Editor in Chief:
Prof. Dr. dr. Hc. Wim Heijman, Wageningen University, The Netherlands.

Deputy Editors:
Prof. Dr. dr. Hc. András Nádárdi, University of Debrecen, Hungary,
Prof. Dr. János Lazányi, University of Debrecen, Hungary.

Executive Editorial Board:
Prof. Dr. Bruce Ahrends, University of Arkansas, Fayetteville, USA,
Dr. Josip Juracak, University of Zagreb, Croatia,
Dr. Elena Kovalt, National Agricultural University of Ukraine,
Prof. Dr. Edward Majewski, University of Life Sciences Warsaw, Poland,
Dr. George Robertson, Scottish Agricultural College, Scotland,
Dr. Ivana Ticha, University of Life Sciences, Prague, Czech Republic,
Prof. Dr. Zorica Vasljevic, University of Belgrade, Serbia.

Honorary Editors:
Prof. Dr. Ajay Kr. Singh, Delhi School of Professional Studies and Research Delhi, India,
Prof. Dr. dr. Hc. Petr Bielik, Slovak University of Agriculture, Nitra, Slovakia
Dr. Jim Booth, Aberdeen, Scotland,
Prof. Dr. Perry Bremers, Wageningen University, The Netherlands,
Prof. Dr. Slobodan Ceranic, University of Belgrade, Serbia,
Prof. Dr. dr. Hc. Mark Cochrane, University of Arkansas, Fayetteville USA,
Prof. Dr. dr. mp.x. Hc. Csaba Csáki, Corvinus University, Budapest, Hungary,
Prof. Dr. Reiner Doluschitz, Hohenheim University, Stuttgart, Germany,
Dr. Garth Entwistle, Scottish Agricultural College, Scotland,
Dr. Akimi Fujimoto, Tokyo University of Agriculture, Japan,
Prof. Dr. Patrick De Groote, Hasselt University, Belgium,
Dr. Simon Heath, ICA, Coppenaghen, Denmark.
Prof. Dr. dr. Hc. Jan Hron, University of Life Sciences, Prague, Czech Republic,
Dr. Ranjit Ichalanyayake, Victoria University, Melbourne, Australia,
Dr. Robert Kowalski, University of Wolverhampton, UK,
Dr. Mary Mc Carthy, University College Cork, Ireland,
Prof. Dr. David McKenzie, Scottish Agricultural College, Aberdeen, Scotland,
Prof. Dr. Nebojsa Novakovovic, University of Novi Sad, Serbia,
Prof. Dr. dr. mp.x. Hc. József Popp, Research Institute of Agricultural Economics, Hungary,
Dr. Zoltán Szakály, University of Kaposvár, Hungary,
Prof. Dr. Danilo Tomčić, Serbian Association of Agricultural Economics, Belgrade, Serbia,
Prof. Dr. Maria Vincze, University of Babes Bolyai, Cluj, Romania,
Prof. Dr. dr. Hc. Harald von Witske, Humboldt University, Berlin, Germany,
Prof. Dr. Elena Botcezat, University of Oradea, Romania,
Prof. Dr. Govind Prasad Acharya, Tribhuvan University, Kathmandu Nepal,
Prof. Dr. Qin Fu, Chinese Academy of Agricultural Sciences, Beijing, China,
Prof. Dr. Ramesh B., Goa University, India,
Prof. Dr. Xavier Gellynck, University Gent, Belgium.
Prof. Dr. Anu Singh, Guru Gobind Singh Indraprastha University, India
Prof. Dr. K.V. Bhanumurthy, Faculty of Commerce & Business Studies, University of Delhi, India
Prof. Dr Drago Cvijanovic, Balkan Scientific Association of Agricultural Economists

This number is published with the financial support of University of Debrecen, Faculty of Applied Economics and Rural Development, Hungary.

English Editor:
Dr. Troy B. Wiwczarnski UD, Debrecen, Hungary
George Seel UD, Debrecen, Hungary

APPLIED STUDIES IN AGRIBUSINESS AND COMMERCE
Official Periodical of the International MBA Network in Agribusiness and Commerce:
APSTRACT®
©AGRIMBA

Editor-in-chief: Prof. Dr. Wim Heijman Wageningen University
Editorial office: Debrecen University, H-4015 P.O. Box 36,
Phone, fax: (36-52) 505-304
Executive publisher: Agrinorm Publishing House Hungary- www.agrinorm.hu
Typography: Opal System Graphics www.opalsystem.com
HU-ISSN 1789-221X – Electronic Version: ISSN 1789-7874
Home Page: http://www.apstract.net
E-mail: editor-apstract@agr.unideb.hu
Contents

SCIENTIFIC PAPERS

- **Comparing The Levels of Expectation and Satisfaction of Indian and Foreign Adventure Tourists Visiting India**
 by Prof Anu Singh Lather Dr. Reena Singh, K. Ajay Singh .. 5
- **New Sources of Employment to Promote the Wealth-Generating Capacity of Rural Communities**
 by Miklós Pakurár, Júlia Oláh, András Nábrádi ... 15
- **The Social Value of Science Shops: A Cost-Benefit Analysis**
 by Esther Boere and Wim Heijman ... 23
- **Effectiveness, Efficiency and Sustainability in Local Rural Development Partnerships**
 by Krisztián Kiss, Józef Gál, Antal Véha .. 31
- **Education as a Factor of Awareness Development of Organic Product Consumers**
 by Gordana Tomiča, Maja Duricaa, Nenad Dokič ... 39
- **Economic Questions of Land Usage – Scarcity, Sustainability**
 by Róbert Magda .. 43
- **Methodological and Integration Aspects of ABC-METHOD Application in Trade Organizations**
 by Klárova Guzaliya S., Bagaev Ilya ... 49
- **Impacts and Externalities of Agricultural Modernization in Brazilian States**
 by Caio César de Medeiros Costa, Paulo Ricardo da Costa Reis, Marco Aurello Marques Ferreira
 ... 53
- **Improving Audit Functions of Supreme Audit Institutions to Promote Sustainable Development**
 by Sándor Nagy, Józef Gál, Antal Véha .. 63
- **The Political Economy of Agri-Environmental Measures: An Empirical Assessment at the EU Regional Level**
 by Danilo Tomić, Miladin M. Sevarlić, Nataša Tandor ... 71
- **Water Footprint in Hungary**
 by Eva Neubauer .. 83
- **Agriculture of the Countries of the Western Balkans and European Integrations**
 by Danilo Tomić, Miladin M. Sevarlić, Nataša Tandor ... 93

PHD SUMMARIES

- **The Economic Performance of Tourism in Northern Hungarian Region, With Special Regard to Heves County**
 by Róbert Szabó .. 99
- **ERP Systems in Higher Education**
 by Zoltán Zörig, Tamás Csomós, Csaba Szécs .. 103
- **Comparative Yield Risk Calculations of Sour Cherry and Pear Varieties Regarding Risk Aversion**
 by Szécs Szilvia, Persoly, Imre Ertes, Márti Ladányi ... 111
- **Knowledge and Acceptance Research of Use of Vine-Branch in Micro Region of Gýongyós**
 by Gonda Cecília .. 117
- **Is It the Right Direction? The Audit of Business Strategy**
 by Tamás Kozák ... 121
- **Consumer Potential Analysis of Feasibility Criteria of Geothermal Projects**
 by Tünde Jené ... 125
- **The Effects of the Global Economic Crisis on the Markets for Fossil and Renewable Fuels**
 by Péter Jobbágy, Attila Bai .. 131
- **Performance Indicators in CSR and Sustainability Reports in Hungary**
 by Andreia Karcagi-Kovátsi .. 137
- **The New Strategic Directions of Rural Development in Hungary**
 by Szabóné Pap, Hajnalka, Bezegh, Enikő ... 143

INFORMATION FOR AUTHORS .. 151
CONSUMER POTENTIAL ANALYSIS OF FEASIBILITY CRITERIA OF GEOTHERMAL PROJECTS

Tünde Jenei

University of Debrecen, Faculty of Engineering

Abstract: The University of Debrecen, Faculty of Engineering, has been conducting a research program in geothermal energy since 2008. This program enabled me to devise an analytical study of the monetary and non-monetary criteria of geothermal projects. The monetary criteria of a region or a location for geothermal energy production cover the investment costs of the surface installations and the cost of the drillings. Non-monetary criteria include the geological and geothermal evaluations of a reservoir and the evaluation of consumer potential. This paper represents a small part of the larger study and focuses on consumer potential.

Keywords: geothermal energy, consumer potential, district heating, matrix, scoring

1. Introduction

In order to better understand this article, a definition of geothermal energy is necessary. Geothermal energy is heat (thermal) derived from the Earth (geo). It is the thermal energy contained by the rock and liquid that fills the fractures and pores in the rock in the earth's crust.

Geothermal resources can be classified as
- low temperature (less than 90°C)
- moderate temperature (90°C-150°C)
- high temperature (greater than 150°C)

The utilization to which these resources are applied is also influenced by temperature. The highest temperature resources are generally used only for electric power generation. Uses of low and moderate temperature resources can be divided into two categories:
- direct uses,
- ground source heat pumps.

Direct use, as the name implies, involves directly applying the heat in the water (without a heat pump or power plant) for a variety of uses, such as the heating of buildings, industrial processes, in greenhouses, aquaculture (the farming of fish) and resorts. Direct use projects generally operate with resource temperatures between 40°C to 150°C.

Ground source heat pumps use the earth or groundwater as a heat source in winter and a heat sink in summer. Applying resource temperatures of 4°C to 40°C, the heat pump is a device which moves heat from one place to another, transfers heat from the soil into the house in winter and from the house into the soil in summer. This national resource is significant from both the points of view of potential and perspectives. Hungary has favorable geothermal conditions, as in other countries, the temperature increases by 30–33°C per kilometer downward, while this value is 42–56°C in Hungary. At a depth of 2,000 meters, the temperature of rock (and water in porous rock) usually exceeds 100°C. The estimated volume of Hungary's thermal water is 2,500 cubic kilometers, and the heat energy stored is 604,000 PJ (petaJoule). Presently, the number of licensed, thermal water producing wells (Table 1) registered at the

<table>
<thead>
<tr>
<th>Utilization</th>
<th>Temperature range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40–50°C</td>
</tr>
<tr>
<td>Agricultural</td>
<td>14</td>
</tr>
<tr>
<td>Industrial</td>
<td>13</td>
</tr>
<tr>
<td>District heating</td>
<td>2</td>
</tr>
<tr>
<td>Multi-purpose</td>
<td>17</td>
</tr>
<tr>
<td>Balneological</td>
<td>89</td>
</tr>
<tr>
<td>Total mass flow rate kg/s</td>
<td>659</td>
</tr>
<tr>
<td>Mass flow rate per well kg/s</td>
<td>14,32</td>
</tr>
<tr>
<td>Total thermal capacity Mw</td>
<td>95,19</td>
</tr>
<tr>
<td>Thermal capacity per well Mw</td>
<td>2.07</td>
</tr>
</tbody>
</table>
In the following pages, we deal with the evaluation of consumer potential.

2. Analysis of consumer potential

The evaluation of the consumer potential for geothermal heat cannot and should not be done independently from the selection of the regions or sites which are geologically relevant for geothermal supply. Against this background, the order of the respective investigations and the extent of the evaluation of the consumer potential are defined as:

1. Selection of regions and sites under geological aspects.
2. Evaluation of the consumer potential in selected regions or at the sites.

When geothermal power generation is taken into consideration, then infrastructural aspects have only minor importance. In this case, possibly high thermal water temperature and flow rates are more significant. At this point, only the possibility of supply into a medium-voltage grid within the area of extension of the geological resource needs to be checked.

Just as with the geothermal cogeneration of heating and power, the use of a geothermal heat supply presupposes the assessment of local heating sales. Basically, heat is a stationary form of energy.

The larger the connected load of a heat consumer/district heat supply network is
- more favourable the demand characteristics (number of full load utilization hours) are
- lower the heating network temperatures are, in particular the return flow temperatures, the more favourable the conditions are for geothermal heat supply.

Geothermal energy is typical base load energy. The total costs are essentially determined by the fixed capital costs. The specific costs (HUF/GJ) decrease almost proportionally with the increase of the heat sales (service life of the plant).

Clear factors with measurable quantities, which can be determined apparently and serve as the basis for a classification of a region according to an evaluation matrix, cannot be indicated.

Thus, the existence of a district heating supply system in the region concerned is not of decisive importance – the history of such systems’ development has to be understood under certain administrative and economic aspects, which are familiar to existing large individual consumers (e.g. agriculture, greenhouses) outside of the district heating supply systems.

The evaluation must be more general and also make decisions supporting infrastructural aspects about the investment in geothermal energy utilization. Along with the mere capacity of consumer systems, the qualities of the infrastructure and of course the qualification of the population are concerned. Many aspects, some of them...
Characteristic external conditions determining the heat consumer behaviour (e.g., outdoor temperature behaviour curve in terms of time)

The following key parameters were chosen for the evaluation matrix:
- Specifics of the surrounding field
- Settlement specifics
- Condition of the buildings
- Annual Heating Degree Days (HDD)

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Indicator</th>
<th>Share</th>
<th>Scoring</th>
<th>Points*</th>
<th>Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specifics of surrounding field</td>
<td>Large towns (>50 000 inhabitants) and the near surroundings or areas essentially marked by the above towns</td>
<td>0%</td>
<td>30</td>
<td></td>
<td>35%</td>
</tr>
<tr>
<td></td>
<td>Medium-size towns (20 000–50 000 inhabitants) and the surroundings or areas essentially marked by the above towns, very large industrial and agricultural consumers (greenhouses > 25ha)</td>
<td>0%</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Small towns (5000–20 000 inhabitants) and the surroundings or areas essentially marked by the above structure, very large industrial and agricultural consumers (greenhouses > 10ha)</td>
<td>100%</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Very small towns or large villages (<5000 inhabitants) and the surroundings or areas essentially marked by the above structure</td>
<td>10%</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Small villages or areas essentially marked by the above structure</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specifics of settlements</td>
<td>Arrangement of big multi-family houses in rows, block- and city-type building, large public or industrial or agricultural special consumers (e.g., hospital, greenhouses)</td>
<td>30%</td>
<td>30</td>
<td></td>
<td>35%</td>
</tr>
<tr>
<td></td>
<td>Row houses, settlements with small multi-family houses, arrangement of small and big multi-family houses in rows</td>
<td>60%</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stand-alone buildings, loosely and openly built areas village cores</td>
<td>10%</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condition of buildings</td>
<td>New buildings or modernized old buildings with standard insulation at high level</td>
<td>70%</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Old buildings</td>
<td>30%</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual heating degree days (HDD)</td>
<td>>4 000</td>
<td>30%</td>
<td>20</td>
<td></td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>4 000–3 501</td>
<td>40%</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 500–3 001</td>
<td>50%</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 000–2 500</td>
<td>60%</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><2 500</td>
<td>70%</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Share x Scoring (Source: Rödl & Partner)
3. Matrix – Consumer potential

In the first step, the parameter to be evaluated is chosen. Then, the conditions at the site have to be classified and the percentages of the respective indicators to be allocated at the site (e.g., building structures, levels of modernization) have to be determined (estimated, as a rule). The product of this share and the respective value from the scoring table then leads to a score for this parameter which contributes to the total result of the geological benchmarking according to its weighting (in the last column).

The weighting is based on the experience from already implemented projects or project studies.

The parameters allow for the evaluation of the regions or specific sites, in the sense of the classification below.

Classification and scoring of the specific characteristics of the surrounding field

Basically, this parameter considers the general consumer capacity which is available in the investigated area for the geothermal development, via the district heating supply network.

The concept of large communities, “Many inhabitants” in this sense means “large walled-in space to be heated”, which refers to the heating of flats, but also other heating supply to e.g., places of employment, service and recreational facilities.

The scoring is based on the network capacity of 5–30 MW determined in numerous projects under different boundary conditions. This mega wattage is a minimum requirement so that the favourable conditions can be provided for the operation of geothermal plants. In other words, high numbers of full utilization hours are typical. In towns with more than 50,000 inhabitants and their surroundings, such network capacities are very realistic – which is similar to medium-size town. Under certain conditions, a small town with surroundings marked by agriculture may serve as the lower limit of acceptable system capacities. Capacities within the range from 3–5 MW appear to be feasible. At the margins of bigger networks, the integration of even very small consumers (value assigned to those: 1) may be interesting. This value of “1” is mainly due to the fact that no knock-out criterion shall be provoked from the point of view of the consumer systems, where exclusively geothermal power generation is relevant.

Under many aspects, the parameter of “Specifics of the surrounding field” is a general parameter, same as the following parameter of “Settlement specific” which are interlinked in many respects. Large towns also have a dense building structure – with certain differentiations. However, the parameters also evaluate other infrastructural factors in the right directions (e.g., qualification structure, quality of development, connection to the system of public conveyance) principally influencing geothermal systems, in particular through costs.

<table>
<thead>
<tr>
<th>Surrounding field specific</th>
<th>Scoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large towns (>50,000 inhabitants) and the nearby surroundings or areas essentially marked by the above towns</td>
<td>30</td>
</tr>
<tr>
<td>Medium-size towns (20,000–50,000 inhabitants) and the surroundings or areas essentially marked by the above towns, very large industrial and agricultural consumers (greenhouses > 25ha)</td>
<td>27</td>
</tr>
<tr>
<td>Small towns (5,000–20,000 inhabitants) and the surroundings or areas essentially marked by the above structure, very large industrial and agricultural consumers (greenhouses > 10ha)</td>
<td>20</td>
</tr>
<tr>
<td>Very small towns or large villages (<5,000 inhabitants) and the surroundings or areas essentially marked by the above structure</td>
<td>10</td>
</tr>
<tr>
<td>Small villages or areas essentially marked by the above structure</td>
<td>1</td>
</tr>
</tbody>
</table>

(Source: Rödl & Partner)

Classification of settlement specific

This parameter aims to evaluate consumer density. It is substantial for the efforts required by the implementation of a certain size of the network. This parameter is also connected with the parameter of “Specifics of the surrounding field”. However, it allows a certain differentiation by regional or country specific of the building structure.

<table>
<thead>
<tr>
<th>Settlement specific</th>
<th>Scoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrangement of big multi-family houses in rows, block- and city-type building, large public or industrial or agricultural special consumers (e.g., hospitals, greenhouses)</td>
<td>30</td>
</tr>
<tr>
<td>Row houses, settlements with small multi-family houses, arrangement of small and big multi-family houses in rows</td>
<td>15</td>
</tr>
<tr>
<td>Stand-alone buildings, loosely and openly built areas village cores</td>
<td>1</td>
</tr>
</tbody>
</table>

(Source: Rödl & Partner)

Classification and scoring of the condition of the buildings

A qualitative factor is introduced which aims to record the reduction of the heat demand of the buildings. While this reduction is of course desired, it cannot be implemented predominately for economic reasons. The dimensioning of this scoring is difficult, due to the manifold influencing factors and the specifics of the stock of buildings. An orientation is given by the assumption that through improvement measures affecting efficient heat transfer and distribution at the building, an average of savings up to 30% would be possible. This would mean a reduction in heating sales with the consumer situation remaining the same – while scoring would decrease.
Classification and scoring of annual heating degree days

This factor investigates the influence of the regional or typical domestic climate on the evaluation of the efficiency of the geothermal energy use. Under identical conditions of the stock of buildings, the potential sale of geothermal heat increases or decreases depending on cooler or warmer ambient temperatures. Other climate factors (solar radiation, wind) of course influence the heat demand as well, but as a rule to a lower degree or in the same direction as the temperature. In addition, long-term measured data characterising a climate situation are for the temperature available at many sites.

To determine the heat consumption in a heating period at a special site, often the number of the “Annual Heating Degree Days” (HDD) is applied in heating engineering, which considers both the values of the outdoor temperature and the temperature behaviour throughout the year. In fact, the doubling of the HDD means the doubling of the heat demand of a consumer.

Annual Heating Degree Days (HDD)

\[
\text{HDD} = \sum (T_{\text{base}} - T_{\text{am}})
\]

With

- \(T_{\text{base}} \) = indoor temperature
- \(T_{\text{am}} \) = average daily outdoor temperature
- \(z \) = number heating days

<table>
<thead>
<tr>
<th>Number of heating days (z)</th>
<th>(T_{\text{base}})</th>
<th>(T_{\text{am}})</th>
<th>(z (T_{\text{base}} - T_{\text{am}}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-15 October</td>
<td>22</td>
<td>10,5</td>
<td>172,5</td>
</tr>
<tr>
<td>01-30 November</td>
<td>22</td>
<td>4,4</td>
<td>528,0</td>
</tr>
<tr>
<td>01-31 December</td>
<td>22</td>
<td>-0,2</td>
<td>688,2</td>
</tr>
<tr>
<td>01-31 January</td>
<td>22</td>
<td>-2,4</td>
<td>756,4</td>
</tr>
<tr>
<td>01-28 February</td>
<td>22</td>
<td>-0,5</td>
<td>630,0</td>
</tr>
<tr>
<td>01-31 March</td>
<td>22</td>
<td>4,5</td>
<td>542,5</td>
</tr>
<tr>
<td>01-15 April</td>
<td>22</td>
<td>10,7</td>
<td>169,5</td>
</tr>
<tr>
<td>01-31 May</td>
<td>-</td>
<td>-</td>
<td>3 491,6</td>
</tr>
</tbody>
</table>

Table 2. Scoring of the benchmark parameter

<table>
<thead>
<tr>
<th>No.</th>
<th>Criteria</th>
<th>Points of Berettyőújfalu</th>
<th>Points of Hajdúböszörmény</th>
<th>Weighting</th>
<th>Total points of Berettyőújfalu</th>
<th>Total points of Hajdúböszörmény</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>Specifics of surrounding field</td>
<td>20</td>
<td>27</td>
<td>35%</td>
<td>7</td>
<td>9,5</td>
</tr>
<tr>
<td>C2</td>
<td>Specifics settlements</td>
<td>13,7</td>
<td>21,1</td>
<td>35%</td>
<td>4,8</td>
<td>7,4</td>
</tr>
<tr>
<td>C3</td>
<td>Condition of buildings</td>
<td>28</td>
<td>24,5</td>
<td>10%</td>
<td>2,8</td>
<td>2,5</td>
</tr>
<tr>
<td>C4</td>
<td>Annual heating degree days (HDD)</td>
<td>25</td>
<td>25</td>
<td>20%</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>of 30 points</td>
<td></td>
<td></td>
<td></td>
<td>19,6</td>
<td>24,4</td>
</tr>
</tbody>
</table>

(Source: own calculations)

The heat consumer potential of the two towns in possession of geothermal heating is shown in Table 2. Hajdúböszörmény has a better consumer potential, which is mainly due to the “Specific of surrounding field” and “Specifics settlements”. The results of the evaluation matrix do not exist as knock-out criterion for geothermal heat projects. Towns, regions with unfavourable conditions such as sparse population or unfavourable consumer characteristics, are expected to have high specific expenditures on developments. Consequently, the economic profitability will be influenced negatively, but the implementation of the technology will not be hindered principally.

4. Conclusion

Geothermal heat production is a supply technique for the base load of large consumer systems. The high expenditures on the development must be refinanced by heat sales with possibly high numbers of full load utilization hours. Geothermal energy use is closely connected to district heat supply, within a higher capacity range.

Hungary has approximately 225 towns, with about 65 having more than 20 000 inhabitants. Such an order of magnitude justifies the assumption of acceptable conditions
for district heating supply, not taking into consideration other concrete boundary conditions. However, there exist more than 3000 communities with less than 1000 inhabitants which do not form a reasonable basis for the installation of district heat supply systems.

Large industrial, but above all agricultural plants (greenhouses), offer considerable consumer potentials, too. Particularly for the latter ones, a high degree of flexibility has to be assumed with regard to site selection, which should be a place where good conditions are offered for production, which will be decided by favourably priced heat. From the point of view of site selection, geothermal energy projects do not have to consider the existence of respective consumers. The heating price will be determinate, and each site will be a good agricultural site, as a rule. In the South-East Plain Region, this coexistence has largely already been put into practice.

References

European Geothermal Energy Council http://www.egec.org/

European Renewable Energy Council http://www.erec.org/

Jenei T. Geothermal Energy Applications in Agriculture 5th Congress Debrecen (2009)

Sigmund G. Hungary’s experience in integrating district heating into the national policy agenda. District Heating Roundtable 8th Paris