Accepted Manuscript

Title: PACAP and VIP signalling in chondrogenesis and osteogenesis

Author: Tamás Juhász Solveig Lind Helgadottir Andrea

Tamás Dóra Reglődi Róza Zákány

PII: S0196-9781(15)00040-6

DOI: http://dx.doi.org/doi:10.1016/j.peptides.2015.02.001

Reference: PEP 69410

To appear in: Peptides

Received date: 4-11-2014 Revised date: 16-1-2015 Accepted date: 20-1-2015

Please cite this article as: Juhász T, Helgadottir SL, Tamás A, Reglődi D, Zákány R, PACAP and VIP signalling in chondrogenesis and osteogenesis, *Peptides* (2015), http://dx.doi.org/10.1016/j.peptides.2015.02.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	PACAP and VIP signalling in chondrogenesis and osteogenesis
2	Tamás Juhász ^{a,*} , Solveig Lind Helgadottir ^a , Andrea Tamás ^b , Dóra Reglődi ^b , Róza Zákány ^a
3	
4	^a Department of Anatomy, Histology and Embryology, University of Debrecen, Faculty of
5	Medicine, Nagyerdei krt. 98, H-4032, Debrecen, Hungary
6	^b Department of Anatomy PTE-MTA "Lendület" PACAP Research Team, University of Pécs,
7	Medical School, Szigeti út 12, H-7624, Pécs, Hungary
8	* Corresponding author. Address: Department of Anatomy, Histology and Embryology,
9	University of Debrecen, Faculty of Medicine, Nagyerdei krt. 98, H-4032, Debrecen, Hungary.
10	Tel.: +36-52-255-567; fax: +36-52-255-115. <i>Email address:</i> juhaszt@anat.med.unideb.hu
11	
12	
13	Main findings presented in this Manuscript are as follows:
14	
15	Elements of VIP and PACAP signalling are present in cartilage and bone cells.
16	• Exogenous PACAP exerts a positive effect on <i>in vitro</i> cartilage and bone formation.
17	PACAP plays a chondroprotective role under oxidative stress.
18	
19	
20	Abstract
21	Skeletal development is a complex process regulated by multifactorial signalling cascades that
22	govern proper tissue specific cell differentiation and matrix production. The influence of
23	certain regulatory peptides on cartilage or bone development can be predicted but are not

24	widely studied. In this review, we aimed to assemble and overview those signalling pathways
25	which are modulated by PACAP and VIP neuropeptides and are involved in cartilage and
26	bone formation. We discuss recent experimental data suggesting broad spectrum functions of
27	these neuropeptides in osteogenic and chondrogenic differentiation, including the canonical
28	downstream targets of PACAP and VIP receptors, PKA or MAPK pathways, which are key
29	regulators of chondro- or osteogenesis. Recent experimental data support the hypothesis that
30	PACAP is a positive regulator of chondrogenesis, while VIP has been reported playing an
31	important role in the inflammatory reactions of surrounding joint tissues. Regulatory function
32	of PACAP and VIP in bone development has also been proved, however the source of the
33	peptides is not obvious. Crosstalk and collateral connections of the discussed signalling
34	mechanisms make the system complicated and may obscure the pure effects of VIP and
35	PACAP. Chondro-protective properties of PACAP during oxidative stress observed in our
36	experiments indicate a possible therapeutic application of this neuropeptide.
37	
38	
39	Keywords
40	PKA; CREB; hedgehog; BMP; Runx2
41	

41	
42	Abbreviations
43	ALP, alkaline phosphatase; BMP, bone morphogenetic protein; cAMP, cyclic adenosine
44	monophosphate; CREB, cAMP response element-binding protein; ECM, extracellular matrix
45	HH, hedgehog; IHH, Indian Hedgehog; MAPK, mitogen-activated protein kinase; NFAT,
46	nuclear factor of activated T cells; PAC1, pituitary adenylate cyclase-activating polypeptide
47	type I receptor; PACAP, pituitary adenylate cyclase polypeptide; PKA, protein kinase A;
48	PKC, protein kinase C; PP2A, protein phosphatase 2A; PP2B, protein phosphatase 2B;
49	PTHrP, parathyroid hormone related peptide; Runx2, Runt-related transcription factor 2;
50	SHH, Sonic Hedgehog; TGFβ, transforming growth factor-β; VIP, vasoactive intestinal
51	peptide; VPAC, vasoactive intestinal peptide receptor

52	
53	Development of skeletal elements is influenced by several regulatory peptides, which may
54	derive from the evolving tissue or the surrounding nerve terminals. Production of proper long
55	bone architecture requires a cartilage template and involves time and growth factor dependent
56	activation of precisely defined regulating mechanisms and signalling cascade systems [1].
57	Hyaline cartilage is an avascular and aneural tissue [2] with a uniquely organized extracellular
58	matrix. Parallel with the bone formation, vessels and nerves penetrate the cartilage template
59	and release various regulatory factors, which can be responsible for remodelling of cartilage
60	and initiation of bone matrix production by osteoblasts. During the last decade several
61	theories have emerged regarding the regulation of the formation of these tissues by different
62	autocrine and paracrine mechanisms, with presumed involvement of various regulatory
63	peptides [3-6].
64	
65	1. Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) and Vasoactive
66	intestinal peptide (VIP)
67	Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating
68	polypeptide (PACAP) are neurohormones and members of the VIP-secretin-GHRH-
69	glucagon superfamily. Originally, both of these short neuropeptides were demonstrated
70	predominantly released in specific area of central nervous system [7]. VIP consists of 28
71	aminoacids and is produced by a variety of cells and tissues in addition to neuronal cells.
72	Among others, specific cells of the intestinal system can produce VIP along with some
73	immune and endocrine cells. Among its diverse physiological effects, VIP has important
74	functions in neuronal development and both in innate and acquired immunity [8].
75	PACAP was originally isolated from ovine hypothalamus extracts and later two
76	bioactive forms were identified: a shorter, 27 amino acid (PACAP 27) and a longer 38 amino

77	acid (PACAP38) form [9]. The N-terminal region of the polypeptide is evolutionary
78	conserved and shows a high homology with that of VIP [7]. PACAP is a pleiotropic
79	neuropeptide with various effects in the central nervous system, including trophic effects
80	during neuronal development and protective effects in neuronal regeneration. This protective
81	effect is one of its most promising features for therapeutic use, even if considering the short
82	half-life in vivo [10,11]. In the last decade, increasing amount of evidence has emerged
83	regarding the important roles of PACAP in peripheral organs such as uterus [12], ovary [13],
84	testis [14], moreover its presence has been proved in human milk [15]. Nonetheless, only
85	sporadic data exist about its function in skeletal elements [16-18].
86	PACAP and VIP can be ligands of three main receptors; PAC1, VPAC1 and VPAC2.
87	PACAP binds to PAC1 with the highest affinity, while the latter two attract PACAP and VIP
88	with equal affinity [19]. All of the three receptors are well characterized G protein coupled
89	receptors, the activation of which induces elevation of intracellular cAMP levels activating
90	protein kinase A (PKA) [7]. The so called "canonic "signalling activation may lead to the
91	nuclear translocation of CREB transcription factor and consequent activation of the
92	expression of various genes. PACAP binding is also able to control the MAPK pathways,
93	such as ERK and p38 kinases [7]. The versatility of PACAP/VIP receptor induced signal
94	transduction indicates its multifactorial regulation, implying a vast array of signalling
95	connections. This includes, for example, activation of IP ₃ receptors inducing the release of
96	Ca ²⁺ from endoplasmic reticulum (ER) [20]. The elevation of ic. Ca ²⁺ concentration activates
97	various Ca ²⁺ dependent signalling molecules such as classical PKCs, MAPK [21] or protein
98	phosphatases like PP2B [22]. The diversity of the developmental function is also hallmarked
99	by the fact that PACAP receptor activation may crosstalk with other signalling pathways such
100	as TGF β [23], BMP [24], Hedgehog [25] and Notch signalisation [26]. Moreover, the general

protective and regenerative effects of PACAP originate from its antiapoptotic function [27] and its ability to decrease inflammatory reactions [28].

2. Regulation of chondrogenesis focused on VIP and PACAP

As articular cartilage has very poor regeneration capacity, the exploration of new strategies to improve replacement or reconstruction of cartilage is very important. Currently, no effective or curative treatment is available for degenerative cartilage diseases such as osteoarthritis. The signalling pathways of proper cartilage development are still under investigation since plenty of the molecular signalling puzzles have neither been solved nor locked in their adequate positions.

Chondrogenic differentiation is a multistep process involving rapid proliferation and condensation of chondroprogenitor cells. Formation of chondrogenic nodules and cartilage specific extracellular matrix production both are required for proper hyaline cartilage development [29]. Transcription factors of the SoxE family such as Sox5, Sox6 and Sox9 are essential for the induction of mRNA expression of cartilage matrix-specific proteins (e.g. COL2A1, aggrecan core protein). Sox9 is one of the pivotal signalling elements of chondrogenesis, therefore, its regulation by reversible phosphorylation can be a key momentum of the proper differentiation cycle. Sox9 promoter is known to be regulated by the CREB that binds to a CRE site upstream of Sox9 [30]. We have demonstrated that Sox9 and CREB transcription factors are phosphorylated by PKA during cartilage formation [31,32]. Moreover, a quite complex regulatory mechanism and synergism between Sox9 function and the cAMP–PKA–CREB pathway was published in both mature and differentiating chondrocytes which includes BMP pathway connections [33]. Finally, we have shown that the activation of signalling elements phosphorylated by PKA can be equilibrated by a few Ser/Thr protein phosphatases such as PP2A and PP2B [34,35]. Since the regulation of these

126	cartilage specific signalling pathways are cAMP or Ca ²⁺ dependent it could be a question of
127	interest whether PACAP/VIP neuropeptides have any signalisation connection with proper
128	hyaline cartilage formation.
129	Only sporadic data exist on the functions of regulatory peptides in chondrogenesis.
130	Role of various regulatory peptides such as VIP are well known in inflammatory diseases;
131	moreover, VIP is a promising agent in the therapeutic treatment of rheumatoid arthritis [11].
132	Although the articular cartilage is aneural, the surrounding synovial membrane is rich in nerve
133	endings, which may release VIP into the synovial cavity and subsequently induce anti-
134	inflammatory processes [36]. About the functions of PACAP in the adult joints we still have
135	exiguous knowledge despite the fact that PACAP-positive nerve endings have been described
136	in cartilage canals of porcine epiphyseal cartilage more than 15 years ago [37]. Our laboratory
137	was the first to demonstrate that the mRNAs of preproPACAP as well as PAC1, VPAC1 and
138	VPAC2 receptors are expressed in chicken "high density" chondrogenic cell cultures.
139	Furthermore, we have shown the expression of the PAC1 receptor protein in
140	chondroprogenitor cells [17] and increased extracellular matrix synthesis was detected during
141	PACAP administration suggesting the positive effect of this neuropeptide in cartilage
142	development. Our findings suggested the presence of PACAP-related autocrine and/or
143	paracrine effects in cartilage itself, reflecting on a possible new signalling mechanism in the
144	regeneration of hyaline cartilage [38,39]. Although the receptors of VIP were expressed by
145	chondrogenic cells in our experiments, others found that this neuropeptide did not influence
146	the matrix production of chondrocytes and synovial cells [40] suggesting certain tissue
147	specific effects of these neuropeptides. Classical downstream targets of PAC1 receptor
148	activation such as PKA, PKC and MAPK signalling cascades play essential role in
149	chondrogenesis [32,35,41]. It has been published that PKA phosphorylates CREB and Sox9
150	transcription factors [32], the latter one being a key regulator of chondrogenesis [42]. PACAP

151	administration into the medium of chondrogenic cell cultures increased the phosphorylation
152	both of Sox9 and CREB, and enhanced matrix production of the differentiating cells was also
153	observed [17] (Fig 1.). PAC1 receptor activation can be responsible for the elevation of
154	intracellular Ca ²⁺ concentration via regulating Ca ²⁺ dependent phosphatases such as PP2B
155	(also known as calcineurin). This enzyme is one of the positive regulators of <i>in vitro</i>
156	chondrogenesis [35,41,43]. Therefore, we investigated the involvement of this Ser/Thr
157	phosphatase in PACAP signalling pathways and connection between PP2B activity and
158	PACAP signalling was proved [17] (Fig 1.), similarly to chromaffin cells [44]. These in vitro
159	results indicated that the presence of PACAP is essential for proper cartilage formation,
160	however the phenotype of PACAP KO mice [45] did not show any dramatic macroscopical
161	morphological alteration of skeleton. Although the analysis of the genetically modified
162	animals has not been completed yet, our initial observations suggested alterations in the
163	composition of the cartilage extracellular matrix and in the expression of various signalling
164	molecules in the knee joints of PACAP KO mice (our unpublished data). In the reproductory
165	organ system of these mice, the lack of PACAP gene resulted in reduced fertility and altered
166	mating behaviour of females [46], moreover the maturation [47] and the morphology [48] of
167	gonadal cells showed notable differences. The complex phenotypic changes raise the
168	possibility of multiple crosstalk of PACAP signalling with developmental pathways
169	connected to various morphogens, as well as certain compensatory mechanisms of PACAP
170	signalling cascades. For instance MAPK and Wnt signalling both play important roles in the
171	proper cartilage formation and tissue patterning [49] and a PACAP-independent PAC1
172	receptor activation has been directly linked to the regulation of Wnt/ β -catenin pathways [50].
173	Notch signalling activation plays a crucial role in chondrogenesis [51] and exerts modulatory
174	function in osteoarthritis [52] Recently, crosstalk of G protein coupled receptors and Notch
175	signalling has been reported in bacterial LPS induced macrophages [53]. SHH pathway is

another essential positive chondroregulatory pathway	[54] and it can b	e inhibited by PACAP
activation [55].		

Recently we have demonstrated a chondro-protective effect of PACAP in chondrogenic
cell cultures where the administration of the neuropeptide compensated the harmful effects of
oxidative stress. It has been shown that PACAP can prevent the harmful effects of cerebral
ischemia or oxidative stress induced apoptosis in the central nervous system [56]. PACAP
deficient mice showed higher sensitivity to injury during retinal ischemic conditions, axonal
lesion, intestinal inflammation or oxidative stress of the kidneys [57]. The presence of
PACAP/VIP had preventing role in rheumatoid arthritis [58,59], and cardioprotective effects
of these peptides have also been demonstrated [60]. In the light of these data, the cartilage
protecting effect of PACAP was predictable; however the exploration of the molecular
background of this phenomenon has only started yet. In chicken chondrogenic cells, the
addition of PACAP 1-38 during oxidative stress prevented the inhibition of cartilage matrix
production by free oxygen radicals and the increased activity of PKA seemed to take part in
this compensatory effect [17]. The addition of the neuropeptide also exerted effect on matrix
metalloproteinase (MMP) expression in chondrogenic cell cultures in the presence of reactive
oxygen species (our unpublished data). Similar results have been published in alveolar cells
where both VIP and PACAP were able to decrease the expression of certain MMPs and
reduced the activation and expression of caspase3 [61]. VIP and its receptors are expressed in
synovial fibroblasts [62] and it enables the release of inflammatory factors either by these
cells or immunocompetent cells residing in the surrounding synovial tissues [63]. Finally,
PACAP has been shown to have modulatory effects on inflammatory processes of rheumatoid
arthritis [64]. These data all strongly suggest that PACAP is a promising future therapeutic
agent in inflammatory and degenerative joint diseases [65].

3. VIP and PACAP in osteogenic signalling cascades

Similarly to chondrogenic differentiation, proper osteogenesis requires high spatial and
temporary organization supported by complex bone specific developing mechanisms and
signalling. Development of this skeletal tissue involves differentiation of osteoblasts from
osteoprogenitors. It is followed by an initial deposition of a bone specific organic ECM
abundant in collagen type I completed with certain bone specific matrix components such as
osteocalcin or osteonectin. This osteoid undergoes calcification then meaning deposition of
calcium hydroxyapatite crystals in the bone matrix with active contribution of osteoblasts.
Differentiation of osteoblast is regulated by three main signalling cascades such as BMP,
WNT and Hedgehog cascades [66-68]. BMPR activation subsequently induces the
phosphorylation of Smad1/5 and with the help of Smad4 the complex is translocated into the
nuclei of osteogenic cells and initiates expression of bone specific genes such as the
transcription factor osterix, alkaline phosphatase (ALP) or collagen type I [69,70]. The
expression of BMPs is regulated by CREB transcription factor activated via PKA signalling
pathways [70]. On the other hand a well balanced expression of hedgehog signalling elements
governed by another bone specific transcription factor, Runx2 is also essential for proper long
bone formation [71]. Runx2 can be directly phosphorylated by PKA [72] and subsequently
activates the expression of bone specific signalling elements or ECM components. This
complex signalisation involves broad spectrum crosstalk opportunities with the PACAP/VIP
signalisation, further highlighting the significance of neuropeptide signalling in bone
formation and regeneration.
During endochondral ossification, after the invasion of vessels and nerves into the cartilage
template osteoprogenitor cells start to migrate into the diaphysis of the developing long bone
and differentiate into osteoblasts. This process can also be regulated by neuropeptides [73].
During the elongation of long bones PACAP positive nerve fibers penetrate the bone matrix

226	[37]. VIP positive sympathetic nerve endings were also identified releasing these
227	neuropeptides [74]. As an interesting observation, receptor composition and effects of VIP
228	exhibited differences in cells of bones developed in different ways (i.e. membraneous or
229	endochondral). Moreover, the direct communication of sympathetic nerve fibers with
230	osteoblasts showed an embryonic origin dependent response and signalisation, suggesting that
231	the innervation of periosteum by peptidergic fibers plays important function both in bone
232	regeneration and formation [75]. The role of PACAP and VIP in osteogenesis was further
233	supported by the observations where MC3T3 E1 mouse calvaria derived osteoblast cell line
234	[76] and UMR-106 cells isolated from rat osteosarcoma [16] were shown both expressing the
235	receptors for these neuropeptides. Accumulation of cAMP in osteoblasts is proved to be as a
236	result of combined activation of PACAP and VIP and regulates diverse signalling pathways
237	influencing osteoblast differentiation. In line with this, presence of certain neuropeptides was
238	shown to be elevated after bone fracture, indicating their importance in successful
239	regeneration [77]. A recent report demonstrated release of various neuropeptides from
240	periosteal nerve endings resulting in enhancement of intercellular communication and
241	increased metabolic activity of osteoblasts [78]. As it was described above, osteogenic
242	transformation, bone matrix production and mineralization are regulated by multiple
243	signalling cascades [79], where the activation of MAPK and PKA plays essential roles. Runx2
244	is one of the key transcription factors which governs osteoblast differentiation [80] and it is
245	regulated by PKA signalling pathways [81]. We have demonstrated that the administration of
246	PACAP into the medium of UMR-106 cell line enhanced the nuclear translocation of Runx2
247	and increased expression of collagen type I, ALP and osterix genes was observed (Fig. 2.).
248	Interestingly, the phosphorylation of CREB by PKA was not remarkably increased after
249	PACAP addition in this ostesarcoma derived cell line [16] (Fig 2.). BMP signalling pathway
250	is another fundamental regulator of osteogenesis and crosstalk with Runx2 has been reported

251	[83]. Moreover, the TGFβ/BMP pathways are activated by PACAP or VIP [24]. Indeed, the
252	administration of PACAP increased the expression of BMPs in UMR-106 cells and
253	expression of BMPR1, one of its major receptors, became also elevated. As a consequence of
254	BMPR activation, a pronounced elevation of the nuclear presence of Smad1 transcription
255	factor was detected under the effect of PACAP administration [16] (Fig 2.). VIP can also be
256	regulated by TGF β /BMP signalling pathways as Smads may activate VIP expression [85]
257	suggesting a complex reciprocal signalling with numerous compensatory escape routes during
258	bone development [16].
259	PACAP and VIP may directly activate ERK1/2 e.g. during adipogenesis [86] or in osteoblast
260	cells [87], furthermore CREB phosphorylation is regulated by the MAPK system in MC3T3
261	cells [88]. Additionally, intracellular Ca ²⁺ concentration can be elevated by PACAP [89] or
262	VIP [90], resulting in an activation of classical PKCs and ERK both influencing osteoblast
263	differentiation [91]. Nonetheless, PACAP treatment of UMR-106 cells did not alter the Ca ²⁺
264	concentration of these osteoblast cells, and activation of classical PKCs was not detected, in
265	our experiments [16] (Fig 2.). Ca ²⁺ influx can be evoked by PACAP [92] and the presence of
266	PACAP and VIP is able to decrease the Ca ²⁺ entry via L- and N-type calcium channels in
267	neurons [93]. It is known that the administration of PACAP affects Ca ²⁺ oscillation [94] and
268	alters the Ca ²⁺ related vesicular transport of chromaffin cells [95]. Besides this dynamic
269	alteration of intracellular Ca-homeostasis, PACAP also exerts effects on matrix
270	mineralisation. We found that addition of PACAP elevated the deposition of inorganic matrix
271	components in the ECM of UMR-106 cells [16]. Moreover, an altered mineralisation was
272	detected during tooth formation of PACAP deficient mice [96], suggesting a yet unknown
273	connection between PACAP and Ca ²⁺ release of osteoblasts, ameloblasts and/or odontoblasts.
274	As a possible mechanism for PACAP induced extracellular Ca ²⁺ accumulation during
275	osteogenesis, calcitonin gene-related protein was proved to effect on osteoclast function [97]

and the presence of PACAP decreased the matrix-resorption and consequent Ca-release by these cells [95,96].

Hedgehog signalling is of key importance amongst the regulatory mechanisms of bone and cartilage development [71]. A well defined balance between Indian Hedgehog (IHH) and Parathyroid Hormone Related Peptide (PTHrP) is essential for proper long bone formation, regulation of proliferation and matrix production of osteoblasts via the activation of Runx2 transcription factor [98]. PTHrP directly communicates with PKA signalling inducing the activation of CREB and NFAT factors in osteoblasts [99]. In UMR-106 cells the application of PACAP elevated the expression of PTHrP without altering the IHH expression [16]. Sonic Hedgehog (SHH) pathway is known to be regulated by PACAP signalling [55] and the activation of PKA downregulates the function of Gli1, which consequently decreases the proliferation [25]. In PACAP KO mice, enhanced SHH signalling was detected during tooth development [94]. On the contrary, exogenous administration of PACAP elevated the expression of SHH and a more pronounced nuclear presence of Gli1 was found in rat UMR-106 cells [16]. This contradiction may stem from the osteosarcoma origin of UMR cells, as malignant cells can exhibit alterations of various signalling mechanisms. Although we do not have data about the possible function of VIP in osteogenesis, previous results suggest that multifactorial signalling pathways of these regulatory peptides exert modulatory effect on matrix production and differentiation in bone development [100].

295

296

297

298

299

300

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

Conclusion

Regulatory pathways of PACAP and VIP form a complex signalling network indicating the communication of a huge variety of signalling cascades accomplishing and supporting the diverse functions of these regulatory peptides. Different compensatory mechanisms can switch on or off upon activation or inactivation of certain signalling cascades in the

301	interconnected system, which can obscure the physiological function of PACAP and/or VIP
302	during chondrogenesis and osteogenesis. Better understanding of the functions of these
303	neurohormones during skeletal development may help us to find possibilities for their
304	therapeutic application in various skeletal diseases.
305	Acknowledgements
306	The authors are grateful for Mrs. Krisztina Bíró for excellent technical assistance during the
307	studies. This work was supported by grants from Akira Arimura Foundation Research Grant,
308	the Hungarian Science Research Fund (OTKA CNK80709 and OTKA K 104984), Bolyai
309	Scholarship and the Hungarian Ministry of Education (TÁMOP 4.2.1.B-10/2/KONV-2010-
310	002, PTE-MTA "Lendület" Program) and from the New Széchenyi Plan (TÁMOP-4.2.2.A-
311	11/1/KONV-2012-0053, TÁMOP-4.2.2.A-11/1/KONV-2012-0024,; The project is co-
312	financed by the European Union and the European Social Fund). This research and T.J. was
313	supported by Szodoray Lajos Fund and by the European Union and the State of Hungary, co-
314	financed by the European Social Fund in the framework of TÁMOP 4.2.4. A/2-11-1-2012-
315	0001 'National Excellence Program'. T.J. and R.Z. are supported by GOP-1.1.1-11-2012-
316	0197 financed by the Hungarian government and the EU.
317	
318	
319	

319		
320		Reference List
321		
322	1.	Paiva KB, Granjeiro JM. Bone tissue remodeling and development: Focus on matrix
323		metalloproteinase functions. Arch.Biochem.Biophys. 2014;561C, 74-87.
324	2.	Pacifici M, Koyama E, Iwamoto M. Mechanisms of synovial joint and articular
325		cartilage formation: recent advances, but many lingering mysteries. Birth Defects
326		Res.C.Embryo.Today 2005;75, 237-248.
327	3.	Bach FC, Rutten K, Hendriks K, Riemers FM, Cornelissen P, de Bruin A, Arkesteijn
328		GJ, Wubbolts R, Horton WA, Penning LC, Tryfonidou MA. The paracrine feedback
329		loop between vitamin D(3) (1,25(OH)(2)D(3)) and PTHrP in prehypertrophic
330		chondrocytes. J.Cell Physiol 2014;229, 1999-2014.
331	4.	Lai JH, Kajiyama G, Smith RL, Maloney W, Yang F. Stem cells catalyze cartilage
332		formation by neonatal articular chondrocytes in 3D biomimetic hydrogels. Sci.Rep.
333		2013;3, 3553.
334	5.	Liu Y, Olsen BR. Distinct VEGF functions during bone development and
335		homeostasis. Arch.Immunol.Ther.Exp.(Warsz.) 2014;62, 363-368.
336	6.	Xu L, Wang Q, Xu F, Ye Z, Zhou Y, Tan WS. Mesenchymal stem cells downregulate
337		articular chondrocyte differentiation in noncontact coculture systems: implications in
338		cartilage tissue regeneration. Stem Cells Dev. 2013;22, 1657-1669.
339	7.	Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O, Fournier A,
340		Chow BK, Hashimoto H, Galas L, Vaudry H. Pituitary adenylate cyclase-activating

341		polypeptide and its receptors: 20 years after the discovery. Pharmacol.Rev. 2009;61,
342		283-357.
343	8.	Moody TW, Hill JM, Jensen RT. VIP as a trophic factor in the CNS and cancer cells.
344		Peptides 2003;24, 163-177.
345	9.	Miyata A, Arimura A, Dahl RR, Minamino N, Uehara A, Jiang L, Culler MD, Coy
346		DH. Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates
347		adenylate cyclase in pituitary cells. Biochem.Biophys.Res.Commun. 1989;164, 567-
348		574.
349	10.	Bourgault S, Vaudry D, Botia B, Couvineau A, Laburthe M, Vaudry H, Fournier A.
350		Novel stable PACAP analogs with potent activity towards the PAC1 receptor.
351		Peptides 2008;29, 919-932.
352	11.	Sethi V, Rubinstein I, Kuzmis A, Kastrissios H, Artwohl J, Onyuksel H. Novel,
353		biocompatible, and disease modifying VIP nanomedicine for rheumatoid arthritis.
354		Mol.Pharm. 2013;10, 728-738.
355	12.	Reglodi D, Tamas A, Koppan M, Szogyi D, Welke L. Role of PACAP in Female
356		Fertility and Reproduction at Gonadal Level - Recent Advances. Front
357		Endocrinol.(Lausanne) 2012;3, 155.
358	13.	Koppan M, Varnagy A, Reglodi D, Brubel R, Nemeth J, Tamas A, Mark L, Bodis J.
359		Correlation between oocyte number and follicular fluid concentration of pituitary
360		adenylate cyclase-activating polypeptide (PACAP) in women after superovulation
361		treatment. J.Mol.Neurosci. 2012;48, 617-622.

362	14.	Nakamura K, Nakamachi I, Endo K, Ito K, Machida I, Oka I, Hori M, Ishizaka K,
363		Shioda S. Distribution of pituitary adenylate cyclase-activating polypeptide (PACAP)
364		in the human testis and in testicular germ cell tumors. Andrologia 2014;46, 465-471.
365	15.	Csanaky K, Reglodi D, Banki E, Tarcai I, Mark L, Helyes Z, Ertl T, Gyarmati J,
366		Horvath K, Santik L, Tamas A. Examination of PACAP38-like immunoreactivity in
367		different milk and infant formula samples. Acta Physiol Hung. 2013;100, 28-36.
368	16.	Juhasz T, Matta C, Katona E, Somogyi C, Takacs R, Hajdu T, Helgadottir SL, Fodor
369		J, Csernoch L, Toth G, Bako E, Reglodi D, Tamas A, Zakany R. Pituitary Adenylate
370		Cyclase-Activating Polypeptide (PACAP) Signalling Enhances Osteogenesis in UMR-
371		106 Cell Line. J.Mol.Neurosci. 2014;doi10.1007/s12031-014-0389-1
372	17.	Juhasz T, Matta C, Katona E, Somogyi C, Takacs R, Gergely P, Csernoch L, Panyi G,
373		Toth G, Reglodi D, Tamas A, Zakany R. Pituitary adenylate cyclase activating
374		polypeptide (PACAP) signalling exerts chondrogenesis promoting and protecting
375		effects: implication of calcineurin as a downstream target. PLoS.One. 2014;9, e91541.
376	18.	Kovacs CS, Chik CL, Li B, Karpinski E, Ho AK. Pituitary adenylate cyclase-
377		activating peptide stimulates cyclic AMP accumulation in UMR 106 osteoblast-like
378		cells. J.Endocrinol. 1996;149, 287-295.
379	19.	Gourlet P, Vandermeers A, Vertongen P, Rathe J, De Neef P, Cnudde J, Waelbroeck
380		M, Robberecht P. Development of high affinity selective VIP1 receptor agonists.
381		Peptides 1997;18, 1539-1545.
382	20.	Tanaka K, Shibuya I, Uezono Y, Ueta Y, Toyohira Y, Yanagihara N, Izumi F, Kanno
383		T, Yamashita H. Pituitary adenylate cyclase-activating polypeptide causes Ca2+
384		release from ryanodine/caffeine stores through a novel pathway independent of both

385		inositol trisphosphates and cyclic AMP in bovine adrenal medullary cells.
386		J.Neurochem. 1998;70, 1652-1661.
387	21.	Szabo A, Danyadi B, Bognar E, Szabadfi K, Fabian E, Kiss P, Mester L, Manavalan S
388		Atlasz T, Gabriel R, Toth G, Tamas A, Reglodi D, Kovacs K. Effect of PACAP on
389		MAP kinases, Akt and cytokine expressions in rat retinal hypoperfusion.
390		Neurosci.Lett. 2012;523, 93-98.
391	22.	Schuhmann K, Romanin C, Baumgartner W, Groschner K. Intracellular Ca2+ inhibits
392		smooth muscle L-type Ca2+ channels by activation of protein phosphatase type 2B
393		and by direct interaction with the channel. J.Gen.Physiol 1997;110, 503-513.
394	23.	Oka H, Jin L, Kulig E, Scheithauer BW, Lloyd RV. Pituitary adenylate cyclase-
395		activating polypeptide inhibits transforming growth factor-beta1-induced apoptosis in
396		a human pituitary adenoma cell line. Am.J.Pathol. 1999;155, 1893-1900.
397	24.	Pavelock KA, Girard BM, Schutz KC, Braas KM, May V. Bone morphogenetic
398		protein down-regulation of neuronal pituitary adenylate cyclase-activating polypeptide
399		and reciprocal effects on vasoactive intestinal peptide expression. J.Neurochem.
400		2007;100, 603-616.
401	25.	Niewiadomski P, Zhujiang A, Youssef M, Waschek JA. Interaction of PACAP with
402		Sonic hedgehog reveals complex regulation of the hedgehog pathway by PKA. Cell
403		Signal. 2013;25, 2222-2230.
404	26.	Lu Q, Tong B, Luo Y, Sha L, Chou G, Wang Z, Xia Y, Dai Y. Norisoboldine
405		suppresses VEGF-induced endothelial cell migration via the cAMP-PKA-NF-
406		kappaB/Notch1 pathway. PLoS. One. 2013;8, e81220.

407 27. Szabadfi K, Szabo A, Kiss P, Reglodi D, Setalo G Jr, Kovacs K, Tamas A, Toth G, 408 Gabriel R. PACAP promotes neuron survival in early experimental diabetic 409 retinopathy. Neurochem.Int. 2014;64, 84-91. 410 28. Heimesaat MM, Dunay IR, Schulze S, Fischer A, Grundmann U, Alutis M, Kuhl AA, 411 Tamas A, Toth G, Dunay MP, Gobel UB, Reglodi D, Bereswill S. Pituitary adenylate 412 cyclase-activating polypeptide ameliorates experimental acute ileitis and extraintestinal sequelae. PLoS.One. 2014;9, e108389. 413 414 29. Goldring MB, Tsuchimochi K, Ijiri K. The control of chondrogenesis. J.Cell Biochem. 415 2006;97, 33-44. 30. Piera-Velazquez S, Hawkins DF, Whitecavage MK, Colter DC, Stokes DG, Jimenez 416 SA. Regulation of the human SOX9 promoter by Sp1 and CREB. Exp.Cell Res. 417 2007;313, 1069-1079. 418 419 31. Juhasz T, Matta C, Somogyi C, Katona E, Takacs R, Soha RF, Szabo IA, Cserhati C, 420 Szody R, Karacsonyi Z, Bako E, Gergely P, Zakany R. Mechanical loading stimulates 421 chondrogenesis via the PKA/CREB-Sox9 and PP2A pathways in chicken micromass cultures. Cell Signal. 2014;26, 468-482. 422 32. Zakany R, Szucs K, Bako E, Felszeghy S, Czifra G, Biro T, Modis L, Gergely P. 423 424 Protein phosphatase 2A is involved in the regulation of protein kinase A signaling 425 pathway during in vitro chondrogenesis. Exp.Cell Res. 2002;275, 1-8. 426 33. Zhao L, Li G, Zhou GQ. SOX9 directly binds CREB as a novel synergism with the 427 PKA pathway in BMP-2-induced osteochondrogenic differentiation. J.Bone 428 Miner.Res. 2009;24, 826-836.

429	34.	Zakany R, Bako E, Felszeghy S, Hollo K, Balazs M, Bardos H, Gergely P, Modis L.
430		Okadaic acid-induced inhibition of protein phosphatase 2A enhances chondrogenesis
431		in chicken limb bud micromass cell cultures. Anat.Embryol.(Berl) 2001;203, 23-34.
422	25	
432	35.	Zakany R, Szijgyarto Z, Matta C, Juhasz T, Csortos C, Szucs K, Czifra G, Biro T,
433		Modis L, Gergely P. Hydrogen peroxide inhibits formation of cartilage in chicken
434		micromass cultures and decreases the activity of calcineurin: implication of ERK1/2
435		and Sox9 pathways. Exp.Cell Res. 2005;305, 190-199.
436	36.	Konttinen YT, Tiainen VM, Gomez-Barrena E, Hukkanen M, Salo J. Innervation of
437		the joint and role of neuropeptides. Ann.N.Y.Acad.Sci. 2006;1069, 149-154.
438	37.	Strange-Vognsen HH, Arnbjerg J, Hannibal J. Immunocytochemical demonstration of
439		pituitary adenylate cyclase activating polypeptide (PACAP) in the porcine epiphyseal
440		cartilage canals. Neuropeptides 1997;31, 137-141.
441	38.	Ahmed N, Dreier R, Gopferich A, Grifka J, Grassel S. Soluble signalling factors
442		derived from differentiated cartilage tissue affect chondrogenic differentiation of rat
443		adult marrow stromal cells. Cell Physiol Biochem. 2007;20, 665-678.
444	39.	Gelse K, Brem M, Klinger P, Hess A, Swoboda B, Hennig F, Olk A. Paracrine effect
445		of transplanted rib chondrocyte spheroids supports formation of secondary cartilage
446		repair tissue. J.Orthop.Res. 2009;27, 1216-1225.
447	40.	Rahman S, Dobson PR, Bunning RA, Russell RG, Brown BL. The regulation of
448		connective tissue metabolism by vasoactive intestinal polypeptide. Regul.Pept.
449		1992:37 111-121

41. Juhasz T, Matta C, Mészár Z, Nagy G, Szijgyarto Z, Molnar Z, Kolozsvari B, Bako E,

451		Zakany R Optimalized transient transfection of chondrogenic primary cell cultures.
452		CEJB. 2010;5: 572-584.
453	42.	de Crombrugghe B, Lefebvre V, Behringer RR, Bi W, Murakami S, Huang W.
454		Transcriptional mechanisms of chondrocyte differentiation. Matrix Biol. 2000;19,
455		389-394.
456	43.	Matta C, Mobasheri A, Gergely P, Zakany R. Ser/Thr-phosphoprotein phosphatases in
457		chondrogenesis: neglected components of a two-player game. Cell Signal. 2014;26,
458		2175-2185.
459	44.	Lee HW, Hahm SH, Hsu CM, Eiden LE. Pituitary adenylate cyclase-activating
460		polypeptide regulation of vasoactive intestinal polypeptide transcription requires Ca2+
461		influx and activation of the serine/threonine phosphatase calcineurin. J.Neurochem.
462		1999;73, 1769-1772.
463	45.	Hattori S, Takao K, Tanda K, Toyama K, Shintani N, Baba A, Hashimoto H,
464		Miyakawa T. Comprehensive behavioral analysis of pituitary adenylate cyclase-
465		activating polypeptide (PACAP) knockout mice. Front Behav.Neurosci. 2012;6, 58.
466	46.	Shintani N, Mori W, Hashimoto H, Imai M, Tanaka K, Tomimoto S, Hirose
467		M, Kawaguchi C, Baba A. Defects in reproductive functions in PACAP-deficient
468		female mice. Regul Pept. 2002;109:45-8
469	47.	Barberi M, Di Paolo V, Latini S, Guglielmo MC, Cecconi S, Canipari R. Expression
470		and functional activity of PACAP and its receptors on cumulus cells: effects on oocyte
471		maturation. Mol Cell Endocrinol. 2013; 375(1-2):79-88.

472 48. Brubel R, Kiss P, Vincze A, Varga A, Varnagy A, Bodis J, Mark L, Jambor E, Maasz 473 G, Hashimoto H, Helyes Z, Toth G, Tamas A, Koppan M, Reglodi D. Effects 474 of pituitary adenylate cyclase activating polypeptide on human sperm motility. J Mol 475 Neurosci. 2012; 48(3):623-30. 476 49. Zhang Y, Pizzute T, Pei M. A review of crosstalk between MAPK and Wnt signals 477 and its impact on cartilage regeneration. Cell Tissue Res. 2014;358(3):633-49. 478 50. Yu R, Cui Z, Li M, Yang Y, Zhong J. Dimer-Dependent Intrinsic/Basal Activity of the 479 Class B G Protein-Coupled Receptor PAC1 Promotes Cellular Anti-Apoptotic 480 Activity through Wnt/β-Catenin Pathways that Are Associated with Dimer 481 Endocytosis. PLoS One. 2014;9(11):e113913. 482 51. Serrano MJ, So S, Hinton RJ. Roles of notch signalling in mandibular condylar cartilage. Arch Oral Biol. 2014;59(7):735-40. 483 484 52. Sassi N, Gadgadi N, Laadhar L, Allouche M, Mourali S, Zandieh-Doulabi B, Hamdoun M, Nulend JK, Makni S, Sellami S. Notch signaling is involved in 485 486 human articular chondrocytes de-differentiation during osteoarthritis. J Recept Signal 487 Transduct Res. 2014;34(1):48-57. 488 53. Sangphech N, Osborne BA, Palaga T. Notch signaling regulates the phosphorylation 489 of Akt and survival of lipopolysaccharide-activated macrophages via regulator of G 490 protein signaling 19 (RGS19). Immunobiology. 2014;219(9):653-60. 491 54. Kwon HJ. ATP oscillations mediate inductive action of FGF and Shh signalling on prechondrogenic condensation. Cell Biochem.Funct. 2013;31, 75-81. 492

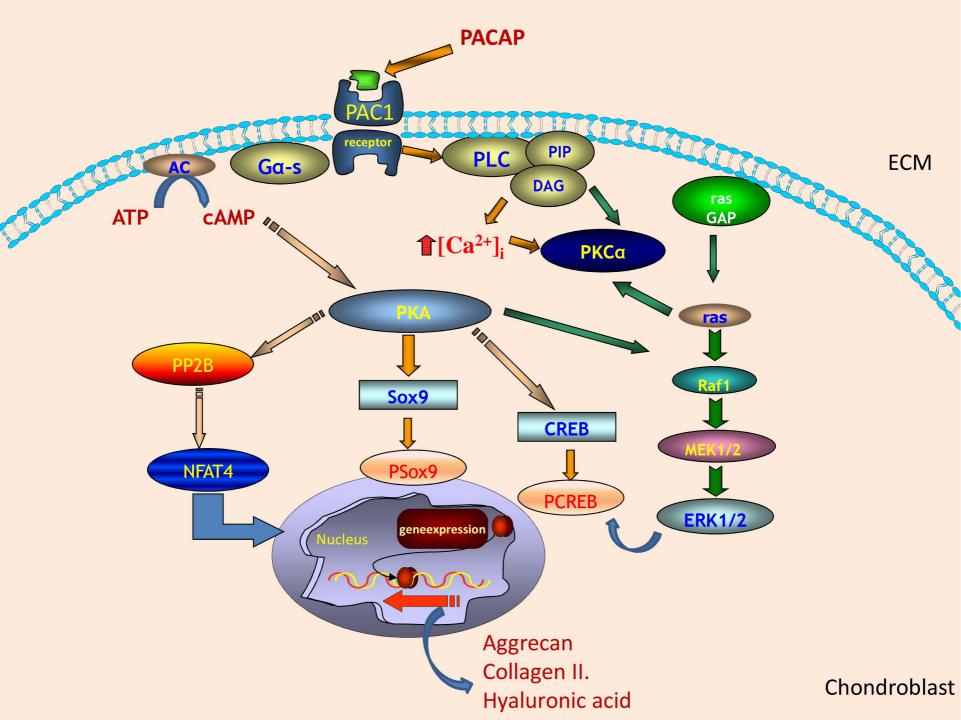
493	55.	Waschek JA, Cicco-Bloom E, Nicot A, Lelievre V. Hedgehog signaling: new targets
494		for GPCRs coupled to cAMP and protein kinase A. Ann.N.Y.Acad.Sci. 2006;1070,
495		120-128.
496	56.	Sanchez A, Chiriva-Internati M, Grammas P. Transduction of PACAP38 protects
497		primary cortical neurons from neurotoxic injury. Neurosci.Lett. 2008;448, 52-55.
498	57.	Reglodi D, Kiss P, Szabadfi K, Atlasz T, Gabriel R, Horvath G, Szakaly P, Sandor
499		B, Lubics A, Laszlo E, Farkas J, Matkovits A, Brubel R, Hashimoto H, Ferencz
500		A, Vincze A, Helyes Z, Welke L, Lakatos A, Tamas A. PACAP is an endogenous
501		protective factor-insights from PACAP-deficient mice. J Mol
502		Neurosci. 2012;48(3):482-92.
503	58.	Hernanz A, Medina S, de Miguel E, Martín-Mola E. Effect of calcitonin gene-related
504		peptide, neuropeptide Y, substance P, and vasoactive intestinal peptide on interleukin-
505		1beta, interleukin-6 and tumor necrosis factor-alpha production by peripheral whole
506		blood cells from rheumatoid arthritis and osteoarthritis patients. Regul Pept. 2003;115,
507		19-24.
508	59.	Pulsatelli L, Dolzani P, Silvestri T, De Giorgio R, Salvarani C, Macchioni P, Frizziero
509		L, Meliconi R. Synovial expression of vasoactive intestinal peptide in polymyalgia
510		rheumatica. Mol Pharm. 2013;10(2):728-38.
511	60.	Dvoráková MC. Cardioprotective role of the VIP signaling system. Drug News
512		Perspect. 2005 Jul-Aug;18(6):387-91.
513	61. On	oue S, Ohmori Y, Endo K, Yamada S, Kimura R, Yajima T. Vasoactive intestinal
514		peptide and pituitary adenylate cyclase-activating polypeptide attenuate the cigarette

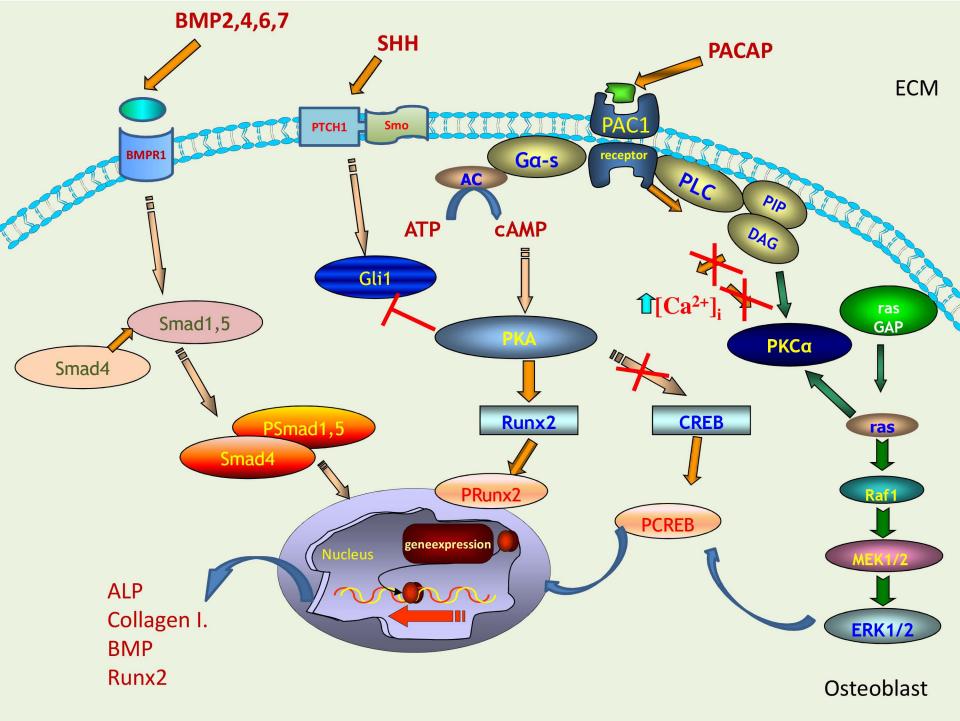
515		smoke extract-induced apoptotic death of rat alveolar L2 cells. Eur.J.Biochem.
516		2004;271, 1757-1767.
517	62.	Juarranz Y, Gutierrez-Canas I, Santiago B, Carrion M, Pablos JL, Gomariz RP.
518		Differential expression of vasoactive intestinal peptide and its functional receptors in
519		human osteoarthritic and rheumatoid synovial fibroblasts. Arthritis Rheum. 2008;58,
520		1086-1095.
521	63.	Carrion M, Perez-Garcia S, Jimeno R, Juarranz Y, Gonzalez-Alvaro I, Pablos JL,
522		Gutierrez-Canas I, Gomariz RP. Inflammatory mediators alter interleukin-17 receptor,
523		interleukin-12 and -23 expression in human osteoarthritic and rheumatoid arthritis
524		synovial fibroblasts: immunomodulation by vasoactive intestinal Peptide.
525		Neuroimmunomodulation. 2013;20, 274-284.
526	64.	Botz B, Bolcskei K, Kereskai L, Kovacs M, Nemeth T, Szigeti K, Horvath I, Mathe D,
527		Kovacs N, Hashimoto H, Reglodi D, Szolcsanyi J, Pinter E, Mocsai A, Helyes Z.
528		Differential regulatory role of pituitary adenylate cyclase-activating polypeptide in the
529		serum-transfer arthritis model. Arthritis Rheumatol. 2014;66, 2739-2750.
530	65.	Mobasheri A. The future of osteoarthritis therapeutics: emerging biological therapy.
531		Curr.Rheumatol.Rep. 2013;15, 385.
532	66.	Chen G, Deng C, Li YP. TGF-beta and BMP signaling in osteoblast differentiation
533		and bone formation. Int.J.Biol.Sci. 2012;8, 272-288.
534	67.	Kim JH, Liu X, Wang J, Chen X, Zhang H, Kim SH, Cui J, Li R, Zhang W, Kong Y,
535		Zhang J, Shui W, Lamplot J, Rogers MR, Zhao C, Wang N, Rajan P, Tomal J, Statz J,
536		Wu N, Luu HH, Haydon RC, He TC. Wnt signaling in bone formation and its
537		therapeutic potential for bone diseases. Ther.Adv.Musculoskelet.Dis. 2013;5, 13-31.

68. Pan A, Chang L, Nguyen A, James AW. A review of hedgehog signaling in cranial

539		bone development. Front Physiol 2013;4, 61.
540	69.	Wang L, Park P, La MF, Than K, Rahman S, Lin CY. Bone formation induced by
541		BMP-2 in human osteosarcoma cells. Int.J.Oncol. 2013;43, 1095-1102.
542	70.	Zhang R, Edwards JR, Ko SY, Dong S, Liu H, Oyajobi BO, Papasian C, Deng HW,
543		Zhao M. Transcriptional regulation of BMP2 expression by the PTH-CREB signaling
544		pathway in osteoblasts. PLoS.One. 2011;6, e20780.
545	71.	Ehlen HW, Buelens LA, Vortkamp A. Hedgehog signaling in skeletal development.
546		Birth Defects Res.C.Embryo.Today 2006;78, 267-279.
547	72.	Jonason JH, Xiao G, Zhang M, Xing L, Chen D. Post-translational Regulation of
548		Runx2 in Bone and Cartilage. J.Dent.Res. 2009;88, 693-703.
549	73.	Lerner UH, Persson E. Osteotropic effects by the neuropeptides calcitonin gene-
550		related peptide, substance P and vasoactive intestinal peptide.
551		J.Musculoskelet.Neuronal.Interact. 2008;8, 154-165.
552	74.	Hohmann EL, Elde RP, Rysavy JA, Einzig S, Gebhard RL. Innervation of periosteum
553		and bone by sympathetic vasoactive intestinal peptide-containing nerve fibers. Science
554		1986;232, 868-871.
555	75.	Bataille C, Mauprivez C, Haÿ E, Baroukh B, Brun A, Chaussain C, Marie PJ, Saffar
556		JL, CherruauM.Different sympathetic pathways control the metabolism of distinct bor
557		e envelopes. Bone. 2012 May;50(5):1162-72

76. Suzuki A, Kotoyori J, Oiso Y, Kozawa O. Pituitary adenylate cyclase-activating


559		polypeptide induces cAMP production independently from vasoactive intestinal
560		polypeptide in osteoblast-like cells. Cell Signal. 1994;6, 11-16.
561 562	77.	Onuoha GN. Circulating sensory peptide levels within 24 h of human bone fracture. Peptides. 2001;22:1107-10.
563	78.	Ma W, Zhang X, Shi S, Zhang Y.Neuropeptides stimulate human osteoblast activity
564		and promote gap junctional intercellular communication.
565		Neuropeptides. 2013;47(3):179-86.
566	79.	Lundberg P, Boström I, Mukohyama H, Bjurholm A, Smans K, Lerner UH. Neuro-
567		hormonal control of bone metabolism: vasoactive intestinal peptide stimulates alkaline
568		phosphatase activity and mRNA expression in mouse calvarial osteoblasts as well as
569		calcium accumulation mineralized bone nodules. Regul Pept. 1999;85, 47-58.
570	80.	Okura H, Sato S, Kishikawa S, Kaneto S, Nakashima T, Yoshida N, Takayanagi H,
571		Kiyono H. Runx2-I isoform contributes to fetal bone formation even in the absence of
572		specific N-terminal amino acids. PLoS.One. 2014;9, e108294.
573	81.	Li TF, Dong Y, Ionescu AM, Rosier RN, Zuscik MJ, Schwarz EM, O'Keefe RJ, Drissi
574		H. Parathyroid hormone-related peptide (PTHrP) inhibits Runx2 expression through
575		the PKA signaling pathway. Exp.Cell Res. 2004;299, 128-136.
576	82.	Zhang X, Akech J, Browne G, Russell S, Wixted JJ, Stein JL, Stein GS, Lian JB.
577		Runx2-smad signaling impacts the progression of tumor-induced bone disease.
578		Int.J.Cancer. 2014; doi: 10.1002/ijc.29094.
579	83.	Pitts RL, Wang S, Jones EA, Symes AJ. Transforming growth factor-beta and ciliary
580		neurotrophic factor synergistically induce vasoactive intestinal peptide gene


581		expression through the cooperation of Smad, STAT, and AP-1 sites. J.Biol.Chem.
582		2001;276, 19966-19973.
583	84.	Arsenijevic T, Gregoire F, Chiadak J, Courtequisse E, Bolaky N, Perret J, Delporte C.
584		Pituitary adenylate cyclase activating peptide (PACAP) participates in adipogenesis by
585		activating ERK signaling pathway. PLoS.One. 2013;8, e72607.
586	85.	Persson E, Lerner UH. The neuropeptide VIP regulates the expression of
587		osteoclastogenic factors in osteoblasts. J.Cell Biochem. 2011;112, 3732-3741.
588	86.	Maeda Y, Sekiguchi F, Yamanaka R, Sugimoto R, Yamasoba D, Tomita S, Nishikawa
589		H, Kawabata A. Mechanisms for proteinase-activated receptor 1-triggered
590		prostaglandin E2 generation in mouse osteoblastic MC3T3-E1 cells. Biol.Chem. 2014
591		doi: 10.1515/hsz-2014-0148
592	87.	Mustafa T, Grimaldi M, Eiden LE. The hop cassette of the PAC1 receptor confers
593		coupling to Ca2+ elevation required for pituitary adenylate cyclase-activating
594		polypeptide-evoked neurosecretion. J.Biol.Chem. 2007;282, 8079-8091.
595	88.	Li D, Jiao J, Shatos MA, Hodges RR, Dartt DA. Effect of VIP on intracellular [Ca2+].
596		extracellular regulated kinase 1/2, and secretion in cultured rat conjunctival goblet
597		cells. Invest Ophthalmol.Vis.Sci. 2013;54, 2872-2884.
598	89.	Miraoui H, Oudina K, Petite H, Tanimoto Y, Moriyama K, Marie PJ. Fibroblast
599		growth factor receptor 2 promotes osteogenic differentiation in mesenchymal cells via
600		ERK1/2 and protein kinase C signaling. J.Biol.Chem. 2009;284, 4897-4904.

601	90.	May V, Clason TA, Buttolph TR, Girard B.M, Parsons RL. Calcium Influx, But Not
602		Intracellular Calcium Release, Supports PACAP-Mediated ERK Activation in HEK
603		PAC1 Receptor Cells. J.Mol.Neurosci. 2014
604	91.	Hayashi K, Endoh T, Shibukawa Y, Yamamoto T, Suzuki T. VIP and PACAP inhibit
605		L-, N- and P/Q-type Ca2+ channels of parasympathetic neurons in a voltage
606		independent manner. Bull.Tokyo Dent.Coll. 2002;43, 31-39.
607	92.	Harfi I, Sariban E. Mechanisms and modulation of pituitary adenylate cyclase-
608		activating protein-induced calcium mobilization in human neutrophils.
609		Ann.N.Y.Acad.Sci. 2006;1070, 322-329.
610	93.	Payet MD, Bilodeau L, Breault L, Fournier A, Yon L, Vaudry H, Gallo-Payet N.
611		PAC1 receptor activation by PACAP-38 mediates Ca2+ release from a cAMP-
612		dependent pool in human fetal adrenal gland chromaffin cells. J.Biol.Chem. 2003;278,
613		1663-1670.
614	94.	Sandor B, Fintor K, Felszeghy S, Juhasz T, Reglodi D, Mark L, Kiss P, Jungling A,
615		Fulop BD, Nagy AD, Hashimoto H, Zakany R, Nagy A, Tamas A. Structural and
616		Morphometric Comparison of the Molar Teeth in Pre-eruptive Developmental Stage
617		of PACAP-Deficient and Wild-Type Mice. J.Mol.Neurosci. 2014; doi
618		10.1007/s12031-014-0392-6
619	95.	Lundberg P, Lundgren I, Mukohyama H, Lehenkari PP, Horton MA, Lerner UH.
620		Vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase-activating peptide
621		receptor subtypes in mouse calvarial osteoblasts: presence of VIP-2 receptors and
622		differentiation-induced expression of VIP-1 receptors. Endocrinology 2001;142, 339-
623		347.

624	96.	Winding B, Wiltink A, Foged NT. Pituitary adenylyl cyclase-activating polypeptides
625		and vasoactive intestinal peptide inhibit bone resorption by isolated rabbit osteoclasts
626		Exp.Physiol 1997;82, 871-886.
627	97.	Akopian A, Demulder A, Ouriaghli F, Corazza F, Fondu P, Bergmann P. Effects of
628		CGRP on human osteoclast-like cell formation: a possible connection with the bone
629		loss in neurological disorders? Peptides. 2000;21:559-64.
630	98.	Franceschi RT, Xiao G. Regulation of the osteoblast-specific transcription factor,
631		Runx2: responsiveness to multiple signal transduction pathways. J.Cell Biochem.
632		2003;88, 446-454.
633	99.	Park HJ, Baek K, Baek JH, Kim HR. The Cooperation of CREB and NFAT is
634		Required for PTHrP-Induced RANKL Expression in Mouse Osteoblastic Cells. J.Cell
635		Physiol. 2014; doi: 10.1002/jcp.24790.
636	100.	Yoo YM, Kwag JH, Kim KH, Kim CH. Effects of neuropeptides and mechanical
637		loading on bone cell resorption in vitro. Int J Mol Sci. 2014;15(4):5874-83.
638		

638	
639	Figure 1. Signalling pathways of PACAP induced chondrogenesis. The increased
640	concentration of cAMP level elevates PKA activity. Phosphorylated form of the downstream
641	targets of PKA such as CREB and Sox9 translocate into the nucleus of chondrogenic cells and
642	induce the gene expression of collagen type II., aggrecan and various GAG such as hyaluronic
643	acid. Activation of PAC1 receptor can also elevate the intracellular Ca ²⁺ concentration leading
644	to increased PP2B, PKC or MAPK signalling activity. The elevated expression and nuclear
645	presence of PP2B regulated NFAT4 are also responsible for the augmented matrix production
646	
647	Figure 2. Multiple regulation connections' of PACAP signalling pathways in osteogenic
648	differentiation. PACAP binding to its receptors elevates the intracellular cAMP concentration
649	and activates PKA in osteoblast cells. CREB, the canonical downstream target of the kinase is
650	not significantly activated (arrows crossed by red lines) but the nuclear localisation of Runx2
651	is elevated. Although the cAMP regulated pathway is active the presence of the neuropeptide
652	does not result in a Ca ²⁺ concentration increase, subsequently the Ca ²⁺ dependent signalling
653	pathways are not activated (arrows crossed by red lines). PACAP also induces the expression
654	of BMPs which may crosstalk via the nuclear activity of Smad1with Runx2 transcription
655	factor. SHH binding to PTCH1 receptor can induce the nuclear translocation of Gli1
656	transcription factor which is suppressed by the increased activation of PKA.
657 658	
659	
660	

