Evidence for Homodimerization of the c-Fos Transcription Factor in Live Cells Revealed by Fluorescence Microscopy and Computer Modeling

Nikoletta Szalóki, Jan Wolfgang Krieger, István Komáromi, Katalin Tóth, György Vámosi

Department of Biophysics and Cell Biology, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary; German Cancer Research Center (DKFZ), Biophysics of Macromolecules, Heidelberg, Germany; HAS-UD Vascular Biology, Thrombosis and Hemostasis Research Group, Hungarian Academy of Sciences, Debrecen, Hungary; Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida, USA

The c-Fos and c-Jun transcription factors, members of the activator protein 1 (AP-1) complex, form heterodimers and bind to DNA via a basic leucine zipper and regulate the cell cycle, apoptosis, differentiation, etc. Purified c-Jun leucine zipper fragments could also form stable homodimers, whereas c-Fos leucine zipper homodimers were found to be much less stable in earlier in vitro studies. The importance of c-Fos overexpression in tumors and the controversy in the literature concerning c-Fos homodimerization prompted us to investigate Fos homodimerization. Förster resonance energy transfer (FRET) and molecular brightness analysis of fluorescence correlation spectroscopy data from live HeLa cells transfected with fluorescent-protein-tagged c-Fos indicated that c-Fos formed homodimers. We developed a method to determine the absolute concentrations of transfected and endogenous c-Fos and c-Jun, which allowed us to determine dissociation constants of c-Fos homodimers ($K_d = 6.7 \pm 1.7 \mu M$) and c-Fos–c-Jun heterodimers (on the order of 10 to 100 nM) from FRET titrations. Imaging fluorescence cross-correlation spectroscopy (SPIM-FCCS) and molecular dynamics modeling confirmed that c-Fos homodimers were stably associated and could bind to the chromatin. Our results establish c-Fos homodimers as a novel form of the AP-1 complex that may be an autonomous transcription factor in c-Fos-overexpressing tissues and could contribute to tumor development.

Activator protein 1 (AP-1) is a transcriptional regulator composed of members of the Fos, Jun, and ATF families of DNA-binding proteins (1, 2). c-Fos and c-Jun regulate a variety of processes, including proliferation, differentiation, apoptosis, and oncogenesis (3). They function as dimers binding to the promoter/enhancer regions of numerous mammalian genes (4). Their DNA-binding domain is composed of a leucine zipper promoting dimerization and a basic region that binds with high affinity to a specific 8-bp-long DNA sequence (5, 6).

In addition to forming stable heterodimers with c-Fos (7–9), c-Jun can also homodimerize, as revealed in vitro by electrophoretic mobility shift assay (EMSA) (8), and bind to DNA as a homodimer, although with lower affinity than the heterodimer (8, 10). In contrast, the c-Fos homodimer was found to be unstable in vitro, and thus, c-Fos has been thought to interact with DNA only by forming heterodimers with c-Jun (9, 11, 12). The instability of the c-Fos dimer is thought to be due to repulsion between its negatively charged residues in the leucine zipper (6). The wild-type c-Fos zipper showed no homoaosociation at a concentration of 0.1 μM according to EMSA (13). O’Shea and coworkers estimated the K_d of the c-Fos leucine zipper homodimer to be 3.2 and 5.6 μM at 0 and 25°C, implying that the failure of others to detect c-Fos dimerization was probably due to low protein concentrations (14). It was shown by EMSA that a single amino acid change in the leucine zipper is sufficient to allow a truncated c-Fos protein to homodimerize and bind to its DNA response element (15). Melting temperature analyses of different leucine zipper dimers revealed that thermal stability increases from c-Fos–c-Fos through c-Fos–c-Jun to c-Jun–c-Jun (16).

c-Fos expression and activation can be induced by growth factors, cytokines, or neurotransmitters via G-protein-coupled receptor-, mitogen-activated protein kinase-, cyclic AMP-, or Ca$^{2+}$-dependent signaling pathways (17–19). c-Fos overexpression occurs in several pathological conditions, which can have both proliferative and antiproliferative effects. c-Fos was overexpressed in some tamoxifen-resistant human breast tumors (20) and highly overexpressed in malignant oral tissues (21). It could also contribute to hepatocarcinogenesis (22). In a murine skin carcinogenesis model, c-Fos was shown to be required for malignant tumor conversion (23). c-Fos can be upregulated via the thyroid hormone nuclear receptor α1, which is a tumor inducer in intestinal tumorigenesis (24). Conversely, c-Fos overexpression inhibited cell cycle progression and stimulated cell death in hepatocytes (25). It also activated apoptosis in colorectal carcinoma cells in a p53-dependent manner (26).

Because c-Fos, but not c-Jun, is overexpressed in many different types of tumors, we were interested whether c-Fos at higher concentrations could form stable homodimers and bind to DNA...
in live cells. Förster resonance energy transfer (FRET) can be used to assess distances between two fluorophores in the range of 2 to 10 nm (27, 28), whereas fluorescence cross-correlation spectrometry (FCCS) can demonstrate the comobility of two molecules (29–31). Using these methods, we previously demonstrated heterodimerization and chromatin binding of c-Fos and c-Jun and described the conformation of their complex in live cells (7, 32). It was shown in our lab (German Cancer Research Center) by imaging FCCS that mobility and protein–protein interaction maps of c-Fos and c-Jun were correlated (33).

Here we performed FRET measurements of fluorescent protein-tagged c-Fos molecules by confocal microscopy and flow cytometry to examine whether c-Fos could form homodimers. We developed a method combining fluorescence correlation spectroscopy (FCS) and immunofluorescence to assess the concentrations of both fluorescently labeled and unlabeled endogenous c-Fos and c-Jun in cells. This allowed us to determine the K_d of c-Fos homodimers and c-Fos–c-Jun heterodimers in live HeLa cells by FRET titrations. We found that the K_d of the c-Fos homodimer is more than 1 order of magnitude higher than that of the heterodimer. To our knowledge, this is the first report on the determination of the K_d of transcription factors from FRET titrations in live cells. Imaging FCCS measurements revealed codiffusion of stable c-Fos homodimers and their binding to chromatin. Our molecular dynamics (MD) simulations support the notion that Fos homodimers can form, bind to DNA, and remain stable over the time span of the simulation (500 ns). This novel homodimeric form of c-Fos may act as an autonomous transcriptional regulator.

MATERIALS AND METHODS

Cell culture, plasmid construction, and transfection of HeLa cells. Cell culture, plasmid construction, and transfection have been described elsewhere (34). For detailed information on these procedures and the plasmids and proteins used in this study, see the supplemental material and Fig. 1.

Confocal microscopic and flow cytometric FRET analyses. Confocal microscopic images were collected with a Zeiss LSM 510 microscope. Flow cytometric measurements were carried out with a Becton Dickinson FACSAria III instrument. For details of data acquisition and FRET analysis on a pixel-by-pixel or cell-by-cell basis, which have been described earlier (34), see the supplemental material.

FCS and calibration of fluorescence intensity as a measure of absolute concentration. In FCS (35), molecules diffuse across a submilloliter ($<1 \mu m^3$) detection volume defined by a focused laser beam. This causes fluorescence fluctuations, which are analyzed to derive dynamic parameters of the molecules studied. FCS measurements were performed with a modified Olympus Fluoview 1000 confocal microscope mounted on an inverted IX-81 stand with an UPlanApo 60× numerical aperture 1.2 water immersion objective. The FCS extension (Steinbeis Transfer Unit for Biophysical Analytics, Heidelberg, Germany) equipped with two avalanche photodiodes (Perkin-Elmer, Wellesley, MA) is attached to the confocal scanning unit. Fluorescence of enhanced green fluorescent protein (EGFP) was excited by the 488-nm line of an Ar ion laser and detected at 500 to 550 nm. To allow FCS measurements at high EGFP concentrations (up to 25 μM), laser illumination was dimmed by a neutral-density filter (optical density of 1) to yield $P = 0.2$ μW at the sample. FCS measurements of live HeLa cells were performed with eight-well chambered cover glass plates (Nunc). Points for FCS measurements were selected from confocal images. In each sample, \sim30 cells were measured at room temperature and six 8-s runs per cell were recorded. Fluorescence autocorrelation functions (ACFs) were calculated online by an ALV-5000E hardware correlator card (ALV Laser, Langen, Germany). Autocorrelation curves were fitted to a two-component three-dimensional (3D) diffusion model with triplet correction by the program QuickFit 3.0 (36) as follows:

$$G(τ) = \frac{1 - T + T e^{-\frac{τ}{T^2}}} {1 - T} \frac{1}{N} \left[r_1 \left(1 + \frac{τ}{T_1} \right)^{-1} \left(1 + \frac{τ}{S T_1} \right)^{-\frac{1}{2}} + r_2 \left(1 + \frac{τ}{T_2} \right)^{-1} \left(1 + \frac{τ}{S T_2} \right)^{-\frac{1}{2}} \right]$$

where $τ$ is the lag time, T denotes the triplet fraction, $τ_1$ and $τ_2$ are the diffusion times of the fast and slow species (average dwell times of molecules in the detection volume), r_1 and $r_2 = 1 - r_1$ are the fractional amplitudes of the two components, N is the average number of molecules in the detection volume, and S is the aspect ratio of the ellipsoidal detection volume. To assess the aggregation state of EGFP-labeled proteins, the molecular brightness or fluorescence per particle, F/N, was calculated and compared with that of monomeric EGFP.

To facilitate K_d determinations, we developed a method to assess absolute concentrations from fluorescence intensity similar to that described in reference 37. In the first step, we determined the detection volume, V_{eff}, of the microscope by using a 130 nM Alexa Fluor 488 solution as a standard. From its ACF, $τ_2$, and S were determined by fitting and the lateral radius, $ω_{xy}$, and the axial radius, $ω_z$, were calculated with the following equation:

$$ω_{xy} = \sqrt{(4 D T_r ω_z)^2} \frac{ω_z}{ω_0},$$

where $τ_2$ is the measured diffusion time of the dye, which measures mobility and is inversely proportional to the diffusion coefficient and $D = 435 \mu m^2/s$ is the diffusion coefficient of Alexa Fluor 488 at 22.5°C (38). The effective detection volume is calculated with the following equation:

$$V_{eff} = π \frac{ω_0^2}{2} \omega_z.$$ (3)

From autocorrelation curves with EGFP, the particle numbers, N, were determined. From these, molar concentrations, c, were calculated as follows:

$$c = N / (N_A V_{eff})$$

where N_A is Avogadro’s number. Before every FCS measurement, the fluorescence intensity, F, was measured with the imaging detector (photomultiplier tube) of the confocal microscope at the site of FCS measurement; thus, c-versus-F calibration lines were generated (see Fig. 6B).

To facilitate the comparison of measurements on different days, we used fluorescent beads. The fluorescence intensity of 6-μm green calibration beads (beads with 1% relative intensity from the InSpeck green microsphere image intensity calibration kit [Molecular Probes, Life Technologies, Inc.]) was used to normalize EGFP fluorescence. Confocal sections in the equatorial plane of the beads were recorded on the same day as the FCS calibration with identical instrument settings. The average fluorescence intensity per pixel in the central area of the beads was obtained.
With the calibration curve (see Fig. 6B, triangles) the local intensity of the bead at its center corresponded to an EGFP concentration of \(c_{\text{bead unit}} = -15.4 \pm 0.7 \, \mu M \) (average ± standard error of the mean [SEM] of five experiments).

We could also transfer the concentration calibration to flow cytometric measurements. In the microscopic calibration described above, the local fluorescence intensities at a pixel of the sample and the bead are compared. In contrast, in flow cytometry, the total intensity of the whole cell and the bead is measured. Therefore, the ratio of the cellular and bead volumes had to be taken into account. The volume of HeLa nuclei (where Fos and Jun are localized) is \(-13.6\) times larger than that of the beads, as determined by confocal microscopic 3D sectioning and the Imaris software (Bitplane AG, Zurich, Switzerland). In addition, the different detection efficiencies of the spectra of the bead and EGFP arising from different band-pass filters in the flow cytometer and the confocal microscope resulted in a factor of 13. Taking these factors into account, the total intensity of a bead corresponded to an EGFP concentration of \(c_{\text{flow cyt. bead unit}} = \sim 1.2 \, \mu M \) (distributed in a HeLa cell nucleus) in flow cytometric experiments. If the localization of the protein is not perfectly nuclear, we can correct for this as well. From confocal microscopic sectioning, we determined the nuclear and cytoplasmic fractions of Fos\(^{15}\)-EGFP (the protein we used for FRET titrations), which were 85% ± 5% and 15% ± 5%, independent of the expression level (see Fig. S3 in the supplemental material). With this correction, a bead unit of \(-1.0 \pm 0.1 \, \mu M\) was used to calculate the nuclear concentration of Fos\(^{15}\)-EGFP in flow cytometric experiments.

Determination of the absolute concentration of endogenously expressed Fos and Jun. With regular immunofluorescence assays, only the relative amounts of endogenous and transfected proteins can be assessed. By knowing the absolute concentration of the transfected proteins, the endogenous concentration can also be determined. Therefore, we combined the immunofluorescence assay with the results of FCS-based EGFP concentration calibration to assess the endogenous concentrations of Fos and Jun in HeLa cells.

Immunofluorescence labeling was carried out as follows. After being washed three times with PBS, cells were fixed with 3.7% formaldehyde (4°C, 10 min), permeabilized with 0.25% Triton and 0.1% Tween–Tris-buffered saline (TBS) at room temperature for 30 min, and blocked with 2% bovine serum albumin with 0.1% Tween–TBS at room temperature for 30 min. Cells were incubated with a mouse anti-c-Fos (Merck, Whitehouse Station, NJ) or anti-c-Jun (Millipore, Billerica, MA) monoclonal antibody at 50 \(\mu g/ml \) for 1 h at room temperature and then incubated with the secondary polyclonal antibody NL-637-DAMIG (R&D Systems, Minneapolis, MN) at 50 \(\mu g/ml \) for 1 h at room temperature in the dark. Between consecutive steps, cells were washed three times with PBS. Titration of antibodies showed that these concentrations were close to saturating values (see Fig. S4A to C in the supplemental material).

Flow cytometric measurements were performed on a FACS Aria III flow cytometer. The green EGFP signal \((P^{\text{green}}) \) was excited at 488 nm, and emission was detected at 515 to 545 nm, while the red NL637 signal \((P^{\text{red}}) \) was exited at 633 nm and emission was detected through a 655-nm long-pass filter.

The amount of Fos–EGFP was determined by comparing its \(P^{\text{green}} \) fluorescence signal to that of the green bead used for concentration calibration. The red signal, \(P^{\text{red}} \), of the NL637–DAMIG antibody used for immunofluorescence labeling is proportional to the total amount of Fos, i.e., the endogenous Fos in the nontransfected sample and the endogenous Fos plus Fos–EGFP in the transfected one. The concentrations of endogenous Fos \((c_{\text{endogenous}}) \) and Fos–EGFP \((c_{\text{EGFP}}) \) were calculated from the green and red signals with transfected and nontransfected cells as follows:

\[
c_{\text{Fos-EGFP}} = \frac{c_{\text{flow cyt bead unit}}}{c_{\text{bead unit}}}
\]

\[
c_{\text{Fos-EGFP}} \times \frac{c_{\text{endogenous}}}{c_{\text{endogenous}}} = \frac{c_{\text{red transfected}}}{c_{\text{red nontransfected}}}
\]
[F_D]_t - [F_D]_A is the concentration of donor-tagged Fos not complexed with acceptor-tagged Jun (Fos-EGFP in monomeric form or complexed with endogenous Jun), contributing zero FRET efficiency. By introducing the acceptor-to-donor expression ratio N_A/N_D = [J_A]/[F_D] (see equation S8 in the supplemental material) and combining equations 10, 13, and 14, the measured FRET efficiency can be expressed as follows:

$$E_{\text{meas}} = \frac{\{F\} \{F\} \{FF\}}{\{F\} \{F\} \{J\} \{J\} + \{F\} \{FF\} + \{FF\} \{FF\} - \sqrt{\{F\} \{F\} \{FF\} \{FF\} + \{J\} \{J\} \{FF\} \{FF\} + \{F\} \{FF\} \{FF\} \{FF\}} 	imes \frac{N_A E_0}{N_D}$$

By substituting equation 11 and the expression for the N_A/N_D ratio into equation 15, we get the formula used in the nonlinear fit (see equation S12 in the supplemental material) with variables [F_D], and N_A/N_D.

To calculate Fos–Fos equilibria, we have to take Fos-Jun formation into account as well. Since the heterodimer is more stable, we make the simplifying assumption that all of the Jun molecules present are in complex with Fos at the high Fos concentrations where Fos homodimerization takes place, leaving no free Jun. We can write the following equilibrium equations:

$$[F]_t = [F]_d + [F]_A + [F]_d [J]_t + [J]_A + [J]_A$$

$$× \frac{N_A E_0}{N_D}$$

By substituting equation 11 and the expression for the N_A/N_D ratio into equation 15, we get the formula used in the nonlinear fit (see equation S12 in the supplemental material) with variables [F_D], and N_A/N_D.

Fos molecules can be labeled with a donor or an acceptor or can be unlabelled, and only homodimers containing both a donor and an acceptor will produce FRET (Fig. 2). The fraction of such double-labeled pairs follows a multinomial distribution and is calculated as follows:

$$p_{DA} = \frac{2p_D p_A}{2p_D p_A + p_D + p_A}$$

where p_D = [F_D]/([F_D] + [F_A] + [F_J]) and p_A = [F_A]/([F_D] + [F_A] + [F_J]) are the donor- and acceptor-tagged fractions of Fos. The measured FRET efficiency follows the equation:

$$E_{\text{meas}} = \left(\frac{p_D p_A}{p_D} \right) \times E_0 = \left(\frac{[F]_D [F]_A}{[F]_D} \right) \times E_0$$

Combining equations 17 and 19 (see also equation S14 in the supplemental material) yields the following equation:

with

where [F]_t is the total Fos concentration (including donor-tagged, acceptor-tagged, and endogenous Fos, without respect to a monomeric or dimeric state) and E_0 is the FRET efficiency of a donor-acceptor pair (this may be different from the E_0 of the heterodimer). These equations were used to determine the K_D of dimers from flow cytometric FRET experiments by nonlinear regression using Prism (GraphPad Software, Inc.). In the analysis we also considered the presence of dark acceptor species due to imperfect maturation and a cytoplasmic fraction of Fos.
c-Fos–c-Jun and c-Fos–c-Fos dimeric structures were also carried out with the setup protocol detailed above. The Leu zipper region we considered consisted of amino acid residues 275 to 313 and 160 to 198 of the c-Jun and c-Fos fragments, respectively. Simulations were completed for both the wild-type Leu zipper regions and the corresponding structures by applying Leu280Asp and Leu294Asp virtual mutations in c-Jun protein fragments and Leu165Asp and Leu179Asp mutations in c-Fos protein fragments.

RESULTS

FRET microscopy implies Fos homodimerization. FRET is the radiationless transfer of energy from a donor fluorophore to a nearby acceptor (27, 28), which is often used to assess molecular distances. To measure the association of c-Fos molecules (referred to as Fos in the following sections), we used Fos and the C-terminally truncated mutant form Fos215 tagged with enhanced cyan fluorescent protein (ECFP) (donor) or enhanced yellow fluorescent protein (EYFP) (acceptor) in confocal microscopic FRET experiments. Fos215 was prepared (32) to bring the fluorescent-protein-labeled C termini of Fos and Jun to similar distances from the leucine zipper to enhance FRET (Fig. 1). Images of donor, transfer, and acceptor signals were recorded, and FRET efficiencies (E values) of labeled proteins, as well as acceptor-to-donor molecular (N_A/N_D) ratios were calculated on a pixel-by-pixel or cell-by-cell basis.

Pixel-by-pixel FRET efficiency maps and histograms of representative cells are shown in Fig. 3. Cells cotransfected with full-length Fos-ECFP–Fos-EYFP (top row) yielded a mean FRET efficiency of E = 5.0% ± 0.5% (SEM; n = 30 cells); for Fos215-ECFP–Fos215-EYFP (second row; n = 30), it was 10.0% ± 0.5%. The higher E value of the truncated Fos215 molecules is probably due to the reduced distance between the shorter C-terminal regions (Fig. 1). We also measured the FRET efficiencies of the Fos-ECFP–Jun-EYFP and Fos215-ECFP–Jun-EYFP samples (third and fourth rows; n = 30), which were 7.9% ± 0.4% and 15.0% ± 1.1%. For these pairs, we have shown heterodimer formation earlier by FCCS and FRET (7, 32, 34). Both Fos and Jun molecules showed strong nuclear enrichment. The negative control (ECFP and EYFP coexpressed as separate proteins) and the positive control (ECFP-EYFP fusion protein) had mean E values of 2.8% ± 0.4% and 48.6% ± 0.8% (fifth and sixth rows; n = 20). These proteins had a diffuse distribution in the whole cell. The FRET efficiency of the Fos-Fos (or Fos215-Fos215) samples was lower than that of the Fos-Jun and Fos215-Jun heterodimers but significantly higher than that of the negative control, indicating that Fos formed homodimers in these cells.

Dimer formation depends on the concentrations of the interacting partners; therefore, we analyzed FRET in cells expressing various amounts of the proteins. We calculated average intensities of fluorescent bead as an intensity standard. The EGFP concentration versus fluorescence intensity curve of EGFP concentration versus fluorescence intensity per pixel, c(F) (see Fig. 6B) (37). To make the concentration calibration portable and facilitate the comparison of measurements on different days, we normalized EGFP fluorescence by using a fluorescent bead as an intensity standard. The EGFP concentration corresponding to one bead unit was ∼15.4 ± 0.7 μM for the flow cytometer. For the latter calculation, we took the nucleus-to-bead volume ratio (13:1) and the nuclear fraction of Fos215-EGFP (85%) into account. In that way, the molar concentration of EGFP-tagged protein could be assessed by simply comparing its intensity to that of the bead measured on the same day in the microscopic or flow cytometric setup without having to repeat the FCS calibration.

Determination of the absolute concentrations of endogenous and transfected Fos and Jun. To calculate the K_d of dimers, we also need to know the amount of endogenous Fos and Jun, since they can also form dimers with each other or with their fluorescent counterparts. First, we detected the green fluorescence signal of Fos-EGFP in transfected cells and compared it to that of the calibration bead to determine the absolute concentration of transfected protein (equation 5 in Materials and Methods; see Fig. S4D to G in the supplemental material). Then we used immuno-fluorescence labeling paired with far red channel flow cytometry available for donor-tagged ones to form a complex. The plateau or, in its absence, the average of the highest E values is presented in Fig. 4C, which shows that at higher Fos concentrations, the extent of homodimerization increased as expected. Similar to the pixel-by-pixel analysis, the mean FRET efficiencies of the Fos-Fos and Fos215-Fos215 dimers are between those of the negative control and the respective Fos-Jun or Fos215-Jun dimers.

The measured E values depend on the FRET efficiency E_0 in a single donor-acceptor complex determined by the dye-to-dye distance and orientation and on the fraction of donors forming dimers with an acceptor. The length of the Fos215 molecule downstream of the dimerization domain is similar to that of Jun; thus, the dye-to-dye distances in the Fos215–Fos215 and Fos215–Jun complexes should be similar. However, in the case of Fos homodimers, only complexes of donor- and acceptor-tagged proteins yield FRET (Fig. 2). The measured mean E value is a weighted average of non-FRET-ting and FRET-ting dimers. Thus, the mean FRET efficiency of the homodimer is expected to be lower than that of the heterodimer. This was taken into account in our subsequent analyses.

Calibration of fluorescence intensity to measure absolute EGFP concentrations. The above-described FRET titration curves demonstrated that FRET efficiency can be used to monitor the extent of homo- and heteroassociations quantitatively in our system. The stability of a complex is characterized by its dissociation constant, K_d. In Materials and Methods, we outlined a method to determine the K_d of interacting proteins in live cells from FRET titration curves. This requires knowledge of the absolute concentrations of all of the interacting molecules, i.e., the transfected fluorescent and endogenous nonfluorescent ones. In subsequent measurements, we used the EGFP-mRFP1 dye pair because of the higher photostability of EGFP than ECFP. First, we developed a calibration method to determine the concentration of fluorescent proteins. Confocal images of cells expressing free EGFP were taken, and ACF curves were recorded at selected points of the images (see Fig. 6A). From ACF curves, local dye concentrations were determined by nonlinear fitting, yielding a calibration curve of EGFP concentration versus fluorescence intensity per pixel, c(F) (see Fig. 6B) (37) to pixel by pixel. ACF curves were recorded at selected points of the images (see Fig. 6A). From ACF curves, local dye concentrations were determined by nonlinear fitting, yielding a calibration curve of EGFP concentration versus fluorescence intensity per pixel, c(F) (see Fig. 6B) (37) to pixel by pixel. ACF curves were recorded at selected points of the images (see Fig. 6A). From ACF curves, local dye concentrations were determined by nonlinear fitting, yielding a calibration curve of EGFP concentration versus fluorescence intensity per pixel, c(F) (see Fig. 6B) (37) to pixel by pixel. ACF curves were recorded at selected points of the images (see Fig. 6A). From ACF curves, local dye concentrations were determined by nonlinear fitting, yielding a calibration curve of EGFP concentration versus fluorescence intensity per pixel, c(F) (see Fig. 6B) (37) to pixel by pixel. ACF curves were recorded at selected points of the images (see Fig. 6A). From ACF curves, local dye concentrations were determined by nonlinear fitting, yielding a calibration curve of EGFP concentration versus fluorescence intensity per pixel, c(F) (see Fig. 6B) (37) to pixel by pixel. ACF curves were recorded at selected points of the images (see Fig. 6A). From ACF curves, local dye concentrations were determined by nonlinear fitting, yielding a calibration curve of EGFP concentration versus fluorescence intensity per pixel, c(F) (see Fig. 6B) (37) to pixel by pixel.
to detect the total Fos pool in nontransfected and Fos-EGFP-
transfected samples. The immunofluorescence signal of the non-
transfected sample is proportional to the endogenous Fos concen-
tration, while that of the transfected one corresponds to the sum of
the endogenous and transfected amounts. Thus, using the known
concentration of Fos-EGFP, we deduced the average concen-
trations of endogenous Fos (113 ± 11 nM) and Jun (94 ± 10
nM) in HeLa cells (equation 7 in Materials and Methods). Our
procedure combining immunofluorescence and EGFP-tagged
protein expression can be generally used to assess the absolute
concentration of any endogenously expressed nonfluorescent
protein.

**Determination of the dissociation constant of Fos-Jun het-
erodimers and Fos homodimers in live cells with flow cytomet-
ric FRET data.** We wanted to determine the dissociation constants
of homo- and heterodimers from FRET titrations. Therefore, we
derived the expressions of FRET efficiency in terms of the concen-
trations of donor-tagged, acceptor-tagged, and unlabeled endog-
enous proteins of interest and the K_d (equations 15, 20, and 21;
see equations S12 and S14 in the supplemental material). Flow
Cytometric FRET experiments were carried out with large cell populations expressing EGFP- and mRFP1-tagged proteins at various concentrations. Cell-by-cell FRET efficiency (E) values, donor concentrations (F_D) (derived from the FRET-corrected donor intensity [I_D] by comparison to beads), and acceptor-to-donor molecular ratios (N_A/N_D) were determined. To characterize heterodimers, cells were cotransfected with Fos215-EGFP–Jun-mRFP1 or Jun-EGFP–Fos215-mRFP1 pairs. The extent of association depends on the concentrations of both molecules. To create functions with a single variable, cells were grouped into classes with approximately constant N_A/N_D ratios. E values of selected N_A/N_D ratio groups were plotted as a function of the donor concentration (Fig. 5A and C). The FRET efficiency increases with increasing N_A/N_D ratios, as expected.

Figure 5B and D display the theoretical values of the maximal FRET efficiencies at various N_A/N_D ratios (see equation S13 in the supplemental material), which could be measured if all possible donor-acceptor complexes were formed (and association were complete). The function increases linearly up to N_A/N_D ratio of 1, where it reaches E_0, the FRET efficiency of a single donor-acceptor pair, and remains constant at higher N_A/N_D ratios. E-versus-N_A/N_D data were fitted to the model function describing the heterodimerization process (see equation S12 in the supplemental material), taking the presence of fluorescent-protein-tagged and unlabeled endogenous Fos and Jun into account (Fig. 2A). The apparent K_d values derived from the fits varied with various N_A/N_D ratios for both pairs between 10 and 370 nM. We received lower apparent K_ds where Fos was present in excess (larger Fos/Jun ratios) (Fig. 5E).

Fos homodimerization was studied by measuring the FRET efficiency of Fos215-ECFP and Fos215-mRFP1 (Fig. 5F). Here, homodimers can contain donor-acceptor-, donor-donor-, and acceptor-acceptor-tagged protein pairs (plus dimers containing endogenous Fos) (Fig. 2B), thus, the dependence of E on the N_A/N_D ratio is different from that for heterodimerization (Fig. 5F). The theoretical E_{max} value approximates the value of E_0 asymptotically as N_A/N_D tends to infinity (see equation S15 in the supplemental material). Curves were fitted by taking into account both the homoaosociation of Fos (in all combinations of donor-tagged, acceptor-tagged, and endogenous molecules) and its heteroaosociation with endogenous Jun (see equation S14 in the supplemental material). In the fits, the K_d and E_0 values were linked for data sets with different N_A/N_D ratios, yielding a K_d of 6.7 ± 1.7 μM and an E_0 of 9.5% ± 0.8% for the homodimerization process. When different N_A/N_D groups were fitted independently, K_d and E_0 ranged from 5.4 to 9.7 μM and from 9.1 to 11.9%, respectively. As expected, the K_d of the Jun-Fos215 heterodimer is much lower than that of the Fos homodimer, which means that Fos homodimerization will be significant only in the case of its selective overexpression. At equal Fos and Jun concentrations, the formation of Fos-Jun heterodimers is more probable than the formation of Fos homodimers.

![FIG 4](http://mcb.asm.org) Cell-by-cell analysis of dimerization by confocal microscopic FRET. (A, B) FRET efficiencies of donor (ECFP)- and acceptor (EYFP)-tagged Fos215 or full-length Fos molecules as a function of the acceptor-to-donor molecular ratio (N_A/N_D). Data from 300 cells were grouped into three subsets as a function of donor intensity (low, <800; medium, 800 to 1,200; high, >1,200 arbitrary units). Cellular data were binned in 0.25-wide intervals of the N_A/N_D values to reduce data scatter. FRET efficiencies increased with increasing N_A/N_D ratios. (C) Saturation values of FRET efficiencies at high N_A/N_D ratios (>0.95). ECFP-EYFP fusion protein served as a positive control, and independently expressed ECFP and EYFP served as a negative control. The FRET data of the Fos-Jun and Fos215-Jun pairs were previously published in reference 34.
Fluorescence brightness and slow diffusion indicate Fos homoassociation and DNA binding. FCS was used not only for concentration calibration but also as an additional tool to probe Fos homoassociation. Diffusing particle concentration-versus-fluorescence intensity curves were generated for EGFP, Fos/H9004/H9004-EGFP (a mutant form lacking the DNA-binding and dimerization domains, see Fig. 1), full-length Fos-EGFP, and Fos-EGFP–Jun-mRFP1 samples (Fig. 6B). The slopes of the fitted straight lines for EGFP and Fos△△–EGFP were 30.0 and 30.3 (nM/intensity unit). The similar slopes indicate that equal intensities of EGFP or Fos/H9004/H9004–EGFP correspond to equal particle numbers, suggesting that this mutant form contains one fluorophore per particle; i.e., it is monomeric. In contrast, full-length Fos–EGFP yielded a slope of 11.5, which is less than half of the previous values. Thus, an equal
intensity of Fos-EGFP corresponds to a little less than half the particle concentration of the monomeric proteins, implying the formation of Fos homodimers. In fact, this curve is not expected to be linear in the low-concentration range because of the monomer-dimer transition. The slope of the Fos-EGFP–Jun-mRFP1 sample (with an average Jun/Fos ratio of 0.7) is between the monomeric and dimeric slopes. Therefore, Fos-EGFP is partially complexed with Jun-mRFP1, where the brightness of EGFP is similar to that of monomers, whereas the rest of Fos-EGFP may form homodimers. We also analyzed the specific particle brightness, \(F/N \), defined as the ratio of the fluorescence intensity, \(F \), to the number of particles, \(N \). This parameter characterizes the association state of a labeled protein and is proportional to the number of fluorophores in a jointly diffusing complex. \(F/N \)-versus-EGFP concentration values are shown in Fig. 6C. Fos-EGFP is brighter than EGFP, Fos\(^{AA}\)-EGFP, or Fos-EGFP–Jun-mRFP1, corroborating the conclusion that Fos-EGFP is homodimerized when there is not enough Jun present. The brightness of Fos-EGFP increases with its concentration, indicating that dimerization is enhanced at higher concentrations, whereas the brightness of EGFP or Fos\(^{AA}\)-EGFP does not vary with its concentration, just as expected for monomers.

From the ACF curves, we also determined molecular diffusion properties (Fig. 6D). ACF curves from the EGFP, Fos-EGFP, Fos\(^{AA}\)-EGFP, and Fos-EGFP–Jun-mRFP1 samples were fitted to a model assuming fast, freely diffusing and slowly moving components. Diffusion coefficients and the fractions of the species are shown in (Fig. 6E). The average fraction of the slow component was 0.35 ± 0.14 for Fos-EGFP expressed alone and 0.38 ± 0.10 for Fos-EGFP when coexpressed with Jun-mRFP1, whereas it was only 0.19 ± 0.12 for the nonbinding Fos\(^{AA}\)-EGFP mutant form and 0.07 ± 0.05 for EGFP. The similarly increased slow fractions of Fos-EGFP expressed alone or together with Jun-mRFP1 suggest...
that Fos can bind to chromatin not only as a heterodimer but also as a homodimer.

SPIM-FCCS confirms stable homoassociation and chromatin binding of Fos proteins. We used FCCS, the two-color version of FCS, to characterize the comobility of dimer-forming Fos molecules. In FCCS, the ACF and cross-correlation function (CCF) from two molecular species tagged with different colors are determined. A nonzero CCF amplitude indicates that the molecules are moving together. The ratio of the CCF and ACF amplitudes from a double-labeled sample is proportional to the fraction of molecules forming a complex. FCCS measurements were performed by SPIM with an electron-multiplying charge-coupled device camera as a sensor, which allows simultaneous measurements at many pixels in a cell. This improves the statistics and provides two-dimensional interaction and mobility maps (40).

Measurements were carried out with cells cotransfected with the following protein combinations: Fos\(^{215}\)-EGFP–Fos\(^{215}\)-mRFP1, Fos\(^{215}\)-EGFP–Jun-mRFP1, Fos\(^{215}\)-EGFP–Fos\(^{215}\)-mRFP1 (negative control), and EGFP-P30-mRFP1 (positive control, EGFP and mRFP1 connected by a 30-residue-long polypeptide linker). Cells expressing about equal amounts of the green and red fluorophores were selected from the concentration range used in FRET experiments (0.3 to 10 \(\mu\)M). Figure 7A shows typical correlation curves obtained from the four samples. Amplitudes of the curves were low because of the high concentration required to see Fos homodimerization, but our data showed that quantitative measurements were possible even in this concentration range. At each pixel, we performed a global FCCS fit to the green and red ACF curves and the CCF (40) (see equations S16 to S18 in the supplemental material). The fit functions were parameterized by the concentrations of three diffusing species (green only, red only, green-red [GR] dimers), which were linked over all three curves. We assumed a two-component diffusion model for the ACF curves and a one-component model for the CCF. Diffusion coefficients were not linked. Figure 7B shows examples of the maps and histograms of the relative GR dimer concentration \(c_{\text{GR}}/c_{\text{G-only}} + c_{\text{R-only}} + c_{\text{GR}}\) obtained from these fits. Figure 7C shows the statistics from \(n > 10\) cells as the average ± the standard deviation (SD) of the medians extracted from the pixel distributions in each cell. As expected, the negative control had the smallest apparent dimer fraction and the positive control had the largest one, defining the dynamic range of the measurements (0.06 to 0.32).

The upper limit is \(<1\) because of the imperfect overlap of the green and red detection volumes, partial photobleaching of the dyes, and imperfect dye maturation/folding, producing green-only and red-only species besides doubly labeled molecules. The Fos-Jun heterodimer showed a large apparent dimer fraction (0.22 ± 0.07), whereas the value from the Fos\(^{215}\) homodimer was slightly smaller (0.16 ± 0.05) but still significantly larger than that of the negative control.

We also analyzed the protein mobility of the GR dimers that could be extracted from the fits of the CCFs. We used a single-component fit; a second component could not be fitted to the CCFs of the Fos-EGFP–Jun-mRFP1 and Fos\(^{215}\)-EGFP–Fos\(^{215}\)-mRFP1 samples, suggesting the presence of only a single slow species. The CCFs of the negative control could not be fitted reliably because of their very low amplitude. The diffusion coefficient \(D_{\text{cross}}\) of the EGFP-P30-mRFP1 fusion protein was \(\sim 4.3 \text{ \mu m}^2/\text{sec}\) (the mean value of two components present for this protein), whereas the average diffusion coefficients of the Fos\(^{215}\)-Fos\(^{215}\) and Fos-Jun dimers were much lower, \(\sim 0.3\) and 0.4 \(\text{\mu m}^2/\text{sec}\) (Fig. 7D). The presence of a single slow component for Fos homodimers and Fos-Jun heterodimers indicated that these complexes could bind to slowly moving nuclear components, supposedly the chromatin.

Fos-Jun and Fos-Fos complexes form stable dimers, as revealed by MD modeling. On the basis of the distance-related data from FRET measurements, we performed MD modeling to verify the stable formation of Fos homodimers. In Fig. 8, the first frames from the production dynamic trajectories are presented. During the 500-ns simulation interval (see Movies S5 and S6 in the supplemental material), not only the Fos-Jun heterodimer but also the Fos-Fos homodimer remained bound to DNA and the dimeric structures (coiled coil motifs) stayed strongly associated by their leucine zipper regions. It is noteworthy that the Fos-Fos homodimer exists despite the net negative charge of the leucine zipper regions. This indicates that in the dimeric form, hydrophobic interactions play a crucial role and electrostatic forces are largely shielded by counterions. While H bonds and even salt bridges can contribute to the stabilization of the dimeric structure as well, the H-bond networks between protein chains have variability in their connection patterns, which further supports the importance of hydrophobic interactions in the dimeric structures.

Simulations carried out solely for the leucine zipper region of c-Jun–c-Fos and c-Fos–c-Fos dimers indicated stable structures with coiled-coil motifs (Fig. 8C and D). These results are both in good accordance with former simulations carried out for the c-Jun–c-Fos leucine zipper region (47) and underline again the role of hydrophobic forces even in the stability of the c-Fos–c-Fos homodimer. However, when Leu-Asp virtual mutations were introduced into these dimeric structures (as a negative control), the contact between the corresponding regions of helices was either weakened (c-Jun–c-Fos) or even destroyed (c-Fos–c-Fos), as demonstrated in Fig. 8E and F.

DISCUSSION

Homodimer formation of short fragments, mainly the leucine zippers, of Fos proteins has been studied earlier. However, *in vitro* studies reported low stabilities of the homodimer, and it was assumed that it could not be present in live cells. By combining FRET, FCS, and imaging FCCS, we demonstrated that Fos proteins formed homodimers in live cells and presented a method of calculating their dissociation constant. The \(K_d\) of Fos homodimers in HeLa cells was 6.7 ± 1.7 \(\mu\)M, which is on the same order of magnitude as the value of 5.6 \(\mu\)M determined for its isolated leucine zippers *in vitro* by circular dichroism (14). Values reported for the heterodimers of the isolated leucine zippers (10, 48, 49) or longer polypeptides (50) *in vitro* varied between 1 and 140 nM. For the Fos-Jun heterodimer, we found a \(K_d\) range of 10 to 370 nM in live cells, which depended on the Fos/Jun ratio and on putting the donor and acceptor tags on one or the other protein. The variation of the \(K_d\) with different Fos/Jun ratios may be caused by the formation of Jun homodimers, which could interfere with the heterodimerization process. At lower Fos/Jun ratios, when there is excess Jun present, the relative amount of Jun homodimers is expected to be higher; thus, less free Jun is available and the heterodimerization process could shift toward higher concentrations (Fig. 5E), resulting in a higher apparent \(K_d\). At higher Fos/Jun ratios, where the Jun homodimer is expected to be less abundant, we got a \(K_d\) of \(<100\) nM for the heterodimer, in agreement with earlier *in vitro* results. The shift between the Fos-Jun and Jun-Fos
FIG 7 SPIM-FCCS data analysis showing codiffusion and DNA binding of Fos homodimers. (A) ACFs and CCFs from SPIM-FCCS measurements. Green, EGFP ACF; red, mRFP1 ACF. Solid lines indicate the experimental data, whereas dashed lines are fits assuming two diffusing components (ACF curves) or one component (CCFs). The red horizontal line is the cross-talk-corrected red ACF amplitude, and the blue horizontal line is the level of cross-correlation due to cross talk. Cross-correlation above this value is due to the codiffusion of green and red molecules. (B) The first two columns are fluorescence intensity maps of EGFP or mRFP1 from a selected cell. The third column is a map of the fraction of GR dimers among all of the molecules detected \(\frac{c_{GR}}{c_{G-only} + c_{R-only} + c_{GR}} \), determined from the fits, and the histograms show their distributions. (C and D) Average fractions of GR dimers (C) and diffusion coefficients, \(D_{cross} \) (D), from the cross-correlation fits (mean ± SD; \(n > 20 \) for each sample). Fits were carried out on a pixel-by-pixel basis, and the median of the respective parameter from each cell was then averaged. ***, \(P < 0.0001 \) (t test).
The atomic details of constituent residues are shown by stick representation with the C, H, N, O, and S atoms in gray, white, blue, red, and yellow, respectively. For the Jun fragment (A) or the second Fos fragment (B), a solvent-excluded surface representation was applied by using the above-described color codes. (C to F) Visual representation of trajectories from MD simulations of the Leu zipper region of the Jun-Fos (C, E) and Fos-Fos (D, F) dimeric structures. Wild-type protein fragments (C, D) and virtually mutated (Leu280Asp and Leu294Asp in c-Jun and Leu165Asp and Leu179Asp in c-Fos) fragments (E, F) were considered. Mutant residues are shown by stick representation with the color scheme of the atoms as above. Jun is represented by the orange helix, and Fos is represented by the green and yellow helices. From each 500-ns dynamic trajectory, 100 frames were saved equidistantly and superimposed (after removal of rotation and translation). Wild-type protein fragments (C, D) demonstrate stable coiled-coil motifs with relatively small fluctuations. The mutations in the Fos-Jun fragment (E) resulted in a somewhat distorted structure and larger fluctuations, indicating weakening of the interaction between the monomers. This is even more strongly expressed in the mutant dimeric Fos-Fos fragment (F), where the hydrophobic interaction between regions affected by the mutations is completely destroyed.
or together with Jun; in contrast, the slow fraction of the FosΔ mutant form was significantly smaller, hinting at DNA binding of wild-type Fos either as a homodimer or as a heterodimer. The presence of a very small apparent slow fraction in the case of lone EGFP and FosΔ is probably due to molecular crowding in the nucleus leading to anomalous subdiffusion (37). This makes the autocorrelation curves less steep than for free diffusion, mimicking the presence of a second, slowly moving component with a longer diffusion time.

SPIM-FCCS allowed us to confirm the presence, visualize the distribution, and characterize the intranuclear mobility of Fos homodimers. These were observed for at least a few hundred milliseconds, the time window defined by the cross-correlation diffusion time. Their diffusion coefficient derived from the cross-correlation curve was \(\sim 0.3 \mu m/s \), similar to that of Fos-Jun heterodimers (0.4 \(\mu m/s \)). The measured diffusion coefficients are similar to those determined by confocal FCCS for the same proteins (7) and to values observed for other chromatin-binding proteins, e.g., nuclear receptors (55, 56) or H2A (57).

Our MD modeling simulations also supported the possibility of homodimerization, showing that homodimers stayed together for the duration of the simulation.

The existence of stable Fos homodimers capable of chromatin binding brings up the possibility that they act as transcriptional regulators and may explain the importance of Fos overexpression in oncogenesis. Various complexes of different Fos and Jun variants occur in different cell types, contributing to cell proliferation or apoptosis (58–60). It is not clear yet whether the Fos homodimer could function as an autonomous transcription factor or, alternatively, occupy the binding sites of AP-1 heterodimers, preventing their normal function and interfering with their proliferative or antiproliferative effects.

ACKNOWLEDGMENTS

We thank Gabriele Müller for preparing the EGFP-P30-mRFP1 construct, László Nagy, Jörg Langowski, and Matt Peloquin for useful comments on the manuscript, and Edina Nagy for excellent technical assistance. This work was supported by grants from the Hungarian Scientific Research Fund (OTKA K103965 to G.V.; the Magyar Ösztöndíj Bizottság and the Deutscher Akademischer Austauschdienst (MOB/21-1/2013 to G.V. and K.T.); TÁMOP-4.2.2.A-11/1/KONV-2012-0023 VÉD-ELEM implemented through the New Hungary Development Plan cofinanced by the European Social Fund and the European Regional Development Fund; GSC 220) in the framework of the German Excellency Initiative (to G.V. and K.T.); TÁMOP-4.2.2.A-11/1/KONV-2012-0023 VÉD-ELEM; and the Mathematical and Computational Methods for the Sciences (HGS MathComp; GSC 220) in the framework of the German Excellency Initiative (to J.W.K.).

REFERENCES

Downloaded from http://mcb.asm.org on September 30, 2015 by guest
Evidence for homodimerization of the c-Fos transcription factor in live cells revealed by fluorescence microscopy and computer modeling

Nikoletta Szalóki, Jan Wolfgang Krieger, István Komáromi, Katalin Tóth and György Vámosi

Mol. Cell Biol. 2015

Cell culture and transfection of HeLa cells

Adherent HeLa cells were grown in a 5% CO₂ humidified atmosphere at 37°C and passaged in RPMI 1640 supplemented with 10% FBS, 2 mM glutamine, 100 U/l penicillin and 100 mg/l streptomycin without phenol red. For measurements with confocal microscopy, HeLa cells were plated 48 h before the measurement in 8-well chambered Ibidi coverglasses (Ibidi GmbH, Planegg/Martinsried, Germany) at a concentration of 15,000 cells in 300 μl medium per well. For FACS, they were plated in 24-well cell culture plates (Greiner Bio-One GmbH, Frickenhausen, Germany) using 50,000 cells in 500 μl per well. For transfection 25 μl of FBS-free RPMI, 2 μl FuGene HD reagent (Promega, Madison, Wisconsin, USA) and 0.8 μg DNA were mixed, incubated for 20 minutes at room temperature, then 5 μl of this mix was added to each well. For SPIM-FCCS 100,000 cells were plated in 35-mm Petri dishes. 90 μl FBS-free RPMI was mixed with 0.1 to 6 μg of plasmid DNA and 4 μl FuGene HD reagent and the total amount of the mix was used for transfection in a small Petri dish. Small pieces of No.3 cover glass (approximately 5×8 mm², thoroughly cleaned and sterilized) were put into the Petri dishes before seeding the cells. These were later mounted in the SPIM.

Plasmid construction

Experiments were carried out using HeLa cells transfected with fluorescent proteins. The ECFP, EYFP pair was used for FRET measurements with confocal microscopy, and the EGFP, mRFP1 pair for flow cytometric FRET and SPIM-FCCS experiments. The expression vectors pSV-c-Fos-ECFP, pSV-c-Fos-EGFP, pSV-c-Fos-EYFP, pSV-c-Fos-mRFP1 and the positive controls, pSV-ECFP-EYFP and pSV-EGFP-mRFP1 (coding for the fusion of the two fluorescent proteins connected by a RNPPVAT linker) were constructed using a multi-step cloning strategy (1). Fos215 is a truncated version of full-length c-Fos, where the last 165 amino acids have been removed (2). Cells co-transfected with ECFP and EYFP or with EGFP and mRFP1 plasmids served as negative controls. Cells transfected with ECFP, EGFP, EYFP, mRFP1 alone were used for the determination of spectral cross-talk of the dyes between detection channels. As a biological negative control, a deletion mutant of c-Fos lacking the DNA-binding and dimerization domains was used (1). For the SPIM-FCCS measurements an EGFP-P30-mRFP1 construct containing a 30 amino acid long linear proline linker was inserted to reduce FRET and to increase the size of the product; addition of the linker increased the diffusion time of the molecule making it more suitable for camera-based SPIM-FCCS measurement, which has a time resolution of ~0.5 ms.

Calculation of FRET efficiency from confocal images

FRET measurements between ECFP as donor and EYFP as acceptor labels were performed on a Zeiss LSM 510 confocal microscope (Carl Zeiss, Jena, Germany) as described earlier (3). Images were collected in three channels, I_1 (donor signal), I_2 (FRET signal) and I_3 (acceptor signal), which contain different contributions from donor and acceptor emission (see Eq. 1). The donor signal was excited at 458 nm and emission was detected
between 475-525 nm (I_1), while the FRET signal was also excited at 458 nm and detected between 530-600 nm (I_2). The acceptor signal was excited at 514 nm and detected between 530-600 nm (I_3). The “Multi Track” option of the data acquisition software was used switching laser illumination line by line to minimize spectral crosstalk between the channels. These three fluorescence signals can be expressed in terms of contributions due to direct excitation of the donor and the acceptor, and the sensitized emission of the acceptor:

$$I_1(458, 475-525) = I_D (1 - E) + I_A S_4 + I_D E \alpha \frac{S_4}{S_2}$$

$$I_2(458, 530-600) = I_D (1 - E) S_1 + I_A S_2 + I_D E \alpha$$

$$I_3(514, 530-600) = I_A$$

(S1)

Intensities I_{1-3} were background-corrected by subtracting mean intensities of non-transfected cells. I_D is the unquenched pure donor intensity in channel 1, I_A is the pure acceptor signal in channel 3 and E is the FRET efficiency. The spectral crosstalk factor S_1 was calculated using cells expressing ECFP alone, whereas S_2 and S_4 were measured from cells expressing EYFP only:

$$S_1 = \frac{I_2^D}{I_1^D}, \quad S_2 = \frac{I_2^A}{I_3^A}, \quad S_4 = \frac{I_1^A}{I_3^A}. \quad \text{(S2)}$$

The term describing sensitized acceptor emission (acceptor emission excited via FRET from the donor) is $I_D E \alpha$. The factor α is the ratio of the signal from excited EYFP molecules detected in channel 2 to the signal of an equal number of excited ECFP molecules in channel 1. To determine α, we used cells transfected with the fusion protein ECFP-EYFP, in which donor and acceptor are expressed at a one-to-one ratio. For this sample α can be written as (3):

$$\alpha = \frac{I_A S_2}{I_D \varepsilon_A^{458} \varepsilon_D^{458}}. \quad \text{(S3)}$$

The term $\varepsilon_A^{458} = 4.43$ is the ratio of the extinction coefficients of ECFP and EYFP at the wavelength used for exciting the I_1 and I_2 signals. Equations S1 and S3 compose a set of four equations with four unknowns (I_D, I_A, E, and α). The solution for α, using the I_{1-3} intensities measured for the ECFP-EYFP fusion, is:

$$\alpha = \frac{S_2 \left(I_1 S_1 - I_2 + \left(1 + \frac{\varepsilon_A^{458}}{\varepsilon_A^{458}} \right) I_3 (S_2 - S_1 S_4) \right)}{I_1 S_2 - I_2 S_4}. \quad \text{(S4)}$$

The average α value was used for subsequent FRET analyses of all the other doubly transfected samples. The FRET efficiency for the doubly labeled samples was expressed as
\[E = \frac{S_2(I_2 - I_1S_1 - I_3S_2 + I_3S_3S_4)}{\alpha(I_1S_2 - I_2S_1) + S_2(I_2 - I_1S_1 - I_3S_2 + I_3S_3S_4)}. \]

(S5)

The total unquenched donor fluorescence \((I_D)\), can be calculated as:

\[
I_D = \frac{\frac{\alpha D}{\alpha D} S_1}{I_1S_1 - I_2 + \left(1 + \frac{\alpha D}{\alpha D} \right)I_3(S_2 - S_3S_4)}.
\]

(S6)

Because there was no donor crosstalk to the acceptor channel, the pure acceptor emission is \(I_A = I_3\). We calculated the acceptor-to-donor molecular ratios for doubly labeled samples. First, the acceptor/donor intensity ratio \(Q\) was calculated with the ECFP-EYFP fusion sample, for which the number of donor and acceptor molecules are equal:

\[Q = \frac{I_A}{I_D} \]

(S7)

Then, for any doubly labeled sample, the acceptor-to-donor molecular ratio is:

\[
\frac{N_A}{N_D} = \frac{I_A}{I_D} Q
\]

(S8)

FRET analysis was carried out on a cell-by-cell or pixel-by-pixel basis. For selecting regions of interest (ROIs) and calculating the mean cellular fluorescence intensities in each channel, the LSM data acquisition software was employed. FRET calculations with the mean intensities were performed in Microsoft Excel using the above equations.

For pixel-by-pixel FRET calculations, the RiFRET plugin (4) of the ImageJ software was applied using the same equations. Images were background-corrected and pixels below the threshold (~3× the background) were not considered. Images were low-pass filtered by Gaussian blurring (with an \(e^{-1/2}\) radius of 2 pixels) and corrected for pixel shift between the channels. FRET histograms and FRET efficiency maps were created in Matlab environment.

Flow cytometric FRET

Flow cytometric FRET measurements using EGFP (donor) and mRFP1 (acceptor) fluorophores were carried out on a FACSARIA III instrument (Becton Dickinson, San Jose, CA). The laser lines of this instrument are optimal for these dyes. For gating out debris and apoptotic cells, forward and side scatter signals were applied. FRET analysis follows the same overall procedure as that described for confocal microscopy, with appropriate modifications due to the different spectral properties of the used fluorescent proteins. Donor and transfer signals were excited with a 488-nm solid state laser and detected using 515-545 nm band pass and 561 nm long pass filters, whereas the acceptor signal was excited by a 561-nm solid state laser and measured via a 561 nm long pass filter. The factor \(S_t\) was negligible thanks to the non-excitability of mRFP1 at 488 nm. Equations analogous to Eqs. S1 can be written for \(I_1, I_2\) and \(I_3\), with the simplification that \(S_t=0\). For FRET calculations from flow cytometric data the Reflex software developed at our institute was employed (5).
To determine α, the sample expressing the EGFP-mRFP1 fusion protein was used. From Eqs. S1 and S3 α can be expressed with the following simplified formula:

$$\alpha = \frac{I_1S_1 - I_2 + \left(1 + \frac{\varepsilon_{488}^D}{\varepsilon_{488}^A}\right)I_3S_2}{I_1}.$$ \hspace{1cm} (S9)

For the FRET efficiency calculation of all doubly labeled samples the previously determined factors S_1 (derived from the EGFP-alone donor sample), S_2 (derived from the mRFP1-alone acceptor sample) and α were used, and E was expressed as:

$$E = \frac{S_2(I_2 - I_1S_1 - I_3S_2)}{\alpha(I_1S_2) + S_2(I_2 - I_1S_1 - I_3S_2)}.$$ \hspace{1cm} (S10)

I_A is equal to I_3, and the total unquenched donor fluorescence (I_D) can be calculated as:

$$I_D = \frac{\alpha(I_1S_2) + S_2(I_2 - I_1S_1 - I_3S_2)}{\alpha S_2}.$$ \hspace{1cm} (S11)

N_A/N_D values were determined according to Eqs. S7 and S8 the same way as for confocal microscopy.

Detector responses

Detector response curves were measured to check linearity, which is important for quantitative analyses. For the BD FACSARIA III flow cytometer a series of calibration beads with factory defined relative fluorescence intensities (InSpeck™ Green (505/515) Microscope Image Intensity Calibration Kit, 6 µm) were used, which showed good linearity (Suppl. Fig. 1). For the concentration calculation we used the “1%” bead (having a factory provided 1.2% relative intensity).

![Supplementary Figure 1. Detector response of FACSARIA flow cytometer](image-url)
The response curve of the PMT detector of the Olympus FV1000 confocal microscope was recorded by using a dilution series of Alexa 488 solutions (Suppl. Fig. 2). The response had also a good linearity.

![Graph showing response curve of PMT detector]

Supplementary Figure 2. Detector response of Olympus FV1000 confocal microscope

Model functions for Fos hetero- and homodimerization

In the main text the dependence of the measured FRET efficiency E_{meas} on the concentrations of donor- and acceptor-tagged as well as endogenous Fos and Jun was derived. The exact model functions used for nonlinear fitting are given below. For Fos-Jun heterodimerization, combining equations 11 and 15 from the main text yields the expression for the measured value of E_{meas} as a function of donor concentration $[F_D]_t$ and acceptor-to-donor ratio N_A/N_D:

$$
E_{meas} = \frac{[F_D]_t \left(1 + \frac{N_A}{N_D} \right) + [F_e]_t + [J_e]_t + K_d^{FE} - \sqrt{\left([F_D]_t + [F_e]_t \right)^2 - 2 \left([F_D]_t + [F_e]_t \right) \left([F_D]_t \frac{N_A}{N_D} + [J_e]_t - K_d^{FE} \right) + \left([F_D]_t \frac{N_A}{N_D} + [J_e]_t + K_d^{FE} \right)^2}}{2 \left([F_D]_t + [F_e]_t \right) \left([F_D]_t \frac{N_A}{N_D} + [J_e]_t \right)}
\times [F_D]_t \frac{N_A}{N_D} E_0
$$

(S12)

where $[F_D]_t$ and $[F_e]_t$ are the total concentrations of donor-tagged and endogenous Fos (without respect to monomeric or dimeric state), $[J_a]_t$ and $[J_e]_t$ refer to acceptor-tagged and endogenous Jun, $N_A/N_D = [J_a]_t/[F_D]_t$ is the acceptor-to-donor expression ratio (determined according to Eq. S8 in the FRET analysis), K_d^{FE} is the dissociation constant of the heterodimeric complex and E_0 is the FRET efficiency between a single donor-acceptor pair.

To get the expected maximal FRET efficiency E_{max} at a given N_A/N_D ratio, we can calculate the limit of E_{meas} as $[F_D]_t$ tends to infinity; in this case all possible Fos-Jun dimers are formed; there is no free Jun if Fos is in excess ($N_A/N_D < 1$), and vice versa, there is no free Fos if Jun is in excess ($N_A/N_D > 1$). By setting the endogenous expressions and K_d to zero (these will vanish beside $[F_D]_t$ as $[F_D]_t \to \infty$), we get the following expression:

$$
y = 0.6601x
R^2 = 0.9987
$$
This function is shown in Fig. 5B and D in the main text; it is linearly increasing until \(N_d/N_D\) reaches 1, and then remains constant with a value of \(E_0\).

For the Fos homodimerization process, substitution of Eq. 21 into Eq. 20 from the main text yields the following expression for the measured FRET efficiency:

\[
E_{\text{meas}} = \frac{1}{4} \left(4 \left([F_D]_t \left(1 + \frac{N_A}{N_D} \right) + [F_e]_t \right)^2 - 4 [J_e]_t + K_d^{FF} \sqrt{8 \left([F_D]_t \left(1 + \frac{N_A}{N_D} \right) + [F_e]_t \right)^3 - 8 [J_e]_t + K_d^{FF}} \right) \times \\
\left([F_D]_t \frac{N_A}{N_D} E_0 \right)^2 \left(1 + \frac{N_A}{N_D} \right) + [F_e]_t \right)^{-1}
\]

(S14)

where \([F_D]_t\), \([F_A]_t\) and \([F_e]_t\) are the total concentrations of donor-tagged, acceptor-tagged and endogenous Fos (without respect to monomeric or dimeric state), \([J_e]_t\) is the total concentration of endogenous Jun, \(N_A/N_D = [F_A]_t/[F_D]_t\) is the acceptor-to-donor expression ratio, \(K_d^{FF}\) is the dissociation constant of Fos molecules, and \(E_0\) is the actual FRET efficiency between a single donor-acceptor pair. In the above equation we assumed that all Jun molecules were in complex with Fos (because Fos is in excess).

To get the expected maximal FRET efficiency \(E_{\text{max}}\) at a given \(N_A/N_D\) ratio for the homodimerization process, we can calculate the limit of \(E_{\text{meas}}\) as \([F_D]_t\) tends to infinity; in this case all possible Fos homodimers are formed, there is no free Fos monomer. By setting the endogenous expressions and \(K_d^{FF}\) to zero (these will vanish beside \([F_D]_t\) as \([F_D]_t \to \infty\)), we get the following expression:

\[
E_{\text{meas}} = \frac{N_A/N_D}{1 + N_A/N_D} \times E_0
\]

(S15)

This function is shown in Fig. 5G in the main text.

Nonlinear fitting was carried out by using the software Graphpad Prism 5 (GraphPad Software, Inc., La Jolla, CA). In the fits the running variable was \([F_D]_t\), while the other variable, \(N_A/N_D\) was kept constant by grouping cells into classes according to \(N_A/N_D\) values. The fit parameters yielded by the fits were \(E_0\) and \(K_d\).
Possible effect of imperfect dye maturation or dark states on FRET analysis and K_d determination

Imperfect dye maturation may produce green-only and red-only Fos-Fos (or Fos-Jun) complexes besides doubly labeled green-red complexes. Dark mRFP1 species have been described by Hendrix and coworkers (6). We calculated a model function including a dark acceptor fraction for fitting the E_{meas} vs. donor concentration graphs (such as Fig. 5 in the main text) for homodimerization. The fit resulted in a different E_0 (FRET between a single donor and acceptor), but identical K_d for the Fos homodimer as without a dark fraction. When assuming e.g. 33.3% dark component for mRFP1, the E_0 FRET efficiency changed 1.5 fold, from 9.14% to 13.17% (at $N_d/N_D=1.15$). We measure a lower E_{meas} FRET efficiency because some acceptors engaged in donor-acceptor complexes are dark, and these complexes contribute zero FRET. We can also consider this situation as a lower average FRET efficiency between a donor and an acceptor (a weighted average of the real E_0 and 0 values, weighted by the fractions of fluorescent and dark acceptors).

The reason why the presence of a dark acceptor fraction does not change the K_d is the following. From the EGFP-mRFP1 fusion sample we determine the red:green fluorescence intensity ratio for a 1:1 acceptor-to-donor expression ratio. If a Fos-EGFP–Fos-mRFP1 co-transfected sample has the same red:green intensity ratio as the EGFP-mRFP1 fusion sample, its ratio of acceptor-tagged to donor-tagged molecules is also 1:1 (just some acceptors don’t fluoresce). Therefore, the total (donor-tagged+acceptor-tagged) Fos concentration is indeed $2\times$ the concentration of donor-tagged Fos. Thus, total Fos concentrations are always determined accurately, and dissociation equilibria are analyzed correctly.

Determination of the cytoplasmic and nuclear concentrations of Fos215-EGFP in HeLa cells

We estimated the fraction of the integrated cytoplasmic fluorescence intensity compared to the total intensity of the whole cell from confocal z-stacks by using the Imaris software. The cytoplasmic fraction of Fos215-EGFP is constant with some random variation, 15±5% (s.d.), and the nuclear fraction is correspondingly 85±5%. These relative fractions do not vary with the expression level: the total cellular fluorescence (gained by integration of pixel intensities of z-stacks) is proportional to the nuclear concentration (presented as the average fluorescence intensity per pixel in the nucleus) (Suppl. Fig. 3).

Supplementary Figure 3. Relationship between total cellular and total nuclear fluorescence intensities

We also checked whether the presence of the cytoplasmic fraction affects the FRET-derived K_d and E_0. We tested a model function considering a constant cytoplasmic fraction (15%) of donor and acceptor-tagged Fos215 (contributing zero FRET). First, the actual nuclear concentrations are lower by 15%, therefore, the K_d is also
reduced by this amount (this was taken into account in our calculations). Second, the cytoplasmic concentration is only 13% of the nuclear concentration, thus, most of the cytoplasmic Fos215 molecules are assumedly monomeric, contributing zero FRET. When assuming 15% cytoplasmic fraction in the model, the derived E_0 value occurring between a single donor-acceptor pair is 15% higher as compared to the case of assuming no cytoplasmic fraction. The reason is that if 15% of all donors are surely monomeric (those being in the cytoplasm), then the donors engaged in a donor-acceptor complex must have a higher FRET efficiency to produce the measured E value.

Single Plane Illumination Microscopy – fluorescence cross-correlation spectroscopy (SPIM-FCCS)

SPIM-FCCS measurements were performed on an in-house built selective plane illumination microscope setup based on the design described in (7, 8). In brief, a blue 491 nm and a green 561 nm (both from Calypso/Jive Lasers, Cobolt AB, Solna, Sweden) laser beam were expanded with distinct beam expanders and then combined by a dichroic mirror into a dual color excitation beam. Then the laser beam was relayed onto a cylindrical lens followed by a projection objective, which formed an approximately 1.3 μm thick light sheet ($1/e^2$ half-width) illuminating the cells. Samples were mounted into the sample chamber hanging from above at an angle slightly below 45° to the light sheet. The chamber was filled with Hanks’ solution. The fluorescence light was collected with a 60×/NA 1 water dipping objective (CFI Apo-W NIR 60×/1.0W, Nikon, Hamburg). The sample fluorescence was split into two color channels using an image splitter optics (DualView DV2, Photometrics, Tucson), and imaged onto an EMCCD-camera (iXon X3 860, Andor, Belfast) which has a pixel-size of 400×400 nm² in the object plane. A daily alignment and focus volume calibration of the setup were performed as detailed in (8) using 100-nm multi-colored fluorescent microspheres (T7279 Microspheres, Life Technologies GmbH, Darmstadt, Germany) and a 170 bp long double-stranded DNA labeled with Alexa-488 and Alexa-594 on opposing ends. The shift between the green and red foci was regularly below 100 nm, so these shifts did not have to be incorporated into the fitting models (8), whereas the different focus sizes were taken into account. The cross-talk of EGFP fluorescence to the red channel, $\kappa_{gr}=I_{red}/I_{green}$, was measured with cells expressing c-Fos-EGFP only, yielding a value of 3.35%, which was incorporated in the fit model.

Data acquisition and analysis were performed using our own software QuickFit 3.0 as follows (for details, see (9). For each measurement, ~100 thousand frames were acquired at a repetition time of ~530 μs (exposure time: ~470 μs) and an EM-Gain setting of 300. Background acquired without illumination was subtracted from the frames. Photobleaching was corrected on a per-pixel basis (8, 10). Then the autocorrelation and cross-correlation curves of the two color channels (green: 500-550 nm, red: >600 nm) were calculated. We found that binning the intensities for 2×2 pixels (resulting a virtual pixel size of 800×800 nm²) significantly improved the quality of correlation curves (at the expense of losing some resolution), thus, we used binned data to calculate correlation curves. Finally, a global fit to the two auto- and the cross-correlation functions was performed for each (binned) pixel. We used the model described by equations 17-19 in (8) with two diffusing components for the green and red autocorrelation functions and one component for the cross-correlation function. A second component could not be fitted well to the cross-correlation curves. The following equations were used:

$$g_{xx}(\tau) = \frac{\eta_g^2 c_A + \eta_g^2 c_{AB}}{\eta_g^2 (c_A + c_{AB})^2} \cdot G_{xx}^G(\tau)$$

(S16)

$$g_{rr}(\tau) = \frac{\eta_r^2 \left[c_r + c_{AB}\right] + \kappa_{gr} \eta_g^2 \left[c_r + c_{AB}\right] + 2 \kappa_{gr} \eta_r \eta_g c_{AB}}{\left(\kappa_{gr} \eta_g c_A + \left(\eta_r + \kappa_{gr} \eta_g\right) \cdot c_{AB} + \eta_r c_B\right)^2} \cdot G_{rr}^R(\tau)$$

(S17)
\[g_{gr}(\tau) = g_{rg}(\tau) = \frac{\eta_g \eta_c A + \eta_c B + \eta_c A + \eta_c B}{\eta_g A + \eta_c A + \left(\eta_c + \eta_c B\right) A + \eta_c B} \cdot G_{GR}^{GR}(\tau) \] (S18)

where \(\eta_g \) and \(\eta_r \) are the molecular brightness values of fluorophore A in the green channel and fluorophore B in the red channel, which can be estimated as a ratio of fluorescence intensity in a pixel, divided by number of particles in the detection volume, \(G(\tau) \) factors are the non-normalized auto- and cross-correlation functions accounting for the diffusive motion of the appropriate species (8), and \(c_A \), \(c_B \) and \(c_{AB} \) are the concentrations of green-only and red-only molecules and green-red complexes, respectively. The diffusion parameters in the three correlation functions were not linked for the Fos-Fos and Fos-Jun samples, whereas they were linked for the EGFP-P30-mRFP1 sample.

Titration of antibodies and expression of endogenous and transfected Fos and Jun

Supplementary Figure 4. Measurement of expression of endogenous and transfected Fos and Jun by flow cytometry

(A-C) Titration curves of NL-637-DAMIG secondary antibody, anti-c-Jun and anti-c-Fos primary antibodies. In panels (D-G) the primary antibodies were used at 0.02 mg/ml, and the secondary antibody at 0.05 mg/ml, which
are close to saturating conditions. Nonspecific binding of the primary antibody is low according to the fast saturation of the primary antibody titrations. (D) Fluorescence intensity distribution (red channel) of immunolabeled Fos in cells transfected with Fos-EGFP and in non-transfected cells. Endogenous Fos and Fos-EGFP were targeted by mouse anti-Fos monoclonal antibody, followed by staining with NL-637-tagged donkey anti-mouse polyclonal antibody. The control sample was stained with the secondary antibody alone; this signal was used for background correction. (E) Fluorescence intensity in the green channel from live cells transfected with Fos-EGFP. For background correction the autofluorescence of non-transfected cells was measured. Cells were not fixed to avoid degradation of EGFP fluorescence. (F-G) Analogous measurements for Jun. The average intensities of fluorescence histograms were used to assess the average cellular concentration of endogenous Fos and Jun as described in the main text. Because the antibodies were used close to saturating conditions, it may be expected that relative changes in immunofluorescence intensity faithfully reflect differences in protein expression levels.

Supplementary movies 5 and 6

Movie representation of the trajectory frames (saved at every 800 ps) from the 500 ns simulations carried out for the Fos-Jun (Fos-Jun_500_mov, supplemental movie 2) and Fos-Fos (Fos-Fos_500_mov, supplemental movie 3) dimers complexed with the DNA fragment. The solvent molecules, the ions and the hydrogens are not shown for clarity. The movies were prepared by the VMD 1.9.2 software package. For the DNA fragment "paperchain", whereas for the Fos and Jun fragments "new cartoon" representation were applied. The atomic details of the fragments are shown using "licorice" drawing method.

REFERENCES

