UC is seropositivity for anti-neutrophil cytoplasmic antibodies (ANCA) showing an atypical perinuclear (p-ANCA) pattern by indirect immunofluorescence assay (IFA) [5,6]. While most other antibody markers failed to meet demanding clinical needs, pancreatic autoantibody (PAB) has emerged as potentially diagnostically and clinically meaningful marker for IBD [7]. Antigen-specific PABs against exocrine pancreas are present in 20–30% of the patients with CdD, but in less than 2–9% of the patients with UC, and can be found in very few patients with non-IBD related conditions [8,9]. The recent identification of the major zymogen glycoprotein 2 (MZGP2) as the primary autoantigen of PAB [10,11] has prompted the development of ELISAs or IFA techniques to allow the proper detection of anti-MZGP2 PABs in routine practice [12,13]. Rodent pancreatic tissue or GP2-over-expressed cell-lines have been used as substrates to test for GP2-specific PABs by IFA [13,14], but because IFA procedures are labour-intensive, time-consuming, and require experienced operators,
laboratories prefer to use ELISA-based assays [10–12,14–21]. ELISA testing for anti-MZGP2 antibodies has recently become available [12], but the assay is not FDA-approved for in vitro diagnostic use in the USA. In addition, the performance characteristics of these test systems have only been compared to those obtained by in-house assays used for research protocols in a small number of European Institutions [7,11,12,15–19].

The aim of the present study was to test a new, robust and highly sensitive and specific anti-MZGP2 antibody ELISAs developed for commercial use. To assess this we have tested a well-defined cohort of IBD patients including 323 CrD and 294 UC patients regularly followed up in a tertiary centre. Testing of this homogenous cohort of patients could allow proper assessment of the diagnostic and clinical relevance of anti-MZGP2 antibodies.

2. Patients and methods

2.1. Patients

Six hundred seventeen consecutive patients with a diagnosis of IBD (CrD 323, female/male 176/147, age 40 ± 14.3, disease duration 14 years IQR [7,22]; UC 294, female/male 141/153, age 48.7 ± 15.7, disease duration 14 years IQR [6,25]), under regular follow-up in a tertiary centre (University College London Hospitals, United Kingdom) were included in this study.

The IBD patient characteristics are presented in Supplementary Table 1. The IBD diagnosis was based on current standard clinical, radiological, endoscopic, and histological criteria (Lennard-Jones criteria) [22]. Demographics and disease information including age at study, age at diagnosis, disease duration, location/extent and behaviour were extracted from a prospectively updated IBD electronic database. The disease phenotypes were determined according to the Montreal classification [23].

Additionally, 112 patients with various diseases were studied as pathological controls, including serum samples from patients with the following diagnoses: celiac disease (n = 20); chronic pancreatitis (n = 19); diabetes mellitus (n = 20); primary sclerosing cholangitis (n = 21); primary biliary cirrhosis (n = 10); autoimmune hepatitis; PSC overlap syndrome (n = 6); chronic hepatitis B (n = 8); and chronic hepatitis C (n = 8). Finally, 103 randomly selected blood donors (age 17–60, sex female/male 64/39) were also studied as normal controls.

Investigators performing tests were blinded to the patients’ exact diagnoses. All sera had been stored at −20 °C before analysis. Assays were developed and sera were tested between January and September 2013.

2.2. IgA and IgG ASCA testing by ELISA

Determination of IgA and IgG ASCAs was determined by an FDA-cleared ELISA (QUANTA Lite® ASCA IgG and ASCA IgA, Inova Diagnostics) following the manufacturer’s protocol. A cut-off for positivity was set at 25 U (arbitrary units), as recommended by the manufacturer.

2.3. IgG and IgA anti-MZGP2 antibody testing by ELISA

MZGP2 IgG and IgA antibodies were detected by novel ELISAs (Inova Diagnostics, Research Use Only) utilizing human recombinant MZGP2, isofrom 4 antigen UniProtKB: P55259. Briefly, 100 μL of pre-diluted control and diluted patient sera (1:100) was added to separate wells of MZGP2 antigen-coated polystyrene microwells and incubated for 30 min at room temperature. Unbound sample was then washed away and peroxidase-conjugated goat anti-human IgG antibody or anti-human IgA antibody was added to each well. After another incubation and washing steps, the remaining enzyme activity was measured by adding tetrathylbenzidine chromogenic substrate for 30 min. Stop solution (H₂SO₄) was added to terminate the reaction and absorbance read at 450/620 nm. Results, expressed in arbitrary units (U), were calculated in reference to a kit-provided calibrator. Serum samples showing ≥25 U were interpreted as positive.

2.4. ANCA testing by IFA

ANCAs for IgG antibodies were evaluated by IFA using commercially available human neutrophil slides (Nova Lite™, Inova Diagnostics). Briefly, samples were diluted at 1:20 and tested in accordance with the manufacturer’s instructions on ethanol- and formalin-fixed human neutrophil substrate slides. Results were reported as p-ANCA if a perinuclear pattern was observed on ethanol and granular cytoplasmic on formalin slides, c-ANCA if both ethanol and formalin slides resulted in a cytoplasmic pattern, and “atypical” p-ANCA if the pattern was perinuclear on ethanol and negative on the formalin-fixed slide.

2.5. Pancreatic antibodies (PAB) by IFA

PABs were detected by IFA on monkey pancreas tissue (Nova Lite™ Inova Diagnostics) using sera at a 1:20 dilution and primate-absorbed goat anti-human FITC conjugate.

2.6. Statistical methods

Variables were tested for normality with the Kolmogorov–Smirnov test. Age is presented as mean and standard deviation (SD). Non-parametric continuous variables including ASCAs and anti-MZGP2 titres are given as median and interquartile range (IQR). The report of the atypical ANCA is qualitative (positive or negative) based on immunofluorescence review by one of the authors (DBP). Precision and reproducibility (intra- and inter-assay) of assays were evaluated according to Clinical and Laboratory Standards Institute (CLSI) guideline EP5-A2. A minimum of five samples including one high, one low, and 1 near decision point were run in duplicate in 2 runs/day for 20 days. We estimate inter- and intra-assay reproducibility at less than 7 and 5% respectively. The cut-off for anti-MZGP2 IgA and IgG assays was calculated by plotting a receiver operator characteristic (ROC) curve by using the test results of the patients with CrD versus controls (UC, healthy, other pathological controls). The area under the curve (AUC) values is followed by a 95% confidence interval (CI). The diagnostic value of ASCAs, anti-MZGP2 and atypical ANCA for the IBD population was assessed by cross tabulation and calculation of sensitivity, specificity, and positive and negative predictive values, all presented as percentages followed by 95% CI. The clinical significance of the different antibodies was studied with chi-square tests for every clinical variable (2 × 2 tables) and the results are presented as odds ratios with 95% CI and p values. Associations between variables found on univariate analysis to have statistically significant (p < 0.05) high prevalence in patients testing positive for individual autoantibodies or autoantibody combinations were further tested by logistic regression. Comparisons in titre medians between different diseases or disease subgroups were performed using the non-parametric Mann–Whitney or Kruskal–Wallis tests. Comparisons of parametric variables (i.e. age) were performed using the unpaired t-test. Cross tabulation and loglinear analysis were performed using SPSS (SPSS Inc., Chicago, Illinois, USA) software. Prism software (by GraphPad Software Inc., La Jolla, California, USA) was used for ROC curve plotting, antibody titre comparisons and figures.

2.7. Ethical considerations

The study was conducted in accordance with the Helsinki declaration and approved by the local ethics committees. Written informed consent was obtained from each individual.
3. Results

3.1. Diagnostic accuracy of serological markers

Venn diagrams depicting numbers of CrD showing individual reactivities are shown in Fig. 1. Supplementary Fig. 1 shows individual responses in patients with UC. Scatter plots of anti-MZGP2 antibody reactivities (IgA or IgG) in patients with CrD, UC, pathological, and normal controls are shown in Figs. 2 & 3. The ROC curves for anti-MZGP2 IgA and IgG assays (CrD vs controls) are also presented as inserts in Figs. 2 & 3. The calculated AUC was 0.56, 95% CI (0.56, 0.64) for IgA anti-MZGP2 (CrD vs non-CrD (UC and controls)) and 0.62, 95% CI (0.58, 0.67) for IgG anti-MZGP2. The sensitivity, specificity, and likelihood ratio for different cut-offs of anti-MZGP2 are presented in Table 1 (for CrD vs non-CrD cohorts, including UC, pathological and normal controls) and in Supplementary Table 2 (for CrD vs UC), respectively.

The sensitivity of IgA anti-MZGP2 for CrD in the IBD population was 15% (11, 19) and the specificity was 98% (95, 99), while the sensitivity of IgG anti-MZGP2 for CrD was 27% (22, 32) and the specificity was 97% (94–98) using the manufacturer’s cut-off set at 25 U. In comparison, the sensitivity of IgA and IgG ASCAs for CrD was 47% (41, 52) and 66% (61, 71), respectively, while the specificity was 95% (92, 97) and 90% (86, 93), respectively for CrD vs UC. The combination of positive IgA and IgG ASCA testing increased the sensitivity to 71% (66, 76), but reduced the specificity to 87% (83, 91). Positivity for either ASCA (IgA or IgG) or anti-MZGP2 (IgA or IgG) showed a sensitivity of 75% (70, 80) and specificity of 84% (79, 89).

The presence of any one of the autoantibodies (ASCA IgA, ASCA IgG, MZGP2 IgA, MZGP2 IgG) yielded the highest sensitivity at 75% (70, 80), but reduced specificity to 84% (79, 89). In contrast, while only 7% sensitive the presence of all four autoantibodies (ASCA IgA, ASCA IgG, MZGP2 IgA, MZGP2 IgG) in 23 individuals (Table 2 and Fig. 1) was 100% specific for CrD, being negative in all 294 patients with ulcerative colitis. Dual positivity for MZGP2 IgA and IgG showed 99% specificity (11% sensitivity), followed by dual positivity for ASCA IgA and IgG at 98% specificity and 42% sensitivity and single IgA MZGP2 positivity with a specificity of 98% and a sensitivity of 15%.

The sensitivity of IgG atypical p-ANCA testing for UC in the IBD population was 36% (31, 42) and the specificity was 91% (87, 94). Sensitivity, specificity, and negative, and positive predictive values are presented for all autoantibodies and their combinations in Table 2.

As expected, ASCA and anti-MZGP2 antibody titres were higher in CrD compared to UC; the difference of the median titres for all antibody reactivities between CrD and UC was statistically significant (Mann–Whitney, anti-MZGP2 IgA p = 0.0045, anti-MZGP2 IgG p < 0.0001, ASCA IgA p < 0.0001 and ASCA IgG p < 0.0001). Supplementary Fig. 2 shows ASCA levels in IgA or IgG anti-MZGP2 antibody positive and negative patients with CrD.

3.2. Clinical significance of antibody

Table 3 presents the associations between the autoantibodies and different disease characteristics. IgA anti-MZGP2 antibodies were more prevalent in patients with early disease onset (A1 < 16 years, Q1
Patients with longer disease duration were more likely to have IgG anti-MZGP2 (difference in medians: 2 years), or IgA ASCA antibodies (95% CI for IgA: 25.67, p = 0.02) and had longer disease duration (median duration 16.5 vs 12, p = 0.03) when compared to positive patients with CrD.

Of the 13 ulcerative colitis patients positive for MZGP2 IgG and/or IgA, 2 were also positive for both ASCA IgG, ASCA IgA, and both IgG and IgA pancreatic antibodies by IFA. Four other patients showed moderate to strong PAB (IgG and/or IgA) by IFA. Of the 5 normal donors found positive for MZGP2 IgG, 1 was ASCA IgG and IgA positive with 1–2+ IgA PAB, and 3 others showed 1–2+ IgA PAB and nonspecific IgG PAB. The one very strong positive chronic pancreatitis patient had no clinical features identified which distinguished them from the other chronic pancreatitis patients.

4. Discussion

In the present study, we report on the first use of two recently developed robust, highly specific ELISAs for the detection of IgA and IgG anti-MZGP2 PABs, respectively. We have detected anti-MZGP2 antibodies in 31% of patients with CrD and just 4% of UC patients. Amongst the reactive CrD patients, 27% and 15% showed IgG or IgA anti-MZGP2 reactivity, while reactivity to both isotypes was concurrently present in 11% of the reactive CrD patients and only 1% of patients with UC. Cumulatively, the new ELISAs demonstrate enhanced sensitivity and superior specificity for CrD within IBD compared to those reported by previous studies [7]. A recent study tested 3 cohorts – two from Germany and one from our centre – and reported an overall (IgA or IgG) anti-MZGP2 sensitivity and specificity of 30.2% and 91.1%, respectively.

Table 1

<table>
<thead>
<tr>
<th>IgA anti-MZGP2 cut-off</th>
<th>Sensitivity (%)</th>
<th>95% CI</th>
<th>Specificity (%)</th>
<th>95% CI</th>
<th>Likelihood ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>>10</td>
<td>31.27</td>
<td>(26.25% to 36.63%)</td>
<td>86.81</td>
<td>(85.52% to 91.23%)</td>
<td>2.74</td>
</tr>
<tr>
<td>>15</td>
<td>23.84</td>
<td>(19.30% to 28.87%)</td>
<td>93.71</td>
<td>(91.24% to 95.66%)</td>
<td>3.79</td>
</tr>
<tr>
<td>>20</td>
<td>17.96</td>
<td>(13.93% to 22.99%)</td>
<td>95.87</td>
<td>(93.76% to 97.43%)</td>
<td>4.35</td>
</tr>
<tr>
<td>>25</td>
<td>14.55</td>
<td>(10.89% to 18.86%)</td>
<td>97.45</td>
<td>(95.67% to 98.63%)</td>
<td>5.70</td>
</tr>
<tr>
<td>>30</td>
<td>12.07</td>
<td>(8.72% to 16.13%)</td>
<td>98.62</td>
<td>(97.19% to 99.45%)</td>
<td>8.78</td>
</tr>
<tr>
<td>>40</td>
<td>10.22</td>
<td>(7.13% to 14.05%)</td>
<td>99.02</td>
<td>(97.72% to 99.68%)</td>
<td>10.40</td>
</tr>
<tr>
<td>>50</td>
<td>9.94</td>
<td>(7.36% to 12.51%)</td>
<td>98.94</td>
<td>(97.02% to 98.78%)</td>
<td>10.64</td>
</tr>
<tr>
<td>>60</td>
<td>22.29</td>
<td>(17.87% to 27.23%)</td>
<td>98.62</td>
<td>(97.19% to 99.45%)</td>
<td>16.21</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>CRD (n = 323)</th>
<th>UC (n = 294)</th>
<th>Sens %</th>
<th>Sens CI %</th>
<th>Spec %</th>
<th>Spec CI %</th>
</tr>
</thead>
<tbody>
<tr>
<td>IgA anti-MZGP2 pos</td>
<td>48</td>
<td>7</td>
<td>15</td>
<td>11.19</td>
<td>95</td>
</tr>
<tr>
<td>IgG anti-MZGP2 pos</td>
<td>87</td>
<td>10</td>
<td>27</td>
<td>22.32</td>
<td>97</td>
</tr>
<tr>
<td>IgA and/or IgG anti-MZGP2 pos</td>
<td>99</td>
<td>13</td>
<td>31</td>
<td>25.36</td>
<td>96</td>
</tr>
<tr>
<td>IgA and IgG anti-MZGP2 pos</td>
<td>36</td>
<td>4</td>
<td>11</td>
<td>8.15</td>
<td>99</td>
</tr>
<tr>
<td>IgA ASCA pos</td>
<td>151</td>
<td>14</td>
<td>47</td>
<td>41.52</td>
<td>95</td>
</tr>
<tr>
<td>IgG ASCA pos</td>
<td>213</td>
<td>29</td>
<td>66</td>
<td>61.71</td>
<td>90</td>
</tr>
<tr>
<td>IgA and/or IgG ASCA pos</td>
<td>230</td>
<td>37</td>
<td>71</td>
<td>66.76</td>
<td>87</td>
</tr>
<tr>
<td>IgA and IgG ASCA pos</td>
<td>134</td>
<td>6</td>
<td>42</td>
<td>36.47</td>
<td>98</td>
</tr>
<tr>
<td>IgA ASCA and or IgG anti-MZGP2 pos</td>
<td>242</td>
<td>47</td>
<td>73</td>
<td>70.91</td>
<td>84</td>
</tr>
<tr>
<td>IgA and IgG ASCA pos and IgA and/or IgG anti-MZGP2 pos</td>
<td>171</td>
<td>53</td>
<td>47</td>
<td>59.78</td>
<td>100</td>
</tr>
<tr>
<td>IgA and IgG ASCA pos and IgA and IgG anti-MZGP2 pos</td>
<td>23</td>
<td>7</td>
<td>5.11</td>
<td>100</td>
<td>99.10</td>
</tr>
<tr>
<td>Atypical p-ANCA</td>
<td>30</td>
<td>106</td>
<td>36</td>
<td>31.42</td>
<td>91</td>
</tr>
<tr>
<td>IgA and/or IgG ASCA pos and atypical pANCA neg</td>
<td>214 (66%)</td>
<td>22 (8%)</td>
<td>94</td>
<td>85.98</td>
<td>80</td>
</tr>
<tr>
<td>IgA and/or IgG ASCA pos and atypical pANCA neg</td>
<td>87</td>
<td>10</td>
<td>27</td>
<td>22.32</td>
<td>97</td>
</tr>
</tbody>
</table>

We have found several associations between patients with IgA or IgG anti-MZGP2 antibody reactivities and clinical parameters, using our new assays, together with the wealth of detailed clinical data available on the study cohort patients. Some of these associations have been previously described and are confirmed with our new assay, while others are novel [12,17,18]. Using earlier ELISAs, we showed that anti-MZGP2 antibody reactivity is a characteristic feature of patients with ileocolonic location, and with early disease onset (AI) [12,18]. These findings have also been confirmed by the new ELISA testing. Using the GA ELISA, anti-MZGP2 antibodies may identify patients with strictureing disease. Intriguingly, strictureing disease (B2) was more likely (OR: 3.1) in patients testing positive for the presence of ASCA or anti-MZGP2 by the new ELISA, further underlining the notion that simultaneous testing of these autoantibodies may have clinical applicability.

Our study has revealed previously unnoticed associations. For example, patients positive for IgC anti-MZGP2 were more likely to have extensive CrD with ileal involvement, which was also the case for IgA or ASCA (OR: 2.3, 1.7, 1.9, respectively). As this ELISA uses a new form of the MZGP2 protein (isoform 4) as well as a new assay configuration, the clinical associations reported here must be validated externally. Anti-MZGP2 antibodies have recently been determined by a commercial IFA using GP2-overexpressing cell lines (EUROIMMUN) [13], however the performance of this IFA compared to our new ELISAs is currently unknown. It is also of importance to underline the need for direct comparison of our ELISA and that developed by Generic Assays. The MZGP2 ELISA is not USA FDA-cleared and therefore is not yet commercially available. Additional studies using "research use only" assays are in progress and will clarify the relative performance of the GA and Inova assay.

5. Conclusions

The novel, human recombinant MZGP2, isoform 4, ELISA, and permitting the accurate detection of MZGP2 PAB-specific autoantibodies, confirmed their high specificity for CrD as well as their previously described associations with disease phenotypes. Significantly, our study enrolled the largest number of CrD and UC patients investigated thus far in a single centre. Some of the findings published in the past have included fewer patients and cumulative data merged from cohorts of various centres, and this may explain inconsistencies amongst publications. Prospective studies will provide insight into the diagnostic and clinical value of these autoantibodies in routine clinical practice.

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.cca.2014.12.010.

Financial support

Inova Diagnostics provided ELISA kits for the study.

Potential competing interests
Gary L. Norman, Zakera Shums, and Jay Milo are employees of Inova Diagnostics, Inc.
Others: all other authors had no disclosures relevant to this manuscript.

Acknowledgement
Guarantor of the article: Gary L. Norman, PhD.
Specific author contributions: PP, DPB, AF and GN planned and designed the study as well as analysed the data and drafted the manuscript. ZS and JM developed the assay, conducted testing, and contributed to data analysis. PP, ALK, MP, TU, PL, and AF provided biological material/clinical information related to the clinical biomaterial. DSS reviewed the manuscript and contributed considerably to its final drafting. All authors analysed the results and critically reviewed the manuscript.

References