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� Activation of poly(ADP-ribose) polymerases-1 and -2 (PARP-1 and PARP-2) deteriorates mitochondrial activity.
� NAD+ and ATP degradation are not coupled to each other upon PARP activation.
� PARPs interact with transcription factors modulating mitochondrial activity.
� PARPs can be positive regulators of mitochondrial output under sublethal stress.
� PARP inhibition is an attractive target for treating mitochondrial dysfunction.
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Mitochondria are essential in cellular stress responses.
Mitochondrial output to environmental stress is a major
factor in metabolic adaptation and is regulated by a
complex network of energy and nutrient sensing proteins.
Activation of poly(ADP-ribose) polymerases (PARPs) has
been known to impair mitochondrial function; however,
our view of PARP-mediated mitochondrial dysfunction
and injury hasonly recently fundamentally evolved.In this
review, we examine our current understanding of PARP-
elicited mitochondrial damage, PARP-mediated signal
transduction pathways, transcription factors that interact
with PARPs and govern mitochondrial biogenesis, as well
as mitochondrial diseases that are mediated by PARPs.
With PARP activation emerging as a common underlying
mechanism in numerous pathologies, a better under-
standing the role of various PARPs in mitochondrial reg-
ulation may help open new therapeutic avenues.

Poly(ADP-ribose) polymerases in the cellular regulation
The regulation of mitochondrial activity is critical in
cell survival. Mitochondria are the major source of
ATP as they house core metabolic pathways such as the
Szent-györgyi-Krebs/tricarboxylic acid (TCA) cycle, oxida-
tive phosphorylation, glutaminolysis, beta-oxidation, etc.
Mitochondria are also essential in stress responses and
they play an indispensable role in certain forms of cell
death. A complex network of signal transduction pathways
crosstalk and fine tune mitochondrial activity in cells, and
the mitochondrial adaptation to stress. Reduced mitochon-
drial activity has been associated with several pathologies
ranging from neurodegeneration to metabolic diseases [1].

PARPs (see Glossary) are predominantly nuclear
enzymes that are involved in cellular stress responses, both
as sensors of cellular damage, and as active participants in
stress response (e.g., PARP-1 is a DNA damage sensor and a
member of the DNA repair machinery) [2]. Although over-
activation of some PARP family members (e.g., PARP-1 or
PARP-2) was shown to hamper mitochondrial activity in
response to oxidative stress and nutrient availability, the

actual pathways through which PARPs regulate mitochon-
drial function are not fully understood. In this review, we
will discuss the regulatory pathways that enable PARPs to
impact on mitochondrial activity, highlight the novel roles of
PARPs in mitochondrial dysfunction, the consequent path-
ological alterations, and the therapeutic potential of target-
ing these processes.

PARPs and PARylation
The PARP family of proteins consists of 17 PARPs in
humans (PARP-1–17), and 16 PARPs (PARP-1–16) in mice
[3]. PARPs are composed of functionally distinct domains,
including – among others – a DNA-binding domain that
enables PARPs to bind to RNA, damaged DNA, a catalytic
domain, and different domains to support interaction with
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Glossary

Basal and stimulated mitochondrial oxygen consumption: the measurement of

oxygen consumption rates from isolated mitochondria, or from intact cells or

organs in vitro helps to evaluate mitochondrial (dys)function and disease,

because ADP-dependent oxygen consumption directly reflects coupled

respiration or oxidative phosphorylation.

Macrodomain: macrodomains (also known as A1pp domains) are domains

capable of binding ADPR and other NAD+ metabolites. Proteins containing

macrodomain(s) can remove ADPR from proteins.

poly(ADP-ribose) (PAR): the end product of the poly(ADP-ribosyl)ation

reaction. NAD+ is cleaved to ADP-ribose (ADPR) and nicotinamide, and then

ADPR moieties are joined to each other making large, branched polymers.

poly(ADP-ribose) glycohydrolase (PARG): a main PAR degrading enzyme.

PARG is a multidomain protein that has numerous splice variants that can be

found in most cellular compartments, such as the mitochondria.

poly(ADP-ribose) polymerases (PARPs): also called diphtheria toxin-type ADP-

ribose transferases (ARTDs), are a family of enzymes sharing a common

catalytic domain. PARPs become activated by DNA breaks or by signaling

pathways. Activated PARPs cleave NAD+ into nicotinamide and ADP-ribose and

covalently attaches a PAR polymer to itself and other suitable acceptors. Via

PARylation or protein–protein interactions PARP regulates chromatin organi-

zation, DNA repair, transcription and replication. Excessive DNA damage can

also trigger a PARP-mediated necrotic cell death pathway. Not all PARPs are

capable of forming PAR polymers and some catalyze the addition of a single or

a few ADPR units to target proteins (mono and oligo ADP-ribosylation,

respectively) or are inactive.

Parthanatos: a special form of cell death that is distinct from apoptosis or

necrosis. It is referred to as PARP1-dependent cell death as it is characterized

by PARP activation, PARylation, mitochondrial transition, AIF translocation,

and DNA fragmentation, but lack caspase activation.

PARylation: is a post-translational protein modification performed by PARP

enzymes. It involves the cleavage of NAD+ into ADP-ribose (ADPR) and

nicotinamide (NAM). ADPR is then bound to the side chains of glutamate,

aspartate or lysine amino acids of proteins. Then ADPR moieties are joined to

form PAR that is a large, branched polymer ranging up to 200 ADP-ribose units.

1043-2760/
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proteins or NAD+ metabolites (for detailed overviews see
[2,4,5]). PARPs are involved in DNA repair processes,
transcriptional regulation, cell death in oxidative stress
related pathologies, and metabolic and immune regulation
[6].

PARylation is an evolutionarily conserved post-transla-
tional modification reaction whereby activated PARP
cleaves NAD+ into nicotinamide and ADP-ribose and cova-
lently attaches an ADP-ribose polymer (ADPR) to itself
and other acceptors, such as histones or other DNA-asso-
ciated proteins. Because PAR polymers have negative
charge, they may change the conformation of acceptor
proteins or disrupt protein–protein and protein–nucleic
acid interactions. PAR can also act as an interaction sur-
face for certain DNA repair proteins [7]. PARP-1 and
PARP-2 can inhibit themselves through self-PARylation
(autoPARylation), and can modulate the biochemical ac-
tivity of a plethora of proteins through trans-PARylation.
Despite sequence similarity in the catalytic domains be-
tween PAPR family members, only PARP-1, PARP-2, and
tankyrases are known to produce long PAR polymers,
while other PARP enzymes are defective in elongation or
are inactive [3]. Hence, the majority of both basal and
stimulated cellular PARP activity is attributed to PARP-
1 (85–90%) and PARP-2 (10–15%) [2]. Activation of the
nuclear PARP-1, -2, and -3 can be triggered by single or
double strand breaks in DNA, frequently induced by oxy-
gen or nitrogen reactive species (ROS, RNS), or abnormal
DNA structures [2]. There is accumulating evidence that
alternative pathways of PARP-1/2 activation exist, such as
increases in intracellular calcium, kinase cascades (e.g.,
ERKs), mono-ADP-ribosylation, and acetylation, whereas
self-PARylation, phosphorylation by protein kinase C
(PKC), or SUMOylation are inhibitory [2,6,8].

The PAR polymer has short half-life and it is rapidly
degraded to ADPR. The enzymology of PAR degradation is
complex, as several enzymes are capable of degrading PAR.
Poly(ADP-ribose) glycohydrolase (PARG) is an efficient
PAR degrading enzyme that can cleave the ends of the
PAR polymer or within the chain. Several PARG isoforms
exist, due to alternative splicing, that can be found in most
cellular compartments [9]. Besides PARG, ADP-ribosyl-
acceptor hydrolase 3 (ARH3), ADP-ribosyl lyase and
macrodomain-containing proteins are also important reg-
ulators of cellular PAR levels [2,5,9–11]. ADPR can be
further metabolized to AMP by nucleoside diphosphate
linked to X (NUDIX) pyrophosphatases [12].

PARP-mediated damage of mitochondrial function
PARP activation (that is mostly attributed to the activation
of PARP-1) promotes a rapid loss of mitochondrial potential
and decreases basal and stimulated mitochondrial oxygen
consumption [13]. PARP-1 activation reduces the activity of
mitochondrial complex I [14], NADH-oxidase, and NADH
Q1-reductase [15], resulting in electron transport chain
uncoupling and superoxide production [16]. Mitochondrial
architecture is distorted and is characterized by swelling
and the disorganization of the trabecular system of the inner
mitochondrial membrane [16]. Subsequently, mitochondri-
al transition pores (MTPs) open releasing mitochondrial
content such as cardiolipin, apoptosis inducing factor

(AIF), cytochrome c or caspases [16–18]. Furthermore,
PARP-1 activation impairs mitophagy [19], which is a pro-
cess through which damaged portions of the mitochondria
can be removed.

PARP activation is energetically catastrophic to the cell,
as it is accompanied by reductions in cellular NAD+ and
ATP levels, thus leading to mitochondrial energy failure.
Originally, reductions in ATP levels were linked to the
attempt of the cell to resynthesize NAD+ through nicotin-
amide mononucleotide adenylyltransferase (NMNAT) and
phosphoribosyl pyrophosphate synthetase (PPS), an ener-
getically demanding reaction [18]. However, other path-
ways that may cause more profound reductions in ATP,
independent of NMNAT and PPS, have been identified.

Results from Chiarugi et al. [20] suggest that ATP loss is
not a direct result of the attempt of the cell to resynthesize
NAD+. ADPR, the end product of PAR hydrolysis, can be
converted into AMP by NUDIX pyrophosphatases
[12]. Increases in AMP levels upon PAR hydrolysis block
mitochondrial adenine nucleotide translocator (ANT),
hampering mitochondrial ADP uptake and ATP release
[12], and slowing down ATP release from mitochondria. In
addition, the bypass to recharge ATP from ADP (2 ADP !
AMP + ATP), through adenylate kinase, is limited, due to
the low ADP availability under conditions of PARP-1 over-
activation [21].

PAR or PARylated PARP-1 can escape the nucleus and
damage mitochondrial function. A recent study demon-
strated that ring finger protein 146 (RNF146, Iduna), a
cytoplasmic E3-ubiquitin ligase and PAR polymer-binding
protein, interacts with PARP-1 and protects against PAR
polymer-induced mitochondrial dysfunction and cell death.
Therefore, PAR binding to mitochondria can be prevented
by Iduna [22], suggesting that Iduna can sequester PAR to
the cytosol and hence protect against PAR-induced mito-
chondrial collapse. Furthermore, Iduna can direct cyto-
plasmic PARylated PARP-1 (and likely other PARylated
proteins) to the proteasome for degradation [23].

An acceptor of PAR on the mitochondrial surface is
hexokinase (HK) [24,25]. HK binds to the mitochondrial
surface, where it interacts with voltage-dependent anion
channels and regulates ADP/ATP exchange between the
cytosol and mitochondria. Mitochondrial ADP import is
vital for mitochondrial ATP synthesis and for maintaining
the rate of mitochondrial oxidation, while ATP regulates
glycolytic flux through glucose phosphorylation [26].
Therefore, HK regulates the coupling between glycolysis
and mitochondrial oxidation, and the release of HK from
the mitochondrial surface induces mitochondrial dysfunc-
tion and cell death [26]. In addition to these findings, PAR
binding to apoptosis inducing factor (AIF), a cell death-
inducing mitochondrial protein, is required for AIF release
from mitochondria [27].

PARP activity may exist in the mitochondrial matrix.
There is consensus in the literature that mitochondria
possess glycohydrolase activity (the activity necessary
for PAR degradation) with ARH3 being the major compo-
nent [28]. Although the existence of mitochondrial PARP
activity is debated, there are data that show the presence of
PARylated proteins in isolated rat liver mitochondria
[29,30], mitochondrial PARP activity [29,31], or identify
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mitochondrial malate dehydrogenase as a PARP-1 inter-
acting protein [32]. However, these studies were based on
the extraction of PARylated proteins using a PAR antibody
and given the existing discrepancies between proteins
identified by the different studies [29,30]; additional,
non-immunological methods are required to verify these
findings. Importantly, when PARP-1 was overexpressed in
mitochondria, in vitro, mitochondrial PARylation in-
creased, which was accompanied by decreased mitochon-
drial output and unaltered glycolytic flux [33], highlighting
a possible functional consequence of mitochondrial PAR-
ylation. Taken together, PAR-degrading activity appears
to be present in mitochondria, while well-defined PARP
activity or presence is missing. However, it seems that the
PARylation of mitochondrial proteins may profoundly re-
duce mitochondrial oxidative phosphorylation and proba-
bly influence mitochondrial NAD+ levels, and hence the
activity of NAD+-dependent enzymes in the mitochondria.

Interference of PARPs with signal transduction
pathways
Signal transduction pathways integrate environmental sig-
nals into mitochondrial regulation. The phosphatidylinosi-
tol3-kinase (PI3K)–Akt–glycogen synthasekinase-3 (GSK3)
and AMP activated kinase (AMPK) pathways were shown to
be modulated by PARP [34]. The phosphorylation and acti-
vation of Akt stabilizes mitochondrial function under stress
conditions by preventing mitochondrial permeability tran-
sition (MPT)Q2 . PARP inhibition by structurally different
PARP inhibitors increases the activity of PI3K [35] and
Akt [34-36] thus preventing the loss of the mitochondrial
membrane potential upon oxidative damage [34]. Tan-
kyrases are also likely to possess regulatory properties over
mitochondria by interacting with GSK3 [37].

AMPK is a major cellular energy sensor. It detects and
reacts to fluctuations in the AMP:ATP ratio, and is activated
in response to low cellular energy charge. AMPK activation
induces transcriptional programs that enhance oxidative
metabolism to recharge cellular energy stores [38]. PARP-1
activation results in increased AMPK activity [39–41] that
might be linked with the degradation of PAR to AMP by
NUDIX pyrophosphatases and the change in the AMP:ATP
ratio [12]. AMPK can physically interact with and activate
PARP-1 through phosphorylation on Ser177 [42,43], com-
pleting a feedforward loop between PARP-1 and AMPK.
Interestingly, the deletion of PARP-1 does not affect AMPK
activity [44]. Thecrossactivation between AMPK and PARP
can be an important survival pathway in cells undergoing
stress, not only through inducing mitochondrial activity, but
also by facilitating autophagy [39,40].

As mentioned earlier, PARP activation induces mito-
chondrial uncoupling and reactive oxygen species produc-
tion [16]. This observation suggests that PARP activation
can alter mitochondrial ROS signaling; however, that pos-
sibility had not been studied.

Mitochondrial regulation through modulating
transcription
Interaction between sirtuins and PARPs

Sirtuins are a family of seven (SIRT1–7) NAD+-dependent
protein deacetylases in humans [45]. As a consequence,

enhanced NAD+ synthesis, decreased NAD+ breakdown, or
cellular energy stress that manifests as decreases in the
cellular NAD+/NADH ratio can activate sirtuins [2,45]. The
activities of the nuclear SIRT1 and the mitochondrial
SIRT3 were shown to be modulated by PARPs. Activation
of SIRT1 and SIRT3 cooperatively enhances mitochondrial
activity through deacetylating several target proteins.
SIRT1 deacetylates and activates the transcription co-
factor FOXO1, the coactivator peroxisome proliferator ac-
tivated receptor cofactor-1a (PGC-1a), or p53 [45], and
triggers transcriptional programs that induce mitochon-
drial biogenesis. SIRT3 deacetylates several proteins in
mitochondrial complexes I–V boosting mitochondrial ac-
tivity [45]. SIRT1 activation is associated with improved
performance of mitophagy, mitochondrial unfolded protein
response (mtUPR), and the maintenance of mitonuclear
protein balance [46].

SIRT1 and PARP-1 mutually inhibit each other’s activity.
They are both nuclear enzymes sharing the same substrate,
NAD+; however, PARP-1 has higher affinity for NAD+, (Km�
20–60 mM) than SIRT1 (Km� 100–300 mM) [2]. In addition,
PARP-1 is more effective in NAD+ breakdown than SIRT1,
as PARP-1 has higher Km/Kcat value (Km/KcatPARP-1 =
6000 s�1M�1) than SIRT1 (Km/KcatSIRT-1 = 350 s�1M�1)
[2]. Due to its higher affinity to NAD+ and quicker turnover
rate, activated PARP-1 can limit NAD+ availability for
SIRT1 [2]. Hence, pharmacological inhibition or genetic
deletion of PARP-1 boosts nuclear NAD+ levels
[44,47,48]. In skeletal muscle and brown adipose tissue,
increases in NAD+ levels are translated into higher SIRT1
activity and improved mitochondrial output, mitonuclear
protein balance, and better performance of the mtUPR [48].

Its lower affinity to NAD+ and slower catalytic turnover
rate of SIRT1, makes it unlikely that SIRT1 could efficient-
ly limit NAD+ to inhibit PARP-1 [2]. However, PARP-1 is
active as an acetylated protein and SIRT1 is capable of
deacetylating, and hence inhibiting, PARP-1 activity
[8]. SIRT1 activation, the concomitant inhibition of
PARP-1 and the enhancement in mitochondrial biogenesis
had been demonstrated to protect cells from PARP-
mediated oxidative damage [8,49].

Recently, a link between mitochondrial SIRT3 expres-
sion and PARP-1 activation was established. In neurons,
N-methyl-D-aspartate (NMDA)-induced excitatory cell in-
jury activated PARP-1, and this was followed by a sus-
tained enhancement of SIRT3 mRNA and protein
expression [50]. Enhanced production of reactive oxygen/
nitrogen species and modulation of NAD+ levels were
suggested to be involved in the upregulation of SIRT3
expression [50], which in turn positively impacted cell
survival after NMDA injury.

PARP-2 also influences SIRT1 activity. Depletion of
PARP-2 resulted in enhanced SIRT1 activity and increased
mitochondrial biogenesis in several in vitro model systems
[51–54]. Silencing of PARP-2 in these studies resulted in
increased SIRT1 mRNA and protein expression and en-
hanced SIRT1 activity, independent of changes in NAD+

levels. Consequently, it was shown that PARP-2 acts as a
suppressor of SIRT1 promoter activity [51–53]. Another
recent study [51] identified miRNA149 as an upstream
repressor of PARP-2 expression that consequently induced
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SIRT1 expression in response to fasting. Thus, changes in
PARP-2 expression were shown to integrate metabolic sig-
nals (such as fasting or high fat feeding) or cellular redox
status (such as oxidative stress) into changes in SIRT1
expression and activity in skeletal muscle, liver, and the
vasculature, fine tuning mitochondrial output [51–53]. In-
terestingly, PARP-1 does not modulate the activity of the
SIRT1 promoter [44]. These findings highlight key differ-
ences in the mode of action of PARP-1 and PARP-2.

The induction of PARP-7 was shown to bring about
major metabolic changes in the liver characterized by
decreases in NAD+, and suppressed expression but en-
hanced acetylation of PGC-1a [55]. Such biochemical
changes are the hallmarks of SIRT1 inhibition; however,

whether these changes translate into suppressed mito-
chondrial activity has not been investigated. An overview
of the PARP-mediated pathways regulating mitochondrial
activity is shown in Figure 1. Q3

Interactions with nuclear respiratory factors (NRFs)

NRF-1 and NRF-2 are nuclear transcription factors that,
upon activation, induce the expression of key mitochondri-
al genes, such as cytochrome c and mitochondrial tran-
scription factor A, leading to enhanced mitochondrial
activity [56]. NRFs bind to well-defined, guanine/cytosine
(GC) Q4-rich consensus DNA sequences, also called antioxi-
dant response elements (AREs), and interact with cofac-
tors, such as PGC-1a and PGC-1b to efficiently activate
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Figure 1. Overview of the poly(ADP-ribose) polymerase (PARP)-mediated pathways regulating mitochondrial activity. Upon acute, uncontrolled PARP activation (A) PARP-1

and PARP-2 bind to DNA and at the expense of NAD+, synthesize PAR, leading to marked reductions in cellular NAD+ and ATP. In this context, ATP loss stems from

elevations in AMP due to PAR degradation and concomitant inhibition of ANT. The sirtuin SIRT1 is inhibited by NAD+ loss, the acetylation of the coactivator peroxisome

proliferator activated receptor cofactor-1a (PGC-1a) and the transcription co-factor FOXO1 increases, leading to lower expression of genes involved in mitochondrial

biogenesis. Hypoxia-inducible factor (HIF)-1 and HIF-2 can be activated, which suppresses mitochondrial activity. PAR is exported from the nucleus and suppresses

glycolysis and mitochondrial activity. The complexes of the electron transport chain can be inhibited by mitochondrial PARylation, which reduces mitochondrial membrane

potential, and enhances superoxide production and the opening of the mitochondrial transition pores (MTPs). PARP activation reduces mitochondrial output and the ability

of mitochondria to self-repair (reduced mitophagy and mitonuclear protein imbalance), a dysfunction underlying several metabolic disorders.

In recovery from sub-lethal damage (B) the activation of several pathways culminate in sustained mitochondrial activity and cell survival. SIRT1 activation inhibits PARP-1

through deacetylation. PARP-2 expression is suppressed by miRNA149, which enhances SIRT1 expression. High AMP levels induce AMP activated kinase (AMPK), which

supports SIRT1 activity and the activity of nuclear respiratory factors (NRFs). SIRT1 and NRFs activate PGC-1a and FOXO1, inducing transcriptional programs that boost

mitochondrial biogenesis. Enhanced expression of SIRT3 leads to deacetylation and activation of the electron transport chain complexes. These effects culminate in the

stabilization or enhancement of mitochondrial activity, and stabilization of mitochondrial self-repair (mitophagy and mitochondrial proteostasis). PARP inhibition, and thus

stabilization or enhancement of mitochondrial activity, can improve metabolic pathologies or metabolic parameters.

Abbreviations:Q11 Akt, protein kinase B; ANT, adenine nucleotide translocator; ARH3, ADP-ribosyl-acceptor hydrolase 3; cyt c, cytochrome c; Endo G, endonuclease G; HK,

hexokinase; mtUPR, mitochondrial unfolded protein response; PARG, poly(ADP-ribose) glycohydrolase; PI3K, phosphatidylinositol 3-kinase; RNS, reactive nitrogen species;

ROS, reactive oxygen species; TyrK, tyrosine kinase receptor; VDAC, voltage-dependent anion channel.
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mitochondrial genes [56]. NRF activity can be triggered by
ROS/RNS, Akt, or AMPK [56].

NRF-1, in complex with DNA-dependent protein kinase
(DNA-PK), Ku80, Ku70, and topoisomerase Iib, was shown
to bind to PARP-1 [57]. PARP-1 binds to and PARylates the
DNA binding domain of NRF1, however PARylated NRF-1
does not lose its affinity to PARP-1 [57]. The NRF-1/PARP-
1 complex binds to the human cytochrome c promoter and
facilitates cytochrome c expression [57]. Furthermore,
PARP-1 was also shown to act as a transcriptional coacti-
vator for NRF-2. PARP-1 binds NRF2 indirectly through
the adaptor protein Maf and upregulates the its transcrip-
tional activity [58]. It is important to note that the inter-
actions between PARP-1 and NRF-1/2 are independent of
the enzymatic activation of PARP-1, which can be crucial in
cells recovering from sublethal oxidative injury (Box 1)Q5 .

Interaction with hypoxia-inducible factors (HIF)

HIF-1 and HIF-2 are transcription factors with an indis-
pensable role in the accommodation of hypoxia. HIFs
facilitate the adaptation to hypoxia through initiating
transcriptional programs that induce metabolic pathways
not requiring oxygen (e.g., glycolysis), while repressing the
oxygen dependent mitochondrial oxidation [59].

Martin-Olivaet al. [60] were the firstto show that HIF-1-
induced suppression of Complex II and Complex IV in
deferoxamine-induced hypoxia depends on PARP-1 activa-
tion and the PARP-1-mediated production of ROS [61–
63]. The inhibition of PARP-1 blocks HIF-1 activation and
expression of HIF-dependent genes, among them the factor
inhibiting HIF (FIH) [64,65]. Blunted induction of HIF-1 and
FIH expression changes the dynamics of HIF-1 activation: in
cells undergoing PARP inhibition despite low HIF-1 activity,
HIF-1 activity is maintained longer after release from hyp-
oxia due to the lower levels of FIH [64]. PARP-1 also forms a

physical complex with HIF-2 and promotes the expression of
HIF-2 mediated genes [66]. Thus, PARP-1 activation facil-
itates HIF-1 and HIF-2 activation contributing to down-
regulation of mitochondrial activity. Importantly, HIF-1
and HIF-2 can also facilitate neoplastic transformation [59].

Other transcription factors with possible mitochondrial

regulatory role

As mentioned earlier, PARP-1 has widespread transcrip-
tional effects [67] and influences the activity of several
proteins, including p53. The protein p53 was shown to be
PARylated in an animal model of Parkinsonism [68], a
disease with known metabolic alterations, suggesting that
mitochondrial activity could be modulated through p53
PARylation. PARP-modulated metabotropic transcription
factors are summarized in Table 1.

PARP-mediated diseases associated with mitochondrial
dysfunction
Diseases associated with acute mitochondrial damage

Under pathological conditions associated with mitochondri-
al dysfunction, the induction of mitochondrial biogenesis
alleviates disease burden. Restoring mitochondrial biogen-
esis not only restores mitochondrial energy production and
stabilizes the coupling of the mitochondrial electron trans-
port chain, but revitalizes the flux of mitochondrial biosyn-
thetic pathways. As we discussed earlier, PARP activation
deteriorates mitochondrial function, and consequently, sev-
eral mitochondrial pathologies are associated with or are
triggered by PARP activation. PARP inhibition, or the ge-
netic deletion of PARP-1 or PARP-2 mitigates damages to
mitochondrial activity, and therefore protects against these
diseases.

PARP activation triggered by extensive oxidative DNA
injury, and the consequent mitochondrial dysfunction and
cell death, has been implicated in numerous pathological
processes (e.g., ischemia–reperfusion injury, inflammatory
diseases, burn, Parkinsonism, Alzheimer’s and Hunting-
ton’s diseases, and multiple sclerosis toxicity of cytostatic
drugs, among others) [18,69,70]. PARP activation, and the
consequent mitochondrial transition, governs the choice of
cells between types of cell death [18]. Upon extensive PARP
activation, mitochondrial activity is impaired and ATP
levels drop, pushing cells into necrosis [18]. A limited
set of cell types, such as neurons, can undergo parthanatos,
a specialized type of cell death characterized by PARP
activation, mitochondrial transition, AIF translocation,
DNA fragmentation, and the lack of caspase activation
[27]. PARP inhibition conserves mitochondrial activity and
cellular ATP; therefore, cells either can repair their DNA
or can undergo the ATP-dependent apoptotic program that
is characterized by lower inflammation and better out-
comes, as compared to necrosis [18]. It is important to note
that PARP activation-elicited cell death can also be physi-
ological, for example, in osteoblasts during osteogenic
differentiation [71].

PARPs, mitochondria, and metabolic diseases

PARP activation has equal importance in those patholo-
gies that are characterized by long-term mitochondrial
dysfunction, rather than cell death. It is very likely that
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Box 1. PARP–nuclear receptor interactions

Nuclear receptors (NRs) are ligand activated transcription factors

that play key roles in multiple cellular functions including cell

differentiation and proliferation, and in metabolic homeostasis. NRs

translate metabolic demands into transcriptional programs facilitat-

ing metabolic adaptation [86]. PARPs interact with numerous NRs

[72] suggesting that PARPs may impact on mitochondrial activity

through modifying NR activity, which remains to be explored in

future studies

PARP-1 and PARP-2 mediate the activity of numerous NRs. PARP-

1 may act as coregulator for estrogen receptors (ERs), progesterone

receptor (PR), retinoic acid receptor (RAR), thyroid hormone

receptor (TR), retinoid X receptor (RXR), peroxisome proliferator

activated receptor (PPARs), neuron-derived orphan receptor-1

(NOR-1) [72], and PARP-2 for ERa and PPARs [87]. PARP-1 can act

as either a corepressor or coactivator of NRs depending on the cell

type, tissue or type of treatment. Interaction surfaces on PARP-1 had

been mapped to the second zinc finger and to the BRCT domain,

while in PARP-2 such studies were not conducted. PARP-1 can act

through various modalities such as PARylating histones to make

chromatin more accessible, PARylating transcription factors to

modulate their activity, direct protein–protein or DNA–protein

interactions. It seems that PARP-2 is a constitutive cofactor of the

PPARs [87], while it is under debate whether the activity of PARP-2 is

necessary for transcriptional regulation. Interactions between

PARPs and NRs have major impact on metabolism, gene expression

and cell survival.
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the dysfunction of the PARP-mediated regulatory path-
ways (e.g., the balance of the SIRT1/PARP-1 interaction, or
of HIF activation) is a major pathogenic factor in complex
diseases, such as metabolic disorders, cancer, aging, life-
span, and healthspan regulation.

The role of PARPs in metabolism is complex. Global
deletion of PARP-1 in mice enhances food uptake and
alters feeding behavior [44,72], suggesting alterations in
metabolic sensing and/or in the central nervous system.
Regulation of appetite and circadian phase entrainment
relies on changes in mitochondrial activity in the nuclei of
the hypothalamus [73]; therefore, it is very likely that
PARP-1 controls appetite and circadian rhythm through
modulating mitochondrial output. In support of this
hypothesis, the hepatic circadian phase entrainment is
regulated by the interplay of PARP-1 and SIRT1 [74].

The deletion or pharmacological inhibition of PARP-1
and PARP-2 leads to a catabolic shift in metabolism
through inducing SIRT1 activity in skeletal muscle, liver,
and brown adipose tissue, which translates into enhanced
mitochondrial biogenesis [72]. Higher levels of mitochon-
drial activity consequently lead to lower adiposity and
lower body mass [44,48,52]. PARP-1 and PARP-2 knockout
mice exhibit skeletal muscle enriched in mitochondria rich
type I fibers that improves insulin sensitivity [72]. PARP-1
deletion in mice or pharmacological PARP inhibition

improves glucose tolerance [44,48], the consequence of
enhanced mitochondrial activity.

These metabolic changes confer protection against nu-
merous metabolic diseases, such as obesity and insulin
resistance [44,48,52], the hallmarks of the metabolic syn-
drome. Metabolic syndrome can progress into type 2 diabe-
tes (T2D) when hyperglycemia develops. The features of
T2D are ameliorated upon the deletion of PARP-1 or
pharmacological PARP inhibition [44,48]. Beta cell death
in type I diabetes (T1D) or in advanced T2D is a PARP-
mediated process involving mitochondrial transition, an
event that is blocked by the deletion of PARP-1 [18,72].

The sequel of the metabolic syndrome and T1D or T2D
has PARP activation associated features. These diseases
encompass diabetic complications such as cardiovascular
diseases or atherosclerosis [18,72], which also involves
PARP activation [75,76] Q6. However, these are complex dis-
eases and pathogenesis is not limited to simple changes in
metabolism but involve other components, including in-
flammation. PARP-1 and PARP-2 activation may also
promote proinflammatory processes via multiple mecha-
nisms. These involve the activation of proinflammatory
transcription factors that induce the transcription of che-
mokines and cytokines [e.g., tumor necrosis factor a

(TNFa), interleukin-1b (IL-1b)], intercellular, vascular,
and liver adhesion molecules (I-CAM, V-CAM, L-CAM),
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Table 1. PARP-interacting metabotropic transcription factors modulating mitochondrial activity

Transcription

factor

PARP

partner

Experimental modulation

of PARP expression or

PARP activitya

Effect on mitochondria Refs

FOXO1 PARP-1

PARP-2

PARP-1 shRNA, PJ34

PARP-2 shRNA

PARP-1 regulates FOXO1 through mediating SIRT1

activity. Active SIRT1 deacetylates and activates

FOXO1, inducing mitochondrial activity.

Silencing of PARP-2 induces mitochondrial activity

through inducing SIRT1 expression that deacetylates

FOXO1.

[44,52]

HIF-1 PARP-1 PARP-1 knockout, DPQ,

PJ34

PARP-1 inhibition prevents the HIF-mediated

suppression of Complex II and Complex IV activity.

[60–65]

HIF-2 PARP-1 PARP-1 knockout, PJ34 Unknown [66]

NRF-1 PARP-1 Overexpression of

deletion mutants of

PARP-1, PARP-1 shRNA

NRF-1 and PARP-1 jointly regulate the expression of

cytochrome c.

[56,57]

NRF-2 PARP-1 PARP-1 overexpression,

PARP-1 knockout

PARP-1 overexpression enhances NRF-2 binding to

NRF-2 specific promoters.

[58]

SIRT1 PARP-1

PARP-2

PARP-7

PARP-1 shRNA, PJ34, TIQ,

Iniparib, Olaparib,

ABT-888, MK4827

PARP-2 shRNA

PARP-7 overexpression

PARP-1 and SIRT1 activity are inversely coupled. PARP-1

activation depresses, while PARP-1 inhibition/silencing

induces mitochondrial activity.

Silencing of PARP-2 induces mitochondrial activity

through inducing SIRT1 expression.

PARP-7 activation may inhibit SIRT1.

[8,19,44,47–49,

51–55,83]

SIRT3 PARP-1 PJ34, DPQ PARP inhibition by DPQ suppresses NMDA-induced

accumulation of SIRT3 in the mitochondria.

[50]

PGC-1a PARP-1

PARP-2

PARP-1 shRNA, PJ34

PARP-2 shRNA

PARP-1 regulates PGC-1a through mediating SIRT1

activity. Active SIRT1 deacetylates and activates PGC-1a.

Silencing of PARP-2 induces mitochondrial activity

through inducing SIRT1 expression that deacetylates

PGC-1a.

[8,19,44,47–49,

51–54,83]

aAbbreviations: DPQ, PJ34, PARP-1 inhibitors; shRNA, small hairpin RNA; TIQ, PARP-1 inhibitorQ12 .
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inducible nitric oxide synthase, or cyclooxygenase-2 that
enhance the homing, extravasation, and activation of in-
flammatory cells [77]. Logically, PARP inhibitors exert
anti-inflammatory properties. Although the role of PARPs
in metabolic inflammation (also termed metaflammation)
has not been explored, it is likely that limiting metaflam-
mation by PARP inhibition could be an important target in
combating metabolic diseases and their complications.

The possible role of PARPs in cancer cell metabolism

Cancer cells are characterized by an uncoupling of glycol-
ysis from mitochondrial anabolic processes (TCA cycle and
terminal oxidation) leading to decreased mitochondrial
oxidation and enhanced glycolytic flux, even in the pres-
ence of oxygen, a phenotype called the Warburg effect
[78]. Warburg-type metabolism supports the high cell
division rate in tumors, while reverting Warburg-type
metabolism slows down proliferation [78]. Several meta-
bolic enzymes are now classified as Warburg enzymes, as
changes in their expression or mutations were associated
with tumors in humans or in animal models [78]. Recent
data provided evidence that Warburg enzymes can be
involved in cell division, cell death, and energy sensing
[79].

Highly selective PARP inhibitors are in clinical trials to
combat neoplasms through impairing DNA repair process-
es in these cells [80]; however, a large body of evidence
suggests that PARP inhibitors can have anti-Warburg
properties as well [81]. PARP activation suppresses
the mitochondrial oxidation [16] that is common with
Warburg-type metabolism, while PARP inhibition induces
mitochondrial activity [44,48], which is an anti-Warburg
feature. Along the same lines, HK is crucial for coupling
glycolysis and mitochondrial oxidation [26]. HK dissociates
from the mitochondrial surface upon Iduna-mediated
PAR efflux from the nucleus [23–25], suggesting that
PARP activation can in fact uncouple glycolysis and mito-
chondrial anabolism. Furthermore, HIF activation, that
suppresses mitochondria and induces glycolysis (Warburg-
type metabolism) and neoplastic transformation, is sup-
ported by PARP activation [60–62,64,66]. The interaction
between the PI3K pathway and PARPs can be implicated
in Warburg-type metabolic rearrangements, as PARP inhi-
bitors and PI3K pathway inhibitors can potentiate each
other’s antitumor activities [75,82]. Furthermore, it is
conceivable that tankyrases or PARP-10 may also have
anti-Warburg properties through inducing mitochondrial
activity, since these enzymes interact with GSK3 or c-myc
[5,37]. The contribution of the anti-Warburg effect of PARP
inhibition in cancer treatment is an open question to be
investigated.

PARP inhibition, a double-edged sword in mediating

healthspan and lifespan

Work from the laboratory of Alexander Bü rkle showed in
the late 1990s that PARP activity in the lymphoblastoid
cells of centenarians is higher than in those of controls
(20–70 years of age) [76]. Subsequent studies have un-
veiled a similar relationship between PARP activity and
lifespan, suggesting that increases in PARP activity pro-
mote longevity through facilitating the recognition of DNA

damage and the repair of the damaged sites [76] – a long-
standing cornerstone finding of the PARP field. However, a
recent study in which an extra copy of PARP-1 was intro-
duced into mice [76] revealed that the PARP-1 transgenic
mice indeed had a lower incidence of certain malignancies;
however, they developed age-related diseases that were
linked to mitochondrial dysfunction (e.g., obesity or im-
paired glucose metabolism) or inflammation [76]. These
data are in clear agreement with findings showing that
PARP activation impairs [16] mitochondrial biogenesis
and mitochondrial activity, which seems to be the underly-
ing cause of the higher incidence of the metabolic diseases in
PARP-1 transgenic mice. On the other hand, enzymatic
inhibition or genetic deletion of PARP-1impairs DNA repair
processes and induces genomic instability, but improves
mitochondrial biogenesis and mitochondrial activity,
which confers protection against metabolic diseases
[44,47,48,83]. As an example, chronic inhibition of PARP
in aging rats improves cardiovascular function and energet-
ics [84]. Available data strongly suggest that the distortion
of the balance between PARP and SIRT1 activity is an
important factor in aging-related mitochondrial dysfunction
and aging-related metabolic diseases (for review see [2]).

Concluding remarks and future perspectives
PARPs are members of a large, evolutionarily conserved,
protein network. PARPs integrate metabolic signals [44],
DNA damage [53], oxidative stress [16], and stress to
mitochondrial and other metabolic processes. PARP acti-
vation induces several pathways that hamper mitochon-
drial activity (inhibition of SIRTs, activation of HIFs,
NAD+ and ATP depletion, or mitochondrial PARylation).
Depending on the extent of PARP activation, the induction
of these pathways may culminate into cell death or mito-
chondrial dysfunction, contributing to the pathology of
numerous diseases affecting humans. The palette of the
diseases that involve PARP activation and mitochondrial
dysfunction has expanded recently by the inclusion of
metabolic and liver diseases, aging, and cancer [72,85]. Pre-
dictably, this list will further grow with the addition of
other inflammatory diseases.

A major leap forward in the field was the identification
of PARP-mediated positive regulators of mitochondria
(AMPK, SIRT1, and SIRT3). Some of these pathways
are independent of PARylation (e.g., NRFs [57,58]), and
are hence capable of preserving mitochondrial activity
under stress conditions. These feedforward pathways
might be important for cells to recover from sublethal
PARP-mediated stress situations [42,49,50]. In other
words, while extensive PARP activation triggers cell
death due to energy failure, mild PARP-1 activation may
support mitochondrial recovery on a longer timeline.
PARP-mediated mitotropic pathways act in a concerted
fashion; however, as of today, an integrative approach to
study these processes involving metabolomics, proteomics,
and the use of new generation of highly selective PARP
inhibitors is missing. There are also numerous open ques-
tions in the field to be addressed (Box 2).

Nevertheless, the negative impact of PARP activation
on mitochondrial function appears to be a common central
underlying mechanism in PARP-mediated processes and
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diseases. These diseases affect a large population, putting
heavy burden on patients and societies. Therefore, a better
understanding of the networks connecting PARPs and
mitochondria has clear therapeutic relevance and war-
rants further investigation.
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Box 2. Outstanding questions

� Do other members of the PARP family influence mitochondrial

activity?

� Are there yet undiscovered PARP-mediated pathologies on which

mitochondrial dysfunction has major impact?

� Do PARPs modulate the activity of other mitochondrial sirtuins?

� Which are the major pathways that reduce cellular ATP upon

PARP activation? Are those activated in a cell or tissue-specific

manner?

� What is the role of the nuclear, cytoplasmic and mitochondrial

NAD+ pools upon PARP activation and in the recovery following

PARP activation?

� How does the genetic background affect PARP activation and

other biological functions of PARPs?
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