Cusp relation for the Pauli potential

H. Levämiäki,1,2 Á. Nagy,3 K. Kokko,1,2 and L. Vitos4,5,6
1Department of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland
2Turku University Centre for Materials and Surfaces (MatSurf), Turku, Finland
3Department of Theoretical Physics, University of Debrecen, H-4010 Debrecen, Hungary
4Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm SE-100 44, Sweden
5Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary
6Department of Physics and Astronomy, Division of Materials Theory, Uppsala University, Box 516, SE-75121 Uppsala, Sweden

(Received 15 October 2014; published 22 December 2014)

In orbital-free density functional theory, only a Schrödinger-like equation has to be solved for the square root of the electron density. In this equation, however, there is an extra potential in addition to the Kohn-Sham potential, the so-called Pauli potential. Cusp relations are now presented for this Pauli potential for spherically symmetric systems.

DOI: 10.1103/PhysRevA.90.062515 PACS number(s): 31.15.E–

I. INTRODUCTION

Electron density is the key quantity in the density functional theory. According to the Hohenberg-Kohn theorems [1] the external potential \(v \) is determined within a trivial additive constant by the electron density \(n(r) \) and there exists a variational principle that leads to the Euler equation:

\[
\frac{\delta E}{\delta n} = \mu.
\]

As the kinetic energy functional is unknown, one can turn to the Kohn-Sham scheme [2], that is, a noninteracting system. There the electrons move independently in a common, local external potential and the density

\[
n(r) = \sum_i N |\phi_i(r)|^2
\]

is the same as the true interacting electron density. The orbitals \(\phi_i \) satisfy the Kohn-Sham equations

\[
\left[-\frac{1}{2}\nabla^2 + v_{\text{KS}}(r)\right]\phi_i(r) = \epsilon_i \phi_i(r),
\]

where \(N, \epsilon_i, \) and \(v_{\text{KS}} \) are the number of electrons, the one-electron energies, and the Kohn-Sham potential, respectively. (Atomic units are used in the paper.)

The noninteracting kinetic energy

\[
T_n = -\frac{1}{2} \sum_i \int |\phi_i|^2 \nabla^2 \phi_i \, dr
\]

is the Pauli potential, the functional derivative of the Pauli energy \(T_p \).

Recently, there has been a growing interest in the orbital-free density functional theory. It has the great advantage that only one equation, the Euler equation [Eq. (1) or (6)] should be solved instead of several Kohn-Sham equations. It is very important when the system considered has a lot of electrons. The disadvantage is the lack of knowledge of the exact form of the kinetic energy (or the Pauli energy) functional. There exist several approximations [20–33] that can be applied in orbital-free calculations. Recently a novel approach [34–36] that avoids using approximate kinetic energy functionals has been proposed for spherically symmetric systems.

The Pauli potential has a very important role in orbital-free density functional theory. Therefore it is essential to know its properties. Exact relations are valuable from several points of view, e.g., helpful in constructing approximate functionals. Several fundamental characteristics have already been presented [7,37–41]. In this paper, the cusp relation is explored. It is very useful in numerical calculations. The present study is restricted to spherically symmetric densities. The cusp condition is derived in the following section. The last section presents some numerical demonstration.

II. CUSP RELATION FOR THE PAULI POTENTIAL

We derived ground- and excited-state cusp conditions for the electron density [42–44] that can be utilized in the derivation. Further important results on cusp relations for the density can be found in [45–52]. Consider the Kohn-Sham potential

\[
v_{\text{KS}} = -\frac{Z}{r} + w,
\]

where \(Z, v_f, \) and \(v_{\text{xc}} \) are the atomic number and the Coulomb and exchange-correlation potentials, respectively. The expansion of the potential \(w \) around \(r = 0 \) leads to [42–44,50,52]

\[
w = A + Br + Cr^2 + \cdots,
\]
where A, B, C, \ldots are constants. The solution of the Kohn-Sham equations [2] can then be written as
\[\phi_n = \sum_{lm} r^l (c_{nlm}^{(0)} + c_{nlm}^{(1)} r + c_{nlm}^{(2)} r^2 + \cdots) Y_{lm}(\Omega). \] (11)

Here Y_{lm} are the spherical harmonics. The relationship between the coefficients in Eqs. (10) and (11) can be written as [42-44]
\[c_{nlm}^{(1)} = -\frac{Z}{l+1} c_{nlm}^{(0)}, \] (12)
\[c_{nlm}^{(2)} = \frac{1}{2l+3} \left(\frac{Z^2}{l+1} - \varepsilon_n + A \right) c_{nlm}^{(0)}, \] (13)
and
\[c_{nlm}^{(3)} = -\frac{Z}{3(l+1)(l+2)} \left\{ (3l+4)c_{nlm}^{(2)} - \left[\frac{Z}{l+1} + (l+1)B \right] c_{nlm}^{(0)} \right\}. \] (14)

Then the density has the form [44,52]
\[n(r) = n(0) \left[(1 - Zr)^2 + \frac{1}{3} [Z^3 + w(0)] r^3 \right] + \zeta \left(r^2 - \frac{5}{3} Zr^3 \right) + \xi (r^2 - Zr^3) + o(r^4), \] (15)
where
\[w(0) = B, \] (16)
\[\zeta = \frac{1}{2\pi} \sum_n c_{n00}^{(0)} c_{n00}^{(2)}, \] (17)
and
\[\xi = \frac{1}{4\pi} \sum_{n, m=-1}^{n=1} (c_{nm0}^{(0)})^2. \] (18)

From Eq. (6) it follows that
\[v_p = \mu - v_{KS} + \frac{1}{2} \frac{\nabla^2 n^{1/2}}{n^{1/2}}. \] (19)

It can also be written as
\[v_p = \mu - v_{KS} + \frac{1}{4} \frac{\nabla^2 n}{n} - \frac{1}{8} \left(\frac{\nabla n}{n} \right)^2. \] (20)

Applying the density (15), we arrive at
\[\frac{1}{2} \frac{\nabla^2 n^{1/2}}{n^{1/2}} = -\frac{Z}{r} - Z^2 + \frac{3}{2} \zeta + \xi \] (21)
\[+ \left(\frac{2Z\xi}{n(0)} + w(0) \right) r + \cdots \]
for the last term of Eq. (19). Therefore, the expansion of the Pauli potential takes the form
\[v_p = \mu - Z^2 - w(0) + \frac{3}{2} \zeta + \frac{2Z \xi}{n(0)} r + \cdots. \] (22)

It means that the Pauli potential at the nucleus is
\[v_p(0) = \mu - Z^2 - w(0) + \frac{3}{2} \zeta + \frac{\xi}{n(0)}, \] (23)
while its derivative is
\[v_p'(0) = \frac{2Z \xi}{n(0)}. \] (24)

One can immediately notice that the quantity ξ [Eq. (18)] can be expressed with the spherically averaged p-electron density \bar{n}_p
\[\xi = \bar{n}_p \left| \frac{2}{n(0)} \frac{\partial}{\partial r} \right|_{r=0}. \] (25)

Consequently,
\[v_p'(0) = \frac{2Z}{n(0)} \bar{n}_p \left| \frac{\partial}{\partial r} \right|_{r=0}. \] (26)

These expressions can be transformed into more useful relations if we express ξ and ζ with the density and its derivatives at the nucleus. From Eq. (15) we immediately obtain that
\[n^{\prime\prime}(0) = 2[Z^2 n(0) + \zeta + \xi], \] (27)
and
\[n^{\prime\prime\prime}(0) = 2n(0)[Z^2 + w'(0)] - 10Z\zeta - 6Z\xi. \] (28)

Therefore
\[v_p(0) = \mu - \frac{5}{2} Z^2 - w(0) + \frac{3}{4} n^{\prime\prime}(0) \] (29)
and
\[v_p'(0) = -6Z^3 - w'(0) + \frac{5Z n^{\prime\prime}(0) + n^{\prime\prime\prime}(0)}{2n(0)}. \] (30)

Note that we can really obtain the sum of the potentials v_p and w from Eqs. (20), (29), and (30). However, while the Pauli potential is completely of kinetic origin, the potential w is the sum of the classical Coulomb and the exchange-correlation potentials. Thus, w is calculated and/or approximated independently of v_p. Moreover, there exist cusp relations for w [42-44,50,52]. Therefore, Eqs. (29) and (30) can be useful in checking the accuracy of orbital-free calculations.

III. ILLUSTRATIVE EXAMPLES AND DISCUSSION

To illustrate the results presented in the previous section we performed calculations for the Be, Ne, Ar, Kr, and Xe atoms. A recently published robust and general solver for the radial Kohn-Sham equations [53] was applied. Figure 1 presents the Pauli potential and its radial derivative for the Be and Xe atoms. The plot was obtained from converged densities and Kohn-Sham potentials by inverting the Euler equation (6) for $v_p(r)$. The Pauli potential ensures that the Pauli principle is fulfilled. If bosons were treated instead of fermions, all particles would occupy the lowest energy state (in the ground state) and no extra term would be added to the one-particle potential in the Schrödinger-like equation for the square root of the density. In the case of fermions, however, the particles fill levels starting with the lowest energy up to μ and the Pauli potential is different from zero if the system has more than two electrons. It is well known that the radial density reflects the shell structure. The shell structure can be clearly seen in
those [Eqs. (29) and (30)] given in Table I. They have been obtained from converged densities and Kohn-Sham potentials by inverting the Euler equation (6) for $v_p(r)$, that is, using Eq. (19). Values near the nucleus are seen to agree with the Pauli potential, too (Fig. 1). This behavior of the Pauli potential is also demonstrated in [11]. Table I presents the values of $v_p(r)$ and $v_p'(r)$ at the nucleus for Be, Ne, Ar, Kr, and Xe atoms (in atomic units) applying Eqs. (29) and (30) and applying Eq. (19).}

ACKNOWLEDGMENTS

This work was supported by the TAMOP 4.2.2.A-11/1/KONV-2012-0036 project. The project is cofinanced by the European Union and the European Social Fund. Grants OTKA No. K 100590 and No. 109570 are also gratefully acknowledged.

