AUTHOR QUERY FORM

Dear Author,
Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen annotation in the PDF file) or compile them in a separate list. Note: if you opt to annotate the file with software other than Adobe Reader then please also highlight the appropriate place in the PDF file. To ensure fast publication of your paper please return your corrections within 48 hours.

For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions.
Any queries or remarks that have arisen during the processing of your manuscript are listed below and highlighted by flags in the proof.

Location in article	Query / Remark: Click on the \mathbf{Q} link to find the query's location in text Please insert your reply or correction at the corresponding line in the proof
Q1	Please check the telephone/fax number of the corresponding author, and correct if necessary.
Q2	Please confirm that given names and surnames have been identified correctly.
Q3	Your article is registered as a regular item and is being processed for inclusion in a regular issue of the journal. If this is NOT correct and your article belongs to a Special Issue/Collection please contact b.jeyapandian@elsevier.com immediately prior to returning your corrections.
	Please check this box or indicate your approval if you have no corrections to make to the PDF file

Thank you for your assistance.

- Photoinitiated thiol-ene reaction of O-acetylated exo-glycals.
- Synthesis of β-d-glycopyranosylmethyl-sulfide type glycomimetics.
- Exclusive regio- and stereoselectivity with exo-galactal.
- Exclusive regio- and very high stereoselectivity with exo-xylal.
- Disaccharide mimicks of $\mathrm{Gly}-\mathrm{CH}_{2}$-S-Gly scaffolds.

Note

Photoinitiated hydrothiolation of pyranoid exo-glycals: the d-galacto and D-xylo cases

 László Somsák ${ }^{\text {a, * }}$
${ }^{\text {a }}$ Department of Organic Chemistry, PO Box 20, University of Debrecen, H-4010 Debrecen, Hungary
${ }^{\text {b }}$ Department of Pharmaceutical Chemistry, PO Box 70, University of Debrecen, H-4010 Debrecen, Hungary

A R TICLE I N F O

Article history:

Received 30 April 2015
Accepted 22 May 2015
Available online xxx

Keywords:

Thiol-ene click reaction
Exo-galactal
Exo-xylal
Disaccharide mimicks

Abstract

Radical-mediated addition reactions of thiols to O-peracetylated exo-galactal and exo-xylal with 2,2-dimethoxy-2-phenylacetophenone as the photoinitiator resulted in high yielding formation of the corresponding β-d-glycopyranosylmethyl-sulfide derivatives (2,6-anhydro-1-deoxy-1-S-substituted-1-thioalditols) with exclusive regio- and very high stereoselectivity, including disaccharide mimicks with Gly-CH_{2}-S-Gly scaffolds.

© 2015 Published by Elsevier Ltd.

Glycomimetic compounds are widely used for deciphering the biological roles of carbohydrate derivatives. ${ }^{1}$ Glycomimetics resemble natural carbohydrates in their structure and/or biological function and often serve as lead compounds for drug design. ${ }^{2}$ One of the most important features of such compounds is the hydrolytic stability of the bond(s), which replace the natural O-glycosidic linkage(s). A wide range of such replacements were suggested, among others S-glycosides and C-glycosyl derivatives with a sulfur atom or a methylene group, respectively, in the position of the glycosidic oxygen. ${ }^{1}$ In addition, in a number of examples two (or even more) atoms are inserted between the glycon and aglycon ${ }^{3}$ in the form of e.g., $\mathrm{S}-\mathrm{S},{ }^{4-8} \mathrm{~S}-\mathrm{Se},{ }^{8-10} \mathrm{SO}_{2}-\mathrm{N},{ }^{11-13} \mathrm{~N}-\mathrm{C}(=\mathrm{O})-\mathrm{N}$ linking moieties. ${ }^{14-17}$

Carbohydrate derivatives displaying Gly-CH2-S-R scaffolds are much less represented among glycomimetics although some synthetic methods, mostly limited to the application of O-perbenzylated exo-glycals, can be found in the literature. Thus, exo-glucal was transformed in several steps into a Glc-CH2-I derivative, ${ }^{18-20}$ which was reacted under basic conditions with aliphatic and aromatic thiols including sugar derivatives to give the above structures. Ring openings by nucleophiles of an exo-glucal-derived spiro-epoxide ${ }^{21}$ as well as a spiro-episulfonium ion ${ }^{22}$ resulted in ulose derivatives featuring the above structure. Radical-mediated

[^0]addition of AcSH to exo-glycals furnished S-(β-D-glycosylmethyl) thioacetates. ${ }^{23}$

The thiol-ene addition chemistry, ${ }^{24,25}$ either in ionic or radicalmediated versions, has found several applications in carbohydrate chemistry for S-glycoconjugation, wherein the sugar derivative generally plays the role of the thiol or is functionalized by O - or C appended unsaturated moieties. ${ }^{26}$ Much less work has been devoted to additions of thiols to sugar 'ene'-s in which the double bond is part of or directly attached to the sugar ring: thus, additions to sugar derived enones ${ }^{27}$ and some reactions of endo- ${ }^{28-30}$ and recently also exo-glycals ${ }^{30-33}$ as well as derivatives with an exomethylene group in the 4- and a 5-position of a furanoside and a pyranoside, ${ }^{34}$ respectively, and a 3-exomethylene-glucofuranose ${ }^{31,32}$ have been reported.

Exo-glycals offer themselves for the construction of $\mathrm{Gly}^{-} \mathrm{CH}_{2}-\mathrm{S}-\mathrm{R}$ type compounds in thiol-ene couplings provided that a sufficient degree of reactivity as well as of regio- and stereoselectivities can be achieved and the reaction conditions are compatible with the protective groups. Base induced anionic additions of thiolates can be expected ineffective with the electron-rich double bond, ${ }^{33}$ and acid-catalyzed reactions of thiols yield S-glycosides due to the stability of the glycosylium ion. ${ }^{35}$ Radical-mediated additions must be highly favourable due to the electrophilic nature of thiyl radicals ${ }^{25}$ and a good regioselectivity may also be foreseen based on the better stabilization of the tertiary glycosyl versus the primary glycosylmethyl radical. Although radical-mediated hydrothiolations

Table 1
Addition of thiols 2 to exo-galactal $\mathbf{1}^{\text {a }}$

${ }^{\text {a }}$ Total conversion of $\mathbf{1}$ was detected after two irradiations of 15 min .
${ }^{\mathrm{b}}$ Isolated yields after purification by column chromatography.

The structure of the products was established by NMR methods. For the d-galactose derivatives 3 the ${ }^{4} C_{1}$ conformation of the pyranoid ring and the equatorial position of the $\mathrm{CH}_{2}-\mathrm{S}-\mathrm{R}$ substituent (corresponding to a β-D C-glycosylic configuration of the C-2 centre) was deduced from the proton spectra. The D -xylose derived 5 existed also in a ${ }^{4} C_{1}$ conformation with a β-D-configured $C-2$ as revealed by the large three-bond coupling constants of $\sim 10 \mathrm{~Hz}$ throughout the spectra of these compounds. On the other hand, the proton spectra of $\mathbf{6}$ exhibited several broad singlet-like signals, which were not well resolved. This was indicative of a pyranoid ring in the ${ }^{1} C_{4}$ conformation (or more probably in a conformational equilibrium involving the ${ }^{1} C_{4}$ chair and boat as well as skew-boat conformations). However, the configuration of the C-2 carbon could not be established on the basis of the proton spectra since both axial and equatorial orientation of substituents of that centre must result in small vicinal couplings in the given conformation. Therefore, the ${ }^{1} J_{\mathrm{C}-2, \mathrm{H}-2}$ coupling constants were determined for the pair $5 \mathbf{c}$ and $\mathbf{6 c}$ by ${ }^{1} \mathrm{H}$ decoupled and undecoupled HSQC measurements. ${ }^{1} J_{C, H}$ coupling constants were obtained by measuring the distance of peaks maxima in F2 $\left({ }^{1} \mathrm{H}\right)$ dimension from undecoupled HSQC spectra. The practically equal values of these couplings (Table $3,148.2 \mathrm{~Hz}$ for $\mathbf{5 c}$ and 147.4 for $\mathbf{6 c}$) indicated the axial position of H-2 in both compounds, thereby revealing the $\alpha-\mathrm{D}$ configuration for the $\mathrm{C}-2$ atom in $\mathbf{6 c}$. Variations in the ${ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{H}}$ values of the other carbons may also indicate the conformational equilibrium for these derivatives. ${ }^{42}$ For the other xylose derivatives the amounts of the isolated substances did not allow to carry out similar pairwise measurements, therefore, the analogous structure is made probable by the similarities of the ${ }^{1} \mathrm{H}$ NMR spectra

Table 2
Addition of thiols 2 to exo-xylal $\mathbf{4}^{\text {a }}$

${ }^{\text {a }}$ Total conversion of $\mathbf{4}$ was detected after two irradiations of 15 min .
${ }^{\mathrm{b}}$ Isolated yields after purification by column chromatography.
${ }^{\text {c }}$ The formation of $\mathbf{6}$ was not detected.
(Table 4). The optical rotations also corroborate these assumptions at least for compounds with non-sugar appendages as derivatives $\mathbf{6 a}-\mathbf{c}$ are more dextrorotatory than $\mathbf{5 a}-\mathbf{c}$, respectively. The S glycosyl moieties of the disaccharide like $\mathbf{3 d}-\mathbf{f}, 5 \mathbf{5 d}-\mathbf{f}$, and $\mathbf{6 d}-\mathbf{f}$ gave the expected signals in the NMR spectra.

In conclusion, the photoinitiated addition of thiols to O-peracetylated exo-galactal and exo-xylal gave the expected d-glyco-sylmethyl-sulfide type compounds in good yields with exclusive regioselectivity. The d-galactose derivatives were formed with complete β-stereoselectivity, while in the cases of the d -xylose derivatives besides the major β-C-glycosylic derivatives the α counterparts were also isolated in small amounts. This study demonstrated that the thiol-ene reaction of exo-glycals with a wide range of thiols can be extended to sugars other than glucose. These reactions of very high regio- and stereoselectivities may be valuable
tools for the construction of new types of glycomimetic compounds.

1. Experimental

1.1. General methods

Melting points were measured in open capillary tubes or on a Kofler hot-stage and are uncorrected. Optical rotations were determined with a Perkin-Elmer 241 polarimeter at room temperature. NMR spectra were recorded with Bruker 360 (360/ 90 MHz for $\left.{ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}\right)$, Bruker $400\left(400 / 100 \mathrm{MHz}\right.$ for $\left.{ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}\right)$ or Bruker Avance II 500 spectrometer equipped with TXI z-gradient probeheads ($500 / 125.77 \mathrm{MHz}$ for ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$) spectrometer. Chemical shifts are referenced to TMS as the internal reference $\left({ }^{1} \mathrm{H}\right)$, or to the

Table 3
Selected ${ }^{13} \mathrm{C}$ NMR data of compounds $\mathbf{5 c}$ and $\mathbf{6 c}$

5c

Table 4
Selected ${ }^{1} \mathrm{H}$ NMR data of the d-xylose derived compounds 5 and $\mathbf{6}\left(\delta[\mathrm{ppm}],{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}[\mathrm{Hz}]\right.$ or $\left.\mathrm{FWHM}^{\mathrm{a}}[\mathrm{Hz}]\right)$

Compound	R	H-1 ${ }_{\text {A }}$	H-1 ${ }_{\text {B }}$	H-2	H-3	H-4	H-5	H-6 eq	H-6ax
5a	Pr	2.67	2.58	3.55	4.95	5.18	4.99	4.14	3.29
		3.0, 14.1	7.6, 14.1	3.0, 7.6, 9.4	9.4	9.4	5.7, 9.4, 10.7	5.7, 11.2	10.7, 11.2
6 a		2.78	2.60	3.84	4.89	5.07	4.70	4.03	3.86
		7.5, 13.6	6.3, 13.6	$-{ }^{\text {b }}$	7.0^{a}	$8.2{ }^{a}$	$7.5{ }^{\text {a }}$	1.7, 13.2	2.2, 13.2
5b	Ph	3.11	2.98	3.56	4.97	5.17	5.01	4.14	3.27
		3.0, 13.9	8.0, 13.9	3.0, 8.0, 9.4	9.4	9.4	5.6, 9.4, 11.1	5.6, 11.1	11.1
6b		3.20	3.02	3.85	4.93	5.08	4.68	4.02	3.83
		7.7, 13.7	7.0, 13.7	$-{ }^{\text {b }}$	$6.7{ }^{\text {a }}$	$7.9{ }^{\text {a }}$	$7 .{ }^{\text {a }}$	1.0, 13.3	2.1, 13.3
5c	Bn	2.53	2.44	3.49	4.91	5.14	4.98	4.14	3.26
		3.0, 14.3	7.7, 14.3	3.0, 7.7, 9.4	9.4	9.4	5.5, 9.4, 10.5	5.5, 11.2	10.5, 11.2
6 c		2.72	2.52	3.66	4.79	5.02	4.65	3.98	3.75
		7.7, 13.7	6.1, 13.7	1.9, 6.1, 7.7	$6.9{ }^{\text {a }}$	8.0^{a}	6.7^{a}	13.6	2.3, 13.6
5d	$(\mathrm{AcO})_{4}-\beta-\mathrm{d}-\mathrm{Gal}_{\mathrm{p}}$	2.99	2.63	3.65	4.88	5.12	4.93	4.12	3.23
		2.7, 14.1	7.5,14.1	$2.7,7.5,9.5$	9.5	9.5	5.7, 9.5, 10.5	$5.7,11.2$	$10.5,11.2$
6d		3.02	2.73	3.95	4.87	5.04	4.70	4.03	
		$8.1,13.5$	$5.5,13.5$	${ }^{\text {b }}$	$7.2{ }^{\text {a }}$	${ }^{\text {b }}$	$6.6{ }^{a}$	$1.8,13.3$	$2.2,13.3$
5 f	$(\mathrm{iPrO})_{2}-\alpha-\mathrm{d}-\mathrm{Gal}_{\mathrm{p}}-6-\mathrm{yl}$	2.75	2.53	3.52	4.86	5.13	4.92	4.09	3.24
		- b	8.2, 14.3	2.7, 8.2, 9.5	9.5	9.5	5.5, 9.5, 10.5	5.5, 11.2	10.5, 11.2
$6 f$		2.85	2.66	3.93	4.86	5.06	4.70	4.02	3.87
		8.2, 13.8	5.4, 13.8	$-{ }^{\text {b }}$	6.7^{a}	7.6^{a}	$6.6{ }^{\text {a }}$	1.6, 14.8	-

${ }^{\text {a }}$ FWHM: full width at half-maximum for the signals.
${ }^{\mathrm{b}}$ Overlapping multiplets from which the coupling constants could not be extracted.
residual solvent signals $\left({ }^{13} \mathrm{C}\right) .{ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{H}}$ coupling constants were determined by measuring the distance of peak maximums in F2 $\left({ }^{1} \mathrm{H}\right)$ dimension from undecoupled HSQC spectra. The assignments of the ${ }^{1} \mathrm{H}$ NMR signals of compounds $\mathbf{3 d}$, $\mathbf{3 f}, \mathbf{5 e}$ and $\mathbf{5 f}$ were performed by their COSY spectra. Mass spectra were recorded with a Thermo LTQ XL mass spectrometer (Thermo Electron Corp., San Jose, CA, USA) operated in a full scan positive ion ESI mode. TLC was performed on DC-Alurolle Kieselgel $60 \mathrm{~F}_{254}$ (Merck). TLC plates were visualized under UV light, and by gentle heating. For column chromatography Kieselgel 60 (Merck, particle size ($0.063-0.200 \mathrm{~mm}$) was applied. Thiols $\mathbf{2 a}-\mathbf{c}$ were puchased from Sigma-Aldrich or prepared according to literature procedures (2d, ${ }^{43} \mathbf{2 e},^{44} \mathbf{2 f}{ }^{45}$).
1.2. General procedure for the photoinitiated reaction of exo-glycals with thiols

To a solution of the starting glycal ($\mathbf{1}$ or $\mathbf{4}, 50-100 \mathrm{mg}$) in dry toluene ($4 \mathrm{~mL} / 100 \mathrm{mg}$), a thiol $\mathbf{2}$ (10 equiv of $\mathbf{2 a - c}, 1.1$ equiv of 2d-f) and 2,2-dimethoxy-2-phenylacetophenone (DPAP, 0.1 equiv) were added. The solution was irradiated by a mercury vapor lamp ($\lambda_{\max }=365 \mathrm{~nm}$) at rt for 15 min . After addition of another 0.1 equiv of DPAP irradiation was continued and, when the starting material disappeared (TLC, eluent 5:1 hexane-acetone), the solvent was removed under diminished pressure, then the residue was purified using column chromatography (eluent A 5:1 hexane-acetone; eluent B 6:1 hexane-acetone; eluent C 2:1 hexane: acetone).

1.2.1. 3,4,5,7-Tetra-O-acetyl-2,6-anhydro-1-deoxy-1-S-propyl-1-

 thio-d-glycero-L-manno-heptitol (3a)By the general procedure, starting from $\mathbf{1}(100 \mathrm{mg}, 0.29 \mathrm{mmol})$ to give $\mathbf{3 a}$ (eluent A) as a colorless oil ($72 \mathrm{mg} ; 59 \%$). $R_{f}=0.42$, (eluent C), $[\alpha]_{\mathrm{D}}+5.0\left(c=0.52, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 5.41(\mathrm{dd}$, $1 \mathrm{H}, J=1.1,3.5 \mathrm{~Hz}, \mathrm{H}-5), 5.17$ ($\mathrm{pt}, 1 \mathrm{H}, J=9.8 \mathrm{~Hz}, \mathrm{H}-3$), 5.02 (dd, 1 H ,
$J=3.5,9.8 \mathrm{~Hz}, \mathrm{H}-4), 4.13$ (dd, 1H, J=6.5, 11.3 Hz, H-7 A$), 4.07$ (dd, 1H, $J=6.5,11.3 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{~B}$), 3.90 (ddd, $1 \mathrm{H}, J=1.1,6.5,6.5 \mathrm{~Hz}, \mathrm{H}-6$), 3.60 (ddd, $1 \mathrm{H}, J=3.7,7.2,9.8 \mathrm{~Hz}, \mathrm{H}-2), 2.69\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=7.2,14.2 \mathrm{~Hz}, \mathrm{H}-1_{\mathrm{A}}\right.$), 2.65 (dd, 1H, J=3.7, $14.2 \mathrm{~Hz}, \mathrm{H}-1_{\mathrm{B}}$), 2.53-262 (m, 2H, S-CH2), 2.15, 2.05, 2.04, $1.97(4 \times \mathrm{s}, 4 \times 3 \mathrm{H}, \mathrm{OAc}), 1.66-1.53\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.97$ (t , $3 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 170.41$ (CO), 79.95, 74.34, 72.15, 69.16, 67.76 (C-2-C-6), 61.74 (C-7), 35.54, 33.58 (C-1, $\left.\mathrm{CH}_{2} \mathrm{~S}\right)$, 22.97, 20.98, 20.84, 20.76, $13.56\left(\mathrm{CH}_{3}\right) . \mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{9} \mathrm{~S}\left(\mathrm{M}_{\mathrm{r}}\right.$: $420.47 \mathrm{~g} / \mathrm{mol})$; MS: $[\mathrm{M}+\mathrm{H}]^{+}=421.58 ;[\mathrm{M}+\mathrm{K}]^{+}=459.50$.

1.2.2. 3,4,5,7-Tetra-O-acetyl-2,6-anhydro-1-deoxy-1-S-phenyl-1-thio-d-glycero-L-manno-heptitol (3b)

By the general procedure, starting from $1(100 \mathrm{mg}, 0.29 \mathrm{mmol})$ to give $\mathbf{3 b}$ (eluent A) as a yellow oil ($82 \mathrm{mg} ; 62 \%$). $R_{f}=0.37$ (eluent C), $[\alpha]_{\mathrm{D}}-15.0\left(c=0.53, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.39-7.33$ ($\mathrm{m}, 2 \mathrm{H}$, aromatic), $7.32-7.25(\mathrm{~m}, 2 \mathrm{H}$, aromatic), $7.23-7.17(\mathrm{~m}, 1 \mathrm{H}$, aromatic), 5.40 (dd, $1 \mathrm{H}, J=1.3,3.5 \mathrm{~Hz}, \mathrm{H}-5$), 5.22 (pseudo $\mathrm{t}, 1 \mathrm{H}$, $J=10.0 \mathrm{~Hz}, \mathrm{H}-3$), 5.02 (dd, $1 \mathrm{H}, J=3.5,10.0 \mathrm{~Hz}, \mathrm{H}-4$), 4.10 (dd, 1 H , $J=6.8,11.3 \mathrm{~Hz}, \mathrm{H}_{\mathrm{-}}^{\mathrm{A}}$), 4.04 (dd, $1 \mathrm{H}, \mathrm{J}=6.8,11.3 \mathrm{~Hz}, \mathrm{H}-7_{\mathrm{B}}$), 3.87 (ddd, $1 \mathrm{H}, J=1.3,6.8,6.8 \mathrm{~Hz}, \mathrm{H}-6$), 3.62 (ddd, $1 \mathrm{H}, J=4.4,6.7,10.0 \mathrm{~Hz}, \mathrm{H}-2$), $3.08\left(\mathrm{dd}, 1 \mathrm{H}, J=4.4,13.6 \mathrm{~Hz}, \mathrm{H}-1_{\mathrm{A}}\right), 3.12\left(\mathrm{dd}, J=6.7,13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1_{\mathrm{B}}\right)$, 2.16, 2.05, 2.04, $1.98(4 \times \mathrm{s}, 4 \times 3 \mathrm{H}, \mathrm{OAc}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : $170.55,170.37,170.28,170.01(4 \times \mathrm{CO}), 130.01,129.05,126.63$ (aromatic), 77.98, 74.37, 72.08, 69.25, 67.69 (C-2-C-6), 61.53 (C-7), 36.33 (C-1), 20.97, 20.84, $20.74\left(\mathrm{CH}_{3}\right) . \mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{9} \mathrm{~S}, \mathrm{M}_{\mathrm{r}}: 454.49 \mathrm{~g} / \mathrm{mol}$; MS: $[\mathrm{M}+\mathrm{H}]^{+}=455.58 ;[\mathrm{M}+\mathrm{K}]^{+}=493.50$.

1.2.3. 3,4,5,7-Tetra-O-acetyl-2,6-anhydro-1-deoxy-1-S-benzyl-1-thio-d-glycero-L-manno-heptitol (3c)

By the general procedure, starting from $\mathbf{1}(100 \mathrm{mg}, 0.29 \mathrm{mmol})$ to give $\mathbf{3 c}$ (eluent A) as a colorless oil ($102 \mathrm{mg} ; 75 \%$). $R_{f}=0.37$ (eluent C), $[\alpha]_{\mathrm{D}}-10.0\left(c=0.56, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : $7.40-7.16$ ($\mathrm{m}, 5 \mathrm{H}$, aromatic), 5.41 (dd, $1 \mathrm{H}, J=1.2,3.4 \mathrm{~Hz}, \mathrm{H}-5$), 5.16 (pseudo t, 1H, J=10.1Hz, H-3), 5.00 (dd, $1 \mathrm{H}, J=3.4,10.1 \mathrm{~Hz}, \mathrm{H}-4$), 4.16
(dd, $1 \mathrm{H}, \mathrm{J}=6.7,11.3 \mathrm{~Hz}, \mathrm{H}-7_{\mathrm{A}}$), 4.10 (dd, $1 \mathrm{H}, \mathrm{J}=6.7,11.3 \mathrm{~Hz}, \mathrm{H}-7_{\mathrm{B}}$), 3.89 (ddd, 1H, J=1.2, 6.7, $6.7 \mathrm{~Hz}, \mathrm{H}-6$), 3.80 (s, 2H, SCH2), 3.57 (ddd, 1H, $J=3.6,7.2,10.1 \mathrm{~Hz}, \mathrm{H}-2$), 2.56, (dd, $1 \mathrm{H}, J=7.2,14.4 \mathrm{~Hz}, \mathrm{H}-1_{\mathrm{A}}$), 2.52 (dd, $\left.1 \mathrm{H}, \mathrm{J}=3.6,14.4 \mathrm{~Hz}, \mathrm{H}-1_{\mathrm{B}}\right), 2.16,2.05,1.98,1.97(4 \times \mathrm{s}, 4 \times 3 \mathrm{H}, \mathrm{OAc}){ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 170.56,170.37,170.29,169.82$ (CO), 138.18, 129.18, 128.58, 127.19 (aromatic), 79.64, 74.35, 72.10, 68.98, 67.73 (C-2-C-6), 61.81 (C-7), 37.14, 32.27 (C-1, SCH2), 20.87, 20.83, 20.73 $\left(\mathrm{CH}_{3}\right) . \quad \mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{9} \mathrm{~S}, \quad \mathrm{M}_{\mathrm{r}}: 468.52 \mathrm{~g} / \mathrm{mol} ; \mathrm{MS}: \quad[\mathrm{M}+\mathrm{H}]^{+}=469.67$; $[\mathrm{M}+\mathrm{K}]^{+}=507.58$.
1.2.4. 3,4,5,7-Tetra-O-acetyl-2,6-anhydro-1-deoxy-1-S-(2,3,4,5-tetra-O-acetyl- β-d-galactopyranosyl)-1-thio-d-glycero-ı-mannoheptitol (3d)

By the general procedure, starting from $\mathbf{1}(50 \mathrm{mg}, 0.145 \mathrm{mmol})$ to give $\mathbf{3 d}$ (eluent B) as a yellow oil (74 mg ; 72\%). $R_{f}=0.13$ (eluent C), $[\alpha]_{\mathrm{D}}-27.1\left(c=0.55, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 5.40(\mathrm{dd}$, $1 \mathrm{H}, J=1.1,3.4 \mathrm{~Hz}, \mathrm{H}-5$), 5.38 (dd, 1H, $J=1.1,3.4 \mathrm{~Hz}, \mathrm{H}-4^{\prime}$), 5.19 (pseudo $\left.\mathrm{t}, 1 \mathrm{H}, J=9.9 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 5.18(\mathrm{t}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}, \mathrm{H}-3), 5.02(\mathrm{dd}, 1 \mathrm{H}, J=3.4$, $10.0 \mathrm{~Hz}, \mathrm{H}-4), 5.0$ (dd, 1H, J=3.4, $9.9 \mathrm{~Hz}, \mathrm{H}-3^{\prime}$), 4.56 (d, $1 \mathrm{H}, J=9.9 \mathrm{~Hz}$, $\left.\mathrm{H}-1^{\prime}\right), 4.14\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7_{\mathrm{AB}}\right), 4.05\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=11.3,6.8 \mathrm{~Hz}, \mathrm{H}^{-6}{ }^{\prime}{ }_{\mathrm{A}}\right.$), 4.03 (dd, $1 \mathrm{H}, J=11.3,6.8 \mathrm{~Hz}, \mathrm{H}^{\prime}$ 6 $^{\prime}$), 3.90 (dd, $1 \mathrm{H}, J=1.1,6.5 \mathrm{~Hz}, \mathrm{H}-6$), 3.86 (ddd, 1H, J=1.1, 6.8, $6.8 \mathrm{~Hz}, \mathrm{H}-5^{\prime}$), 3.70 (ddd, $J=1 \mathrm{H}, 2.9,7.4,10.0 \mathrm{~Hz}$, $\mathrm{H}-2$), 2.98 (dd, $1 \mathrm{H}, J=2.9,14.0 \mathrm{~Hz}, \mathrm{H}-1_{\mathrm{A}}$), 2.74 (dd, $J=7.4,14.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}-1_{\mathrm{B}}\right), 2.13,2.12,2.06,2.04,2.01,2.01,1.95,1.94(8 \times \mathrm{s}, 8 \times 3 \mathrm{H}, \mathrm{OAc})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 170.41,170.37,170.25,170.18,170.04$, 169.64 (CO), 83.27, 78.22, 74.53, 74.37, 72.13, 71.92, 68.74, 67.62, 67.32, 67.15(C-2-C-6 and C-1'-C-5'), 61.34 (C-7), 61.31 (C-6'), 30.58 (C-1), 20.85, 20.83, 20.73, 20.69, 20.66, 20.62 (CH_{3}). $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{O}_{18} \mathrm{~S}, \mathrm{M}_{\mathrm{r}}$: $708.68 \mathrm{~g} / \mathrm{mol}$; MS: $[\mathrm{M}+\mathrm{Na}]^{+}=731.83$.
1.2.5. 3,4,5,7-Tetra-O-acetyl-2,6-anhydro-1-deoxy-1-S-(2,3,4-tri-O-acetyl- β-D-xylopyranosyl)-1-thio-D-glycero-L-manno-heptitol (3e)

By the general procedure, starting from $\mathbf{1}(50 \mathrm{mg}, 0.145 \mathrm{mmol})$ to give $\mathbf{3 e}$ (eluent B) as a colorless oil (80 mg ; 87%). $R_{f}=0.16$ (eluent C), $[\alpha]_{\mathrm{D}}-62.0\left(c=0.59, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 5.39$ (dd, $1 \mathrm{H}, J=1.1,3.4 \mathrm{~Hz}, \mathrm{H}-5$), 5.21 (pseudo $\mathrm{t}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}, \mathrm{H}-3$), 5.11 (pseudo t, $\left.1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.00$ (dd, $1 \mathrm{H}, J=3.4,10.0 \mathrm{~Hz}, \mathrm{H}-4$), 4.92 (pseudo t, 1H, J=8.0 Hz, H-2'), 4.94-4.82 (m, 1H, H-4'), 4.67 (d, 1H, $\left.J=8.1 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 4.21\left(\mathrm{dd}, 1 \mathrm{H}, J=4.8,11.8 \mathrm{~Hz}, \mathrm{H}^{-5}{ }^{\prime}{ }_{\mathrm{eq}}\right), 4.11(\mathrm{dd}, 1 \mathrm{H}$, $J=6.5,11.2 \mathrm{~Hz}, \mathrm{H}-7_{\mathrm{A}}$), 4.03 (dd, $1 \mathrm{H}, J=6.8,11.2 \mathrm{~Hz}, \mathrm{H}-7_{\mathrm{B}}$), 3.86 (ddd, $J=1 \mathrm{H}, 1.1,6.5,6.8 \mathrm{~Hz}, \mathrm{H}-6$), 3.65 (ddd, $1 \mathrm{H}, J=2.9,6.9,10.0 \mathrm{~Hz}, \mathrm{H}-2$), 3.36 (dd, $1 \mathrm{H}, J=8.5,11.8 \mathrm{~Hz}, \mathrm{H}^{-5}{ }^{\prime}{ }_{\mathrm{ax}}$), 2.91 (dd, $1 \mathrm{H}, J=2.9,14.2 \mathrm{~Hz}, \mathrm{H}-$ $1_{\text {A }}$), 2.70 (dd, $1 \mathrm{H}, J=6.9,14.2 \mathrm{~Hz}, \mathrm{H}-1_{\mathrm{B}}$), 2.14, 2.06, 2.04, 2.03, 2.02, 2.02, $1.95(7 \times \mathrm{s}, 7 \times 3 \mathrm{H}, \mathrm{OAc}) .{ }^{13} \mathrm{C}$ NMR $\left(91 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 170.46$, $170.38,170.25,169.88,169.73,169.51$ (CO), 83.25, 78.35, 74.34, 72.17, 71.67, 69.78, 68.52, 67.60 ($\mathrm{C}-2-\mathrm{C}-6$ and $\mathrm{C}-1^{\prime}-\mathrm{C}-4^{\prime}$), 65.06 (C-7), 61.45 (C-5'), 31.13 (C-1), 20.91, 20.80, $20.70\left(\mathrm{CH}_{3}\right) . \mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{16} \mathrm{~S}, \mathrm{M}_{\mathrm{r}}$: $636.62 \mathrm{~g} / \mathrm{mol}$; MS: $[\mathrm{M}+\mathrm{Na}]^{+}=659.92$.
1.2.6. 3,4,5,7-Tetra-O-acetyl-2,6-anhydro-1-deoxy-1-S-(1,2:3,4,-di-O-isopropylidene- β-d-galactopyranose-6-yl)-1-thio-d-glycero-L-manno-heptitol (3f)

By the general procedure, starting from 1 ($100 \mathrm{mg}, 0.29 \mathrm{mmol}$) to give $\mathbf{3 f}$ (eluent B) as a colorless oil ($145 \mathrm{mg} ; 81 \%$). $R_{f}=0.30$ (eluent C), $[\alpha]_{\mathrm{D}}-27.0\left(c=0.51, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 5.48(\mathrm{~d}$, $1 \mathrm{H}, J=5.1 \mathrm{~Hz}, \mathrm{H}-1^{\prime}$), 5.36 (dd, $1 \mathrm{H}, \mathrm{J}=1.2,3.4 \mathrm{~Hz}, \mathrm{H}-5$), 5.07 (pseudo t , $1 \mathrm{H}, J=10.0 \mathrm{~Hz}, \mathrm{H}-3$), 4.96 (dd, $1 \mathrm{H}, J=3.4,10.1 \mathrm{~Hz}, \mathrm{H}-4$), 4.57 (dd, 1 H , $\left.J=2.4,7.9 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 4.26$ (dd, 1H, $\left.J=2.4,5.1 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 4.20$ (dd, 1H, $\left.J=1.9,7.9 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 4.1-3.98$ (m, 2H, H-7), 3.90-3.85 (m, 1H, H-6), $3.85-3.80$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}$), 3.60 (ddd, $1 \mathrm{H}, J=3.1,8.1,10.0 \mathrm{~Hz}, \mathrm{H}-2$), 2.83 (dd, $1 \mathrm{H}, J=6.2,13.6 \mathrm{~Hz}, \mathrm{H}-\mathrm{G}^{\prime}{ }^{\prime}$), 2.75 (dd, $1 \mathrm{H}, J=7.6,13.6 \mathrm{~Hz}, \mathrm{H}-6_{B}{ }^{\prime}$), $2.70\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.1,14.4 \mathrm{~Hz}, \mathrm{H}-1_{\mathrm{A}}\right), 2.63\left(\mathrm{dd}, 1 \mathrm{H}, J=3.1,14.4 \mathrm{~Hz}, \mathrm{H}-1_{\mathrm{B}}\right)$, $2.12,2.09,2.00,1.92(4 \times \mathrm{s}, 4 \times 3 \mathrm{H}, \mathrm{OAc}), 1.51,1.39,1.29,1.28(4 \times \mathrm{s}$, $\left.4 \times 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($91 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 170.51,170.22,170.15$,
169.84 (CO), 109.26, 108.56 (C), 96.71, 80.02, 74.25, 71.97, 71.80, 70.99, 70.48, 68.98, 67.69, 67.07 (C-2-C-6 and C-1'-C-5'), 61.72 (C7), 32.96 (C-6'), 32.40 (C-1), 26.08, 26.01, 24.93, $24.49\left(\mathrm{CH}_{3}\right), 20.83$, 20.72, $20.63\left(\mathrm{CH}_{3} \mathrm{CO}\right) . \quad \mathrm{C}_{27} \mathrm{H}_{40} \mathrm{O}_{14} \mathrm{~S}, \quad \mathrm{M}_{\mathrm{r}}: 620.66 \mathrm{~g} / \mathrm{mol} ; \mathrm{MS}$: $\left[\mathrm{M}+\mathrm{H}_{2} \mathrm{O}\right]^{+}=638.25$.
1.2.7. 3,4,5-Tri-O-acetyl-2,6-anhydro-1-deoxy-1-S-propyl-1-thio-d-gulo-hexitol (5a)

By the general procedure, starting from 4 ($100 \mathrm{mg}, 0.37 \mathrm{mmol}$) to give $\mathbf{5 a}$ (eluent B) as a colorless oil ($80 \mathrm{mg} ; 63 \%$). $R_{f}=0.47$ (eluent C), $[\alpha]_{\mathrm{D}}-50^{\circ}\left(c=0.59, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 5.18(\mathrm{t}$, $1 \mathrm{H}, J=9.4 \mathrm{~Hz}, \mathrm{H}-4), 4.99$ (ddd, $1 \mathrm{H}, J=5.7,9.4,10.7 \mathrm{~Hz}, \mathrm{H}-5$), 4.95 (pseudo t, 1H, J=9.4 Hz, H-3), 4.14 (dd, $1 \mathrm{H}, J=5.7,11.2 \mathrm{~Hz}, \mathrm{H}-6$ eq $)$, 3.55 (ddd, 1H, $J=3.1,7.6,9.4 \mathrm{~Hz}, \mathrm{H}-2$), 3.29 (dd, 1H, $J=10.7,11.2 \mathrm{~Hz}$, $\mathrm{H}-6_{\mathrm{ax}}$), 2.67 (dd, $1 \mathrm{H}, J=3.1,14.1 \mathrm{~Hz}, \mathrm{H}-1_{\mathrm{A}}$), 2.58 (dd, $1 \mathrm{H}, J=7.6$, $\left.14.1 \mathrm{~Hz}, \mathrm{H}-1_{\mathrm{B}}\right), 2.45-2.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{SCH}_{2}\right), 2.05,2.03,2.03(3 \times \mathrm{S}$, $3 \times 3 \mathrm{H}, \mathrm{OAc}), 1.66-1.51\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.98\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($91 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.41,169.85,169.72$ (CO), 79.00, 73.74, 71.73, 69.21 (C-2-C-5), $66.79(\mathrm{C}-6), 35.41,33.57\left(\mathrm{C}-1, \mathrm{SCH}_{2}\right), 22.86$ $\left(\mathrm{CH}_{3} \mathrm{CO}\right), 20.76\left(\mathrm{CH}_{2}\right), 13.45\left(\mathrm{CH}_{3}\right) . \mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{7} \mathrm{~S}, \mathrm{M}_{\mathrm{r}}: 348.41 \mathrm{~g} / \mathrm{mol}$; MS: $[\mathrm{M}+\mathrm{H}]^{+}=349.58 ;[\mathrm{M}+\mathrm{K}]^{+}=387.58$.

1.2.8. 3,4,5-Tri-O-acetyl-2,6-anhydro-1-deoxy-1-S-phenyl-1-thio-D-gulo-hexitol (5b)

By the general procedure, starting from 4 ($100 \mathrm{mg}, 0.37 \mathrm{mmol}$) to give $\mathbf{5 b}$ (eluent B) as a colorless oil ($73 \mathrm{mg} ; 52 \%$). $R_{f}=0.42$ (eluent C), $[\alpha]_{\mathrm{D}}-49.0\left(c=0.53, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : $7.41-7.16$ (m, 5H, aromatic), 5.17 (pseudo t, $1 \mathrm{H}, \mathrm{J}=9.4 \mathrm{~Hz}, \mathrm{H}-4$), 5.01 (ddd, 1H, J=5.6, 9.4, 11.1 Hz, H-5), 4.97 (t, $1 \mathrm{H}, J=9.4 \mathrm{~Hz}, \mathrm{H}-3$), 4.14 (dd, $1 \mathrm{H}, J=5.6,11.1 \mathrm{~Hz}, \mathrm{H}-6$ eq $), 3.56$ (ddd, $1 \mathrm{H}, J=3.0,8.0,9.4 \mathrm{~Hz}, \mathrm{H}-2$), 3.27 ($\mathrm{pt}, 1 \mathrm{H}, J=11.1 \mathrm{~Hz}, \mathrm{H}-6_{\mathrm{ax}}$), 3.11 (dd, $1 \mathrm{H}, J=3.0,13.9 \mathrm{~Hz}, \mathrm{H}-1_{\mathrm{A}}$), 2.98 (dd, $\left.1 \mathrm{H}, J=8.0,13.9 \mathrm{~Hz}, \mathrm{H}-1_{\mathrm{B}}\right), 2.03,2.02,2.02(3 \times \mathrm{s}, 3 \times 3 \mathrm{H}, \mathrm{OAc})$. ${ }^{13} \mathrm{C}$ NMR ($91 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 170.32,169.75,169.67$ (CO), 135.91, 129.63, 128.97, 126.46 (aromatic), $77.47,73.58,71.74,69.05$ (C-2-C5), 66.76 (C-6), $36.11(\mathrm{C}-1), 20.68\left(\mathrm{CH}_{3}\right) . \mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{7} \mathrm{~S}, \mathrm{M}_{\mathrm{r}}: 382.43 \mathrm{~g} /$ mol ; MS: $[\mathrm{M}+\mathrm{H}]^{+}=383.58 ;[\mathrm{M}+\mathrm{K}]^{+}=421.58$.

1.2.9. 3,4,5-Tri-O-acetyl-2,6-anhydro-1-deoxy-1-S-benzyl-1-thio-

 D-gulo-hexitol (5c)By the general procedure, starting from 4 ($100 \mathrm{mg}, 0.37 \mathrm{mmol}$) to give $\mathbf{5 c}$ (eluent B) as a colorless oil (99 mg ; 68\%). $R_{f}=0.38$ (eluent C), $[\alpha]_{\mathrm{D}}-58.0\left(c=0.52, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: $7.35-7.19(\mathrm{~m}, 5 \mathrm{H}$, aromatic), $5.14(\mathrm{t}, 1 \mathrm{H}, J=9.4 \mathrm{~Hz}, \mathrm{H}-4), 5.01$ (ddd, $1 \mathrm{H}, J=5.5,9.4,10.5 \mathrm{~Hz}, \mathrm{H}-5), 4.91(\mathrm{t}, 1 \mathrm{H}, J=9.5 \mathrm{~Hz}, \mathrm{H}-3), 4.14$ (dd, 1 H , $J=5.5,11.2 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{eq}), 3.74\left(\mathrm{~d}, 1 \mathrm{H}, J=13.5 \mathrm{~Hz}, \mathrm{CH}_{2 \mathrm{~A}}\right), 3.71(\mathrm{~d}, 1 \mathrm{H}$, $\left.J=13.5 \mathrm{~Hz}, \mathrm{CH}_{2 \mathrm{~B}}\right) 3.49$ (ddd, $1 \mathrm{H}, J=3.0,7.7,9.4 \mathrm{~Hz}, \mathrm{H}-2$), 3.26 (dd, 1 H , $J=10.5,11.3 \mathrm{~Hz}, \mathrm{H}-6_{\mathrm{ax}}$), 2.53 (dd, $1 \mathrm{H}, J=3.0,14.3 \mathrm{~Hz}, \mathrm{H}-1_{\mathrm{A}}$), 2.44 (dd, $\left.1 \mathrm{H}, J=7.7,14.3 \mathrm{~Hz}, \mathrm{H}-1_{\mathrm{B}}\right), 2.03,2.01,1.95(3 \times \mathrm{s}, 3 \times 3 \mathrm{H}, \mathrm{OAc}) .{ }^{13} \mathrm{C}$ NMR ($91 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 170.41,169.85,169.62$ (CO), 138.03, 129.11, 128.51, 127.11 (aromatic), $78.84,73.70,71.59,69.19$ (C-2-C-5), 66.79 $(\mathrm{C}-6), 36.94(\mathrm{C}-1), 32.10\left(\mathrm{SCH}_{2}\right), 20.76\left(\mathrm{CH}_{3}\right) . \mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{7} \mathrm{~S}, \mathrm{M}_{\mathrm{r}}$: $396.45 \mathrm{~g} / \mathrm{mol} ; \mathrm{MS}:[\mathrm{M}+\mathrm{H}]^{+}=397.58 ;[\mathrm{M}+\mathrm{K}]^{+}=435.58$.
1.2.10. 3,4,5-Tri-O-acetyl-2,6-anhydro-1-deoxy-1-S-(2,3,4,5-tetra-O-acetil- β-D-galactopyranosyl)-1-thio-D-gulo-hexitol (5d)

By the general procedure, starting from $4(50 \mathrm{mg}, 0.185 \mathrm{mmol})$ to give $\mathbf{5 d}$ (eluent B) as a colorless oil ($81 \mathrm{mg} ; 69 \%$). $R_{f}=0.16$ (eluent C), $[\alpha]_{D}-47.0\left(c=0.58, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 5.39$ (dd, 1H, J=1.1, $3.3 \mathrm{~Hz}, \mathrm{H}-4^{\prime}$), $5.19\left(\mathrm{t}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 5.12(\mathrm{t}, 1 \mathrm{H}$, $J=9.5 \mathrm{~Hz}, \mathrm{H}-4), 5.00$ (dd, $1 \mathrm{H}, J=3.3,10.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}$), 4.93 (ddd, 1 H , $J=5.7,9.5,10.5 \mathrm{~Hz}, \mathrm{H}-5), 4.88(\mathrm{t}, 1 \mathrm{H}, J=9.5 \mathrm{~Hz}, \mathrm{H}-3), 4.51(\mathrm{~d}, 1 \mathrm{H}$, $\left.J=10.0 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 4.12\left(\mathrm{dd}, 1 \mathrm{H}, J=6.6,11.2 \mathrm{~Hz}, \mathrm{H}^{\prime} 6^{\prime}{ }_{\mathrm{A}}\right.$), 4.10 (dd, 1 H , $J=5.7,11.2 \mathrm{~Hz}, \mathrm{H}-6_{\text {eq }}$), 4.05 (dd, $1 \mathrm{H}, J=6.8,11.4 \mathrm{~Hz}, \mathrm{H}^{\prime} 6^{\prime}$ в), 3.89 (ddd, $1 \mathrm{H}, J=1.1,6.6,6.8 \mathrm{~Hz}, \mathrm{H}-5^{\prime}$), 3.65 (ddd, $1 \mathrm{H}, J=2.7,7.5,10.0 \mathrm{~Hz}, \mathrm{H}-2$), 3.23 (dd, 1H, $J=10.5,11.2 \mathrm{~Hz}, \mathrm{H}-\mathrm{a}_{\mathrm{ax}}$), 2.99 (dd, $1 \mathrm{H}, J=2.7,14.1 \mathrm{~Hz}, \mathrm{H}-$
1_{A}), $2.63\left(\mathrm{dd}, 1 \mathrm{H}, J=7.5,14.1 \mathrm{~Hz}, \mathrm{H}-1_{\mathrm{B}}\right.$), 2.12, 2.04, 2.03, 2.00, 1.99 , 1.97, $1.93(7 \times \mathrm{s}, 7 \times 3 \mathrm{H}, \mathrm{OAc}) .{ }^{13} \mathrm{C}$ NMR ($91 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 170.27$, 170.10, 169.90, 169.71, 169.55 (CO), 83.34, 77.93, 74.43, 73.65, 71.85, $71.35,68.98,67.20,66.66,\left(\mathrm{C}-2-\mathrm{C} 5\right.$ and $\left.\mathrm{C}-1^{\prime}-\mathrm{C}-5^{\prime}\right) 66.73$ (C-6), 61.26 (C-6'), 30.54 (C-1), 20.68, 20.63, $20.51\left(\mathrm{CH}_{3}\right) . \mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{16} \mathrm{~S}, \mathrm{M}_{\mathrm{r}}$: $636.62 \mathrm{~g} / \mathrm{mol}$; MS: $[\mathrm{M}+\mathrm{Na}]^{+}=659.92$.
1.2.11. 3,4,5-Tri-O-acetyl-2,6-anhydro-1-deoxy-1-S-(2,3,4-tri-O-acetyl- β-D-xylopyranosyl)-1-thio-D-gulo-hexitol (5e)

By the general procedure, starting from 4 ($50 \mathrm{mg}, 0.185 \mathrm{mmol}$) to give $\mathbf{5 e}$ (eluent B) as a colorless oil (78 mg ; 75%). $R_{f}=0.20$ (eluent C), $[\alpha]_{\mathrm{D}}-96\left(c=0.52, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 5.14(\mathrm{t}$, $1 \mathrm{H}, \mathrm{J}=9.4 \mathrm{~Hz}, \mathrm{H}-4), 5.12\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 4.99-4.82(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-$ $3, \mathrm{H}-5, \mathrm{H}-2^{\prime}, \mathrm{H}-4^{\prime}$), 4.58 (d, 1H, J=8.4 Hz, H-1'), 4.19 (dd, 1H, J=5.0, $11.7 \mathrm{~Hz}, \mathrm{H}^{-5}{ }^{\prime}{ }_{\mathrm{eq}}$), 4.09 (dd, $1 \mathrm{H}, \mathrm{J}=5.6,11.2 \mathrm{~Hz}, \mathrm{H}-6_{\text {eq }}$), 3.58 (ddd, 1 H , $J=2.9,7.0,9.8 \mathrm{~Hz}, \mathrm{H}-2$), 3.34 (dd, $1 \mathrm{H}, \mathrm{J}=8.8,11.7 \mathrm{~Hz}, \mathrm{H}^{-5}{ }^{\prime}{ }_{\mathrm{ax}}$), 3.24 (t, $1 \mathrm{H}, J=11.2 \mathrm{~Hz}, \mathrm{H}-\mathrm{bax}_{\mathrm{ax}}$), 2.90 (dd, $1 \mathrm{H}, J=2.9,14.0 \mathrm{~Hz}, \mathrm{H}-1_{\mathrm{A}}$), 2.63 (dd, $\left.J=7.0,14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1_{\mathrm{B}}\right), 2.05,2.02,2.01,2.01,1.99,1.98(6 \times \mathrm{s}, 6 \times 3 \mathrm{H}$, OAc). ${ }^{13} \mathrm{C}$ NMR ($91 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 170.43,169.89,169.85,169.70$, 169.53 (CO), 83.17, 78.04, 73.79, 71.93, 71.27, 69.64, 69.12, 68.62 (C-$2-\mathrm{C}-5$ and $\left.\mathrm{C}-1^{\prime}-\mathrm{C}-4^{\prime}\right), 66.83(\mathrm{C}-6), 65.35\left(\mathrm{C}-5^{\prime}\right), 30.85,20.79\left(\mathrm{CH}_{3}\right)$. $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{14} \mathrm{~S}, \mathrm{M}_{\mathrm{r}}: 564.56 \mathrm{~g} / \mathrm{mol} ; \mathrm{MS}:[\mathrm{M}+\mathrm{Na}]^{+}=588.08$.
1.2.12. 3,4,5-Tri-O-acetyl-2,6-anhydro-1-deoxy-1-S-(1,2:3,4,-di-O-isopropylidene- β-D-galactopyranose-6-yl)-1-thio-D-gulo-hexitol (5f)

By the general procedure, starting from 4 ($100 \mathrm{mg}, 0.38 \mathrm{mmol}$) to give $\mathbf{5 f}$ (eluent B) as a colorless oil ($108 \mathrm{mg} ; 53 \%$). $R_{f}=0.36$ (eluent C), $[\alpha]_{\mathrm{D}}-71\left(c=0.58, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 5.47(\mathrm{~d}$, $1 \mathrm{H}, J=5.0 \mathrm{~Hz}, \mathrm{H}-1^{\prime}$), 5.13 (pseudo t, $1 \mathrm{H}, J=9.5 \mathrm{~Hz}, \mathrm{H}-4$), 4.92 (ddd, 1 H , $J=5.5,9.5,10.5 \mathrm{~Hz}, \mathrm{H}-5$), 4.86 (pseudo t, $1 \mathrm{H}, J=9.5 \mathrm{~Hz}, \mathrm{H}-3$), $1 \mathrm{H}, 4.57$ (dd, $\left.J=2.4,7.9 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 4.27$ (dd, $1 \mathrm{H}, J=2.2,5.1 \mathrm{~Hz}, \mathrm{H}-2^{\prime}$), 4.25 (pseudo $\mathrm{t}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz}, \mathrm{H}-3^{\prime}$) 4.09 (dd, $1 \mathrm{H}, J=5.5,11.2 \mathrm{~Hz}, \mathrm{H}-6_{\text {eq }}$), 3.85 (m, 1H, H-5'), 3.52 (ddd, 1H, J=2.7, 8.2, $9.5 \mathrm{~Hz}, \mathrm{H}-2$), 3.24 (dd, $\left.1 \mathrm{H}, J=10.5,11.2 \mathrm{~Hz}, \mathrm{H}-\mathrm{G}_{\mathrm{ax}}\right), 2.80-2.69\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-1_{\mathrm{A}}\right.$ and $\left.2 \times \mathrm{H}-6^{\prime}\right)$, $2.57\left(\mathrm{dd}, 1 \mathrm{H}, J=8.2,14.3 \mathrm{~Hz}, \mathrm{H}-1_{\mathrm{B}}\right), 2.00,1.99,1.98(3 \times \mathrm{s}, 3 \times 3 \mathrm{H}, \mathrm{OAc})$, $1.50,1.40,1.31,1.28\left(4 \times \mathrm{s}, 4 \times 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(91 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: 170.38, 169.86, 169.73 (CO), 109.29, 108.65 (C), 96.68, 78.97, 73.74, $71.74,71.65,70.95,70.55,69.23,67.72$ (C-2-C-5 and C-1'-C-5'), 66.75 (C-6), 33.96 (C-1), 32.78 (C-6'), 26.10, 26.05, 24.96, 24.51, $20.76 \quad\left(\mathrm{CH}_{3}\right) . \quad \mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{12} \mathrm{~S}, \quad \mathrm{M}_{\mathrm{r}}: \quad 548.60 \mathrm{~g} / \mathrm{mol} ; \quad \mathrm{MS}$: $\left[\mathrm{M}+\mathrm{H}_{2} \mathrm{O}\right]^{+}=566.42$.

1.2.13. 3,4,5-Tri-O-acetyl-2,6-anhydro-1-deoxy-1-S-propyl-1-thio-

 d-ido-hexitol (6a)By the general procedure, starting from 4 ($100 \mathrm{mg}, 0.37 \mathrm{mmol}$) to give $\mathbf{6 a}$ (eluent B) as a colorless oil ($5 \mathrm{mg} ; 4 \%$). $R_{f}=0.42$ (eluent C), $[\alpha]_{\mathrm{D}}-37\left(c=0.25, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 5.08(\mathrm{td}, 1 \mathrm{H}$, $J=1.4,3.3 \mathrm{~Hz}, \mathrm{H}-4), 4.89$ (broad signal, H-3), 4.70 (broad signal, H-5), 4.03 (dd, 1H, $J=1.7,13.2 \mathrm{~Hz}, \mathrm{H}-6$ eq $), 3.86$ (dd, $1 \mathrm{H}, J=2.2,13.2 \mathrm{~Hz}, \mathrm{H}-$ $6_{\text {ax }}$), 3.82-3.86 (m, 1H, H-2), 2.78 (dd, $\left.1 \mathrm{H}, \mathrm{J}=7.5,13.6 \mathrm{~Hz}, \mathrm{H}-1_{\mathrm{A}}\right), 2.60$ (dd, $1 \mathrm{H}, \mathrm{J}=6.3,13.6 \mathrm{~Hz}, \mathrm{H}-1_{\mathrm{B}}$), 2.56-2.48 (m, $2 \mathrm{H}, \mathrm{SCH}_{2}$), 2.14, 2.13, $2.11(3 \times \mathrm{s}, 3 \times 3 \mathrm{H}, \mathrm{OAc}), 1.63-1.54(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
1.2.14. 3,4,5-Tri-O-acetyl-2,6-anhydro-1-deoxy-1-S-phenyl-1-thio-d-ido-hexitol (6b)

By the general procedure, starting from 4 ($100 \mathrm{mg}, 0.37 \mathrm{mmol}$) to give $\mathbf{6 b}$ (eluent B) as a colorless oil ($11 \mathrm{mg} ; 8 \%$). $R_{f}=0.38$ (eluent C), $[\alpha]_{\mathrm{D}}-47\left(c=0.53, \mathrm{CHCl}_{3}\right) \cdot{ }^{1} \mathrm{H} \operatorname{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.46-7.06$ ($\mathrm{m}, 5 \mathrm{H}$, aromatic), 5.08 (td, $1 \mathrm{H}, J=1.3,3.1 \mathrm{~Hz}, \mathrm{H}-4$), 4.93 (broad signal, 1H, H-3), 4.97 (ddd, $1 \mathrm{H}, \mathrm{J}=1.0,2.1,3.3 \mathrm{~Hz}, \mathrm{H}-5$), 4.04 (dd, 1H, $J=1.0,13.3 \mathrm{~Hz}, \mathrm{H}-6_{\text {eq }}$), 3.83 (dd, $1 \mathrm{H}, J=2.1,13.3 \mathrm{~Hz}, \mathrm{H}-6_{\mathrm{ax}}$), $3.82-3.88$ (m, 1H, H-2), 3.20 (dd, $1 \mathrm{H}, J=7.7,13.7 \mathrm{~Hz}, \mathrm{H}-1_{\mathrm{A}}$), 3.02 (dd, $1 \mathrm{H}, J=7.0$, $13.7 \mathrm{~Hz}, \mathrm{H}-1_{\mathrm{B}}$), 2.11, 2.09, $2.08(3 \times \mathrm{s}, 3 \times 3 \mathrm{H}, \mathrm{OAc})$.

1.2.15. 3,4,5-Tri-O-acetyl-2,6-anhydro-1-deoxy-1-S-benzyl-1-thio-D-ido-hexitol (6c)

By the general procedure, starting from $4(100 \mathrm{mg}, 0.37 \mathrm{mmol})$ to give $\mathbf{6 c}$ (eluent B) as a colorless oil ($8 \mathrm{mg} ; 5 \%$). $R_{f}=0.35$ (eluent C), $[\alpha]_{\mathrm{D}}-50\left(c=0.40, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.34-7.22$ ($\mathrm{m}, 5 \mathrm{H}$, aromatic), 5.02 (broad signal, $1 \mathrm{H}, \mathrm{H}-4$), 4.79 (broad signal, 1H, H-3), 4.65 (broad signal, 1H, H-5), 4.97 (d, 1H, J=13.6, $11.2 \mathrm{~Hz}, \mathrm{H}-$ $6_{\text {eq }}$), 3.75 (dd, $\left.1 \mathrm{H}, \mathrm{J}=2.3,13.6 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{ax}\right), 3.74\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.66$ (ddd, $1 \mathrm{H}, J=1.9,6.1,7.7 \mathrm{~Hz}, \mathrm{H}-2$), 2.71 (dd, $1 \mathrm{H}, J=7.7,13.7 \mathrm{~Hz}, \mathrm{H}-1_{\mathrm{A}}$), 2.52 (dd, $1 \mathrm{H}, \mathrm{J}=6.1,13.7 \mathrm{~Hz}, \mathrm{H}^{1}{ }_{\mathrm{B}}$), 2.11, 2.09, $2.07(3 \times \mathrm{s}, 3 \times 3 \mathrm{H}, \mathrm{OAc}) .{ }^{13} \mathrm{C}$ NMR ($125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 169.87,168.59$ (CO), 138.34, 129.04, 128.71, 127.31 (aromatic), 74.17, 67.44, 66.67, 66.72 (C-2-C-5), 66.28 (C-6), $37.35(\mathrm{C}-1), 31.73\left(\mathrm{SCH}_{2}\right), 21.16,21.0,20.86\left(\mathrm{CH}_{3}\right)$.
1.2.16. 3,4,5-Tri-O-acetyl-2,6-anhydro-1-deoxy-1-S-(2,3,4,5-tetra-O-acetil- β-D-galactopyranosyl)-1-thio-D-ido-hexitol (6d)

By the general procedure, starting from 4 ($100 \mathrm{mg}, 0.37 \mathrm{mmol}$) to give $\mathbf{6 d}$ (eluent B) as a colorless oil ($3.5 \mathrm{mg} ; 3 \%$). $R_{f}=0.15$ (eluent C), $[\alpha]_{\mathrm{D}}-45\left(c=0.175, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 5.44$ (dd, $\left.1 \mathrm{H}, J=1.0,3.3 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 5.22\left(\mathrm{t}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 5.04$ (broad signal, $1 \mathrm{H}, \mathrm{H}-4$), 5.04 (dd, $\left.1 \mathrm{H}, J=3.3,10.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 4.87$ (broad signal, $1 \mathrm{H}, \mathrm{H}-3$), 4.70 (broad signal, $1 \mathrm{H}, \mathrm{H}-5$), 4.55 (d, $1 \mathrm{H}, J=9.9 \mathrm{~Hz}$, $\mathrm{H}-1^{\prime}$), 4.09-4.16 (m, 2H, H-6' ${ }_{\text {AB }}$), 4.03 (dd, $1 \mathrm{H}, J=1.8,13.3 \mathrm{~Hz}, \mathrm{H}-6_{\mathrm{eq}}$), 3.95 (td, 1H, J=1.1, $6.6 \mathrm{~Hz}, \mathrm{H}-5^{\prime}$), 3.91-3.97 (m, 1H, H-2), 3.86 (dd, $1 \mathrm{H}, J=2.2,13.3 \mathrm{~Hz}, \mathrm{H}-6_{\mathrm{ax}}$), 3.01 (dd, $1 \mathrm{H}, \mathrm{J}=8.1,13.5 \mathrm{~Hz}, \mathrm{H}-1_{\mathrm{A}}$), 2.72 (dd, 1H, J=5.5, 13.5 Hz, H-18), 2.17, 2.16, 2.15, 2.14, 2.12, 2.06, 2.05 ($7 \times \mathrm{s}, 7 \times 3 \mathrm{H}, \mathrm{OAc}$).

1.2.17. 3,4,5-Tri-O-acetyl-2,6-anhydro-1-deoxy-1-S-(1,2:3,4,-di-O-

 isopropylidene- β-D-galactopyranose-6-yl)-1-thio-D-ido-hexitol (6f)By the general procedure, starting from $4(100 \mathrm{mg}, 0.37 \mathrm{mmol})$ to give $\mathbf{6 f}$ (eluent B) as a colorless oil ($7 \mathrm{mg} ; 3.5 \%$). $R_{f}=0.33$ (eluent C), $[\alpha]_{\mathrm{D}}-40\left(c=0.35, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 5.52(\mathrm{~d}$, $1 \mathrm{H}, J=5.0 \mathrm{~Hz}, \mathrm{H}-1^{\prime}$), 5.06 (broad signal, $1 \mathrm{H}, \mathrm{H}-4$), 4.86 (broad signal, $1 \mathrm{H}, \mathrm{H}-3$), 4.70 (broad signal, 1H, H-5), 4.61 (dd, $J=2.3,7.9 \mathrm{~Hz}, \mathrm{H}-4^{\prime}$), 4.33-4.27 (m, 2H, H-3', H-2'), 4.02 (dd, 1H, J=1.6, $14.8 \mathrm{~Hz}, \mathrm{H}-6$ eq), 3.86-3.95 (m, 1H, H-2), 3.90-3.84 (m, 2H, H-5', H-6 ax $), 2.85$ (dd, $1 \mathrm{H}, J=8.2,13.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{A}}^{\mathrm{A}}$) $2.82-2.69$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-6^{\prime}$), 2.66 (dd, 1 H , $J=5.4,13.8 \mathrm{~Hz}, \mathrm{H}-1_{\mathrm{B}}$), 2.13, 2.12, $2.11(3 \times \mathrm{s}, 3 \times 3 \mathrm{H}, \mathrm{OAc}), 1.54,1.44$, $1.34,1.33\left(4 \times \mathrm{s}, 4 \times 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.

$\Lambda^{\text {Acknowledgments }}$

This work was supported by the Hungarian Scientific Research Fund (Grants: OTKA 109208 and 109450) and the BAROSS REG_EA_09-1-2009-0028 (LCMS_TAN) project. Dr. A. Kiss-Szikszai is thanked for recording the mass spectra.

References

1. Glycomimetics. In: Fraser-Reid BO, Tatsuta K, Thiem J, editors. Glycoscience: chemistry and chemical biology. Berlin, Heidelberg: Springer; 2001. p. 2533-752.
2. Ernst B, Magnani JL. Nat Rev Drug Discov 2009;8:661-77.
3. Szilágyi L, Varela O. Curr Org Chem 2006;10:1745-70.
4. Szilágyi L, Illyés TZ, Herczegh P. Tetrahedron Lett 2001;42:3901-3.
5. Illyés T-Z, Szabó T, Szilágyi L. Carbohydr Res 2011;346:1622-7.
6. Ribeiro Morais G, Falconer RA. Tetrahedron Lett 2007;48:7637-41.
7. Bernardes GJL, Marston JP, Batsanov AS, Howard JAK, Davis BG. Chem Commun 2007:3145-7.
8. Venkateswarlu C, Gautam V, Chandrasekaran S. Carbohydr Res 2015;402: 200-7.
9. Chakka N, Johnston BD, Pinto BM. Can J Chem 2005;83:929-36.
10. Gamblin DP, Garnier P, van Kasteren S, Oldham NJ, Fairbanks AJ, Davis BG. Angew Chem Int Ed 2004;43:828-33.
11. Knapp S, Darout E, Amorelli B. J Org Chem 2006;71:1380-9.
12. Lopez M, Bornaghi LF, Driguez H, Poulsen S-A. J Org Chem 2011;76:2965-75.
13. Lopez M, Bornaghi LF, Poulsen S-A. Carbohydr Res 2014;386:78-85.
14. Pintér I, Kovács J, Tóth G. Carbohydr Res 1995;273:99-108.
15. Somsák L, Felföldi N, Kónya B, Hüse C, Telepó K, Bokor É, et al. Carbohydr Res 2008;343:2083-93.
16. Felföldi N, Tóth M, Chrysina ED, Charavgi M-D, Alexacou K-M, Somsák L. Carbohydr Res 2010;345:208-13.
17. McKay MJ, Nguyen HM. Carbohydr Res 2014;385:18-44.
18. John C, Lehmann J, Littke W. Carbohydr Res 1986;158:91-9.
19. Campbell AD, Paterson DE, Raynham TM, Taylor RJK. Chem Commun 1999: 1599-600.
20. Paterson DE, Griffin FK, Alcaraz ML, Taylor RJK. Eur J Org Chem 2002:1323-36.
21. Lay LG, Nicotra F, Panza L, Russo G. Synlett 1995:167-8.
22. Smoliakova IP, Kim YH, Barnes MJ, Caple R, Smit WA, Shashkov AS. Mendeleev Comтии 1995:15-6.
23. Gervay J, Flaherty TM, Holmes D. Tetrahedron 1997;53:16355-64.
24. Hoyle CE, Bowman CN. Angew Chem Int Ed 2010;49:1540-73.
25. Denes F, Pichowicz M, Povie G, Renaud P. Chem Rev 2014;114:2587-693.
26. Dondoni A, Marra A. Chem Soc Rev 2012;41:573-86.
27. Witczak ZJ. In: Witczak ZJ, Bielski R, editors. Click chemistry in glycoscience-new developments and strategies. Hoboken, New Jersey: Wiley; 2013. p. 33-43.
28. Lehmann J. Carbohydr Res 1966;2:486-99.
29. Staderini S, Chambery A, Marra A, Dondoni A. Tetrahedron Lett 2012;53:702-4.
30. Lázár L, Csávás M, Herczeg M, Herczegh P, Borbás A. Org Lett 2012;14:4650-3.
31. Lázár L, Csávás M, Hadházi Á, Herczeg M, Tóth M, Somsák L, et al. Org Biomol Chem 2013;11:5339-50.
32. Lázár L, Csávás M, Tóth M, Somsák L, Borbás A. Chem Pap 2015;69:889-95.
33. Richard M, Didierjean C, Chapleur Y, Pellegrini-Moise N. Eur J Org Chem 2015;2015:2632-45.
34. Fiore M, Marra A, Dondoni A. J Org Chem 2009;74:4422-5.
35. Lin H-C, Chen Y-B, Lin Z-P, Wong FF, Lin C-H, Lin S-K. Tetrahedron 2010;66: 5229-34.
36. Somsák L, Ferrier RJ. Adv Carbohydr Chem Biochem 1991;49:37-92.
37. Somsák L, Czifrák K. Carbohydr Chem 2013;39:1-37.
38. Tóth M, Somsák L. J Chem Soc Perkin Trans 1 2001:942-3.
39. Tóth M, Kövér KE, Bényei A, Somsák L. Org Biomol Chem 2003;1:4039-46.
40. Tóth M, Somsák L, Goyard D. In: Kovac P, editor. Carbohydrate chemistry: proven synthetic methods. Boca Raton: CRC Press; 2012. p. 355-65.
41. Tóth M, Kun S, Somsák L, Goyard D. In: Kovac P, editor. Carbohydrate chemistry: proven synthetic methods. Boca Raton: CRC Press; 2012. p. 367-75.
42. Szilágyi L, Györgydeák Z. Carbohydr Res 1985;143:21-41.
43. Černý M, Staněk J, Pacák J. Monatsh Chem 1963;94:290-4
44. Staněk J, Sindlerova M, Černý M. Collect Czech Chem Commun 1965;30: 297-303.
45. Cox JM, Owen LN. J Chem Soc C 1967:1121-30.

[^0]: * Corresponding author. Tel.: +36 52512900, +36 52522348; fax: +36 52512744.

 E-mail address: somsak.laszlo@science.unideb.hu (L. Somsák).

