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Abstract 
The short-term beat-to-beat variability of cardiac action potential duration (SBVR) occurs as a 
random alteration of the ventricular repolarization duration. SBVR has been suggested to be 
more predictive of the development of lethal arrhythmias than the action potential 
prolongation or QT prolongation of ECG alone. The mechanism underlying SBVR is not 
completely understood but it is known that SBVR depends on stochastic ion channel gating, 
intracellular calcium handling and intercellular coupling.  
 Coupling of single cardiomyocytes significantly decreases the beat-to-beat changes in 
action potential duration (APD) due to the electrotonic current flow between neighboring 
cells. The magnitude of this electrotonic current depends on the intercellular gap junction 
resistance. Reduced gap junction resistance causes greater electrotonic current flow between 
cells, and reduces SBVR. 
 Myocardial ischaemia (MI) is known to affect gap junction channel protein expression 
and function. MI increases gap junction resistance that leads to slow conduction, APD and 
refractory period dispersion, and an increase in SBVR.  Ultimately, development of reentry 
arrhythmias and fibrillation are associated post-MI.  Antiarrhythmic drugs have proarrhythmic 
side effects requiring alternative approaches. A novel idea is to target gap junction channels. 
Specifically, the use of gap junction channel enhancers and inhibitors may help to reveal the 
precise role of gap junctions in the development of arrhythmias. Since cell-to-cell coupling is 
represented in SBVR, this parameter can be used to monitor the degree of coupling of 
myocardium. 
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1. Introduction  

 It has been estimated that about half of the patients suffering from heart failure die 

from an arrhythmia, accounting for >500.000 deaths per year worldwide. Research is focused 

biomarkers as predictors of arrhythmia development. The prolongation of QT interval is a risk 

factor and an important predictor for the development of arrhythmias, in particular Torsades 

de Pointes arrhythmia (TdP) [1]. Clinical observations,  as well as canine and rabbit model 

experiments suggest that the short term beat-to-beat variability of cardiac action potential 
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duration (SBVR) is a better predictor of drug-induced TdP arrhythmias than the measurement 

of repolarization prolongation alone [2-6]. It is likely that the development of SBVR is 

multifactorial and the electrotonic interactions among cardiac cells, namely the gap junction 

channels limit the temporal dispersion of repolarization. Changes in function, quantity, and 

location of gap junction channels alter cardiac impulse conduction, membrane refractoriness, 

leading to the development of arrhythmias [7, 8]. Therefore the alteration of gap junction 

channel function may represent a putative antiarrhythmic therapeutic target. 

 In this review we summarize the possible role of gap junction channels in the 

development of SBVR, arrhythmias, and important gap junction enhancer and inhibitor 

molecules. 

 

2. The short term beat-to-beat variability of cardiac action potential duration (SBVR) 

 The SBVR or the beat-to-beat variability of the QT interval occurs as random 

variations of the ventricular repolarization duration or QT intervals in consecutive heart beats 

at stable rates [9-11]. The exact mechanism underlying SBVR is not completely understood. 

To the best of our knowledge the mechanism of SBVR is multifactorial including: stochastic 

ion-channel gating [12-14], pharmacological interventions influencing ion channels that 

operate during the action potential plateau and repolarization [2], periodic calcium release of 

sarcoplasmic reticulum [15], and electrotonic interactions among the cardiac cells can 

influence it [10, 12].  

 A number of different ion channels contribute to the action potential configuration. 

The membrane resistance varies during the different phases of the action potential [16]. 

Stochastic ion channel gating contributes to variable action potential morphologies on a beat 

by beat basis.  Lemay et al. published that stochastic gating of certain ion channels (ion 

channels responsible for L-type calcium current, late sodium current, slow component of the 

delayed rectifier potassium current) contribute primarily to the action potential repolarization 

variability of single cardiac cells [13]. Our results underline the importance of stochastic 

channel gating in the development of SBVR, too. We have previously described that the size 

of early repolarization phase of canine ventricular action potential influences the gating of L-

type calcium channels [17], namely large early repolarization causes the reopening of calcium 

channels during the action potential plateau. That means that a small change in the transient 

outward potassium current (Ito) modifies the process of early repolarization, the calcium 

current, and consequently the duration of action potential repolarization. 
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 The action potential duration (APD) and the SBVR is also modulated by intracellular 

calcium handling. Johnson et al. reported that in dog heart spontaneous calcium release leads 

to APD prolongation via increased ICa-L, which in turn increased SBVR [15]. In agreement 

with these data buffering of intracellular calcium suppressed SBVR [2]. In a rabbit LQT2 

model abnormal calcium handling preceded fluctuations in membrane potential [18]. 

 It is well known among cardiac electrophysiologists that SBVR is smaller for 

multicellular heart preparations than for isolated cardiac cells [10], implicating the 

involvement of gap junction channel function to SBVR. 

 In canine and rabbit models inhibition of the rapid and slow components of the 

delayed rectifier potassium current (IKr and IKs), and augmentation of late INa significantly 

increased SBVR and prolonged the duration of repolarization. In these experiments the 

increased SBVR better predicted the development of TdP arrhythmia than repolarization 

prolongation alone [3, 4, 19, 20]. Hinterseer et al. published similar findings in selected 

human patients [21] and it is also known that the successful antiarrhythmic treatment does not 

need to be accompanied by QT interval shortening [22, 23]. These results question the 

association between QT prolongation and the arrhythmia development. Thus, quantitative 

assessment of SBVR could be a reliable parameter to predict proarrhythmic conditions [3, 9, 

11].  

 
3. The gap junction 
 
 3.1 The structure of gap junction 
 Gap junction channels are involved in physiological and pathological processes such 

as embryonic development, cell differentiation, growth [24-26], pathogenesis of neuropathies 

[27], epilepsy [28], cardiovascular diseases [29],  and arrhythmias [30, 31]. Numerous densely 

packed gap junction channels form clusters that directly connect the cytoplasmic compartment 

of cells [32]. The structure of these channels has been described by Unwin & Zampighi in 

1980 [33]. The gap junction channel is composed of two hemichannels (connexons), provided 

by each of two neighboring cells. The connexon consists of six connexin proteins. Each 

connexin has four transmembrane domains, two extracellular loops, one intracellular loop, 

and cytoplasmic-localized amino- and carboxy-termini [34, 35]. The amino acid sequence of 

the transmembrane domains and extracellular loops are highly conserved among the different 

isoforms; however, the length of the connexin C-terminus is variable [36]. The C-terminus 

contains phosphorylation sites providing putative substrate sites to regulate the gap junction 

channel function [36].  
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 Until now more than twenty different connexin encoding genes have been described in 

mouse and in human [37]. The variable C-termini length among isoforms contributes to 

differing molecular weight of connexins, thus giving rise to the classification of these proteins 

[38].   

 Gap junction channels are often composed of the same type of connexin, but it is also 

possible that the functional gap junction channel is composed of different connexin isoforms. 

For example, in atrium Cx40 and Cx43 isoforms are co-localized suggesting heterotypic 

connexons [39]. Although the structure of various connexin isoforms is very similar, the 

permeability, the pH sensitivity, and the voltage gating of the channels formed by different 

connexin isoforms may differ [34, 35, 40, 41].  

 
 3.2 The distribution of gap junctions 

 In the mammalian heart expresses Cx37, Cx40, Cx43, Cx45 and Cx50 isoforms. Cx37 

is detected in the endocardial endothelium [42], while Cx50 was described in rat 

atrioventricular valves [43]. Cx40, Cx43 and Cx45 are the most abundant connexin isoforms 

of the working mammalian myocardial cells and the conduction system. Cx40 is mainly 

expressed in the atrium and in the conduction system [44-49], while Cx43 can be found both 

in atrial and ventricular cells but not in sinoatrial and atrioventricular nodes [46, 48-55]. Cx45 

is preferentially expressed in sinoatrial and atrioventricular nodes, His-bundle and bundle 

branches [56-58]. More recently, Cx30.2 expression was described in mouse sinus node and 

in the conduction system, but the human ortholog Cx31.9 is not expressed in the human heart 

[59-61].  

The biophysical properties of these gap junction channel isoforms are different (reviewed by 

Dhein [36]). The single channel conductance is about 200 pS, 80 pS and 20 pS, for Cx40, 

Cx43 and Cx45 channel, respectively [42, 62, 63]. The conductance values can be influenced 

by many factors such as intracellular calcium, magnesium, sodium ion concentration, pH, 

hypoxia and the phosphorylation state of connexins [34, 36]. If we take into account the 

different conductances of the gap junction channels and the non-uniform expression of the 

connexin isoforms, then gap junctions seem to form different functional compartments within 

the heart. This provides the basis of the impulse propagation from the sinoatrial node toward 

the working ventricular cells.  

 In addition to this functional compartmentalization, the gap junction channels are 

unevenly distributed in the cell membrane. The large portion of the densely packed gap 

junction channels are localized at the poles of cardiomyocytes [64], while the smaller portion 



5 
 

can be found on the lateral side of these cells. These gap junctions conduct the electrical 

impulses both in longitudinal and transverse direction. The uneven distribution of gap 

junction channels around the cell causes an anisotropic conduction, namely the longitudinal 

conduction velocity is nearly twice as much as the transversal one. In rabbit ventricle cells 

these values were obtained to 56±10 cm/s and 26±7 cm/s, respectively [65].  

 
 3.3 Modulation of gap junction channel function 

 Gap junction channel function can be regulated by the modification of connexin 

expression, rate of degradation, by phosphorylation, by localization, and by ionic and 

metabolic changes.  

 The transcription of Cx43 is controlled by homebox factors including Nxk2.5 and Irx3 

[66, 67]. Posttranslational modification regulates channel assembly, trafficking, gating, 

internalization, and protein degradation. Phosphorylation of different residues by protein 

kinase C (PKC) isoforms and the multiple phosphorylation of Cx43 may lead to either 

enhanced or reduced cell-to-cell communication [68-72]. Dephosphorylation of connexins by 

protein phosphatases seems also to regulate gap junction function [73, 74]. In ischaemia, 

dephosphorylation of Ser297 and Ser368 causes gap junction uncoupling which can be rescued 

by suppression of Cx43 dephosphorylation [75, 76]. Phosphorylation of Ser297 and Ser330 

induces the internalization of gap junction [75], while dephosphorylation of Ser356 makes the 

gap junction less sensitive to acidosis and increased intracellular calcium concentration [77, 

78]. These data suggest that Cx43 function cannot be simply evaluated by the altered balance 

between phosphorylation and dephosphorylation. A reduced rate of Cx43 expression, and/or 

increased rate of internalization, and protein degradation can contribute to reduced cell-to-cell 

coupling. 

 Most gap junction channels are located at the cell poles; however, in ischaemia a 

lateral redistribution occurs. Cx43 redistributes from the cell poles to the lateral side of the 

cardiomyocytes [79-81]. Reduced intracellular pH promotes unhooking of Cx43 from 

scaffolding proteins and movement of Cx43 from intercalated disk to lateral membrane. 

Therefore not only the total number of gap junction channel is important for the physiological 

impulse propagation but also the channel distribution within the cell membrane. 

 Increasing concentration of intracellular calcium ion, reduced pH,  and the loss of ATP 

is considered to be the main stimuli to cause acute reduction in gap junction conductance 

during ischaemia [36, 82]. After the onset of ischaemia a progressive increase in intracellular 

calcium concentration and decrease in pH can be observed. Gap junction conductance 
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decreases if the intracellular calcium concentration exceeds 320-560 nmol/l [83].  Poor 

coupling may lead to the development of unidirectional conduction block. Such a reduced gap 

junction conductance slows the impulse propagation and contributes to reentry arrhythmias.  

 
4. The effect of gap junction on short term beat-to-beat variability 

 It is well known that the APD of single ventricular cells shows temporal variability. 

For example, guinea pig isolated ventricular cells with 20-40 ms APD changes were reported 

[10], while we observed 15-25 ms beat-to-beat APD changes on canine ventricular cells 

[unpublished data]. Action potentials recorded on multicellular ventricular preparations do not 

show this kind of beat-to-beat APD changes. Electrical coupling of isolated ventricular cells 

also reduces the alteration in the duration of consecutive action potentials [10, 13, 14].  

 Coupling cardiomyocytes with different intrinsic APD resulted in a common APD for 

both cells. When both coupled cells are excited, electrotonic current flows to delay the 

repolarization of the cell with short intrinsic APD, and simultaneously the loss of current 

accelerates the repolarization of the cell with intrinsically long APD [84]. The changes in 

APD are asymmetrical. Namely the cardiomyocyte with the relatively short action potential 

prolonged much less than the corresponding shortening in the long APD cardiomyocyte. This 

can be related to the changes in the membrane resistance during the action potential. The 

membrane resistance is larger in the course of plateau than during the action potential 

repolarization [10]. Therefore the same charge movement causes larger membrane potential 

change of plateau than along the process of repolarization due to Ohm's law. Coupling two 

cardiac cells with identical intrinsic action potential duration does not change APD but it 

reduces SBVR. The extent of SBVR reduction is larger in cases of asymmetrical cell pairs 

than that of symmetrical pairs [12].  

In guinea pig single ventricular cells IKs blockade causes action potential prolongation, 

increases SBVR, and induces early afterdepolarizations (EAD). Coupling of a cell with IKs 

blockade to another cardiomyocyte with normal action potential repolarization eliminates the 

EAD readily and completely [10]. In these experiments SBVR reduced as well. This result 

suggests that as long as the gap junction resistance is low, a relatively high degree of 

junctional intercellular coupling can suppress the development and spreading of EAD [12]. 

 The magnitude of electrotonic current flow between neighboring cells depends on the 

coupling resistance. Lesh et al. published that dispersion of action potential duration was 

reduced because low-resistance cellular coupling masked intercellular variability [84][10, 13]. 

Increases in coupling resistance or in gap junction channel resistance yields unmasking of 
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differences in action potential duration [12, 84]. In guinea pig ventricular cells the gap 

junction resistance has to be larger than 10 GOhm to achieve a complete uncoupling and to 

restore the intrinsic APD of the cardiomyocytes [10]. Similar results were obtained by 

computer simulation models.  Gap junction resistance over the range of successful impulse 

propagation influenced neither APD nor SBVR in a one-dimensional strand [12, 85].  

 Under pathological conditions such as ischaemia, increased coupling resistance leads 

to slowed conduction and reduced magnitude of electrotonic current flow between the cells. 

Consequentially, reduced APD masking resulted in dispersion of APD and refractory period, 

thus increasing SBVR [12, 86]. Thus SBVR indicates the degree of myocardial coupling, as 

well [12]. APD dispersion is pronounced throughout the ischaemic area especially in the 

border zone [87, 88]. The large APD variability and refractory period dispersion may result in 

a meandering activation pathway, conduction block, reentry arrhythmias [10, 84, 89], 

ventricular fibrillation, and sudden cardiac death [90-93].  

 

 

5. Gap junction enhancers and inhibitors  

 A number of papers support the contention that reduced function of gap junction 

channels often associate with ischaemia and arrhythmias [75, 94-97]. Therefore the 

modification of gap junction channel function can be a target of arrhythmia treatment. The 

important known gap junction channel enhancer (Fig 1.) and inhibitor (Fig 2.) molecules are 

summarized next.  

 

 5.1 Gap junction channel enhancers (Fig 1.) 

Antiarrhythmic peptides (AAP) 

The common antiarrhythmic agents (Class I-IV) are targeted to transmembrane ion channels 

or cardiac receptors [98] but during arrhythmogenesis and action potential propagation, the 

conductance of gap junctions can be an important factor [99]. The first reported paper of these 

peptides was in 1980, when Aonuma et al. found a natural antiarrhythmic peptide 

(hexapeptide, H-Gly-Pro-Hyp-Gly-Ala-Gly) in bovine atrium, which improved the 

rhythmicity of cultured myocardial cell clusters [100]. 

 
AAP10  

AAP10 (H-Gly-Ala-Gly-Hyp-Pro-Tyr-CONH2) was one of the first studied antiarrhythmic 

coupling peptides. AAP10 has a horseshoe-like spatial structure [101]. The electron density in 
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the Tyr-benzene ring, the van der Waals bonds, and intramolecular H-bonds are important to 

achieve the biologically active conformation, as well as proline and hydroxyproline groups. 

AAP10 improved both electrical and metabolic coupling on transfected HeLa cells, rat and 

guinea pig cardiomyocytes [98, 102, 103] in a concentration range of 50 nM – 1 µM. It was 

also shown that the incidence of sustained type Ib ventricular fibrillation was reduced by 

AAP10, with a reduction in dispersion [101]. AAP10-like rotigaptide, prevents Cx43 

dephosphorylation [104] and the activity of this drug depends on activation of PKCα. The 

specific PKCα-inhibitor CGP54345 completely prevented its action [102]. In ischaemia the 

duration of the action potentials is shortened, dispersion (inhomogeneity) is increased, and 

homogeneity is decreased. Jozwiak and Dhein showed that ischaemia-related slowing of the 

activation wave propagation and increased repolarization inhomogeneities, were antagonized 

by AAP10 in the border zone [105]. 

 

Rotigaptide (ZP123, GAP-486) 

The antiarrhythmic peptide rotigaptide (molecular formula C28H39N7O9, H2N-Gly-D-Ala-Gly-

D-4Hyp-D-Pro-D-Tyr-Ac) or formerly ZP123 (developed by Zealand Pharmaceuticals, 

Glostrup, Denmark) can selectively increase gap junctional conductance without affecting 

other ion channels. The hexapeptide rotigaptide is constructed using a retro-all-D-amino acid 

design of AAP10 template. The L-amino acids substituted with D-isomers are expected to 

protect against enzymatic degradation. Rotigaptide plasma half-life was more than 10 days 

compared with less than 15 min for AAP10 [106]. The same research group described that 

rotigaptide and AAP10 have no effect on average APD, but rotigaptide prevented the 

increased APD dispersion caused by hypokalemic ischaemia. Rotigaptide prevents Cx43 

dephosphorylation (of Ser297 and Ser368) in a model of global ischaemia [104]. This is 

important because in normal myocardium Cx43 is phosphorylated and becomes 

dephosphorylated during ischaemia [75]. The beat-to-beat variability of the epicardial 

activation pattern was stabilized by AAP10 and rotigaptide. Both peptides enhanced the 

homogeneity of sub-epicardial action potential duration by significantly reducing sub-

epicardial dispersion [107]. The commonly used concentration of rotigaptide is 50 – 250 nM.  

 
Danegaptide (GAP134, ZP1609) 

Danegaptide (molecular formula C14H17N3O4, (2S,4R)-1-(2-aminoacetyl)-4-

benzamidopyrrolidine-2-carboxylic acid) is an orally administered modified dipeptide that 
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mimicking the localization and the functional groups of AAP10 and rotigaptide at an average 

plasma concentration of 250 nM. Danegaptide reduces atrial fibrillation in a dog model and 

prevents conduction slowing in rat atrial strips [108]. Hennan et al. showed a robust 

cardioprotective effect that limited infarct size [109]. In contrast with AAP10, danegaptide 

decreased the dye uptake in C6 cells stably transfected with Cx43 [108]. Hence this 

compound may display favorable effects both at the level of gap junctions, as well as at the 

level of hemichannels [110]. 

 
HP-5 
HP-5 (N-3-(4-hydroxyphenyl)propionyl, Pro-Hyp-Gly-Ala-Gly-OH) is a modified 

antiarrhythmic pentapeptide. HP-5 is a synthetic analogue that has been synthesized by 

altering the amino-acid sequence of AAP to produce a propionyl derivative [111].  In a rabbit 

ischaemia/reperfusion model the elevated dispersion of APD was reduced after HP-5 

treatment and stayed unaltered during late ischaemia [112]. HP-5 reduced the dispersion of 

APD without altering APD and the shape of action potential, the effective refractory period, 

heart rate, and contractility. 

 

 5.2 Gap junction channel inhibitors (Fig 2.) 

Glycyrrhetinic acid (GA) 

Terpenes are a class of compounds composed of repeating 5-carbon units of hemiterpenes. 

Triterpenes are terpenes consisting of six isoprene units and have the molecular formula 

C30H48. The pentacyclic triterpenes are five-ring derivatives of dammarane having a chair-

chair-chair-boat configuration and can be classified into lupane, oleanane, ursane or 

glycyrrhizic acid groups, and are one group of promising secondary plant metabolites [113]. 

GA is an oleic acid from the Liquorice of the Glycyrrhiza glabra L. Glycyrrhiza contains a 

saponin glycoside called glycyrrhizin, which is the calcium and potassium salt of GA. While 

the GA is 50 times sweeter than sucrose, upon hydrolysis, the glycoside loses its sweet taste 

and is converted to the aglycone GA (molecular formula C30H46O4) plus two molecules of 

glucuronic acid. These agents inhibit intercellular transfer of metabolites, and this has been 

attributed to the inhibition of gap junctions [114]. GA has two isoforms, the 18-α-

glycyrrhetinic acid (18-α-GA) and its diastereomer, the 18-β-glycyrrhetinic acid (18-β-GA) 

and these block gap junctions in concentrations of about 50 µM [115] and 5 µM [116], 

respectively. Shi et al. demonstrated that β2-AR-mediated signal transduction is enhanced 

after GA treatment by changing the location of Gαs in lipid rafts [117]. Du et al. reported that 
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18-β-GA preferentially blocked the late sodium current without affecting HERG and Kv1.5 

channels [118].  

 

Carbenoxolone (CBX) 

CBX (3β-hydroxy-11-oxoolean-12-en-30-oic acid 3-hemisuccinate, molecular formula 

C34H50O7) is a synthetic, hemisuccinate derivative of 18-β-GA with a steroid-like structure 

[119]. CBX is shown to reduce fat mass, plasma triglyceride and cholesterol levels in obese 

rodent models acting as a non-selective inhibitor of the 11-β-hydroxysteroid dehydrogenase 1 

(11-β-HSD1) [120]. It also blocks L-type calcium channels [121], pannexin hemichannels 

[122], and gap junctions [123]. Thus CBX is not selective to gap junctions [124]. In some 

experiments CBX did not alter connexin 43 hemichannel (Cx43Hc) conductance [125]. In 

another study CBX has been proven to disrupt hemichannel packing and aggregation in vivo 

[126], and CBX acts indirectly by intercalating into the cell membrane, altering the local lipid 

environment to hinder plaque formation [127].  

 
Tetradecanoylphorbol acetate (TPA) 

Phorbol esters are natural products derived from Croton tiglium, the source of croton oil, and 

from other plants of the family Euphorbiaceae [128]. TPA (12-Tetradecanoylphorbol 13-

acetate, tumor-promoting phorbol ester, molecular formula: C36H56O8) is the biologically 

most active phorbol ester, the compound had extraordinarily high potency, being active at 

nanomolar concentrations (10-300 nM). The myristate side chain makes the molecule highly 

lipophilic, and specific binding is therefore obscured by very high nonspecific uptake. Small 

structural changes in the molecule can markedly alter its activity. The elimination of the 

hydroxyl group at position 20 of phorbol led to complete loss of activity, and methylation of 

the hydroxyl group at position 4 led to a several hundred-fold loss in potency [129]. TPA is a 

specific regulator of PKC activity, therefore it could influence a wide variety of cellular 

processes related to gap junctions [130]. The connexin protein Cx43 is phosphorylated at 

Ser368 in response to TPA-stimulated PKC activation, which could be prevented by PKC 

inhibitors. TPA induced internalization and degradation of Cx43 in human lens epithelial cells 

[131] and completely inhibited the assembly of functional gap junctions [132]. 

 
GAP26/GAP27 

Warner et al. developed motifs that included short sequence motifs, SRPTEK in extracellular 

loop 1 and SHVR in extracellular loop 2, as likely potent peptides for use in disrupting cell-
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cell communication. Mimetic peptides, called gap junction peptides (GAP26 and GAP27) 

contained amino acid sequence VCYDKSFPISHVR and SRPTEKTIFII, respectively [133, 

134]. To test the efficacy of mimetic peptides, reporter dyes were designed, by which the 

uptake of the reporter dyes across Cx43Hc became a reliable and routine method to 

demonstrate open or leaky Cx43 channels [135]. GAP26 and GAP27 (molecular formula: 

C70H107N19O19S and C60H101N15O17, respectively) are powerful inhibitors of these hydrophilic 

transmembrane pathways with little or no immediate effects on gap junctions [136]. They 

attenuate ACh-induced arterial relaxation and reduce potassium-mediated smooth muscle 

repolarization in endothelium-intact vessels in vitro. Wright et al. described a beneficial effect 

of GAP27 on scratch wound closure rates that correlated with decreased gap junctional 

intercellular communication in cultured human keratinocytes and fibroblasts [137]. The same 

research group showed altered susceptibility of diabetic versus non-diabetic cells to GAP27 

treatment. They found an up-regulation of Ser368-phosphorylation by GAP27 in diabetic cells 

compared to non-diabetic cells [138]. Different studies used mainly protein concentrations of 

100-250 µM. Ko et al. demonstrated that the formation of functional gap junctions is 

temperature dependent, and that the truncated version of GAP27 (amino acid sequence 

SRPTEKTIF) that lacks the two required isoleucine residues could not inhibit dye transfer 

into the cell [139]. 

 
6. The possible antiarrhythmic effects of gap junction modulators 

 Antiarrhythmic drugs exert their effects on the ion channels responsible for cardiac 

action potential generation thus modifying the properties of membrane repolarization and 

impulse conduction. Besides their beneficial effects, antiarrhythmic drugs have proarrhythmic 

side effects as well. Certain diseases are known to affect gap junction channel protein 

expression and function causing arrhythmias [140-142]. Therefore, a novel idea is to target 

gap junction channels in arrhythmia treatment. This novel strategy can be straightforward 

only in those cases where the arrhythmia is based on reduced intercellular coupling. 

 The development of a gap-junction-targeted antiarrhythmic theory requires the better 

understanding of the contribution of these channels to the process of arrhythmogenesis. It is 

known that arrhythmia occurs in different phases of ischaemia [143, 144] and in these phases 

different processes may lead to reduced intercellular coupling. During the early phases of 

ischaemia closure of existing gap junction channels increase the gap junction resistance. Later 

the increased intercellular resistance is due to structural changes, the altered 

connexin/connexon synthesis/degradation and lateralization. Aside from these temporal 
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changes of hypoxia, spatial changes have to be taken into account as well. Ischaemia divides 

the heart into non-ischemic and ischemic zones. These zones can be characterized by normal, 

reduced, or complete uncoupling. The spatial dispersion of repolarization with slow 

conduction increases the susceptibility to reentry arrhythmias.  

 The onset of ischaemia changes intracellular calcium concentration, causes 

acidification, loss of ATP, and altered phosphorylation of Cx43 increase gap junction 

resistance. These events are associated with slow conduction, APD and refractory period 

anisotropy, increased SBVR, reentry, and fibrillation. APD and refractory period dispersion 

are pronounced in the border zone of ischaemia [145]. In the border zone, the ischemic 

inexcitable cells and the viable cells are not completely uncoupled. Therefore the ischemic 

cells electronically depress the viable cells and may form an arrhythmogenic substrate [146, 

147]. At this stage of ischaemia, administration of gap junction channel enhancers seems to be 

beneficial. The acidosis-induced increase in APD dispersion was prevented by ZP123 

administration in Langendorff-pefused guinea pig hearts. ZP123 diminished conduction 

velocity slowing and heterogeneous repolarization [148]. AAP10 enhanced gap junction 

conduction in guinea pig cardiomyocytes [149]. In a canine long QT model AAP10 altered 

the phosphorylation state of Cx43. AAP10 prevented the increase of transmural dispersion of 

repolarization, and suppressed the development of TdP arrhythmias [150].  

 In certain cases enhanced coupling can be a disadvantage. Under physiological 

circumstances the region of excited cells supplies sufficient amount of electrical charge 

(source) for the cells of neighboring region to depolarize them (sink). In those cases when the 

source to sink ratio decreases, reduction in gap junction resistance may cause conduction 

delays and anterograde conduction block.[151]. 

 In ischaemia the reduced intercellular coupling has advantages, as well. Ischaemia is 

associated with reduced sodium current (INa) that may cause conduction block [148] whereas 

the structural inhomogeneity and the increased gap junction resistance restore conduction 

[151, 152]. On the other hand reduced intercellular coupling can limit the spread of mediators 

of cell death and this way it may reduce the size of infarction [153]. Administration of gap 

junction channel inhibitors like carbenoxolone can partly close gap junctions, preventing 

these channels from further uncoupling during the prolonged ischaemia to provide 

antiarrhythmic protection similar to preconditioning [97]. Partial uncoupling of gap junctions 

prior to ischaemia by ischemic-preconditioning preserves the electrical coupling of cells 

during a subsequent ischemic insult, indicating that a partial closure of gap junctions may play 

a trigger role in the protection [94, 96, 154, 155]. GAP26 and GAP27 blocks calcium-
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triggered ATP release mediated by Cx43 hemichannels [156-159]. Hemichannels are not 

engaged to gap junctions, and they are open under several physiological and 

pathophysiological conditions [160]. In ischaemia uncontrolled ATP release through 

hemichannels may result in cellular ATP depletion.  Administration of GAP26 before or after 

the ischaemia protected heart cells against hypoxia and reperfusion and decreased infarct size 

[161]. Increased hemichannel function could be a side effect of gap junction channel enhancer 

treatment, via greater loss of ATP [162]. GAP134 has beneficial effects. Namely GAP134 

promotes intercellular coupling, enhances the conduction velocity, and simultaneously limits 

the cellular ATP release through hemichannels [110].  

 During the late phase of ischaemia structural changes can occur. Decreased quantity of 

Cx43, lateralization and fibrosis can be responsible for increased gap junction resistance and 

local slowing of conduction. The process of Cx43 synthesis, trafficking, and reduced 

degradation should be targeted to restore gap junction resistance. ZP123 had beneficial effects 

on acidosis-induced electrical uncoupling, and ZP123 increased Cx43 protein level in cultured 

neonatal rat ventricular myocytes after 24h [163]. This effect was due to the increased rate of 

Cx43 synthesis, decreased rate of degradation and phosphorylation [98, 164]. However, the 

computer model of Tveito et al. predicts that in case of a significant load of fibroblasts on the 

cardiomyocyte, the administration of gap junction channel enhancer ZP123 reduces 

conduction velocity, prone to reentrant arrhythmias and conduction block [165].  

 
 
7. Conclusion 

 In this review we summarized the role of the gap junction channel in the development 

of SBVR and arrhythmias. We also reviewed the utility of gap junction enhancers and 

inhibitors. 

 Modulation of gap junction channels may be an interesting and novel strategy to treat 

certain types of arrhythmias such as ischaemia-induced arrhythmias. Many agents can affect 

gap junction resistance and various strategies should be useful to prevent arrhythmia 

development short and long term after the onset of ischaemia. Using known and new gap 

junction channel enhancers and inhibitors may also improve our understanding of the 

fundamental basis underpinning the pathophysiology of arrhythmogenesis.  
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Fig. (1). Gap junction enhancers  
Chemical structure of AAP, AAP10, Rotigaptide (ZP123), Danegaptide (GAP134) and HP-5 
(N-3-(4-hydroxyphenyl)propionyl) molecules. 
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Fig. (2). Gap junction inhibitors 
Chemical structure of 18-α-Glycyrrhetinic acid and 18-β-Glycyrrhetinic acid, Carbenoxolone, 
Tetradecanoylphorbol acetate (TPA), GAP26 and GAP27 molecules. 
 


