Egyetemi doktori (PhD) értekezés

Dr. Pongrácz Adrienn

A posztoperatív reziduális neuromuszkuláris blokk antagonizálásának új lehetőségei

Debreceni Egyetem
IDegtudományi Doktori Iskola

Debrecen, 2015
A posztoperatív reziduális neuromuszkuláris blokk antagonizálásának új lehetőségei

Dr. Pongrácz Adrienn

Témavezető:

Dr. Fülesdi Béla az MTA doktora

DEBRECENI EGYETEM
IDEGTUDOMÁNYI DOKTORI ISKOLA
Debrecen, 2015
Tartalom

1. Bevezetés .. 5
2. Irodalmi áttekintés .. 6
 2.1. Izomrelaxánsok ... 6
 2.1.1. A neuromuszkuláris junkció .. 6
 2.1.2. Nikotin típusú acetilkolin-receptorok ... 8
 2.1.3. Neuromuszkuláris blokkok ... 11
 2.1.4. Margin of safety ... 13
 2.1.5. Az izomrelaxánsok felosztása .. 14
 2.1.6. Rocuronium ... 18
 2.1.7. Pipecuronium ... 19
 2.2. Az izomrelaxánsok hatásának monitorozása ... 20
 2.3. Posztoperatív reziduális neuromuszkuláris blokk ... 25
 2.3.1. A posztoperatív reziduális neuromuszkuláris blokk fogalma 25
 2.3.2. A posztoperatív reziduális neuromuszkuláris blokk következményei 26
 2.3.3. Posztoperatív reziduális neuromuszkuláris blokk hatása a mortalitásra, morbiditya . 32
 2.3.4. Posztoperatív reziduális neuromuszkuláris blokk előfordulásának gyakorisága .34
 2.3.5. Posztoperatív reziduális neuromuszkuláris blokk megelőzésének és antagonizálásának lehetőségei ... 36
 2.3.5.4. Az izomrelaxáns hatásának felfüggesztése .. 42
 2.3.6. Posztoperatív reziduális neuromuszkuláris blokk és a „safety margin” 52
 2.4. Célkitűzések .. 54
 2.4.1. A reziduális rocuronium blokád felfüggesztése sugammadex alkalmazásával 54
 2.4.2. Pipecuronium által kiváltott mérsékelt neuromuszkuláris blokk felfüggesztése sugammadex alkalmazásával, sevofurane anesztiája mellett 54
 3. Betegek és módszerek ... 56
 3.1. Vizsgálattervezés és betegtoborzás .. 56
 3.1.1. A reziduális rocuronium blokád felfüggesztése sugammadex alkalmazásával 56
 3.1.2. Pipecuronium által kiváltott mérsékelt neuromuszkuláris blokk felfüggesztése sugammadex alkalmazásával, sevofurane anesztiája mellett 56
 3.2. A vizsgálat kivitelezése .. 58
 3.2.1. A reziduális rocuronium blokád felfüggesztése sugammadex alkalmazásával 58
 3.2.2. Pipecuronium által kiváltott mérsékelt neuromuszkuláris blokk felfüggesztése sugammadex alkalmazásával, sevofurane anesztiája mellett 60
 3.3. Adatkezelés, statisztikai analízis .. 62
 3.3.1. A reziduális rocuronium blokád felfüggesztése sugammadex alkalmazásával 62
 3.3.2. Pipecuronium által kiváltott mérsékelt neuromuszkuláris blokk felfüggesztése sugammadex alkalmazásával, sevofurane anesztiája mellett 63
 4. Eredmények .. 65
 4.1. A reziduális rocuronium blokád felfüggesztése sugammadex alkalmazásával 65
 4.2. Pipecuronium által kiváltott mérsékelt neuromuszkuláris blokk felfüggesztése sugammadex alkalmazásával, sevofurane anesztiája mellett 72
 5. Megbeszélés ... 80
 5.1. Paradigmaváltás első eleme: monitorozás szükséges .. 81
 5.2. Paradigmaváltás második eleme: reverzálás szükséges 82
 5.2.1. Reverzálás neostigminnel ... 82
 5.2.2. új antagonista: sugammadex ... 83
 5.3. Paradigmaváltás harmadik eleme: hosszú hatású izomrelaxánsok újbóli alkalmazása 88
 5.3.1. Pipecuronium által kiváltott mérsékelt neuromuszkuláris blokk felfüggesztése sugammadex alkalmazásával, sevofurane anesztiája mellett 89
 5.4. Vizsgálataink eredményeinek összegzése .. 92
1. Bevezetés
A kuráréból előállított d-tubokurarint 1942-ben Harold Griffith és Enid Johnson, montreali aneszteziológusok alkalmazták elsőként műtéri izomrelaxáció céljából emberen, új fejezetet nyitva ezzel az aneszteziológia és a sebészet történetében. (1) Az izomrelaxáció, a balanszirozzott aneszézia részeként, hamar népszerűvé vált az egész világon. (2) Napjainkban a sebészeti beavatkozások igen nagy része elképzelhetetlen lenne izomrelaxánsok alkalmazása nélkül. Ezenkívül több vizsgálat is igazolja, hogy relaxánsok mellőzésekor az intubáció feltételei romljanak és szignifikánsan több esetben fordul elő hangszalagsérülés. (3, 4) Mindezen előnyös tulajdonságaik következtében az izomrelaxánsok alkalmazása mára a modern aneszteziológia szerves részét képezi. Az aneszteziológusnak azonban nem csak a sebészi munkához megfelelő mélységű izomrelaxáció létrehozása és fenntartása a feladata, hanem annak biztosítása is, hogy a műtét végén a beteg izomereje teljesen visszatérjen. Posztoperatív reziduális neuromuszkuláris blokkról akkor beszélünk, ha a műtét végeztével, az extubációt követően a beteg még mindig izomrelaxáns hatás alatt áll. A posztoperatív reziduális neuromuszkuláris blokk súlyos szövődmények forrása lehet (pl. légzési elégtelenség, hypoxia) (5, 6), és ezáltal a posztoperatív morbiditás és mortalitás emelkedéséhez vezethet. (7) A műtét utáni maradék izomrelaxáció napjainkban még mindig igen magas, körülbelül 38%-os előfordulási gyakoriságu. (8) Mivel évente több, mint 400 millió betegnél alkalmaznak izomrelaxáns, (9) a posztoperatív reziduális neuromuszkuláris blokk felismerése és megszüntetése igen nagy jelentőségű.

Értekezésemben két különböző izomrelaxáns által kiváltott posztoperatív reziduális neuromuszkuláris blokk antagonizálásának új lehetőségéről számolok be.
2. Irodalmi áttekintés

2.1. Izomrelaxánsok

2.1.1. A neuromuszkuláris junkció

A neuromuszkuláris junkció egy ideg-izom kapcsolat, amelynek feladata az idegen terjedő ingerület átvitele a harántcsíkolt izomrostra, előidézve ezzel az izomrost összehúzódását. Az izomrelaxánsok a neuromuszkuláris junkció szintjén hatnak, gátolva az ingerület átterjedését az izomra, ezáltal annak ellazulását okozzák.

A kalcium-ion beáramlás addig tart, amíg az idegvégződés nyugalmi membránpotenciálja helyre nem áll. Amikor az ideget magas frekvenciájú, ún. tetanizáló ingerléssel ingerlik, akkor a kalcium-ion áramlása az intracelluláris térbe folyamatos, majd az intracelluláris akkumuláció következtében sokkal nagyobb mértékű neurotranszmitter felszabadulás következik be, mint egy normál stimulus esetében. Ezt a jelenséget „poszttetanikus potenciációk” nevezzük, és az izomrelaxáció monitorozásánál használjuk ki. (11)

Könnyen belátható, hogy a neurotranszmitter felszabadulás mértéke függ az extracelluláris kalcium-ion koncentrációtól. Amennyiben kalcium nincs jelen, akkor az ideg depolarizációját – amely akár elektromos stimuláció útján is létrejöhet – nem követi neurotranszmitter felszabadulás. (15) Ezért figyelhető meg az a jelenség, hogy más, ugyancsak két vegyértékű kation jelenléte magasabb koncentrációban – pl. magnézium, kadmium, mangán – képes gátolni a kalcium-ion beáramlást az idegvégződéses, és így végső soron rontani a neuromuszkuláris transzmissziót. (11) Kalciumcsatorna antagonista gyógyszerek és az aminoglikozid antibiotikumok pedig képesek direkt módon blokkolni a feszültségfüggő kalciumcsatornákat, és így gátolják a jelátvitelt. (16)

A vezíkulák ből felszabaduló neurotranszmitter az acetilkolin, amely posztszinaptikusan az acetikolin-receptorokhoz kötődve nátrium-ion (és kismértékű kalcium-ion) beáramlást idéz elő, kiváltva ezzel az izomrost membránjának depolarizációját. A membrán depolarizációjának következtében megnyílnak a junkciós redőkben elhelyezkedő feszültségfüggő nátriumcsatornák, melynek eredményeként az egész izomroston akciós potenciál fut végig. Az idegrost akciós potenciálja 1-1 arányban, mint az izomrost akciós potenciálja folytatódik. (10) Az akciós potenciál rátérjed a sarcoplasmátikus retikulum transzverzális, vagy T-tubulusaira, amelynek hatására az itt elhelyezkedő receptorok szerkezete módosul, amelynek következménye a longitudinális tubulus membránjában elhelyezkedő rianodinérzékeny kalciumcsatornák megnyílása lesz. Ezeken a csatornákon keresztül a longitudinális tubulus terminális ciszternájából kalcium szabadul fel. (17) Az intracelluláris kalcium-ion koncentráció növekedésének eredménye az izomrost összehúzódása. A kalcium ugyanis kötődik a troponin C alegységhez, ezáltal az aktin miozin-kötőhelyét lefedő troponin-tropomiozin komplex elmozdul, és lehetővé válik az aktin és miozin közötti kereszthidak kialakulása, így a vékony filamentumok kontrakciót eredményező elcsúsztása a vastag filamentumokon. (17)

A szinaptikus résbe jutó acetilkolinnak azonban csak egy része kapcsolódik az acetilkolin-receptorokhoz, és a kapcsolódó molekulák is hamar leválnak a receptorról. Az izomsejt által
szekretált, és a szinaptikus résben e sejtekhez kötött enzim, az acetilkolin-észteráz felel az acetilkolin molekulák enzimatikus bontásáért. A bontás során létrejött kolin molekulákat az idegvégződés másodlagos aktív transzporttal felveszi, és újabb acetilkolin molekula előállítására használja fel. Az acetilkolin a szinaptikus résben igen rövid ideig „él”, felszabadulása után körülbülül 1 ms-mal már bontásra is kerül. (11)

(1. ábra) A neuromuszkuláris junkció felépítése (Forrás: Martyn JAJ Basic principles of neuromuscular transmission, Anaesthesia 2009; 64 Suppl 1:1-9 (11))

2.1.2. Nikotin típusú acetilkolin-receptorok
A neuromuszkuláris junkcióban nikotin típusú acetilkolin-receptorok találhatóak (nAChR). E receptorok az un. ligandvezérelt ioncsatornák „Cys-loop” családjába tartoznak. A „Cys-loop” elnevezés egy jellegzetes diszulfid híd jelenlétére utal. (18) A nACh receptorok nem szelektív nátrium-kálium csatornák, melyek bizonyos esetekben kalciumra is permeálisak. Ezek a transzmembrán csatornák pentamer szerkezetűek, azaz öt alegységből állnak, amelyek hozzávetőlegesen 4-500 aminosavból épülnek fel. Gerincesekben 17 nikotinos alegységet azonosítottak: muszkulárisan α1, β1, δ, γ, ε és neuronálisan α2-10 és β2-4 alegységeket. (11)

Az izomban lévő fetális, éretlen vagy extrajunkcionális nAChR két α1 és egy-egy β, δ, γ alegységet tartalmaz (α1β1δγ). (2. ábra) Ez a receptor típus az izom innervációja előtt található a magzatban, illetve az izom kémiai vagy fizikai denervációját követően a későbbi életkorokban is megjelenhet (pl.: égésben, gerincvelő sérülést követően, sepsisben). (19) Az
innervációt követően a γ alegységet felváltja az ε, így az érett nAChR felépítése: α1β1δε. Egészségesen ilyen felépítésű receptorokkal rendelkezünk, egészen életünk végéig.

2. ábra Az acetilkolin receptor szerkezeti felépítése. (Forrás: www.britannica.com)

A neuronális nAChR-ok közül a neuromuszkuláris junkcióban az α3β2(2) altípus (továbbiakban α3β2) található meg prejunkcionálisan és az α7(5) altípus posztjunkcionálisan, a fejlődés és denerváció során. (11) A nem depolarizáló izomrelaxánsok képesek gátolni a neuronális nAChR-kat is.
2.1.2.1. Posztjunkcioneális acetilkolin-receptorok

A posztjunkcioneális acetilkolin-receptorok az izomsejtben szintetizálódnak, és a rapsyn nevű fehérje által a motoros végletez membránjának szinapszis felüli oldalához rögzítettek. (12) Szerkezetiileg lehetnek α1β1δγ, α1β1δε vagy α7(5) felépítésűek. Ahhoz, hogy az acetilkolin-receptor aktiválódjon, két acetilkolin molekulának egy időben kell kötődnie a receptor α alegységeihez. Ekkor nátrium-ion beáramlás, és kálium-ion kiáramlás indul meg. A nátrium-ion beáramlásnak nagyobb hajtóereje van, ezért a membrán depolarizálódik (2. ábra). A csatornán folyó kevert kationáram megfordulási potenciálja 0 mV körül van.

Az éretlen (α1β1δγ) receptor vezetőképessége rosszabb, mint az érett receptoré (α1β1δε), és körülbelül 2 – 10-szer hosszabb ideig marad a nyitva azoknál. Az agonisták (szukcinilkolin) hatása e receptorokon sokkal kifejezetten, ezért kisebb dózisok alkalmazása is elegendő e receptorok jelenlétekor. A nátrium-ion beáramlás és a kálium-ion kiáramlás egyszerűen megszakad, és a membrán depolarizálódik. A csatornán folyó kevert kationáram megfordulási potenciálja 0 mV körül van.

2.1.2.2. Prejunkcioneális acetilkolin-receptorok

Prejunkcioneális, az ideg-végződés membránján α3β2 altípusú receptorok találhatók. E receptorok aktiválása - a pozitív feedback részeként - fokozza a neurotransmitter-felszabadulást, mert elősegíti a vezikulák exocitózisát. Szerepük a fáradás meglepése a motoneuron ismételt ingerlésekor. A nem depolarizáló izomrelaxánsok, gátolva e receptort, csökkentik az acetilkolin felszabadulását, így az ideg ismétlődő ingerlésére (amely 2 Hz vagy magasabb frekvenciájú) egyre kisebb mértékű izomválasz jelentkezik. Ezt a jelenséget „fáradásnak” nevezzük, és az izomrelaxáció fokának monitorozásakor használjuk ki. A
szukcinilkolin nem kötődik ezen altípusú receptorokhoz, így hatására a „fáradás” jelensége nem jellemező. (20)

Nagashima és munkatársainak közelmúltban megjelent vizsgálatának eredményei módosítják a fáradás kialakulásának elméletét. A posztjunkcionális acetilkolin receptorokat szelektíven (α-bungarotoxinnal) blokkolva, a fáradás jelensége észlelhető volt vizsgálatuk során. A prejunkcionális acetilkolin receptorok szelektív antagonizálása pedig a „fáradást” önmagában nem volt képes kiváltani, csak ha a posztjunkcionális receptorok is blokkolva voltak. A nem depolarizáló izomrelaxánsok mind a két receptor-típus gátlásával fáradást idéznek elő. Ennek alapján feltételezhető, hogy a prejunkcionális acetilkolin receptorok blokkolása csak a funkcionáló posztjunkcionális receptorok arányának csökkenésekor eredményez a fáradás jelenségét. (21)

2.1.3. Neuromuszkuláris blokkok

2.1.3.1. Kompetitív blokk

A nem depolarizáló izomrelaxánsok fő hatásmechanizmusa a kompetitív gátlás. A gyógyszer-molekulák a nAChR α alegységéhez kötődnek, akárcsak az acetilkolin, de nem rendelkeznek agonista hatással. Így nem történik meg a receptorok „nyitása”, a membrán nem depolarizálódik. A relaxáns és az acetilkolin molekulák versengenek a receptorhoz való kötődésért. A receptorhoz való kötődést így koncentrációjuk és a receptorhoz való affinitásuk befolyásolja. (16)

2.1.3.2. Depolarizációs blokk

Depolarizációs blokk létrehozására tipikusan a szukcinilkolin molekula képes. A szukcinilkolin struktúrájának két egymáshoz kapcsolt acetilkolin molekulából áll, az acetilkolin receptor parciális agonistájaként viselkedik. Kapcsolódik a receptor egyik α alegységéhez, míg a másik α alegységéhez akár egy acetilkolin molekula vagy egy másik szukcinilkolin molekula is kötődhet. A receptorhoz való kapcsolódást követően, aktiválja azt, melynek következménye a membrán depolarizációja, majd az izom faszikulációja. A szukcinilkolin molekulát azonban az acetilkolin-észteráz enzim nem hidrolizálja, ezért leválva a receptorról, képes másik receptorhoz is kötődni. Az elernyedés mechanizmusa nem teljesen tisztázott. Az egyik elmélet szerint a membrán folyamatos depolarizációja miatt a peri-
funckcionális feszültségfüggő nátrium-ion csatornák inaktiválódnak, és ennek következménye az izom elernedezése. (16) Újabb vizsgálatok azonban azt bizonyítják, hogy a kezdeti receptor-aktiváció után a szukcinilkolin deszenzitizálja (lásd alább) a receptorokat, így ez a valódi oka az izom relaxációjának. (20) A plazmában lévő pszeudokolinészteráz a keringésben lévő szukcinilkolin molekulákat hidrolizálja, ezáltal a plazmában a szukcinilkolin koncentrációja lecsökken. Ekkor a neuromuszkuláris junkcióból a gyógyszer a koncentráció gradiens irányában a plazmába diffundál, relaxációt előidéző hatása megszűnik. (16)

2.1.3.3. Deszenzitizációs blokk

Az acetilkolin receptor többféle konformációt képes felvenni. Amikor a receptor deszenzitizálódik, akkor nem ingerelhető. Valószínűleg a deszenzitizációs állapot a fiziológiás, a deszenzitizált receptorok az ingerelhető receptorokkal egyensúlyban vannak, és biztosítják az eltűlott izomválasz létrejöttének megakadályozását extrém idegi stimulus esetén. (22) A deszenzitizált receptorok száma növelhető az agonista koncentrációjának növelésével, így acetilkolin-észteráz alkalmazásával (24) vagy ismételt illetve nagy dödzisú szukcinilkolin adásával. A deszenzitizáció mechanizmus meg nem teljesen ismert, de feltételezik, hogy a receptorok egy része α1β1 alegységek helyett α8β2 alegységeket tartalmaz. E receptorok aktivációja kalcium beáramlást eredményez, a kalcium aktiválta protein kináz C az α1β1 receptorok foszforillációja révén azokat deszenzitizálja. (16)

2.1.3.4. Fázis II blokk

Ez a komplex fenomén tipikusan egyszeri magas dödzisú szukcinilkolin beadása után, vagy a gyógyszer ismétlésekor észlelhető, azonban előfordul normál dödzis beadása után is, ha a beteg pszeudokolinészteráz-inszufficienciával (deficittel) bír. Ekkor a kezdeti depolarizációs blokk (Fázis I blokk) átalakul Fázis II blokká. (22) E blokk teljes mechanizmusa máig sem ismert. Talán a receptorok konformáció változása tehető érte felelőssé. A Fázis II blokk karakterisztikájában a nem depolarizációs blokkhoz hasonló. Egy 2006-ban publikált vizsgálat eredményei azt az elméletet támasztják alá, hogy e blokk valójában deszenzitizációs blokk. Kimutatták azt is, hogy bár normál koncentrációban nem, de magasabb dödzisban alkalmazva a szukcinilkolin kötődik a prejunkcionális α3β2 receptorokhoz, így „fáradást” eredményez. Ezért lesz a blokkad karakterisztikájában a nem depolarizációs blokkhoz hasonlatos. (20) Egy
másik magyarázat szerint, e jelenség hátterében az is állhat, hogy nagy dózisú szukcinilkolin alkalmazása esetén, annak lebomlása során keletkezett szukcinil-monokolin koncentrációja magas lesz. Ez a metabolit is okozhat nem depolarizációs blokkhoz hasonló jelenséget. (23)

2.1.3.5. Direkt blokád

A direkt blokád a receptor olyan konformáció-változásával jár, amelynek következtében a továbbiakban az nem lesz képes acetilkolin kötésére. Ez a blokád nem szüntethető meg az acetilkolin mennyiségének növelésével. Vizsgálatok igazolták, hogy a nem depolarizáló izomrelaxánsok nem csak kompetitív módon gátolják a posztzinaptikus nAChR-okat, hanem direkt módon is. (24) Több, nem az izomrelaxánsok csoportjába tartozó gyógyszer is képes ilyen típusú neuromuszkuláris blokkit létrehozni: antibiotikumok, kokain, kinidin, triciklikus antidepresszánok, naloxon. (16)

2.1.4. Margin of safety

Az ideg ingerlés hatására, neurotranszmitter közvetítésével, a motoros véglemez membránja depolarizálódik, melynek következménye az izomrost összehúzódása. A kiváltott végletez-potenciál nagyobb, mint ami az izom összehúzódásának kiváltásához kellene, mert több neurotranszmitter szabadul fel, mint szükséges lenne. Azonban még ekkor is, egy szignál alkalmával a vezikulák töredéke bocsájt csak ki acetilkolint, amely az acetilkolin-receptorok csak egy részéhez kötődik. Tehát a „rendszer” jelentős biztonsági tartalékkal rendelkezik, ezt nevezzük „margin of safety”-nek. (25) A biztonsági tartaléket tovább növeli az, hogy egy izomrost acetilkolin receptorainak csupán 20-25%-a szükséges feltétlenül a zavartalan transzmisszióhoz. Más szavakkal, a neurotranszmisszió tökéletesen működik akkor is, ha az izomrelaxánsok a receptorok 75%-át blokkolják. (26) Ezért az izomerő csökkenése csak az acetilkolin receptorok több, mint 75%-ának gátlása után tapasztalható és csak a receptorok 90%-ának blokkolása eredményez teljes relaxációt. (27) Ugyanakkor amennyiben a receptorok 25% már felszabadult a gátlás alól, az izom működésében eltérést (monitorozással) már nem tapasztalunk. Tehát az izomműködés monitorozása csak a receptorok 75%-os, vagy annál nagyobb arányú blokkolása esetén lehetséges. Az ennél felületesebb gátlást nem tudjuk megítélni. Ez az úgynevezett „jéghegy effektus”, ami a „margin of safety”-t jellemzi. (16)
2.1.5. Az izomrelaxánsok felosztása

Az aneszteziológiában használatos izomrelaxánsokat hatásmechanizmusuk szerint depolarizáló és nem depolarizáló csoportba sorolhatjuk.

2.1.5.1. Depolarizáló izomrelaxánsok

Az egyetlen depolarizáló izomrelaxáns, amelyet a klinikai gyakorlatban alkalmazunk a szukcinilkolin. Bár már 1906-ban szintetizálták a vegyületet, csak 1951-ben került be a klinikai gyakorlatba. (28) Daniel Bovet írta le, hogy a szukcinilkolin a kurárhöz képest eltérő hatásmechanizmusú, és megalakolta a depolarizáló és nem depolarizáló izomrelaxáns fogalmakat. (29) A szukcinilkolin szerkezetileg két, egymáshoz kapcsolódó acetilkolin molekulából épül fel. Kötődik a muszkuláris (α1β1δγ, α1β1δε) nikotín típusú acetilkolin receptorokhoz, azokat kezdetben aktiválja, így a membrán depolarizálódik, amelynek következménye az izom faszcikulációja. Ezt a faszcikulációt elernyedés követi, amelynek mechanizmusa nem teljesen tisztázott (lásd fent), de hátterében valószínűleg az áll, hogy a receptorokon deszenzitizációs blokk alakul ki. (20) A szukcinilkolin ED₉₅ dózisa (az a dózis, amely a receptorok 95%-ának blokkját idézi elő): 0,3 mg/kg. (30) Ajánlott e gyógyszert az ED₉₅ háromszoros dózisában alkalmazni (1 mg/kg). Ebben a dózisban hatásbeállásának ideje 20-40 másodperc, hatástartama 9-13 perc. (31) A szukcinilkolin bontásáért a plazma (pszeudo-) kolinészteráz felelős, amelynek veleszületett vagy szerzett inszufficienciája (deficitje) esetén a gyógyszer hatása igen elhúzódhat. A szukcinilkolin normál koncentrációban nem gátolja a prejunkcionális α3β2 receptorokat, így alkalmazásakor a „fáradás” jelensége nem figyelhető meg. A szukcinilkolin szokásos dózisú alkalmazásakor nem kötődik más neuronális nAChR-okhoz sem, ezért mellékhatásai kialakulásáért nem ez a mechanizmus felelős. (20) Magasabb koncentrációban azonban gátolja a neuronális α3β2 és α3β4 receptorokat is, ezért ilyenkor megfigyelhető lehet fáradás és ganglion-blokkoló hatások. A szukcinilkolin mellékhatásai nagyszámúak és jelentősek lehetnek: tahikardia, bradikardia, ventrikuláris aritmia, megnövekedett intrakraniális, intraokuláris, intragasztrikus nyomás, malignus hipertermia, allergiás reakciók (anafilaxia), hiperkalémia, alkalmasz utáni izomfájdalom. Ezek egy részét a posztganglionáris muszkarinos acetilkolin receptorok aktivációjával magyarázzák. (16)
A szukcinilkolin, bár számos igen jelentős mellékhatással bír, mégsem szorult ki a klinikai gyakorlatból. Igen gyors hatásbeállási ideje és ultrarövid hatástartam nem rendelkezik. Rapid sequence intubációs technika alkalmazásakor, amikor a gyomortartalom aspirációjának megelőzése a cél, sok esetben még mindig nélkülözhetetlen gyógyszerünk.

2.1.5.2. Nem depolarizáló izomrelaxánsok

A nem depolarizáló izomrelaxánsok hatástartamuk szerint rövid, közepes és hosszú hatástartamú csoportokba sorolhatók. (1.Táblázat) Lebomlásuk különböző módokon történik. (1.Táblázat) A renális eliminációs út, szinte mindegyik relaxáns esetében jelen van. A szteroid típusú izomrelaxánsok lebontásában a hepatikus elimináció is jelentős, ezért a pancuronium, rocuronium, pipecuronium esetében a hepatikus és a renális elimináció egyaránt szerepet játszik. A mivacurium lebontásáért a plazma pszeudokolinészteráz felelős. (34) Az atracurium és a ciszatracurium átalakulásában az úgynevezett Hoffman eliminációknak van nagy szerepe, amely a szervezet normális pH értékén és hőmérsékletén bekövetkező spontán degradáció. E
gyógyszerek lebontása tehát szervtől független módon történik. Ezen kívül az atracurium kismértékben észter-hidrolízissel is bontásra kerülhet. (35)

1. Táblázat. A nem depolarizáló izomrelaxánsok jellemzői. (16, 34)

<table>
<thead>
<tr>
<th>Izomrelaxáns</th>
<th>Szerkezet</th>
<th>Hatástartam</th>
<th>Lebontás</th>
<th>Hisztamin-felszabadítás</th>
<th>Vagolízis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mivacurium</td>
<td>benzilizokinolin</td>
<td>rövid</td>
<td>pszeudo-kolinészteráz</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Atracurium</td>
<td>benzilizokinolin</td>
<td>közepes</td>
<td>Hoffman-elimináció észter-hidrolízis</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cisz-atracurium</td>
<td>benzilizokinolin</td>
<td>közepes</td>
<td>Hoffman-elimináció</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Rocuronium</td>
<td>aminoszteroid</td>
<td>közepes</td>
<td>vese, máj</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Vecuronium</td>
<td>aminoszteroid</td>
<td>közepes</td>
<td>vese, máj</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pipecuronium</td>
<td>aminoszteroid</td>
<td>hosszú</td>
<td>vese, máj</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pancuronium</td>
<td>aminoszteroid</td>
<td>hosszú</td>
<td>vese, máj</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

A nem depolarizáló izomrelaxánsok hatástartamát több tényező (életkor, szervelégtelenség, társbetegség, ion-, pH-, hőmérséklet eltérése, együtt alkalmazott gyógyszerek) (36), különböző mechanizmusok útján, képes befolyásolni. (2.Táblázat)
2. Táblázat. Az izomrelaxánsok hatástartamát befolyásoló tényezők. (37)

<table>
<thead>
<tr>
<th>Izomrelaxáns hatást megnyújtja</th>
<th>Rezisztencia az izomrelaxánsokkal szemben</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhalációs aneszetetikumok</td>
<td>Phenytoin</td>
</tr>
<tr>
<td>(desflurane>sevoflurane>isoflurane>halothane>nitrogénoxidul)</td>
<td></td>
</tr>
<tr>
<td>Magnézium</td>
<td>Carbamazepine</td>
</tr>
<tr>
<td>Kálium</td>
<td>Ranitidine</td>
</tr>
<tr>
<td>Antibiotikumok (Aminoglikozidok, Tetraciklinek, Clindamycin, Vancomycin)</td>
<td>Theophyllin</td>
</tr>
<tr>
<td>Kardiovaszkuláris szerek (Quinidine, Béta-receptor blokkolók, Ca-csatorna antagonisták, Procainamid)</td>
<td>Koffein</td>
</tr>
<tr>
<td>Furosemid</td>
<td>Kalcium</td>
</tr>
<tr>
<td>Lithium</td>
<td></td>
</tr>
<tr>
<td>Tamoxifen</td>
<td></td>
</tr>
<tr>
<td>Alkohol, kokain</td>
<td></td>
</tr>
<tr>
<td>Idős kor</td>
<td></td>
</tr>
<tr>
<td>Újszülött, koraszülött</td>
<td></td>
</tr>
<tr>
<td>Női nem</td>
<td>Gyermekkor</td>
</tr>
<tr>
<td>Vese-, májelégtelenség</td>
<td></td>
</tr>
<tr>
<td>Hypothermia</td>
<td></td>
</tr>
<tr>
<td>Acidózis</td>
<td></td>
</tr>
</tbody>
</table>

A nem depolarizáló izomrelaxánsok számos mellékhatással rendelkezhetnek. E molekulák – a succinylcholintól eltérően – kötődnek a neuronális nAChR-okhoz, és gátolják azokat. A neuronális receptorok megtalálhatók centrálisan pre- és posztszinaptikusan (α4β2, α3β2, α7), a perifériás idegrendszerben (α3β4, α3β2, α7), és extra-neurálisan (keratinocyták, izom, lymphocyták, macrophagok, glomus caroticum, neuroszekréciós sejtek). (38) A glomus caroticumban lévő kemoreceptorok blokkolása által a nem depolarizáló izomrelaxánsok gátolják az akut hipoxiás légzésválaszt, azaz a deszaturációra megjelenő a percertilláció emelkedést. (39) A neuronális α7 nAChR kulcs szerepet játszik a gyulladásos válasz létrejötteiben. E receptort blokkolva a nem depolarizáló izomrelaxánsok gátolhatják az
immunválaszt például szepszisben. (40) A nem depolarizáló izomrelaxánsok normális körülmények között, nem jutnak át a vér-agy gátom. Bizonyos esetekben azonban igen (hipoxia, agyődéma, koponyatrauma), és így gátolhatják a centrális kolinerg receptorokat, és görcs-rohamot okozhatnak. (41)

A nem depolarizáló izomrelaxánsok – különböző mértékben,– blokkolják a posztganglionáris muszkarin típusú acetilkolin receptorokat. Kardiális mellékhatásuk kettős. Egyrészt közvetlenül hatnak a szívizomsejtek receptoraira, gátolva az acetilkolin negatív kronotróp és inotróp hatását, másrészt gátolják a nervus vagusból történő acetilkolin felszabadulást. Vagolitikus hatásként így tehlikádiát okoznak, ezzel növelik a szív oxigén-igényét. (34) A bronchiális simaizom (M2 és M3) muszkarinos receptorait is gátolják, összességében kismértékű bronchodilatációt okozva. Ez a hatás azonban klinikailag nem jelentős. (42, 43) Egyes izomrelaxánsok jelentős hisztamin felszabadító hatással is rendelkeznek, közvetlenül a hízósejtekre hatva (d-tubocurarine, mivacurium, atracurium) (16), emellett anafilaxiás reakcióval is kíváthatnak. A nem depolarizáló izomrelaxánsok közül anafilaxiás reakció leggyakrabban a rocuroniummal szemben jelentkezik, és az egyes relaxánsoknál keresztallergia is megfigyelhető. (44, 45)

Tekintettel arra, hogy vizsgálataink rocuroniummal és pipecuroniummal történtek, ezért e két gyógyszer tulajdonságait külön is részletezem.

2.1.6. Rocuronium

A rocuronium közepes hatástartamú, aminoszteroid típusú, nem depolarizáló izomrelaxáns. Különlegessége, hogy igen gyors hatásbeállású, így megfelelő dózisban gyors szekvenciális intubálsnál is alkalmazható. A rutin anesztézia során alkalmazott standard intubációs dózis 0,6 mg/kg, gyors szekvenciás indukcióhoz 1,0-1,2 mg/kg dózis ajánlott, melyet követően 60 másodpercen belül csaknem minden betegnél kialakulnak a megfelelő intubációs körülmények. (46) A 0.6 mg/kg dózis rocuronium beadása után a sebész beavatkozászóh szükséges relaxáció 40 (15-75) percig tart (47), a teljes hatástartam pedig körülbelül 50 perc.

A rocuronium eliminációja döntően hepatikus, kisebb mértékben renális. (48) Hisztamint nem szabadít fel. Vagolitikus hatású, beadása után kismértékű szívfrekvencia és artériás középnyomás emelkedés figyelhető meg. (49) A rocuronium felhasználása az utóbbi években igen megnőtt. Ennek hátterében egyrészt a gyógyszer igen rövid hatásbeállási ideje állhat, amely lehetővé teszi alkalmazását rapid sequence intubálsnál. Másrészt, a rocuronium

2.1.7. Pipecuronium

A pipecuronium egy magyar fejlesztésű, hosszú hatású, aminoszteroid típusú, nem depolarizáló izomrelaxáns. Mellékhatás-profilja igen kedvező. Szív-érrendszeri hatása nincs, az ED₉₀ (az a gyógyszemennyiség, amely a receptorok 90%-t blokkolja) háromszorosát alkalmazva sem észlelhető ganglion blokkoló, vagolitikus vagy szimpatomimetikus hatás. (50) Nincs hisztamin felszabadító hatása. (51) Vele szemben anafilaxiás reakció nem ismert.

Kezdő adagja intubáláshoz és a rákövetkező műtéthez: 0,06 - 0,08 mg/kg. Ezzel az adaggal jó – kiváló intubációs feltételek alakulnak ki 150 - 180 másodperc belül, és a kiváltott (sebész beavatkozáshoz szükséges) izomrelaxáció 110 percig tart. (52) A pipecuronium főként a vesén át választódik ki, 56 %-a az első 24 órában. Háromnegyed része változatlan, a többi 3-dezacetil pipecuronium formájában ürül ki a szervezetből. Kismértékben a máj is részt vesz a gyógyszer eliminációjában. (53)
2.2. Az izomrelaxánsok hatásának monitorozása

Az első neuromuszkuláris monitor 1958-ban mutatták be. Azóta a monitorozás alapelve nem változott. (54) Az izomrelaxáció fokának monitorozásakor megpróbáljuk a neuromuszkuláris junkció működését megitélni, ezért ideg-ingerlésre létrejövő izomválaszt vizsgálnunk. Monitorozáskor kihasználjuk a korábban már leírt „fáradás” és a „poszttetanikus potenciáció” jelenségeket. (Lásd előbb.)

Az ideg fölé, a megtisztított bőrfelületre két elektródát helyezünk megfelelő távolságra (minimum 2,5 cm, maximum 6 cm) és polaritással (a negatív elektróda helyezkedik el disztálisaban), óvakodva a direkt izom-stimulációtól. (56) Az ideg ingerlése különböző ingerlési mintázatokkal történhet.

- **Single twitch**: Egy darab 0,2 ms-ig tartó szupramaximális négyszögimpulzus, amely ismétlésének frekvenciája különböző lehet (0,1 – 1 Hz). Monitorozáskor az izomrelaxáns hatás kezdetének megállapításában lehet szerepe. (56) Napjainkban már inkább csak más ingerlési mintázat komponenseként, illetve az ingerlési áramerősség kalibrálásakor alkalmazzák.
- **Train-of-four (TOF) ingerlés**: 1970-ben került bevezetésre (57), és azóta a leggyakrabban alkalmazott ingerlési mintázat. TOF ingerléskor négy különálló supramaximális négyszögimpulzus kerül leadásra, 2 Hz frekvenciával. Ezen ingerlési mintázat a fáradás jelenségét használja ki. A négy ingerlésre bekövetkező izom-összhúzódások számát, és azok nagyságát elemezzük. A TOF szám (TOFC) mutatja meg a négy ingerlésre létrejövő izomválaszok (kontrakciók) számát, a TOF arány (TOFR) pedig a negyedik és az első izomválasz nagyságának arányát adja meg százalékban, vagy tizedes jegyekkel kifejezve. Izomrelaxáns nélkül a négyes ingerlésre négy, egyenlő nagyságú izomválasz érkezik, tehát a TOF szám 4 (TOFC 4), és a TOF arány 100% vagy 1,0 (TOFR 1,0). Relaxáns hatására ez az arány, illetve kontrakciók száma csökken, vagy akár teljesen meg is szűnik a válasz. A neuromuszkuláris blokk mélysége megítélhető a TOF szám nagyságából (TOFC1,2,3,4), illetve, ha már mind a négy izomválasz megjelenik, akkor a TOF arány mértékéből. A blokád megszűnésekor először visszatér az első, majd a második, a harmadik, végül a negyedik izomválasz is. Amikor a negyedik ingerlésre is kontrakció lép fel, akkor már a blokk mélységének megítélésében a TOF arány segít, amely egyre növekszik. Az izomrelaxáció megszűnését a TOFR 1,0 elérése jelenti.(3. Ábra)

- **Tetanizálás**: Magas frekvenciájú (>30 Hz) ingerléssorozat, amelynek hatására az acetilkolin felszabadulás egyre növekszik. Ez a növekedés azonban csak addig tart, amíg a neurotranszmitter rezerv ki nem ürül teljesen. Minél magasabb az ingerlési frekvencia, annál hamarabb történik meg ez a kiürülés. Magyarországon, a hetvenes évek elején, erre a tényre alapozva, speciális monitor fejlesztettek ki Tassonyi és munkatársai. A monitorral, a kezdeti izomösszhúzódás után fáradási görbe regisztrálható az izmon. A fáradási görbe alakja attól függ, hogy az izomrostok mekkora hányada áll gyógyszeres blokád alatt. A kifejlesztett eszköz így alkalmas volt a safety margin vizsgálatára. Ha 200 Hz frekvenciájú ingerléskor nem jelentkezik fáradás, akkor a receptorok 65%-a már felszabadult a gátlás alól, amely már elégséges rezerv kapacitást (≈40%) hordoz magában. (58) Sajnos a „safety margin” monitorozása nem terjedt el a hétköznapi gyakorlatban. Napjainkban a tetanizálás más stimulálási mintázatok részeként használatos, de fontos megjegyezni, hogy éber betegen alkalmazása fájdalmas.

- **Double burst ingerlés (DBS)**: Két, 50 Hz frekvenciájú (tetanizáló) rövid (2 vagy 3 ingerből álló) ingerléssorozat, 750 msec eltolással. Szintén a fáradás jelenségét
használja ki, az első és a második ingerlés-sorozatra jelentkező izom-kontrakciók nagysága összehasonlítható. (59) Eredetileg az izomválaszok taktílis és vizuális észleléséhez lett kifejlesztve, mert a fáradás jobban érzékelhető DBS ingerlést követően, mint TOF ingerlést után. (60) A kvantitatív monitorok megjelenése kisziortotta ezt az ingerlési módot a használatból. A tetanizáló ingerlés fájdalmas, ezért éber betegen nem alkalmazható.

- **Post-tetanic count (PTC):** A „poszttetanikus potenciáció” jelenséget kihasználva, mély neuromuszkuláris blokk megítélésére használható, amikor TOFC 0, azaz TOF ingerlést követően egyáltalán nem észlelhető izomválasz. (61) Tetanizáló (50 Hz frekvenciájú) ingerlést után több egyes ingerlés kerül leadásra, 1 Hz frekvenciával. A megjelenő izom-válaszok számából következtethetünk a mély blokk intenzitására. Amennyiben héténél több összehúzódás észlelhető, akkor hamarosan várható a TOFC 1 megjelenése. (56) (3. Ábra)

3.Ábra TOF és PTC értékek alakulása nem depolarizáló izomrelaxáns alkalmazásakor.

A TOF és PTC ingerlésre adott izomválaszok alapján megkülönböztethetünk teljes vagy intenzív (TOFC 0, PTC 0), mély (TOFC 0, PTC ≥1), mérsékelt (TOFC 1-3), reziduális (TOFC 4) és felszínes (TOFR ≥0,5) neuromuszkuláris blokkot. (55)
Az izomrelaxáció fokának monitorozásakor általában a nervus ulnaris ingerlésével kiváltott m. adductor pollicis izomválaszt elemezünk, azaz a hüvelykujj flexióját vizsgáljuk. Kevésbé elterjedt, technikailag nehezebben kivitelezhető a nervus tibialis ingerlése, amelyre jelentkező izomválasz a m. flexor hallucis brevis összehúzódása, ami az I. lábujj flexióját idézi elő; a nervus facialis ramus zygomaticus ingerlése, amelyre a m. orbicularis oculi összehúzódik és a felső szemhéj lefelé mozdul; és a nervus facialis ramus temporalis ingerlése, amelyre a m. corrugator supercilii lép kontrakcióba, és a szemöldök lefelé mozdul. (56)

Amennyiben úgynevezett egyszerű idegstimulátort használunk, amely csupán ingerlésre alkalmas, de regisztrálásra nem, a megjelenő izomválaszok mértékét érzékelhetjük vizuálisan vagy tapintással, és a fáradás mértékét ez alapján becslhetjük meg. Azonban, még a legtapasztaltabb aneszteziológus sem képes a felületesebb blokkok mértékét pontosan megítélni, ugyanis TOFR 0,5 felett már nem érzékelhető ilyen módszerrel fáradás. (62) Ezért kifejlesztesére kerültek a kvantitatív monitorok, amelyek a fáradás mértékét maguk mérnek, és számszerűen kijelzik azt. Tudományos vizsgálatokra a monitorizálási formák közül a mechanomiográfia, az elektromiográfia és az akceleromiográfia az elfogadott. (55)

- A kvantitatív monitorok „gold standardja” a mechanomiográfia, amely direkt izomerőt mér, az izom izometrikus kontrakciójának erejét. Nagyon pontos módszer, alkalmazása azonban nehézkes, mindennapi monitorozásra ezért nem használatos. Napjainkban tudományos vizsgálatoknál és egyéb stimulátorok hitelesítésére alkalmazzák. (56)

- Szintén igen pontos módszer az elektromiográfia, amely az izom fölé helyezett, vagy az izomrostba szürt elektrodák segítségével az izom elektromos aktivitását méri, ami arányos az izom összehúzódásának erejével. Az eszköz által mért elektromos aktivitás az izmot felépítő izomrostok akciós potenciáljainak összeadódásával keletkezik. A módszer megbízhatósága közelíti a mechanomiografiát. (56) Napjainkban elektromiográfias neuromuszkuláris monitor nincs forgalomban, a Datex Relaxograph gyártása megszűnt.

- A harmadik módszer, amelynek alkalmazása tudományos vizsgálatokban is ajánlott, az akceleromiográfia. Ez a módszer mindennapi monitorozásra is alkalmas, könnyen kivitelezhető. Az akceleromiográfia a piezoelekromosság jelenségét használja ki. Az izomra rögzített piezoelektromos kristály gyorsulása indukálja az elektromos aktivitást, amelyből Newton második törvénye (erő = tömeg x gyorsulás) alapján az izom összehúzódásának mértéke kiszámítható. (55) Tehát a kontrakció ereje indirekt
módon kerül kiszámításra, és ebben rejlik a módszer pontatlansága is. Ez okozhatja a gép által kijelzett értékek eltérését a mechanomiográfiaval mért értékekhez képest. (Az akceleromiográf ugyanis felette mér a mechanomiográf által mért értékeknek.) (63) Ez az eltérés kritikus lehet a felületes ízomrelaxáció, így a posztoperatív neuromuszkuláris blokk megítélésénél. E pontatlanság miatt az akceleromiográfia csak bizonyos előzetes feltételek teljesítése esetén alkalmas a posztoperatív neuromuszkuláris blokk kizárására, és tudományos vizsgálatok elvégzésére. (63) (Lásd alább)
2.3. Posztooperatív reziduális neuromuszkuláris blokk

2.3.1. A posztooperatív reziduális neuromuszkuláris blokk fogalma

A műtétek végén, az extubáláskor illetve azután fennálló maradék izomrelaxáns hatást posztooperatív reziduális neuromuszkuláris blokknak (PRNB) nevezzük. Korábban a műtétek végén a TOF arány 0,7 értékre való visszatérfést megfelelőnek tekintették a posztooperatív izomgyengeség kizárására. Ali és Kitz demonstrálták, hogy a betegek ekkor képesek a szemüket nyitni, köhögni, nyelvüket kiölteni, fejüket megemelni és öt másodpercig megtartani, a forsszírozott vitálkapacitásuk pedig eléri a 15–20 ml/kg-ot. (64) Ezen eredmények megerősítésére kerültek egy későbbi vizsgálat alatt, amelyben TOFR 0,7 értéknél a betegek képesek voltak szemüket nyitva tartani, kezet szorítani, nyelvüket kiölteni, és a vizsgált 10 betegből 9 a fejét is képes volt megemelni és megtartani. A betegek vitálkapacitása átlagosan 17 ml/kg volt. (65) Később azonban számos vizsgálat igazolta, hogy a TOFR 0,7 érték nem biztosít kellő izomerőt és alkalmazása szövődmények forrása lehet. Az izomrelaxáció teljes megszűnését a TOFR 0,9 érték jelzi. Napjainkban tehát, definíciószerűen posztooperatív reziduális neuromuszkuláris blokkról beszélünk, ha az extubációt követően a visszatért TOF arány alacsonyabb, mint 0,9. (TOFR <0,9) (8)

Nem szabad azonban elfeledkezni arról, hogy a „safety margin” jelenség miatt (lásd előbb) az izomzat működéséhez az acetilkolin receptorok 25%-a elégséges, ezért amennyiben a receptorok 25% már felszabadult a gátlás alól, az izom működésében eltérrést a szokásos egyszeri vagy TOF ingerléssel (monitorozással) már nem tapasztalunk (26). Bár tetanizáló ingerlés (100–200 Hz) segítségével követhető lenne a receptorok felszabadulása egészen addig, amíg a szabad receptorok aránya eléri a 65%-ot, ez a monitorozás napjainkban nem használatos. (58) Így rutinszerűen az izomrelaxáció monitorozása csak a receptorok 75%-os, vagy annál nagyobb arányú blokkolása esetén lehetséges, az ennél felületesebb gátlást megítélni nem tudjuk. Ezért bár a műtétek végén a visszatérhet az áhitott TOFR 0,9 érték, a betegek nem biztos, hogy rendelkeznek biztonsági tartalékkal, így a posztooperatív monitorozástól nem tekinthetünk el. A „teljes visszatérés” fogalom valójában nem helyes és lehetőleg kerülendő, mert látens blokk fennállhat.
2.3.2. A posztoperatív reziduális neuromuszkuláris blokk következményei

A szervezet izmainak izomrelaxánsok iránti érzékenysége eltérő, (4. Ábra) az izom perfúziójától, felépítésétől (gyors/lassú izomrostok aránya), az acetilkolin-receptorok sűrűségétől és az izmot érő hőmérséklet-ingadozásoktól függően. Izomrelaxánsok iránt legkevésbé érzékeny a rekesz. A relaxáció a rekeszizmon az izomrelaxáns beadását követően leghamarabb következik be, és a visszatérésnél a rekesz működése kb. 20-30%-kal rövidebb idő alatt normalizálódik, mint az általunk legtöbbet monitorozott m. adductor pollicis mozgása. A rekesz önmagában a belégzési erő 60-80%-át adja, és a forszírozott vitálkapacitás több mint 60%-ért felé. (66) A rekesz mozgása már akkor is kezdhet visszatérni, amikor TOF ingerlésre izomválasz még nem érzékelhető a hüvelykujjon. A légzési térfogat (tidal volumen, TV) pedig már normális lehet igen alacsony TOF arányoknál is (TOFR ≤0,5). (67) Azonban a normális légzési térfogat elérése nem egyenlő az izomerő biztonságos visszatérésével. A „biztonságos” jelző azt jelenti, hogy a betegek képesek normálisan lélegezni, fenntartani a felső légutak átjárhatóságát, rendelkeznek a légúti védekező reflexekkel, nyelni, köhögni, beszélni tudnak. Izomrelaxánsok iránt a legérzékenyebbek a garatizmok, a nyelvizmok és a nyelőcső felső harmadának harántcsíkolt izomzata, amelyek szerepe ezekben a mozgásokban megkérőjelezhetetlen. (68)

4.Ábra. A szervezet izmainak izomrelaxánsok iránti érzékenysége. A garatizmok a legérzékenyebbek, legkevésbé érzékeny a rekesz. (Fuchs-Buder T. Principles of
A garatizmok, a nyelvvezetők és a nyelőcső felső harmadának harántcsíkolt izomzata igen érzékeny az izomrelaxánsokra. Ezen izmok a nyelésben megkerülhetetlen szerepet játszannak. A nyelés folyamatában bekövetkező zavar pedig aspirációhoz vezethet. 1991-ben Isono és munkatársai 8 egészséges, nem altatott önkéntesnél kisdózisú pancuroniumot alkalmaztak. A m. adductor pollicis-on monitorozott TOFR 0,81 érték elérésekor a mesopharyngeális nyomás, és suprahyoides EMG szignifikáns csökkenést mutatott, ebből azt a következtetést vonták le, hogy a nyelés hajtóereje kisebb lett, és a mesopharynx izmainak működése zavart szenvedett. A 8 betegből 5 panaszkodott nyelészavarra, 7 kettőslátásra és szem-nyitvatartási nehézségre, ugyanakkor mindegyikük végrehajtotta a fej megemelését és annak megtartását, a nyelvkiöltést, és egyikük sem jelzett légzési nehézséget is. (68) 1997-ben Eriksson és munkatársai 14 egészséges, éber önkéntes vizsgák, akiknél vecuronium infundálással hoztak létre TOFR 0,6 szintű neuromuskuláris blokkot, amelyet hagytak spontán megszűnni. Az érzkénteseknél a nyelés folyamatát vizsgálták, a garat és a nyelőcső felső részének videomanometriájával. TOFR 0,6 értékénél 4; 0,7-nél 3; 0,8-nál 1 önkéntesnél nyelészavar volt tapasztalható, amelyet a kontrasztanyag aspirációja kísért. Méréssel igazolták a nyelőcső felső része izomzatának működészavarát és a nyelési koordináció zavarát. (70) Ugyanez a vizsgálatok 2000-ben 20 egészséges, éber önkéntesen vizsgálta a nyelés folyamatát fluoroszкопia és manometria segítségével, atracuriummal létrehozott parciális neuromuskuláris blokkban (TOFR 0,6 – 0,9). TOFR 0,8 értékénél a nyelések 20%-nál volt észlelhető pharyngeális diszfunkció. TOFR 0,6 értékénél ez az arány 28% volt. E nyelések 80%-nál félreengedett, aspirációval, amikor a kontrasztanyag elérte a hangszalagok szintjét. A nyelvcsont előre történő elmozdulását követő gége-emelkedés meghatározó szerepet játszik az aspiráció megelőzésében a felső légút lezárásával. A vizsgálat igazolta a PNB hatására létrejövő nyelvcsont-mozgási zavart, amelyet a m. geniohyoideus és m. mylohyoideus diszfunkciója okozhat. A felső oesophagus izomzat működésének és a nyelés koordinációjának zavara TOFR 0,8, vagy az alatti értékeknél volt észlelhető. (70) Az időskorú betegek csökkent izomtónussal rendelkeznek a nyelőcső felső harmadában, ezért fokozottan hajlamosak aspirációra. (71) A maradék izomrelaxáns hatás kiváltotta aspiráció valószínűsége ezért időseknél magasabb. 2014-ben 17
önkéntes, rocuroniummal parciálisan relaxált, éber időskorút (65 évnél öregebb) vizsgálták, és igazolódott, hogy a TOFR 0,8 értékre csökkentésével a nyeléseknél észlelhető pharyngeális diszfunkció szignifikánsan emelkedett (37%-ról 67%-ra), ezzel párhuzamosan az aspiráció előfordulása is megnőtt. Szignifikánsan csökkent a nyelőcső felső része izmainak tónusa, és az önkéntesek köhögési ingere, amely a légúti protekción csökkenésére utal. (72) Az aspirációra való hajlam még kifejezettebb altatás után, amikor is a maradék izomrelaxáns hatás mellett maradék ópiát- és anesztetikum-hatás is jelen lehet. (73) Továbbá bizonyítást nyert, hogy maga az intubáció – még ha rövid ideig tart is, – csökkenti a gége-reflexeket, így szintén növeli a poszteroperatív aspiráció kialakulásának veszélyét. (74) Kimutatták, hogy az intenzív osztályokon a lélegeztetéssel kapcsolatos tüdőgyulladások (ventilator-associated pneumonia) háttérében az un „silent” pulmonális aspiráció áll. (75) Ugyanez a mechanizmus szerepet játszhat a műtéti utáni pneumonia létrejöttében is.

2.3.2.2. A poszteroperatív reziduális izomrelaxáció hatása felső légút izomzatára

A parciális izomrelaxáció légzésfunkcióira gyakorolt hatását vizsgálta egy kutatócsoport 2003-ban. Egészséges önkénteseket rocuroniummal TOFR 0,5 értékig relaxálták, majd hagyták spontán megszűnni a blokádot. Azt tapasztalták, hogy TOFR 0,8 értéknel a forszírozott belégzési volumen (FIV₁ sec) még szignifikánsan alacsonyabb volt a kiindulási értékénél, míg a forszírozott vitálkapacitás visszatért a kezdeti értékre. (Megjegyzendő, hogy TOFR 0,56 értéknel a forszírozott vitálkapacitás már elfogadható volt.) A légzésfunkciós paraméterek tehát felső légúti obstrukció jeleit mutattak. A FIV₁ sec csak a TOF arány 1,0 értékre visszatérésekor normalizálódott. (76) Ugyanez a vizsgálócsoporthoz a felső légúti szűkület okát kutatva MRI vizsgálatot végzett tiz, parciálisan relaxált önkéntesen, emellett a m. genioglossus EMG vizsgálatára is sor került. TOFR 0,8 értéknel a belégzési felső légúti volumen szignifikánsan csökkent, és csak a TOF 1,0 értékre való visszatéréskor normalizálódott. A kilégzési felső légúti volumen nem változott. A m. genioglossus EMG szignifikáns csökkenést mutatott, amely szintén csak TOFR 1,0 értéknel tért vissza a kiindulási szintre. A vizsgálók arra a következtetésre jutottak, hogy a parciális neuromuszkuláris blokk a felső légút dilatátor izmainak működési zavarát idézi elő, így felső légúti szűkülethez vezet. Ezért mindenképpen javasolt a műtétek végén a TOFR 0,8 feletti értékre való visszatérése, de legbiztonságosabb a TOFR 1,0 értékre való visszatérés. (77) (Megjegyzendő, hogy a monitorozás acceleromyográfiával történt, amelynél az elvárt
visszatérés értéke azóta változott. Lásd később.) A m. genioglossus működésének alapos vizsgálatát tűzte ki célul egy 2009-ben lezárult vizsgálat, amelyet 15 egészséges, relaxált önkéntesen végezték. Rögzítették a m. genioglossus EMG-t és az úgynevezett kritikus légúti záródási nyomást. Nazális maszkon keresztül alkalmazott negatív, vagy pozitív nyomás generálása mellett mérték a légútból a levegő áramlását. Az áramlás megszűnését kívántó légúti nyomást, kritikus légúti záródási nyomásként definiálták. Názális maszkon keresztül alkalmazott negatív, vagy pozitív nyomás generálása mellett mérték a légútból a levegő áramlását. Az áramlás megszűnését kívántó légúti nyomást, kritikus légúti záródási nyomásként definiálták. TOFR 0,5–1,0 értéknél a felső légút „összeesésre való hajlama” nőtt, a m. genioglossus működése zavart szenvedett, és nem megfelelően „válaszolt” az előidézett negatív nyomásokra, azaz magasabb nyomásértékek okoztak légúti záródást (-12,6 ± 3,3 vízcm; -5,8 ± 1,8 vícm; -9,8 ± 2,9 vízcm kiinduláskor, TOFR 0,5 és TOFR 0,8 értéknél, sorrendben). A szerzők a m. genioglossus funkciózavara mellett fontosnak tartják más felső légúti dilatarot izom – különösen a lágyszájpad izom – diszfunkciójának szerepét a felső légúti obstrukció létrejöttében. (78) Sebészeti nagy hasi műtét átesett betegeken, az extubálás után 30 perccel spirometriát végezve, a felső légúti szűkületre utaló értékeket mérték, míg a forszírozott vitálkapacitás nem változott. Neuromuszkuláris blokk már nem állt fenn ekkor (TOFR 0,9 vagy a fölötti volt). A szerzők azt a következtetést vonták le, hogy a felső légút szűkülete nagy hasi műtétek után izomrelaxáns hatása nélkül is észlelhető, tehát az izomrelaxáció mellett egyéb faktorok is közrejátszhatnak a létrejöttében (altatószerek, ópiátok hatása). Mindenképpen ajánlatos azonban a neuromuszkuláris blokk felfüggesztése, mert a különböző faktorok összeadódásával súlyosabb lehet a következmény. (79) A felső légúti szűkület különösen veszélyes lehet alvási apnoe szindrómás betegeknél, túlsúlyos betegeknél, a tüdő szekréciójának fokozódása, tüdőödéma, vagy anatómia szűkület fennállása esetén. (78) A felső légúti szűkület a szatúráció csökkenéséhez, súlyosabb esetben akár negatív nyomású tüdőömához vezethet. (9) 2.3.2.3. A posztoperatív reziduális izomrelaxáció hatása az akut hypoxiás légzésválaszra A glomus caroticumban lévő kemoreceptorok vezérlik a súlyos akut hypoxiára jelentkező légzésvásárlást, amely a percentszékek emelkedésében nyilvánul meg. 1991-ben Fitzgerald és Shirata antikolinerg szerekkel megakadályozták a glomus caroticum hypoxia alatti neuronális aktivitásának növekedését. (80) 1992-ben egészséges önkéntesen igazolták, hogy vecuroniummal létrehozott parciális neuromuszkuláris blokkban (TOFR 0,7) csökken az akut hipoxiás légzésvásárlás mértéke. (81) A vizsgálók eredményeit egy évvel később – más vizsgálati módszereket alkalmazva – megerősítették. (82) Később vecuronium mellett
atracuriummal és pancuroniummal relaxálva az egészséges önkénteseket szintén kiváltható volt az akut hipoxiás légzésválasz csökkenés. A légzésválasz 30%-kal csökkent mindhárom csoportban, és csak a TOFR 0,9 elérése után normalizálódott. (83) Az akut hypoxiás légzésválasz csökkenésének elfogadott magyarázata a glomus caroticumban lévő nikotinos acetilkolin receptorok gátlása (39), bár pontos mechanizmusra még nem tisztázott, ahogy azt sem tudjuk, felfüggeszthető-e ez a gátlás antikolinészerű alkalmazásával. (84) Egy tavalyi vizsgálat azt igazolta, hogy az emberi glomus caroticumban a hypoxia első öt percében – többek között – igen nagy mennyiségű acetilkolin szabadul fel. (85) Ez erősíti a receptor-gátlás elméletet. Mindenesetre a reziduális neuromuszkulális blokk hatására csökken a hypoxiára jelentkező perceventilláció emelkedés, ami deszaturációt váltathat ki. A poszteroperatív időszakban lévő betegek, akiknél opioid- és szedatívum-hatás is fennállhat, még hajlamosabbak a deszaturációra. (84)

2.3.2.4. A poszteroperatív reziduális izomrelaxáció okozta szubjektív panaszok

A poszteroperatív reziduális neuromuszkulális blokk igen kellemetlen szubjektív tüneteket okozhat ébredés után a betegeknél. Egy klinikai vizsgálatban 10 önkéntesnél mivacuriummal parciális izomrelaxációt hoztak létre. TOFR 0,9 érték alatt mindegyik önkéntes kettős látásról, látási zavarról panaszodott. Ezek a tünetek 7 beteg esetében a TOFR 1,0 érték visszatérése után is fennmaradtak, további 45–90 percig. TOFR 0,7–0,75 szintű blokk alatt az önkéntesek a látási problémákon kívül, a beszéd nehezítettségéről, ívási nehézségről, arcizomgyengeségről és általános gyengeségérzésről számoltak be. A kéz szorítóereje csökkent, a betegek nem voltak képesek az alsó és felső metszőfogaikat egymáshoz érinteni, és segítség nélkül ülni. A blokk felületesebbé válásával (TOFR 0,85–1,0) – a generalizált gyengeségérzés és a látási problémák kivételével – a tünetek megszűntek. (86) Murphy és munkatársai 155 altatáson átesett beteget vizsgáltak. A poszteroperatív örzőbe érkezéskor mérték az aktuális TOF arányt. A betegeknél ekkor igen magas volt a gyengeségérzet valamilyen szubjektív tünetének előfordulási aránya, függetlenül attól, hogy a mért TOF arány meghaladta-e a 0,9 értéket (TOFR <0,9: 100% vs. TOFR ≥0,9: 80%). Hatvan percecel az érkezést követően a különbség már szignifikánsnak mutatkozott e téren (TOFR <0,9: 80% vs. TOFR≥0,9: 26%). A szubjektív tünetek a TOFR <0,9 csoportban szignifikánsan gyakrabban fordultak elő, így az általános gyengeség érzet, a kettős- látás, a beszéd nehezítettsége, köhögési nehezítettség,
nyelési nehézség, arcizom gyengeség. Ezzel a vizsgálattal a szerzők bizonyították, hogy e szindrómák megjelenésében a maradék izomrelaxációknak igen nagy a szerepe, és az anesztetikumok és opioidok hatása kevésbé jelentős. (87)

2.3.2.5. A posztooperatív reziduális izomrelaxáció okozta légzésfunkciós eltérések

A parciális izomrelaxáció hatását egészséges önkéntesen a TOFR 0,5 értékre való csökkenésekor a forszírozott vitálkapacitás (FVC) a kiindulási érték 78%-ra csökkenését figyelték meg. TOFR 0,8 értéknél a FVC visszatért a kezdeti értékre (kiindulási érték 94±6%-a). A szerzők a FVC elfogadható értékre való visszatérését TOFR 0,56 érték megjelenésére kalkulálták. (76) Ennek ellentmond egy frissesebb vizsgálat eredménye: 150 betegnél vizsgálták a légzésfunkció változását a közvetlen posztooperatív szakban. A FVC és a kilégzési csúcsáramlás (PEF) paramétereket mérték. Mindkét érték csökkent a műtét után, függetlenül attól, hogy fennállt-e neuromuszkuláris blokk. Azoknál a betegeknél azonban, akiknél PRNB volt kimutatható, a posztooperatív FVC és PEF csökkenése szignifikánsan nagyobb arányú volt. (TOFR ≥0,9 vs. TOFR <0,9 csoportban a posztooperatív PEF a kiindulási érték százalékában: 47 vs. 38; és a posztooperatív FVC a kiindulási érték százalékában: 62 vs. 49.) (88)

3. Táblázat. A PRNB tünetei, a fennálló neuromuszkuláris blokk mélységének függvényében. (66, 87) (TV: légzési tidal volumen, FVC: forszírozott vitálkapacitás)

<table>
<thead>
<tr>
<th></th>
<th>TOFR 0,5</th>
<th>TOFR 0,8</th>
<th>TOFR 1,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>TV</td>
<td>normális</td>
<td>normális</td>
<td>normális</td>
</tr>
<tr>
<td>FVC</td>
<td>gyakran csökkent</td>
<td>gyakran normális</td>
<td>normális</td>
</tr>
<tr>
<td>Garatműködés</td>
<td>nagyfokban károsodott</td>
<td>károsodott</td>
<td>általában normális</td>
</tr>
<tr>
<td>(nyelés képessége)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Felső légút</td>
<td>nagyfokban károsodott</td>
<td>károsodott</td>
<td>általában normális</td>
</tr>
<tr>
<td>integritása</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akut hypoxiás</td>
<td>gyakran károsodott</td>
<td>gyakran normális</td>
<td>normális</td>
</tr>
<tr>
<td>légzésválasz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Szubjektív</td>
<td>jelentősek</td>
<td>gyakran előfordulnak</td>
<td>általában nincsenek</td>
</tr>
<tr>
<td>panaszok</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.3.3. Posztoperatív reziduális neuromuszkuláris blokk hatása a mortalitásra, morbiditásra

Klinikai szempontból a legfontosabb kérdés, hogy mennyire befolyásolja a PRNB – a számos vizsgálat által kimutatott negatív hatásai következtében – a perioperatív morbiditást és mortalitást?

Beecher és Todd 1948 és 1952 között közel 600 ezer beteg adatait elemezve azt a következtetést vonták le, hogy az izomrelaxáció aneszteziológiai gyakorlatba való bevezetésével a perioperatív mortalitás a hatszorosára emelkedett és azt javasolták, hogy ezek veszélyes szerek, melyeket az anesztezia során kerülni kell. (89) 1983-ban Nagy-Britanniában és Írországban a hat napon belüli posztoperatív mortalitást vizsgálták. A jelentett esetek 16%-ánál a halálozás egyértelműen aneszteziológiai szövődményhez volt köthető. Ezen esetekben a halálozás egyik leggyakoribb okaként az izomgyengeség okozta légzési elégtelenséget jelölték meg. (90) Tiret és munkatársai prospektív tanulmányt végeztek Franciaországban, 1978 és 1982 között, amelyben a posztoperatív mortalitás előfordulását vizsgálták. A teljesen aneszteziológiai szövődmény okozta kóma és a halálozás incidenciája 1/7924 anesztezia volt. Ezen esetek felében posztoperatív légzési elégtelenség volt a közvetlen kiváltó ok. (91) Cooper és munkatársai nem várt aneszteziológiai szövődmény miatt intenzív osztályos kezelést igénylő betegek adatait elemezve, arra a következtetésre jutottak, hogy az esetek több, mint felében (33/53), az intenzív osztályos ellátás a reziduális izomrelaxáció inadékvát reverzálása következtében fellépő légzési elégtelenség miatt vált szükségessé. (92)

Az első olyan prospektív, randomizált, kontrollált vizsgálat eredménye, amely igazolta a maradék izomrelaxáció káros hatását altatás után, 1997-ben jelent meg. Műtét alatt pancuroniummal relaxált betegeknél a posztoperatív második napon vizsgálták a pneumonia és/vagy atelektázia előfordulását. A pozitív mellkas röntgennel rendelkező betegnél szignifikánsan alacsonyabb volt a műtét után mért TOF érték, mint a negatív lelettel bírók esetében (TOFR: 0,65±0,16 vs. TOFR: 0,81±0,14). Megállapították, hogy a reziduális neuromuszkuláris blokk a posztoperatív tüdőgyulladás és atelektázia előfordulásának független rizikófaktora. Ezen kívül műtét utáni tüdőgyulladás szignifikánsan nagyobb arányban fordult elő nagy hasi műtétek után, hosszabb műtétek után, lehüléskor és idős korban. (93)

Murphy és munkatársai 2008-ban a posztoperatív öröben jelentkező kritikus légzési elégtelenség előfordulásának gyakoriságát vizsgálták, eset-kontrollos, prospektív tanulmányukban. Kritikus légzési elégtelenségként kerültek definiálásra az alábbiak: beavatkozást igénylő felső légúti obstrukció, hypoxia, légzési nehezítettségre utaló tünetek (tachypnoe, légzési segédizmok használata, „húzó belégzés”), mély lélegzetvételre való képtelenség, amennyiben a beteg légzési nehezítettségére panaszkodik, a reintubáció szükségessege, aspirációra utaló klinikai jelek. A 7459 beteg 0,82 %-ánál fordult elő posztoperatív kritikus légzési elégtelenség. A két leggyakoribb tünet a súlyos hypoxia (59%) és a felső légúti obstrukció (34,4%) volt. Egyszerre több tünet a betegek 34,4%-nál fordult elő. A súlyos légzési elégtelenségben szenvedő betegeknél a műtét után mért TOF arány szignifikánsan alacsonyabb volt, mint a kontroll csoportban (TOFR: 0,62±0,20 vs. TOFR: 0,98±0,07). Az esetek 90,5%-ban a műtét után mért TOFR <0,9 volt, míg a kontrollcsoportban ez az érték a betegek 9,5%-nál volt csak mérhető. Ezen felül TOFR <0,7 értéket a kritikus légzési elégtelenségben szenvedő betegek 73,8%-nál regisztrálták! A kontrollcsoportban képest az alátástan, az opioidok alkalmazásában, és az izomrelaxánsok típusában nem volt szignifikáns különbség. A vizsgálók megállapították, hogy a fél nem ismert reziduális izomrelaxáció igen fontos szerepet játszik a műtét utáni kritikus légzési elégtelenség előfordulásában. (5) A bostoni Massachusetts General Hospital-ban 2006 és 2010 között végzett prospektív, eset kontrollos, kohort tanulmány eredményét 2012-ben közölték. A tanulmány célja a közepes hatású izomrelaxáns alkalmazásának, mint független rizikófaktornak tanulmányozása volt a műtét utáni légzési komplikációk kialakulásában. A több, mint 57 ezer anesztiá a közül 32002 beteg esetében alkalmazták közepes hatású izomrelaxáns (66% cisz-atracurium, 22,9% vecuronium, 11,6% rocuronium). Légzési komplikációként definiálták a deszaturációt és a reintubáció szükségeségét a posztoperatív első 7 napban. A szerzők megállapították, hogy a
közepes hatású izomrelaxánsok használata a műtét utáni súlyos légzési komplikációk kialakulásának független rizikófaktora. Az izomrelaxánsok alkalmazásakor szignifikánsan nagyobb arányban alakult ki posztooperatív deszaturáció, és szignifikánsan többször volt szükség súrűgyei reinitubációra a műtétet követően. A reinitubációt pneumónia, tüdő ödéma, atelektázia, aspiráció, eszméletvesztés tette szükségessé. Fontos megfigyelésük volt, hogy a reinitubáció szükségessége 90-szeresére növelte a mortalitást! A szerzők szerint a PRNB nagy valószínűséggel szerepet játszott az atelektázia, az aspiráció, majd a tüdőgyulladás kialakulásában. A tüdőödéma létrejöttének hátterében feltételezték a felső légúti elzáródás következtében kialakult negatív légúti nyomás szerepét. (9)

Egy ausztrál vizsgálócsoporthoz 2013-ban megfigyeléses vizsgálata során azt tanulmányozta, hogy az extubáláskor fennálló PRNB hogyan befolyásolja a posztooperatív pneumonia és atelektázia előfordulását. A 146 beteg közül 30-nál történt a műtét után 30 napon belül mellkas röntgen. A pozitív mellkas röntgen leillettel rendelkező betegeknél szignifikánsan alacsonyabb TOF arányok voltak mérhetőek extubáláskor [(TOFR 0.71 (0.44 – 0.86) vs. TOFR 0.94 (0.84 – 0.98) p <0,001]. Jelentős különbség mutatkozott a szövődmények előfordulási gyakoriságát illetően mind a TOFR 0,7 mind a TOFR 0,9 határértéket vizsgálva is. A pozitív mellkas röntgennel rendelkezők aránya a TOFR <0,7 vs. >0,7 csoportokban 35,3% vs. 5,3% (p <0,05) és a TOFR <0,9 vs. >0,9 csoportokban 21,3% vs. 24% volt (p <0,01). (6)

2.3.4. Posztoperatív reziduális neuromuszkuláris blokk előfordulásának gyakorisága

1997-ben prospektív, multi-centrikus vizsgálattal igazolták, hogy hosszú hatású izomrelaxáns (pancuronium) alkalmazása után nagyobb arányban fordult elő súlyos (TOFR <0,7) posztoperatív reziduális blokk, ami szignifikánsan emelte a műtét utáni légzési elégtelenség kialakulásának valószínűségét. (93) Ezt követően, a kilencvenes évek végén, és a kétezres évek elején több vizsgálat is igazolta, hogy hosszú hatástartamú izomrelaxánsok után emelkedik a posztoperatív izomrelaxáció előfordulása. (94, 95) E közlemények hatására világszerte érősen visszacsorgult a hosszú hatású izomrelaxánsok alkalmazása. (96) Az az „igéret” azonban, hogy a közepes hatástartamú izomrelaxánsok alkalmazásával erőteljesen csökkenthető a PRNB előfordulása, nem vált valósággá. (97) Napjainkban a posztoperatív izomrelaxáció még mindig igen nagy arányban fordul elő.
Naguib és munkatársai 2007-ben publikált meta-analízise, amelyben 24 – 1979 és 2005 között közölt – tanulmányt elemeztek, a PRNB előfordulási gyakoriságát vizsgálta, hosszú- és közepes hatástartamú izomrelaxánsok alkalmazását követően. A tanulmányban megállapították, hogy amennyiben az elemzett vizsgálatokban a TOFR <0,7 érték volt a PRNB kritériuma, úgy a közepes hatástartamú izomrelaxánsok alkalmazása szignifikánsan csökkentette annak előfordulását, a hosszú hatástartamú izomrelaxánsokkal szemben (p=0,0082). Amikor pedig a TOFR <0,9 értéket vizsgálták, úgy a közepes hatástartamú izomrelaxánsok alkalmazása után ugyan kisebb arányban fordult elő PRNB, de ez a csökkenés nem volt szignifikáns (p=0,09) a hosszú hatástartamú izomrelaxánsok használatahoz képest. (98)

2000 és 2008 között végzett vizsgálatok azt mutatják, hogy a posztoperatív reziduális blokk közepes hatású izomrelaxánsok alkalmazása mellett is igen gyakran – az alátátszások után átlag 35,74 %-ban – fordul elő. (8) Ha csak a 2005-ben és azután publikált vizsgálatok eredményét nézzük, ahol már a TOFR <0,9 értéket tekintették RPNB-nak, akkor sem jelentősen változik a reziduális kurarizáció előfordulása: átlagban 35,56%. A különböző vizsgálatok eredményei közölt, igen nagy az eltérés, a szórás az előfordulási gyakoriságban igen magas: 3,5 – 88% között mozog, a medián érték pedig: 38%. (8)
2.3.5. Posztoperatív reziduális neuromuszkuláris blokk megelőzésének és antagonizálásának lehetőségei

2.3.5.1. Rövidebb hatású izomrelaxánsok alkalmazása

Miért nem csökkent jelentősen a posztoperatív reziduális neuromuszkuláris blokk előfordulása a közepes hatástartamú izomrelaxánsok szinte kizárólagos alkalmazásával? A relaxánsok hatástartama igen nagy variabilitást mutat, mivel azt számos tényező befolyásolhatja (életkor, szervelég telenség, társbetegség, sav-bázis zavarok, ioneltérések, lehűlés, együtt alkalmazott egyéb gyógyszerek). (2. Táblázat) Ezen kívül igazolódott, hogy egyénenként is igen eltérő módon reagálhatunk az izomrelaxánsokra. Növekszik a PRNB előfordulásának valószínűsége hosszú műtétek (ismételt adagolás) és infúzióban történő alkalmazás esetén. (97, 99) Caldwell és munkatársai 60 betegnél alkalmaztak vecuroniumot 0,1 mg/kg dózisban. TOFR 0,75 alatti értéket regisztráltak a betegek 90%, 20% és 5%-ánál a gyógyszer beadását követően 1, 2 illetve 4 órával. (100) Pedig a vecuronium alkalmazási előírata szerint annak hatástartama, azaz a bénulás megszűnése után a kontroll izomerő 95%-ának visszatéréséig átlagosan mintegy 60–80 percet vesz igénybe. (101) Debeane és munkatársai 526 beteget vizsgáltak, egy dózis vecuronium, atracurium, rocuronium alkalmazását követően a posztoperatív őrzőben. A betegek 46,8%, 41,6% illetve 45%-ban észleltek TOFR <0,9 értéket. 238 beteg esetében több, mint két óra telt el a relaxáns beadásától. E betegek között a TOFR <0,7 és a TOFR <0,9 érték előfordulásának gyakorisága sorrendben 10% és 37% volt. Mind a három relaxáns esetében voltak olyan betegek, akiknél a TOFR 1,0 értékre való visszatérése 350 perc alatt sem történt meg. (102) 2012-ben Dubois és munkatársai a mivacurium, atracurium és rocuronium esetében vizsgálták a TOFR 0,75 értékre való visszatérésehez szükséges időintervallumot. Mindhárom izomrelaxáns esetében a mért időintervallumok meghaladták az alkalmazási előíratban megadottat, és emellett igen nagy szórást mutattak. Mivacurium, atracurium és rocuronium esetében az átlag (minimum – maximum) visszatérési idők sorrendben a következők voltak: 34,8 perc (19,5-81,0); 70,6 perc (53,5-91,5); 65,7 perc (38,5-122,5). (103)

Kijelenthető tehát, hogy az izomrelaxánsok várható hatástartama a klinikai gyakorlatban nem mérhető fel pontosan, és közepes hatástartamú izomrelaxánsok alkalmazása után sem
lehetünk biztosak a hatás megszűnésében, még ha el is telt az alkalmazási előíratban megadott időintervallum.

2.3.5.2. Posztooperatív reziduális neuromuszkuláris blokk kizárása klinikai jelek alapján

Ideális esetben a maradék izomrelaxáns hatás kizárására létezne olyan – nem műszeres – klinikai vizsgálat, amelyhez nem szükséges a beteg ébrelére és kooperációjára, illetve az végrehajtható lenne az altatás vége, azaz az extubálás előtt. Sajnos azonban a jelenleg alkalmazott klinikai tesztek egyik kritériumot sem teljesítik. (97) Ezen kívül több vizsgálat is bizonyítja, hogy megbizhatóságuk a PRNB kizárására megkérdőjelezhető. Ezek a vizsgálatok: a fej megemelése és megtartása 5 másodpercig, a nyelv kinyújtása, láb megemelése és megtartása, kézsorítás, szem nyitva tartása, és az úgynevezett „tongue depressor” teszt (a spatula kihúzásának megakadályozása a metszőfogak közül).

Kopman és munkatársai 1997-ben 10 éber önkéntesnél vizsgálták a mivacuriummal létrehozott parciális izomrelaxáció által létrehozott tüneteket. A fej megemelését, és annak megtartását átlag TOFR 0,62 értéknél a vizsgálat alanyai sikeresen végrehajtották. Volt olyan önkéntes, akinek ez már 0,48 értéknél sikerült. A láb emelés hasonlóan alacsony TOF arányoknál végrehajtható volt (átlag: 0,59; min-max: 0,50-0,65). A „tongue depressor” teszt végrehajtása csak magasabb, átlag TOFR 0,86 értéken sikerült. Itt a legalacsonyabb érték, amelyen végrehajtották TOFR 0,68 volt. (86)

Cammu és munkatársai a klinikai tesztek specificitását és szenzitivitását vizsgálták 640 betegen. A tesztek specificitása 0,78-0,89, szenzitivitása 0,18-0,35, negatív prediktív értékei 0,63-0,66, pozitív prediktív értékei 0,47-0,52 értékek között mozogtak. (4. Táblázat) A tesztek kombinálásával mind a szenzitivitás, mind a specificitás alacsony maradt. Ez azt jelenti, hogy, ha a beteg végrehajtja a feladatokat, akkor sem zárható ki biztonsággal a reziduális blokk megléte, ugyanakkor, ha a beteg nem tudja végrehajtani valamelyik klinikai vizsgálatot, az még nem jelenti azt, hogy izomrelaxáns hatás alatt áll, mert ennek számos egyéb oka is lehet (pl. kooperáció hiánya, fájdalom). (104)
4. Táblázat. Klinikai tesztek szenzitivitása, specificitása, pozitív és negatív prediktív értékei, a TOFR 0,9 érték megállapításánál. (104 (ms: másodperc)

<table>
<thead>
<tr>
<th></th>
<th>Szenzitivitás</th>
<th>Specificitás</th>
<th>Pozitív prediktív érték</th>
<th>Negatív prediktív érték</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mosolygásra való képtelenség</td>
<td>0,29</td>
<td>0,8</td>
<td>0,47</td>
<td>0,64</td>
</tr>
<tr>
<td>Nyelés- képtelenség</td>
<td>0,21</td>
<td>0,85</td>
<td>0,47</td>
<td>0,63</td>
</tr>
<tr>
<td>Beszéd-képtelenség</td>
<td>0,29</td>
<td>0,8</td>
<td>0,47</td>
<td>0,64</td>
</tr>
<tr>
<td>Gyengeség-érzés</td>
<td>0,35</td>
<td>0,78</td>
<td>0,51</td>
<td>0,66</td>
</tr>
<tr>
<td>Fejemelés 5 ms-ig sikertelen</td>
<td>0,19</td>
<td>0,88</td>
<td>0,51</td>
<td>0,64</td>
</tr>
<tr>
<td>Lábemelés 5 ms-ig sikertelen</td>
<td>0,25</td>
<td>0,84</td>
<td>0,5</td>
<td>0,64</td>
</tr>
<tr>
<td>Kézszorítás 5 ms-ig sikertelen</td>
<td>0,18</td>
<td>0,89</td>
<td>0,51</td>
<td>0,63</td>
</tr>
<tr>
<td>„Tongue depressor” teszt sikertelen</td>
<td>0,22</td>
<td>0,88</td>
<td>0,52</td>
<td>0,64</td>
</tr>
</tbody>
</table>

Kijelenthetjük, hogy bár napjainkban sok aneszteziológus támaszkodik klinikai tesztekre a PRNB kizárásánál, a biztonságos TOF arány (TOFR \(\geq 0,9\)) megállapítására nem áll rendelkezésünkre megfelelő (nem műszeres) vizsgálat.

2.3.5.3. Posztoperatív reziduális neuromuszkuláris blokk felismerése monitorozás segítségével

2.3.5.3.1. Egyszerű idegstimulátor – Kvalitatív monitorozás

Kvalitatív monitorok alkalmazásakor az izomválaszok száma, és a fáradás mértéke tapintással vagy vizuálisan érzékelhető. Azonban a szubjektíven érzékelt TOF arány csak gyengén korrelál az objektív értékekkel. Gyakorlott aneszteziológusok körében megvizsgálták, hogy mennyire képesek tapintással vagy vizuálisan megállapítani a fennálló fáradás mértékét. Míg
a TOFR <0,3 és a TOFR 0,3-0,4 megállapítása minden aneszteziológusnak sikerült, addig a TOFR 0,4-0,5 érték felismerése már csak 63%-nak. A magasabb TOF arányok felismerésére csak az aneszteziológusok 14-23%-a volt képes. A tanulmányban megállapítást nyert, hogy a gyakorlott aneszteziológusok teljes biztonsággal csak a TOFR 0,4 érték érzékelésére képesek. Kevésbé gyakorlottaknak teljes biztonsággal csak a még alacsonyabb TOFR 0,3 érték megállapítása sikerült. A tapintás némileg érzékenyebbnék tűnt a vizuális módszernél. (62) Más vizsgálatban a vizuális érzékelés megbízhatóbbnak igazolódott. (105) Ha DBS stimulációs mintázatot alkalmaztak, akkor a fáradás mértéke TOFR <0,6 értékig érzékelhető volt, azonban annál felületesebbek blokkot megítélni az aneszteziológusok már nem tudtak. (60)

Mindezen tények ismeretében hordoz-e előnyt magában a kvalitatív monitorok alkalmazása műtétek alatt a PRNB megelőzése szempontjából? 1990-ben Pedersen és munkatársai (106) prospektív, randomizált vizsgálatot végeztek a monitorozás előnyének igazolására. A vizsgálatba 80 beteget vontak be, akiknél kvalitatív monitorot alkalmaztak, vagy a műtét végeztével az aneszteziológus klinikai teszek segítségével állapította meg a relaxáció fokát. A posztoperatív őrzi ében mért TOF arányokban nem volt szignifikáns különbség a csoportok között. A szerzők megállapították, hogy a kvalitatív monitorozás alkalmazása nem jár előnyökkel. (106) Shorten és munkatársai ellenben azt bizonyították vizsgálatukkal (107), hogy egyszerű idegstimulátor alkalmazásával a PRNB előfordulása csökkenthető. A posztoperatív őrzi ében a monitorozott és nem monitorozott betegek között előforduló TOFR <0,7 érték gyakorisága sorrendben 15% és 47% volt (p=0,029). (107) Hayes és munkatársai egy dózis közepes hatástartamú izomrelaxáns alkalmazása után 52%-ban mérték TOFR <0,8 értéket a posztoperatív őrzi ében. A betegek 41%-ánál alkalmaztak neuromuszkuláris monitorként egyszerű idegstimulátort a műtét alatt. A monitorozott és nem monitorozott betegek között 44% és 50% volt a PRNB előfordulása. A különbség nem volt szignifikáns (108) Cammu és munkatársai 2006-ban tanulmányozták betegeiken a posztoperatív izomrelaxáció előfordulását. Egynapos beavatkozásban áteső, és bent fekvő betegeket vizsgálták. Az összes beteg 42%-ánál észleltek a posztoperatív őrzi ében TOFR <0,9 értéket. A betegek 22%-ánál intraoperatív kvalitatív idegstimulátorrál monitoroztak az izomrelaxáció fokát. A monitorozott betegek 46%-ánál volt kimutatható PRNB. (104)

Naguib és munkatársainak 2007-ben közölt meta-analízise kimutatta, hogy a neuromuszkuláris monitorozás alkalmazásakor, bár kissé alacsonyabb arányban volt észlelhető maradék izomrelaxáns hatás, azonban a monitorok használata nem csökkentette
szignifikánsan a PRNB előfordulását. Például közepes hatású izomrelaxánsok alkalmazásakor a TOFR $<0,9$ előfordulásának gyakorisága a műtétek után a monitorozott és a nem monitorozott betegek körében 34,8% és 54,4% volt ($p=0,314$). A vizsgált tanulmányok többségében egyszerű idegstimulátor alkalmaztak. (98)

Nemrégiben, egy Amerikai Egyesült Államokban végzett, nagy esetszámú vizsgálattal az igazolódott, hogy az egyszerű idegstimulátorok nemhogy nem képesek csökkenteni a posztoperatív légzési elégtelenség előfordulásának arányát, ellenkezőleg, kismértékben növelik kialakulásának rizikóját. (9). Ennek hátterében valószínűleg a kvalitatív monitorozás nyújtotta látszat biztonság állhat. Az anezteziológus igen alacsony TOF arányoknál már nem érzékel fáradást (lásd fent), és ezért nem alkalmaz felfüggesztőszert. Monitorozás hiányában azonban szinte mindig adnak felfüggesztőszert az Amerikai Egyesült Államokban – tekintettel a jogi következményekre. A vizsgálat arra is rámutatott azonban, hogy ha a betegeknél a műtét végén neostigmint alkalmaztak, és a betegeket ugyanakkor monitorozták is, szignifikánsan alacsonyabb arányban fordult elő posztoperatív deszaturáció ($p<0,001$). (9)

2.3.5.3.2. Kvantitatív monitorok

A kvantitatív monitorok számszerűen kijelzik a fennálló TOF hányadost, így segítségükkel – ellentétben az egyszerű idegstimulátorral – a fáradás mértéke felületes blokkban is pontosan megítélhető, és ez alapján a fennálló maradék izomrelaxáció felfüggeszthető. A klinikumban a mechano- és elektromiográf használata túlzottan körülményesnek bizonyult a mindennapi használatra, ezért az akceleromiográfia (AMG) terjedt el.

Vajon a kvantitatív monitorozás képes csökkenteni a PRNB előfordulási gyakoriságát?

Mortensen és munkatársai 40 beteg bevonásával hasonlították össze a kvantitatív (AMG) monitorozás illetve a monitorozás hiányának PRNB előfordulására gyakorolt hatását. A posztoperatív őrzőben a TOFR $<0,7$ érték a monitorozott és nem monitorozott betegek 50% és 5,3%-ában volt regisztrálható, sorrendben. (109) Gätke és munkatársai 120 betegnél vizsgálták a PRNB előfordulását, amelynek kritériuma esetükben a TOFR $<0,8$ érték volt. A monitorozott és nem monitorozott betegek között ennek előfordulási gyakorisága sorrendben 3% és 16,7% volt ($p=0,029$). (110) Murphy és munkatársai 185 beteget két csoportba randomizáltak. Az egyik csoportnál kvalitatív, a másiknál kvantitatív AMG monitorozást végeztek. A posztoperatív őrzőben, a PRNB (TOFR $\leq 0,9$) előfordulási gyakorisága 30% volt.
a kvalitatívan monitorozott, és 4,5% volt az AMG monitorozásban részesült betegek között (p <0,0001). A súlyos reziduális blokk (TOFR <0,7) a kvalitatívan és az AMG-vel monitorozott betegek közt 13,3% és 0% volt (p <0,001). (111) Ugyanez a vizsgálat munkatársaival 2011-ben újabb tanulmányt végzett 115 beteg bevonásával. Hasonlóan az előzőleg leírt vizsgálathoz, a betegeket két csoportba randomizálták, akik a műtét alatt kvalitatív illetve AMG monitorozásban részesültek. A reziduális neuromuszkuláris blokk (TOFR <0,9) előfordulási gyakorisága az AMG-vel monitorozott betegek között szignifikánsan alacsonyabb volt, mint a kvalitatív monitorozást követően (14.5% vs. 50.0%, p <0,0001). A generalizált gyengeségre utaló szubjektív tünetek súlyossága és mennyisége is szignifikánsan alacsonyabb volt az AMG csoportban. A szerzők megállapították, hogy az akceleromiográffal történő monitorozás csökkenti a betegek műtét utáni kellemetlen szubjektív panaszait, így az ébredés „kellemesebb” lesz. (112)

Egy franciaországi kórházban – a szakirodalomban megjelentek hatására – változtatást vittek végbe a neuromuszkuláris monitorozás alkalmazása terén, majd az 1995 és 2004 közötti adatokat feldolgozták. Az aneszteziológusok és aneszteziológus asszisztensek oktatásával, és a kvantitatív monitorok elérhetővé tételével, azon műtétek aránya, ahol akceleromiográfiás készülékkel alkalmaztak 2%-ról 60%-ra emelkedett (p <0,001). A monitorizált betegek számának emelkedésével együtt nőtt azon betegek aránya is, ahol a műtét végén felfüggesztőszert (neostigmint) alkalmaztak (6%-ról 42%-ra, p <0,001). A posztoperatív neuromuszkuláris blokk (TOFR <0,9) előfordulási gyakorisága pedig 62%-ról 3%-ra csökkent (p <0,001). (113)

A vizsgálatok azt bizonyítják, hogy az akceleromiográfiák alkalmazása csökkenti a posztoperatív reziduális izomrelaxáció előfordulását. Azonban, az akceleromiográfiát a mechanomiográfiával összehasonlítva azt az eredményt tapasztalták, hogy az AMG monitor magasabb értékeket mutat, mint a „gold standard” mechanomiográfia. Harper és munkatársai vizsgálatában a mechanomiográfiával mért TOFR 0,7 érték észlelésekor AMG monitorral TOFR 0,4-1,0 közötti értékek voltak regisztrálhatók. (114) Ebből kiindulva a mechanomiográfiával megállapított, a műtétek végén elvárható, biztonságos TOF hányados (TOFR ≥0,9) akceleromiográfiával mérve nem elégéges. Capron és munkatársai bizonyították azt, hogy ha az AMG készüléket mérés előtt az altatott betegen kalibráljuk, és emellett a visszatérésnél a TOFR 1,0 határértéket tekintjük alkalmaznak a reziduális neuromuszkuláris blokk kizárására, akkor a készülék a mechanomiográfiához hasonlóan képes a maradék izomrelaxáció kizárására. A másik lehetőség a készüléken kimutatott érték
normalizálása (azaz a kiindulási értékhez való viszonyítása), és így a normalizált TOFR 0,9 értékre való visszatérés elfogadható. (63)

2.3.5.4. Az izomrelaxáns hatásának felfüggesztése

2.3.5.4.1. Neostigmin

A nem depolarizáló izomrelaxánsok kompetitív antagonistái a nikotin típusú acetilkolin receptoroknak, ezért hatásuk az acetilkolin mennyiségének növelésével megszüntethető. Az acetilkolin-észteráz enzim gátlásával az acetilkolin mennyisége igen nagymértékben növelhető a neuromuszkuláris junkcióban. Ugyanakkor, fontos megjegyezni, hogy az izomrelaxáns molekulák nem inaktiválódnak, továbbra is jelen vannak a neuromuszkuláris junkcióban, egészen addig, amíg a szervezet – különböző mechanizmusok útján – le nem bontja azokat. Erre azért is fontos emlékezni, mert amennyiben az izomrelaxáns felezési ideje jóval hosszabb, mint a felfüggesztőszer, akkor az utóbbi korábban lebomlik és újra neuromuszkuláris blokk alakulhat ki. Kolinészteráz bénítók a neostigmin, az edrophonium és a pyridostigmin. A műtétek utáni maradék izomrelaxáció felfüggesztésére a neostigmin használatos. (96)

A neostigmin dőzisa 0,04–0,07 mg/kg. Hatástartama 70 perc. A máj által körülbelül 80%-ban metabolizálódik, és a szervezetből a vizelettel távozik nagyjából 24 óra alatt. (115) Mivel egy gyógyszer az acetilkolin szintet nem csak a neuromuszkuláris junkcióban emeli, alkalmazásakor – a muszkarin típusú acetilkolin receptorok aktiválása következtében – számos mellékhatás jelentkezhet (bradikardia, QT megnyúlás, bronchokonstrikció, fokozott nyáleválasztás, miosis, megnövekedett bélmotilitás). Ezek a mellékhatások antikolinerg gyógyszerek együttes alkalmazásával megelőzhetők, ezért neostigmin mellé mindig adni kell atropint vagy glikopirolátot. Sajnos azonban az antikolinerg szerek alkalmazása szintén járhat mellékhatásokkal (tahikardia, aritmia). (116)

A neostigmin alkalmazásának gátat szab, az úgynevezett „plafon-effektus”. Az összes acetilkolin-észteráz enzim gátlásakor kialakul a gyógyszer maximális hatása, amely a dózis emelésével nem növelhető tovább. A maximális hatás kiváltásához a neostigmin ajánlott dózisai elegendőek. (116) Ennek a fenoménnak következtében a neostigmin túl mély blokkban alkalmazva nem hatásos, mert ekkor a neuromuszkuláris junkcióban jelen lévő izomrelaxáns molekulák száma igen nagy, és a maximális mennyiségű acetilkolin molekula
sem képes a blokk megszüntetésére. Ezért várni kell a neostigmin alkalmazásával, amíg az izomrelaxáns molekulák száma csökken, azaz a blokk felületeséből válik. Amennyiben a neostigmint mély blokkban alkalmazzák, a visszatérési idők nem rövidülnek a spontán visszatérés idejéhez képest. Korábban, amikor a PRNB definiciójának a TOFR <0,7 értéket tekintették, a neuromuszkuláris blokk TOFC 2 szintű visszatéréséig ajánlották várni a felfüggesztőszer beadásával. (96,117) Kirkegaard és munkatársai különböző szintű (TOFC 1, 2, 3, 4) ciszatracuriummal létrehozott blokkot függesztettek 0,07 mg/kg neostigmin alkalmazásával. A TOFR 0,9 értékre való visszatérési idő átlagban 22,2; 20,2; 17,1 és 16,5 perc volt sorrendben a TOFC 1, 2, 3, 4 szintű blokk függesztésekor. 30 perccel a neostigmin beadása után a betegek 21%, 13%, 13% és 7%-nál mért TOF arány alacsonyabb volt, mint 0,9. (118) Kopman és munkatársai rocuroniummal és ciszatracuriummal létrehozott, TOFC 2 szintű blokkot függesztettek 0,05 mg/kg neostigminnél, desflurane anesztiázi mellett. 10 perccel a reverzálást követően a mért átlagos TOF arány 0,72 és 0,76 volt, ciszatracurium- és rocuronium-blokk esetében, sorrendben. Több mint 30 percre volt szükség a TOFR ≥0,9 érték eléréséhez, a vizsgált 30 betegből öt esetében. (119) Napjainkban tehát, amikor a TOFR 0,9 értékre való visszatérés az elvárható, ajánlott a TOFC 4 megjelenéséig való várakozás a neostigmin alkalmazásával. Így a felfüggesztőszer beadása után 15 percen belül nagy valószínűséggel megszűnik a neuromuszkuláris blokk. (120) Kim és munkatársai sevoflurane és propofol anesztiázi mellett, rocuroniummal kiváltott, TOFC 1, 2, 3 és 4 szintű blokknál alkalmaztak teljes (0,07 mg/kg) dózisú neostigmint. Propofol alkalmazása mellett a TOFR 0,9 értékre való visszatérési idők átlaga (minimum-maximum), a csoportokban, sorrendben a következő volt: 8,6 perc (4,7-18,9), 7,5 perc (3,4-9,8), 5,4 (1,6-8,6), 4,7 (1,3-7,2). Sevoflurane anesztiázi mellett: 28,6 (8,8-75,8), 22,6 (8,3-57,4), 15,6 (7,3-43,9), 9,7 (5,1-26,4) perc alatt szünt meg az izomrelaxáció [átlag (minimum-maximum)]. A különbség szignifikánsnak bizonyult a két aneszetetikum alkalmazása melletti visszatérési idők között (p <0,0001). A sevoflurane – és minden inhalációs aneszetetikum – igen megnyújtja a neostigmin hatásának kialakulásához szükséges időintervallumot. Ez a tény megerősíti azt az ajánlást, hogy a felfüggesztéssel a TOFC 4 megjelenéséig várnál szükséges. (121) Blobner és munkatársai TOFC 2 szintű rocuronium blokkot függesztettek sevoflurane alkalmazása mellett, a TOFR 0,9-re való visszatérési idő átlag 18,6 (min-max: 3,7-106,9) perc volt, 3 beteg pedig a monitorozás ideje alatt nem érte el a TOFR 0,9 értéket. (122)

Korábban a neostigmin alkalmazását monitorozás nélkül rutinszerűen javasolták, minden izomrelaxáns használatával járó műtét végén. 1995-ben azonban Caldwell és munkatársai
vecuroniummal létrehozott neuromuszkuláris blokkot függesztettek 0,04 mg/kg neostigminnél, és azon betegeknél, akiknél a neostigmin beadásakor TOFR ≥0,9 érték volt észlelhető, a TOF arány a felfüggesztőszer beadása után csökkent. (100) Eikermann és munkatársai később azt igazolták, hogy a teljesen megszűnt neuromuszkuláris blokknál alkalmazott neostigmin patkányokban a felső légút dilatátort izomzatának erőteljes működési zavarát váltja ki, a rekeszizomzat erejének csökkenésével. (123) Herbstreit és munkatársai 10 egészséges önkéntesnek rocuroniummal neuromuszkuláris blokkot idézték elő, majd – a TOF hányados spontán 1,0 értékre való visszatérésekor – 0,03 mg/kg neostigmin alkalmaztak. A gyógyszer hatására a TOF arányokban csökkenést nem tapasztaltak, azonban a kritikus légúti záródási nyomás emelkedett (lásd fentebb) és a m genioglossus aktivitása jelentősen csökkent. A vizsgálat tehát a felső légút dilatátort izmainak markáns működési zavarát jelezte, amely felső légúti obstrukcióhoz vezethet. Az önkéntesek nyelési nehezítettségétől, kettőslátásról, és izom faszcikulációról panaszoktatnak. A jelenség hátterében a szerzők a neostigmin okozta megemelkedett acetilkolin koncentráció által létrehozott depolarizációs, vagy deszenzitizációs, vagy direkt blokát feltételeként. (124) A műtétek végén ajánlott tehát kvantitatív monitor alkalmazása a neostigmin beadásakor, hogy elkerüljük a felső légúti obstrukciót, és nem biztonságos a monitorozás nélkűli rutinszerű felfüggesztés neostigminnél. A neostigmin által kiváltott neuromuszkuláris blokk elkerülése érdekében, a felületesebben izomrelaxáció megszüntetésére biztonságosabb alacsonyabb dözisű felfüggesztőszer alkalmazása, egyes szerzők szerint. Fuchs-Buder és munkatársai a neostigmin biztonságos dözisait vizsgálták felszines atracurium blokát felfüggesztésére, 120 betegen. Megállapították, hogy a TOFR 0,4-0,6 mélységű atracurium blokkot 10 percen belül szüntette meg az alacsonyabb dözisú (0,02 mg/kg) neostigmin. Nem tapasztaltak posztoperatorív izomgyengeséget. (125) Schaller és munkatársai szintén igazolták, hogy a felületes (TOFR ≥0,5) rocuronium blokk 5 percen belül megszüntethető 0,034 mg/kg neostigmin alkalmazásával. (126)

Összefoglalva, amikor a neostigmin rutinszerűen, monitorozás nélkül alkalmazzák, a gyógyszer hatásbeállásának ideje nem kiszámítható. Mély blokk felfüggesztésekor nem szünteti meg hamarabb az izomrelaxáns hatását, mint annak spontán visszatérési ideje. Még reziduális blokk antagonistizálásakor is – főleg ha egyidejűleg inhalációs anesztetikumot is alkalmaznak, – igen elhúzódó lehet a visszatérés. Ha pedig akkor kerül sor a felfüggesztésre, amikor a neuromuszkuláris blokk már megszűnt, a neostigmin izomgyengeséget, felső légúti szükületet idézhet elő.
Valószínűleg az említett okokra vezethető vissza, hogy neostigmin alkalmazását követően is gyakran tapasztaltak reziduális izomrelaxációt. Hayes és munkatársai egy dózis közepes hatástartamú izomrelaxáns használata után 52%-ban észleltek TOFR <0,8 értéket a posztoperatív őrzőben. A betegek 68%-ánál neostigmint alkalmaztak a műtét végén. A reverzált betegek 49%-nál volt észlelhető a posztoperatív őrzőben reziduális izomrelaxáció (TOFR <0,8). Megjegyzendő, hogy a nem reverzált betegeknél ez az arány 60% volt. (108) 2012-ben Kumar és munkatársai vizsgálatában minden betegnél neostigmint alkalmaztak a műtét végén. A főként 0,05 mg/kg dózisban. Az izomrelaxációt vecuroniummal, atracuriummal és rocuroniummal hozták létre, és annak fokát műtét alatt nem monitorozták. A posztoperatív őrzőben a reverzálás ellenére a betegek 57%-nál TOFR <0,9 való értéket volt regisztrálható akceleromiográfiával. (88)

A neostigmin rutinszerű alkalmazása Grosse-Sundrup és munkatársainak tanulmánya alapján a posztoperatív légzési elégtelenség (hypoxia és reintubáció szükségessége) kialakulásának rizikófaktora. Ennek hátterében a szerzők által feltételezett mechanizmusok: vagy túl mély blokkban alkalmazták a gyógyszert; vagy ellenkezőleg, teljes visszatérés után alkalmazva a neostigmint, az depolarizációs blokkot idézett elő. (9) Ezeket az eredményeket támasztja alá, hogy egy 2013-ban publikált portugál multicentrikus vizsgálat is. A posztoperatív őrzőben a betegek 30%-nál rögzítettek TOFR <0,9 értéket. (109)

2.3.5.4.2. Sugammadex

A sugammadex, egy új típusú reverzáló gyógyszer, amely Európában és Ausztráliában 2008-ban, Japánban 2010-ben került bevezetésre. (129) Az Amerikai Egyesült Államokban, és
Kanadában máig nem engedélyezett a használata, mert a hatóságok úgy vélik, az anafilaxiával kapcsolatos biztonságosságára vonatkozóan még nem áll rendelkezésre elegendő adat.

A sugammadex a rocuroniummal komplexet képez, amelynek disszociációs rátája igen alacsony. A sugammadex megkötői a plazmában lévő szabad rocuronium molekulákat, így az izomrelaxáns koncentrációja csökken. A neuromuszkuláris junkcióból a relaxáns molekulák a koncentráció gradiensnek megfelelően a plazmába diffundálnak, így a junkcióban számuk egyre csökken, túlsúlyba kerülnek az acetilkolin molekulák és a blokk megszűnik. Ez a folyamat igen gyorsan következik be.

A sugammadex a rocuroniummal komplexet képez, amelynek disszociációs rátája igen alacsony. (6. ábra) A sugammadex megkötői a plazmában lévő szabad rocuronium molekulákat, így az izomrelaxáns koncentrációja csökken. A neuromuszkuláris junkcióból a relaxáns molekulák a koncentráció gradiensnek megfelelően a plazmába diffundálnak, így a junkcióban számuk egyre csökken, túlsúlyba kerülnek az acetilkolin molekulák és a blokk megszűnik. (6. ábra)(130) Ez a folyamat igen gyorsan következik be. (115) A sugammadex-relaxáns komplex változatlan formában, a vizelettel távozik a szervezetből, 8 órán belül. (133) Mivel a sugammadex szinte 100%-ban a vizelettel kerül kiválasztásra, veseelégtelen beteg esetében (kreatinine Clearance ≤ 30 ml/min) az alkalmazási előírattal e gyógyszer használatát nem javasolja. (134) Azonban, több vizsgálatban a sugammadex veseelégtelen betegek esetében
ugyanolyan hatásosnak bizonyult, mint egészségeseken, csak kissé megnyúlt visszatérési időket mérték alkalmazásakor. Mellékhatást nem tapasztaltak. (135, 136)

Bár a sugammadexet a rocuronium molekula megkötésére fejlesztették ki, képes megkötni a többi aminosteroid izomrelaxánsot is. Az aszociációs állandó számszerűen jellemzi két molekula közötti kötés erősségét, azaz a molekulák egymáshoz való affinitásának fokát. A sugammadex vizsgálatokor izotermális mikrokalorimetriával megállapított aszociációs állandók 161±28,1; 15,1±1,9; 8,8±0,4; 6,0±0,2 és 2,6±0,2 x 10⁶ M⁻¹ voltak a pipecuronium, rocuronium, vecuronium, 3-OH-vecuronium (a vecuronium aktív metabolitja) és pancuronium molekula kötése esetében. Izolált egér hemidiaphragmatikus modellen az egyes relaxánsokkal létrehozott 90%-os neuromuszkuláris blokk felfüggesztésénél azt a sugammadex koncentrációt vizsgálták, amely a blokk 50%-ra való visszatérését eredményezte. Az így megállapított EC₅₀ érték pipecuronium, rocuronium, vecuronium és pancuronium esetében 0,1±0,0; 1,2±0,8; 0,8±0,1 és 1,2±0,3 x 10⁻⁶ M volt.*

Fontos megjegyezni, hogy a sugammadex nem köti meg a benzil-izokinolin és a depolarizáló izomrelaxánsokat, ezért az azok által létrehozott blokk felfüggesztésére nem alkalmas.

A sugammadex mellékhatásprofilja igen kedvező. Mivel nem hat az acetilkolin receptorokra, és az acetilkolin mennyiségét sem változtatja, ezért mentes a neostigmin súlyos mellékhatásaitól. Bár a sugammadex képes megkötni más szteroid és non-szteroid molekulát is (például endogén szteroidok, atropin, verapamil), ennek klinikai jelentősége általában nincs, a kötés erőssége körülbelül a 120-700-szor gyengébb, mint a rocuroniummal való kötésé. (131) Ajánlott azonban a flucloxacillin adásával várni a sugammadex alkalmazását követően 6 órát, az orális antikoncipienek aznapi dózisa pedig hatástalan lehet, amelyre a betegek figyelmét fel kell hívni. (115) 2014-ben Rezonja és munkatársai a sugammadex és dexamethasone között releváns reakcióit mutattak ki, majd a két gyógyszer együttes alkalmazásakor, in vitro demonstrálták a sugammadex hatásának csökkenését a rocuronium blokk megszüntetésére. (137, 138) Bár ezen új ismeretnek klinikai relevanciája egyelőre nem ismeretes, javasolt a nagy dózisú dexamethasone és a sugammadex alkalmazásának időbeni eltolása. (130) A sugammadex állatkísérletekben nem mutatkozott teratogén és genotoxikusnak. (115) A kezdeti vizsgálatokban QT megnyúlás, mint lehetséges mellékhatás került leírásra. (139, 140) A későbbiekben azonban több vizsgálat sem mutatott ki QT megnyúlást a sugammadex alkalmazását követően, ilyen szempontból a sugammadex alkalmazása tehát biztonságosnak tekinthető. (141) 2014-ben hemosztázis eltéréseket igazoltak a sugammadex alkalmazását követően. Az APTI (aktivált parciális thromboplasztin idő) és az INR több, mint 22%-os megnyúlását mérték, 16 mg/kg dózisú sugammadex beadását követő 30 percen belül. (142) Megvizsgálták a hemosztázis változásait enoxaparin és konvencionális heparin alkalmazása mellett is. 4 és 16 mg/kg sugammadex alkalmazását követően nem tapasztaltak klinikailag releváns változást sem az anti-Xa aktivitást, sem az APTI megnyúlást illetően. (143) Térd és csípő-protézis beültetésen átesett betegeknél vizsgálták a 4 mg/kg sugammadex alkalmazását követő vérzést. Az APTI 5,5%-os és az INR 3,0%-os megnyúlását tapasztalták, 10 perccel a sugammadex alkalmazását követően, amely 1 óra múlva már nem volt észlelhető. Nem volt azonban szignifikáns különbség a sugammadex és a neostigmin felfüggesztésben részesült betegek között a 24 órán belül jelentkezett vérzéses szövődményeket illetően. (144) Mivel a cyclodextrinnek jelen vannak az életünkben (kozmetikumokban, ételekben, más gyógyszerek alkotórészeként) várható volt, hogy a sugammadex-szel szemben megjelenjen az anafilaxiás reakciók. Már több esetleírás is elérhető. (145, 146) Mivel az esetek többsége Japánból származik, felmerült a kérdés, hogy a japán populáció hajlamosabb-e a sugammadex-szel szemben anafilaxiára. Az egyik esetleírás szerzői arra a következtetésre jutottak, az anafilaxia magas incidenciája csupán annak köszönhető, hogy Japánban jóval gyakrabban alkalmazzák ezt a gyógyszert, mint a világ
egyéb országaiban. A Japán aneszteziológusok társasága a 2010 április és 2013 január között jelentett 78 eset alapján a sugammadex anafilaxia incidenciáját 29/1 millió–ra becsült. (146)

A sugammadex ajánlott dózisai a fennálló neuromuszkuláris blokk mértékétől függnek. A neostigminnél ellentétben, nem kell megvárni, amíg a blokk felületesebbé válik, a sugammadex akár teljes blokkan is alkalmazható. 1,2 mg rocuronium beadása után 5 perccel alkalmazva 16 mg/kg sugammadex átlag 1,9 percen belül megszüntette a fennálló blokkot. Ennek jelentősége a relaxáns beadása után fellépő, „can’t intubate, can’t ventilate” szituációban van. (139) Mély rocuronium blokk felfüggesztésére 4 mg/kg az ajánlott dózis. (134) A mély (PTC 1-2 szintű) rocuronium blokád felfüggesztésekor a 4 mg/kg sugammadex alkalmazása után átlag 2,7 perc alatt tért vissza a TOF arány 0,9 értékére. (147) Duvaldestin és munkatársai a TOFR 0,9 értékre való visszatétele időt mély blokk felfüggesztésekor 4 mg/kg sugammadex alkalmazása után átlag 1,7 percnak mérték. (148) A TOFC 2 szintű (mérsékelt) és annál felületesebb rocuronium blokk megszüntetésére 2 mg/kg az ajánlott dózis. (134) TOFC 2 szintű rocuronium blokkban alkalmazva a sugammadexet, annak beadását követően 1,3 perc alatt (medián) visszatért a TOF arány 0,9 értékére (min-max: 0,9-1,7 perc). (133) Egy másik vizsgálatban ez az időintervallum átlag 1,7 percnak bizonyult. (149) Schaller és munkatársai 2010-ben bizonyították, hogy a felületes (TOFR ≥0,5) rocuronium blokád felfüggesztésére 0,22 mg/kg sugammadex alkalmazása elégű. A TOFR ≥0,9 értékre való visszatétele idő középtéken 1,0 (min-max: 0,7-1,5) perc volt. (126) A reziduális rocuronium blokád (TOFC 4) felfüggesztésére ideális sugammadex dózist nem határozták meg, vizsgálataink megkezdése előtt az alkalmazási előírattal ilyenkor is a mérsékelt blokknál ajánlott 2 mg/kg dózis használatát javasolta.

Vanacker és munkatársai összehasonlították a sugammadex hatását propofol és sevoflurane anesztézia mellett. TOFC 2 szintű rocuronium blokk felfüggesztésekor a TOFR 0,9 érték eléréséhez szükséges időintervallumokban nem volt szignifikáns különbség (propofol mellett: átlag 1,8 (min-max: 0,9-3,4) perc vs. sevoflurane mellett átlag 1,8 (min-max: 1,1-4,5) perc). A szerzők megállapították, hogy míg az inhalációs aneszetikumok és a neostigmin együttes alkalmazásakor szignifikáns megnyúlás tapasztalható a visszatétesi időkben, addig a sugammadex hatását ezek a gyógyszerek nem befolyásolják. (140) Blobner és munkatársai sevoflurane anesztezia mellett szintén nem tapasztaltak hosszabb visszatétesi időket a TOFR 0,9 értékére TOFC 2 szintű rocuronium blokád függesztésekor (átlag 1,5 perc). (122)

Gyermekeknél – vizsgálatok hiányában – két éves kor felett javasolt a sugammadex alkalmazása, a felnőtteknél ajánlott dózisban, mérsékelt rocuronium blokk felfüggesztésére.
(148) Idős (> 65 éves) betegek esetében a TOFR 0,9 értékre való visszatérés kissé meghosszabbodik, de a sugammadex alkalmazása biztonságos. (151, 152)

A teljes, vecuroniummal létrehozott neuromuszkuláris blokk felfüggesztésére nincsen ajánlott dózisa a sugammadexnek- színtén vizsgálatok hiányában. A mély vecuronium blokk (PTC 1-2) és mérsékelt blokk (TOFC 2) felfüggesztésére az ajánlott dózisok megegyeznek a hasonló szintű rocuroniummal létrehozott blokk esetében ajánlott dózisokkal. (134) A visszatérési idő TOFR 0,9 értékre azonban elhúzódóbb: mély blokkban átlag 3,3 perc (148), míg mérsékelt blokkban átlag 2,3 perc bizonyult. (149)

Pancuronium blokád felfüggesztésére a sugammadex nem ajánlott. (134)

Pipeperonium blokád felfüggesztésére dózis kereső vizsgálatok eddig nem történtek. Saját kutatásunk ezzel kapcsolatos eredményeit később mutatom be.

2.3.5.4.3. A neostigmin és sugammadex összehasonlítása

Illman és munkatársai 2011-es vizsgálatának célja volt a neostigmin és a sugammadex alkalmazása után mért „nem biztonságos” (TOFR <0,9) periódus hosszának összehasonlítása, kvalitatív monitor használatát követően. Vizuális észleléskor a fáradás megszűnésétől a tényleges TOFR 0,9 érték megjelenéséig eltelt időintervallumot vizsgálták. Extubáláskor a neostigmin és sugammadex csoportban a normalizált TOFR 0,77±0,16 vs. 0,96±0,05 volt (p <0,001). A betegek a neostigmin és a sugammadex csoportban 10,3±5,5 és 0,3±0,3 percig „nem voltak biztonságban” (p <0,001). A szerzők megállapították, a betegeknél biztonságosabb a sugammadex alkalmazása, mint neostigminé, kvalitatív neuromuszkuláris monitor alkalmazása mellett is. (153)

2012-ben Cammu és munkatársai megfigyeléses vizsgálatuk alatt 524 beteg adatait elemeztek. Az izomrelaxáció fokát műtét alatt a betegek 40%-nál monitorozták egyszerű idegstimulátorral. A betegek a műtétek végén – az aneszteziológus döntése szerint – neostigmint vagy sugammadexet kaptak, vagy nem részesültek reverzálásban. A betegek 14 %-ánál regisztráltak PRNB-t a posztoperatív őrzőben. A neostigmin, sugammadex és nem reverzált csoportban ennek előfordulása sorrendben 15%, 2% és 15% volt. Tehát a neostigminnél való reverzálás nem csökkentette a PRNB előfordulását a reverzálás nélkülözéséhez képest, a sugammadex viszont igen. (154)
Kotake és munkatársai prospektív vizsgálatában a rocuroniummal relaxált betegeknél, az izomrelaxáció fokát nem monitorozták, a műtétek alatt sevoflurane anesztiázt végeztek. A műtét végén az aneszteziológus saját maga dönthette el, hogy alkalmaz-e felfüggesztőszert, vagy sem. Ha reverzálás mellett döntött, akkor a vizsgálat első felében neostigmint adhatott, a második felében sugammadextet. A gyógyszerek nem voltak vakosítva. A nem reverzált, a neostigminnél és a sugammadex-szel felfüggesztett csoportokban a PRNB (TOFR <0,9) előfordulási gyakorisága sorrendben 13,0%, 23,9% és 4,3% volt. A sugammadex monitorozás nélkül is szignifikánsan csökkentette a PRNB előfordulását (p <0,001). A neostigmin viszont ellenkezőleg, növelte annak gyakoriságát. Ha a TOFR <1,0 értéket tekintették a PRNB definíciójának, akkor a különbség már nem mutatkozott ilyen jelentősnek, a nem reverzált, a neostigmin, és a sugammadex csoportban a PRNB előfordulási gyakorisága sorrendben 69,6%, 67,0% és 46,2%, volt (p=0,003). (155).

Schepens és munkatársai egészséges önkénteseket vizsgálva azt tapasztalták, hogy sugammadex-szel való reverzálás után a diafragma EMG fokozottabb aktivitást mutatott (p <0,0001), az extubációt követően magasabb volt a mérhető PaO2 (p=0,03) és nagyobb a légzési tidal volumen (359 ml vs. 287 ml, p=0,013), mint neostigminnél történt felfüggesztés után, bár a mért TOF arányok között eltérés nem volt észlelhető. Ennek magyarázatát a szerzők abban látják, hogy a sugammadex talán több receptort tesz elérhetővé az acetilkolin számára, mint a neostigmin. (156)

Ledowski és munkatársai megfigyeléses vizsgálatot végeztek 146 beteg bevonásával. Az aneszteziológusok szabadon dönthettek arról, alkalmaznak-e neuromuszkuláris monitorit, illetve adnak-e felfüggesztőszert, ha adtak, maguk dönthették el, mit használnak. A csoportok között nem volt különbség a monitorozott betegek arányában. Az extubáláskor mért TOF arány nem érte el a 0,9 értéket a nem antagonistizált, a neostigminnél és a sugammadex-szel reverzált betegek 53%, 59% és 8%-, sorrendben. A sugammadex szignifikánsan csökkentette a PRNB előfordulását (p <0,0005), míg a neostigmin nem befolyásolta azt. 146 beteg közül 30-nál történt a műtét után 30 napon belül mellkas röntgen, amelyen az atelektázia és tüdőgyulladás előfordulását vizsgálták. A pozitív mellkas röntgen leettlel bíró betegek között szignifikánsan alacsonyabb volt az extubációkor észlelhető TOF arány, mint a negatív leettel bíró betegek között [(0,71 (0,44 – 0,86) vs. 0,94 (0,84 – 0,98) p <0,001]. Az adatok elemzése rávilágított arra a tényre, hogy a pulmonális komplikációk kialakulását nem csak a súlyos reziduális blokk (TOFR <0,7) megléte fokozza, hanem jelentős különbség van a TOFR 0,9 alatti és feletti értékekkel bíró betegek közti. A betegek között pozitív mellkas
röntgennel rendelkezők aránya a TOFR <0,7 vs. >0,7 csoportokban 35,3% vs. 5,3% (p <0,05) és a TOFR <0,9 vs. >0,9 csoportokban 21,3% vs. 2,4% volt (p <0,01). Elméletben, a sugammadex, ha csökkentette a PRNB előfordulását, akkor csökkentette a pneumonia és az atelektázia előfordulását is, ezáltal csökkentette a mortalitássát. (6) Ugyanaz a vizsgáló és munkatársai 1444 beteg bevonásával végezték retrospektív tanulmányukat. A betegek egy részénél nem történt reverzlázás a műtét végén, a többieknél vagy neostigminnel, vagy sugammadex-szel függesztették fel az izomrelaxánsok hatását. Felállítottak egy „pulmonális outcome score”-t, amelybe 10 paramétert vettek be: atelektázia vagy tüdőgyulladás a mellkas röntgenen, 38 °C feletti hőmérséklet, fehérőrsejt-szám emelkedés, tüdőgyulladásra utaló fizikális vizsgálati jelek, kapkodó légzés, köhögés, hyperpnoe, megnövekedett oxigén-igény, deszaturáció. Az American Society of Anesthesiologists (ASA) I és II besorolású betegek esetében a felfüggesztőszer típusa, vagy annak hiánya nem befolyásolta a pulmonális kimenetet, azonban az ASA III és IV betegnél, a betegek korának növekedésével párhuzamosan a sugammadex javította azt. (157) [Az ASA rizikócsoport meghatározás az aneszteziológiai kockázatbecslésre használatos. ASA I.: operálandó betegségtől eltekintve, egészséges egyén; ASA II: a beteg tevékenységét nem befolyásoló, enyhe fokú szisztémás megbetegedés; ASA III: súlyosabb fokú szisztémás megbetegedés, amely a beteget normális élettevékenységében befolyásolja; ASA IV: a beteg életét veszélyeztető, súlyos, szisztémás kórfolyamat; ASA V: moribund beteg.(158).]

2.3.6. Posztoperatív reziduális neuromuszkuláris blokk és a „safety margin”

A neuromuszkuláris junkció biztonsági tartaléka („safety margin”) következtében a betegeknél már nem váltható ki fáradás a TOF ingerléssel (TOFR 1,0), annak ellenére, hogy a receptorok 75%-a még az izomrelaxánsok által blokkolt lehet. (26) Bár ekkor a beteg már „működőképes” izómerővel rendelkezik, mégis igen sérülékeny állapotban van (látens blokk), ugyanis bármilyen változás változás hatására, amely csökkenti az acetilkolin felszabadulást vagy az acetilkolin megkötésére képes szabad receptorok arányát, újra izomrelaxált állapotba kerül (manifest blokk). Ilyen változás például a hypothermia, intravénás magnézium vagy antibiotikum adása a posztoperatív szakban. (66) E tényezők közül leggyakrabban a magnézium hatását vizsgálták. Intravénás magnézium alkalmazása a közvetlen posztoperatív szakban akkor, amikor a „safety margin” nem áll rendelkezésre, jelentős manifeszt blokk kialakulásához vezethet, amely akár légzésdepresszióval is járhat. Fuchs-Buder és Tassonyi egy órával a TOFR 0,7 értékre való spontán visszatérése után 60 mg/kg magnézium-szulfátot alkalmaztak intravénásan. Ezt követően a kiindulási TOFR 0,87 szintű blokk TOFC 3 szintűre
csökkent, amely 22 perc után tért vissza TOFR 0,7 értékre. (159) Hans és munkatársai rocuronium blokád spontán megszűnése után (TOFR 0,9) alkalmaztak ugyanilyen dózisú magnéziumot, amely TOFR 0,49 szintű neuromuszkuláris blokkot állított vissza. A TOFR 0,9 érték 45 perc múlva tért vissza. (160)

Czarnetzki és munkatársai az anesztézia előtt alkalmaztak magnéziumot vagy placébót, majd a műtét végén fennálló maradék rocuronium blokko sugammadex-szel függesztették fel. Azt találták, hogy a felfüggesztés zavartalan és hatékony volt. A szerzők szerint a sugammadex helyreállítja a betegek biztonsági tartalékát, azaz felszabadítja a „margin of safety”-t is. (161) Ennek a hipotézisnek némileg ellentmond egy esetleírás 2015-ből. Rocuroniummal létrehozott blokko a műtét végén sugammadex-szel felfüggesztettek, a visszatért normalizált TOF hányados 1,0 volt. Ekkor a betegnél a fellépő pitvarfibrilláció miatt, 60 mg/kg magnézium-szulfát került alkalmazásra, amely után az észlelt TOF arány 0,67 értékre csökkent. A TOF hányados csak 45 perc múlva tért vissza 0,9 értékre. (162)

Tehát a biztonsági tartalékra az izomrelaxánsok hatásának TOF monitorozása nem terjed ki, azaz normális TOFR ellenére is előfordulhat látens blokk. Ezért műtét után is igen fontos a betegek őrzése, a monitorozás folytatása, mert a látens blokk bármikor elmélyülhet, manifesztálódhat.
2.4. Célkitűzések

2.4.1. A reziduális rocuronium blokád felfüggesztése sugammadex alkalmazásával.

Első vizsgálatunk alapját az a feltételezés adta, hogy a reziduális (TOFC 4) rocuronium blokád megszüntetéséhez nem szükséges a mérsékelt (TOFC 2) blokk felfüggesztésére ajánlott sugammadex dózis alkalmazása. Nullhipotézisünk az volt, hogy mivel a rocuronium megkötése a sugammadex által 1-1 arányú molekuláris interakció, a felületesebb blokk megszüntetéséhez alcsonyabb dózisú gyógyszer is elegendő lehet. Ezt a hipotézist az indokolta, hogy a drága sugammadex dózisának csökkentésével költséghatékonyabbá tegyük az alkalmazását.

Vizsgálatunk elsődleges célja volt azon időintervallumok meghatározása, amely alatt a különböző dózisú – 0,5; 1,0 és 2 mg/kg – sugammadex alkalmazásával a rocuroniummal létrehozott reziduális (TOFC 4) neuromuszkuláris blokk megszüntethető, ha a neuromuszkuláris blokk megszűnésének a nem normalizált TOFR 1,0 érték elérését tekintjük. Elsődleges végpontként a gyors visszatéréshez (átlagosan ≤2 perc, de maximum 5 perc) szükséges sugammadex dózisok meghatározását jelöltük ki. Másodlagos végpont a lassabb visszatérést (átlagosan ≤5 perc, de maximum 10 perc) biztosító sugammadex dózisok definiálása volt.

A vizsgálat másodlagos célja volt a neostigmin és a sugammadex hatásának összehasonlítása, a TOFC 4 szintű rocuronium blokk felfüggesztésekor tapasztalható visszatérési idők összevetésével.

2.4.2. Pipecuronium által kiváltott mérsékelt neuromuszkuláris blokk felfüggesztése sugammadex alkalmazásával, sevoflurane anesztésia mellett

Második vizsgálatunk alapját a sugammadex kifejlesztések történt vizsgálatok eredményei adták, amelyek azt mutatták, hogy a sugammadex nagy affinitással bír a pipecuronium molekula iránt is. * In vivo vizsgálatok erre vonatkozóan mindezidág azonban nem történtek. Feltételeztek, hogy a sugammadex hatékonynak és gyorsan felfüggeszti a pipecuroniummal létrehozott neuromuszkuláris blokkot. Ezt a hipotézist az indokolta, hogy a pipecuronium

hatásának megbízható és gyors felfüggesztése a relaxáns széles körű felhasználását segítheti, és a betegbiztonságot növeli.

Vizsgálatunk elsődleges célja volt, hogy meghatározzuk a mérsékelt (TOFC 2) szintű, pipecuroniummal létrehozott neuromuszkuláris blokk felfüggesztéséhez szükséges sugammadex dózist. Feltételeztük, hogy a rocuronium blokád reverzálására elegendő (1 – 4 mg/kg) sugammadex dózisok a pipecuronium blokk felfüggesztésére is megfelelőek lesznek.

Másodlagos cél volt annak vizsgálata, hogy a sugammadex alkalmazása befolyásolja-e a posztoperatív reziduális neuromuszkuláris blokk előfordulását, illetve jelentkezik-e használata mellett visszatérő ízomrelaxáció. Feltételeztük, hogy a sugammadex alkalmazását követően minimális lesz a PRNB, illetve a visszatérő relaxáns hatás előfordulása.
3. Betegés és módszerek

3.1. Vizsgállattervezés és betegtoborzás

3.1.1. A reziduális rocuronium blokád felfüggesztése sugammadex alkalmazásával.

A vizsgálatot a Debreceni Egyetem Orvos és Egészségtudományi Centrumában végeztük 2011 és 2012 áprilisa között. A vizsgálatba 80 beteg került bevonásra.

Betegtoborzás: A betegek gyűjtése az aneszteziológiai ambulancián történt, ahol a betegek írásos beleegyezésüket adták a vizsgálatban való részvételükhoz. A beválogatási kritériumok a következők voltak: 18-65 év közötti életkor; testtömeg index (BMI) 18,5-25,0 kg/m²; ASA I-III besorolás; általános aneszteziában, intratracheális intubálással tervezett sebészeti beavatkozás, melynek várható időtartama több mint 50 percc. Azon betegek, akik a megelőző egy hónap során más klinikai vizsgálatban vettek részt, kizárásra kerültek. Kizárási tényezőt jelentett emellett a várható nehéz intubáció, terhesség, szoptatás és az anamnézisben szereplő asthma bronchiale, krónikus obstruktív tüdőbetegség, ismert neuromuszkuláris betegség, feltételezhető malignus hipertermia, májelég, veseelégtelenség, glaukóma. Emellett kizártuk azokat a betegeket, akiknél olyan gyógyszer került alkalmazásra, amely befolyásolhatta volna az izomrelaxánsok hatását (magnézium, aminoglikozidok), illetve akiknél felmerült érzékenység a vizsgálatban alkalmazott bármely gyógyszerre.

3.1.2. Pipercuronium által kiváltott mérsékelt neuromuszkuláris blokk felfüggesztése sugammadex alkalmazásával, sevoflurane aneszteziá mellett

Egy vizsgáló központos, prospektív, randomizált, kontrollált, kettős vak, 5 ágyú vizsgálatunkat jóváhagyta a Debreceni Egyetem Regionális Kutatásetikai Bizottsága (DEOEC RKEB/IKEB: 3585-2012), az Országos Gyógyszerészeti Intézet és az Egészségügyi Tudományos Tanács

A betegtorzás az előző vizsgálattal megegyező módon történt. A beválogatási kritériumok annyiban tértek el, hogy az általános anesztiában, intratracheális intubálással tervezett sebészeti beavatkozás várható időtartama legalább 90 perc kellett, hogy legyen. A további beválogatási kritériumok, és a kizárási kritériumok a két vizsgálatnál teljesen megegyeztek.
3.2. A vizsgálat kivitelezése

3.2.1. A reziduális rocuronium blokád felfüggesztése sugammadex alkalmazásával.

Randomizáció: A betegeket négy vizsgálati csoportba randomizáltuk. A műtét végén, a randomizációk megfelelően 0,5; 1,0; 2,0 mg/kg sugammadexet, vagy 0,05 mg/kg neostigmin és 0,015 mg/kg atropin keveréket kaptak a fennálló neuromuszkuláris blokk felfüggesztésére. A csoportonként egyenlő betegeloszlás biztosítására blokk-randomizációt használtunk. (163) 20-20 darab egytől négyig számozott kártyát készítettünk, a négy csoportot jelölve, majd ezeket a kártyákat egy soron kívül laktuk. A felfüggesztőszert egy független aneszteziológus készítette el, jelöléletlen fecskendőben, a kihúzott csoportnak megfelelően.

A betegek előkészítése: Premedikáció céljából a betegeknél, egy órával a műtét kezdete előtt 7,5 mg midazolamot alkalmaztunk per os. A műtőbe érkezést követően perifériás véna biztosítása történt, a neuromuszkuláris monitorozásra használt végtaggal ellenkező oldalon. A műtét során non-invazív vérnyomás mérést, EKG és oxigén szaturáció monitorozást végeztünk. Az anesztiája indukciója intravénásan adott propofollal (1,5-2,5 mg/kg) és fentanyllal (2 μg/kg) történt, a fenntartáshoz sevoflurane (1,1-1,8 τ%) és levegő-oxigén keverék került alkalmazásra, igény szerinti fentanyl bólusokkal. A beavatkozás kezdetén a betegeket arc-maszkon keresztül lélegeztettük az intubálásig, úgy hogy az oxigén szaturációt 96% felett tartottuk, stabil kilégtés végi sevoflurane koncentrációt és normokapniát biztosítva. A beteg maghőmérsékletét légbevonásos betegmelegítő rendszer alkalmazásával 36,0°C-on, vagy a fölött tartottuk.

A neuromuszkuláris monitorozást a nemzetközi konszenzus irányelveinek megfelelően végeztük. (55) Az ulnaris ideg stimulálásával kiváltott m. adductor pollicis válaszokat vizsgáltuk, TOF-Watch-SX® készülék segítségével (Organon Teknika B.V., Boxtel, Hollandia). Az akceleromiográf piezoelektromos érzékelőjét a hüvelykujj végéhez rögzíttettük, egy adapterrel együtt, ami biztosította az előterhelést és stabilizált a hüvelykujj mozgását. Az alkart rögzíttettük, és két felszíni elektródát helyeztünk fel a csuklótól proximálisan, az ulnaris ideg lefutásának megfelelően. 3 percen keresztül 15 másodpercenként TOF ingerlést végeztünk, majd egy 5 másodperces, 50 Hz-es tetanizálás következett. Két perccel később automatikus kalibrációt végeztünk (CAL-2 mód a szupramaximális áramintenzítés beállítására és a készülék kalibrálására), majd hagytuk a TOF
ingerlést futni a jelek stabilizálódásáig. (A stabilizáció elmaradásakor ismételten kalibrációt végeztünk.) A TOF ingerlést a műteti beavatkozás végéig folytattuk, 15 másodperces időközönként. A készülék által kijelzett értékek rögzítésre kerültek: a négyes ingerlése adott négy válasz (TOFC 1- 4), valamint az első és negyedik válasz aránya (TOFR). A neuromuszkuláris monitorozás helyén a bőr hőmérsékletet monitoroztuk, és 32°C fölött tartottuk. Az akceleromiográfiai jelek stabilizálódása után 0,6 mg/kg rocuroniumot alkalmaztunk intravénásan. TOFC 0 érték elérésekor a beteget intubáltuk. A műtét során a rocuroniumot 0,1-0,15 mg/kg dózisban ismételtük szükség szerint, a TOFC 1 érték megjelenésekor.

Az izomrelaxáció felfüggesztése: A műtét végén engedtük a neuromuszkuláris blokád spontán megszűnését, majd amikor három egymást követő mérés alkalmával a TOFC 4 érték visszatért, beadásra került a randomizáció alapján előkészített felfüggesztőszer. Ezt a gyógyszert az elkészítő aneszteziológus adta be, a betegért felelős aneszteziológus utasítására, aki előtt nem volt ismeretes a fecskendő tartalma. A visszatérést teljesnek és a vizsgálat hatékonysági végpontját teljesültnek vettük, ha az akceleromiográf által kijelzett TOF arány visszatért 1,0 értékre. (63) Rögzítettük a felfüggesztőszer beadásának kezdete és a TOFR 1,0 érték TOF-Watch-SX® készülék kijelzőjén való megjelenése között eltelt időket. A megfelelő szintű visszatérés biztosítása érdekében, a kijelzőn visszatéréskor megjelenő TOF értékeket normalizáltuk, vagyis a kiindulási (a rocuronium beadása előtti) értékekhez viszonyítottuk („normalizálás”). Megfelelő visszatérésről definíció szerint akkor beszélünk, ha a normalizált TOFR ≥0,9. (164) A felfüggesztő szer beadása előtt mért TOF arányokat szintén normalizáltuk.

A neuromuszkuláris monitorozást folytattuk a TOFR 1,0 érték megjelenését követően is, a műtét végéig, a relaxáns hatás megszűnése után még 16 (10-50) percig (átlag, min-max). A műtét végén megszüntettük a sevoflurane adagolását, és az ébredést követően extubáltuk a beteget. Amennyiben a TOF arány nem érte el az 1,0 értéket a felfüggesztőszer beadását követő 15 percen belül, 2,0 mg/kg sugammadex került alkalmazásra, mint „mentő gyógyszerelés”, a maradék izomrelaxáció megelőzésére. Amennyiben a későbbiekben a TOFR 1,0 érték visszatért 0,9 érték alá, az esetet visszatérő blokként rögzítettük.

Posztoperatív észlelés: Az extubálást követően minden beteget a posztoperatív öröben figyeltünk meg, legalább egy órán keresztül, az izomgyengeség, légzési elégtelenség és keringési elégtelenség kizárása céljából. Ez alatt monitoroztuk az oxigén szaturációt,
légzésszámot, szívfrekvenciát és a vérnyomást. Az őrzőből történő elbocsátást követően a betegeket még 24 óráig követtük, a késői szövődmények felderítésére.

3.2.2. Pipecuronium által kiváltott mérsékelt neuromuszkuláris blokk felfüggesztése sugammadex alkalmazásával, sevoflurane anesztezia mellett

A betegeket öt vizsgálati csoportba randomizáltuk, akik a műtét végén, a randomizációknak megfelelően 1,0; 2,0; 3,0; 4,0 mg/kg sugammadexet, vagy placébot (fiziológiás sóoldatot) kaptak, a fennálló neuromuszkuláris blokk felfüggesztésére. A csoportonkénti egyenlő betegeloszlás biztosítására blokk-randomizációt használtunk, hasonlóképpen előző vizsgálatunkhoz. (163) A felfüggesztőszert egy független aneszteziológus készítette elő, egy jelöletlen fecskendőbe, a randomizációs besorolásnak megfelelően.

A betegek előkészítése, és a neuromuszkuláris monitorozás az előző vizsgálatnak megfelelően történt, azzal a különbséggel, hogy az akceleromiográfiai jelek stabilizálódása után 0,06 mg/kg pipecuronium került beadásra intravénában. Amikor már TOF ingerlést követően izomválasz nem volt észlelhető (TOFC 0), a beteget intubáltuk. A pipecuroniumot 0,01 mg/kg dőzisban ismételtük a műtét során, az első izomválasz megjelenésekor (TOFC 1). Az előző vizsgálattól annyiban térünk meg el, hogy a TOF-Watch-SX® készülék által jelzett értékek elektronikusan is rögzítésre kerültek egy számítógépes program segítségével (TOF-Watch-SX® software 2.2 INT version, Organon Ireland Ltd. Dublin, Írország).

Az izomrelaxáció felfüggesztése: A műtét végén engedtük az izomrelaxáció spontán megszűnését, majd TOFC 2 szintű blokk megjelenésekor a felfüggesztőszert előkészítő aneszteziológus, a betegért felelős altatóorvos utasítására azt a betegnek beadt. A beteget altató orvos az előkészített fecskendő tartalmát nem ismerte. A mérhető TOF arányok, és azon belül az első összehúzódás ereje (T1) elektronikusan rögzítésre kerültek, és később ezen adatokat elemeztük. Az akceleromiográfiai által kijelzett TOFR 1,0 érték megjelenésekor az izomrelaxációt megszűntnek tekintettük. A beteget a műteti beavatkozás végén felébresztettük, és extubáltuk. „Mentő gyógyszerelésre” került sor abban az esetben, amikor a kijelzett TOF arány nem érte el az 1,0 értéket a felfüggesztőszer beadását követő 45 percen belül, illetve hamarabb, ha a visszatérő TOF arány stabilizálódott és nem emelkedett tovább. A „mentő gyógyszer” 0,05 mg/kg neostigmin és 0,015 mg/kg atropin volt.

Az oxigén szaturációt, légzésszámot, szívfrekvenciát és a vérnyomást is monitoroztuk. Amennyiben a beteg éberségi állapota lehetővé tette, klinikai vizsgálatok is elvégzésre kerültek minden 20. percben. Így a fejemelés, kar- és lábemelés, szemnyitás, mosolygás, nyelv-kültése, köhögés, kézszorítás, spatula metszőfogak közül való kihúzásának megakadályozása. A beteg jelezte, hogy észlel-e kettős látást, és egy ötfokozatú skálán pontozhatta meglévő izomerejét. Amennyiben izomgyengeségre, illetve kritikus légzési vagy keringési elégtelenségre utaló tünetet észlelték, az rögzítésre került. A posztoperatív órzőből történt elbocsátást követően 24 óráig a betegeket követtük, a késői szövődmények észlelése végett.
3.3. Adatkezelés, statisztikai analízis

3.3.1. A reziduális rocuronium blokád felfüggesztése sugammadex alkalmazásával.

Az esetek szám meghatározása a statisztikai erő elemzésével (power analysis): Az esetek szám meghatározása a következő paraméterek alapján történt: feltételeztük, hogy a neostigminnél kezelt betegeknél a visszatérési idő átlagosan 500 másodperc lesz, 200 másodperc szórással (S. D.). (121) A hipotézisünk az volt, hogy a sugammadex csoportban ez idő lecsökken 300 másodpercre. Ha az elsőfajú hiba aránya (Type-I error rate, α) 0,05, a vizsgálati csoportokban N=10 beteg szükséges a 0,8-as statisztikai erő eléréséhez. N=15 esetén a statisztikai erő 0,95-re nő. Feltételezve, hogy betegek kieshetnek a vizsgálat során, minden csoportba 20 beteget vontunk be.

A vizsgálat végpontjai: A vizsgálat hatékonysági végpontjaként a TOF arány 1,0 elérése határozott meg. A felfüggesztő szer beadásának kezdetétől az akceleromiograf által kijelzett (nem normalizált) TOFR 1,0 értékére való visszatéréséhez szükséges időintervallumokat mértük meg.

A vizsgálat elsődleges végpontjaként a gyors visszatérést (átlagosan ≤2 perc, de maximum 5 perc) szükséges sugammadex dózisok meghatározását jelöltük ki.

Másodlagos végpont a lassább visszatérést (átlagosan ≤5 perc, de maximum 10 perc) biztosító sugammadex dózisok definiálása volt.

visszatérési időket (logaritmikusan transzformált adatok, ANOVA teszt). A vizsgálati csoportok átlagainak post hoc összehasonlítására a Tukey HSD tesztet alkalmaztuk.

Az elsődleges és másodlagos vizsgálati végpontok változói (gyors visszatérés és lassú visszatérés) vizsgálatára a betegeket az előre meghatározott kritériumok szerint csoportosítottuk. Vizsgáltuk a gyors vs. lassú visszatérés előfordulását a sugammadex-szel kezelt csoportok (összevonva) és a kontroll csoport (neostigmin) között, relatív kockázat számítással. Emellett a gyors és lassú visszatérés előfordulását esélyhányados számítással hasonlítottuk össze a sugammadex csoportokban.

A statisztikai elemzéshez 17.0 verziószámú SPSS for Windows (IBM Corporation, Armonk, NY) programcsomagot használtunk. Statisztikailag szignifikánsnak fogadtuk el, ha \(p < 0.05 \).

3.3.2. Pipecuronium által kiváltott mérsékelt neuromuszkuláris blokk felfüggesztése sugammadex alkalmazásával, sevoflurane aneszttézia mellett

Az esetszám meghatározása a statisztikai erő elemzésével (power analysis): Az esetszám meghatározása azon a feltételezésen alapult, hogy 0,06 mg/kg pipecuronium alkalmazása után a neuromuszkuláris blokk megszűnéséhez (normalizált TOFR >0,9) 60±30 percre van szükség (átlag±SD). (165) A hipotézisünk az volt, hogy a legalacsonyabb dózisú sugammadex csoportban (1 mg/kg) ez az idő lecsökken 10 percre. Ha az elsőfajú hiba aránya (Type-I error rate, \(\alpha \)) 0,05, a vizsgálati csoportokban N=6 beteg szükséges a 0,8-as statisztikai erő eléréséhez. N=8 esetén a statisztikai erő 0,9-re nő. Feltételezve, hogy betegek kieshetnek a vizsgálat során, minden csoportba 10 beteget vontunk be.

A vizsgálat végpontjai: A vizsgálat elsődleges végpontja a felfüggesztőszer beadásának kezdetétől a normalizált TOFR 0,9 értékre való visszatéréshez szükséges idő megmérése volt. A normalizációt úgy végeztük, hogy a rocuronium beadása előtti, kiindulási (kontroll) TOF aránnyal elosztottuk a kapott értékeket.

A vizsgálat másodlagos végpontja a felfüggesztőszer beadásának kezdetétől a legmagasabb, végső T1 eléréséhez szükséges idő megmérése volt. A T1 az első izom-összhúzódás erejét jellemzi a TOF ingerylést követően.

A vizsgálat alternatív végpontja a felfüggesztőszer beadásának kezdetétől a nem normalizált (készülék által kijelzett) TOFR ≥1,0 eléréséhez szükséges idő megállapítása volt.
A vizsgálat posztoperatív kimeneteli végpontja volt a PRNB (nem normalizált TOFR <0,9) előfordulásának vizsgálata a betegek között, szubjektív izomgyengeséggel vagy légzési elégtelenséggel, illetve azok nélkül.

Adatok kiértékelése: Az aránybeli eltérések vizsgálatára alkotott 2x2-es kontingencia-táblázatokat a Fisher egzakt valószínűségi tesztel elemeztük. Az arányok körüli 95%-os konfidencia-intervallumok (CI) kiszámítására a Wilson score módszert, illetve az összes esemény megfigyelése esetén a Clopper-Pearson módszert használtuk. Folytonos változók elemzése esetén parametrikus statisztikai teszteket csak akkor használtunk, ha a tesztek feltételeinek adataink eleget tettek. A variációk homogenitását Bartlett-tesztel, míg a varianciaanalízis (ANOVA) után számított reziduum-értékek normalitását Shapiro-Wilk tesztel vizsgáltuk. A 0,05-nél kisebb p értékek a homogenitástól vagy a normalitástól való szignifikáns eltérést jeleztek. Mivel a legtöbb háttérváltozó (betegek adatai, perioperatív változók) eltért a normál eloszlástól és a variációk heterogén voltak, a nem-parametrikus Kisérlet-Wallis tesztel hasonlítottuk össze a háttérváltozókat a kísérleti csoportok között. A kísérleti eredmények egyutas ANOVA-val történő elemzésénél, amikor szükséges volt, a függő változókat logaritmikus transzformációknak vetettük alá, hogy biztosítsuk a variációk homogenitását és a reziduum-értékek normalitását. A variációk például heterogén voltak a 0,9-es TOF ráta eléréséig eltelt visszatérési idő nyers adataiból számolva (Bartlett $\chi^2 = 129,587$, df = 4, $p < 0,0001$), míg a log-transzformáció után a variációk homogén voltak ($\chi^2 = 3,077$, df = 4, $p < 0,545$). Legvégül pedig az elsődleges és a másodlagos végpontok eléréséig eltelt idők összeállítására minden kísérleti csoport esetén páros t-tesztet alkalmaztunk. Minden elemzést az R statisztikai környezetben végeztünk (verziószám: 2.15.2).
4. Eredmények

4.1. A reziduális rocuronium blokád felfüggesztése sugammadex alkalmazásával.

Összesen 80 beteg kapott vizsgálati készítményt. Öt betegen zártunk ki a vizsgálatból: 4 betegnél a TOF arány nem tért vissza 1,0 értékre a felfüggesztőszer beadását követő 15 percen belül, ezért e betegeknél 2 mg/kg sugammadex került alkalmazásra „mentő gyógyszerelésként”, a maradék izomrelaxáció megelőzésére. Mind a négy betegnél neostigmin volt a randomizáció alapján beadott felfüggesztőszer. Egy betegnél (0,5 mg/kg sugammadex csoport) a felfüggesztő szer TOFR 0,6 értéknél került beadásra (minor protokollsértés). Az öt beteg kizárását követően, a végső elemzésnél 75 beteg adatait vizsgáltuk. A négy vizsgálati csoport betegei között nem volt kimutatható szignifikáns különbség olyan tényezők tekintetében, melyek befolyásolhatták az eredményeket. Így csoportonként a betegek nem különböztek egymástól nem, életkor, testtömeg index, ASA pontszám tekintetében. Nem volt szignifikáns különbség az alkalmazott kezelést illetően (beadásra került teljes rocuronium dózis, az utolsó rocuronium dózis bevonásától az antagonizálásig eltelt idő, sevoflurane koncentráció az indukciókor és az antagonizáláskor), illetve a felfüggesztőszer beadásakor fennálló neuromuszkuláris blokk mélységében és a visszatért TOF arányokban. (p > 0,085; 5. Táblázat, 6. Táblázat, 7. Táblázat).

A visszatérési idők nem normalizált TOFR 1,0 értékre (normalizált TOFR 0,98 - 1,0) az injekció beadását követően sorrendben a következő számtak voltak: 0,5 – 1,0 – 2,0 mg/kg sugammadex csoportokban: 4,1 ± 1,9; 2,1 ± 0,8 és 1,8 ± 0,9 perc (átlag ± SD). A visszatérési idő nem normalizált TOFR 1,0 értékre (normalizált TOFR 1,0) 0,05 mg/kg neostigmin bevonását követően 8,5 ± 3,5 perc volt (átlag ± SD) (8. Táblázat). A visszatérési idők szignifikánsan különböztek a négy vizsgálati csoportban (p < 0,001). Azoknál a betegeknél, akik felfüggesztőszerként 1,0 vagy 2,0 mg/kg sugammadexet kaptak, szignifikánsan gyorsabb volt a visszatérés TOFR 1,0 értékre TOFC 4 értékről, mint azoknál a betegeknél, akiknél 0,5 mg/kg sugammadex vagy 0,05 mg/kg neostigmin került alkalmazásra (p < 0,001; 8. Táblázat, 7. ábra).

A 0,5 mg/kg sugammadex alkalmazása után tapasztalt visszatérési idő szignifikánsan rövidebbnek bizonyult, mint a neostigmin beadása után mért időintervallum (p < 0,001).
volt szignifikáns különbség a visszatérési időkben az 1,0 illetve 2,0 mg/kg sugammadex alkalmazása után (p = 0,581; 8. Táblázat, 7. ábra).

A gyors visszatérés (elsődleges végpont) incidenciája magasabb volt a sugammadex csoportokban, mint neostigmin alkalmazása után (p = 0,022). A sugammadex alkalmazását követően gyors visszatérés szignifikánsan gyakrabban volt észlelhető, mint lassú visszatérés (másodlagos végpont) (p <0,001; 9. Táblázat).

A posztoperatív időszakban nem észleltünk visszatérő neuromuszkuláris blokkot, kritikus légzési vagy keringési elégtelenséget.
5. Táblázat. A betegek demográfiai adatai a négy vizsgálati csoportban.

<table>
<thead>
<tr>
<th></th>
<th>Sugammadex 0,5 mg/kg</th>
<th>Sugammadex 1 mg/kg</th>
<th>Sugammadex 2 mg/kg</th>
<th>Neostigmin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nem (férfi/nő)</td>
<td>8/11</td>
<td>6/14</td>
<td>6/14</td>
<td>3/13</td>
</tr>
<tr>
<td>Kor (év)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Átlag ± SD</td>
<td>45,79 ± 11,73</td>
<td>46,35 ± 12,60</td>
<td>47,55 ± 10,93</td>
<td>44,63 ± 10,83</td>
</tr>
<tr>
<td>95% CI</td>
<td>40,52 - 51,06</td>
<td>40,43 - 52,17</td>
<td>42,33 - 52,67</td>
<td>39,69 - 50,31</td>
</tr>
<tr>
<td>Medián (min-max)</td>
<td>48 (20 - 63)</td>
<td>48 (26 - 65)</td>
<td>51 (26 - 62)</td>
<td>46 (24 - 62)</td>
</tr>
<tr>
<td>BMI (kg/m(^2))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Átlag ± SD</td>
<td>24,0 ± 1,5</td>
<td>24,4 ± 1,1</td>
<td>23,7 ± 1,6</td>
<td>23,2 ± 2,0</td>
</tr>
<tr>
<td>95% CI</td>
<td>23,33 - 24,70</td>
<td>23,81 - 24,88</td>
<td>22,94 - 24,46</td>
<td>22,22 - 24,16</td>
</tr>
<tr>
<td>ASA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>II</td>
<td>14</td>
<td>16</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>III</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>N</td>
<td>19</td>
<td>20</td>
<td>20</td>
<td>16</td>
</tr>
</tbody>
</table>

p >0.085 a négy csoport között; ASA = American Society of Anesthesiologists; BMI = testtömeg index; N = esetszám; CI = konfidencia intervallum.

<table>
<thead>
<tr>
<th></th>
<th>Sugammadex 0,5 mg/kg</th>
<th>Sugammadex 1 mg/kg</th>
<th>Sugammadex 2 mg/kg</th>
<th>Neostigmin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teljes rocuronium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dózis (mg/kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Átlag ± SD</td>
<td>0,75 ± 0,24</td>
<td>0,64 ± 0,07</td>
<td>0,77 ± 0,22</td>
<td>0,77 ± 0,18</td>
</tr>
<tr>
<td>95% CI</td>
<td>0,64 - 0,87</td>
<td>0,61 - 0,68</td>
<td>0,66 - 0,87</td>
<td>0,67 - 0,86</td>
</tr>
<tr>
<td>Medián</td>
<td>0,63</td>
<td>0,60</td>
<td>0,69</td>
<td>0,73</td>
</tr>
<tr>
<td>(min-max)</td>
<td>(0,59-1,30)</td>
<td>(0,55 - 0,83)</td>
<td>(0,59 - 1,38)</td>
<td>(0,59 - 1,18)</td>
</tr>
<tr>
<td>Utolsó rocuronium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dózis és az</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>antagonizálás</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>között elttelt idő</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(perc)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Átlag ± SD</td>
<td>46,55 ± 22,75</td>
<td>53,71 ± 16,66</td>
<td>43,72 ± 14,13</td>
<td>39,82 ± 19,43</td>
</tr>
<tr>
<td>95% CI</td>
<td>35,58 - 57,51</td>
<td>45,91 - 61,51</td>
<td>37,11 - 50,34</td>
<td>29,47 - 50,18</td>
</tr>
<tr>
<td>Medián</td>
<td>49,0</td>
<td>55,0</td>
<td>46,3</td>
<td>40,2</td>
</tr>
<tr>
<td>(min-max)</td>
<td>(5,6 - 89,4)</td>
<td>(17,0 - 80,0)</td>
<td>(16,0 - 66,1)</td>
<td>(9,3 - 69,0)</td>
</tr>
<tr>
<td>Sevoflurane</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>koncentráció</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>antagonizáláskor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Átlag ± SD</td>
<td>1,18 ± 0,23</td>
<td>1,19 ± 0,27</td>
<td>1,27 ± 0,38</td>
<td>1,08 ± 0,23</td>
</tr>
<tr>
<td>95% CI</td>
<td>1,08 - 1,32</td>
<td>1,06 - 1,32</td>
<td>1,08 - 1,45</td>
<td>0,96 - 1,21</td>
</tr>
<tr>
<td>Medián (min-max)</td>
<td>1,2 (0,8 - 1,6)</td>
<td>1,2 (0,8 - 1,8)</td>
<td>1,2 (0,8 - 2,4)</td>
<td>1,15 (0,8 - 1,6)</td>
</tr>
<tr>
<td>N</td>
<td>19</td>
<td>20</td>
<td>20</td>
<td>16</td>
</tr>
</tbody>
</table>

p >0,085 a négy csoport között; N = esetszám; CI = konfidencia intervallum.
7. Táblázat. TOF értékek antagonizáláskor és visszatéréskor.

<table>
<thead>
<tr>
<th></th>
<th>Sugammadex 0,5 mg/kg</th>
<th>Sugammadex 1 mg/kg</th>
<th>Sugammadex 2 mg/kg</th>
<th>Neostigmin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normalizált</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOF értékek</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>antagonizáláskor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medián</td>
<td>0,09</td>
<td>0,10</td>
<td>0,09</td>
<td>0,10</td>
</tr>
<tr>
<td>(min-max)</td>
<td>(0,00 - 0,23)</td>
<td>(0,00 - 0,33)</td>
<td>(0,00 - 0,16)</td>
<td>(0,00 - 0,34)</td>
</tr>
<tr>
<td>95% CI</td>
<td>0,06 - 0,12</td>
<td>0,04 - 0,13</td>
<td>0,05 - 0,10</td>
<td>0,04 - 0,14</td>
</tr>
<tr>
<td>Nem normalizált</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOF értékek a visszatéréskor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medián</td>
<td>1,00</td>
<td>1,01</td>
<td>1,00</td>
<td>1,00</td>
</tr>
<tr>
<td>(min-max)</td>
<td>(1,00 - 1,04)</td>
<td>(1,00 - 1,09)</td>
<td>(1,00 - 1,09)</td>
<td>(1,00 - 1,10)</td>
</tr>
<tr>
<td>95% CI</td>
<td>1,00 - 1,02</td>
<td>1,01 - 1,03</td>
<td>1,00 - 1,02</td>
<td>1,00 - 1,03</td>
</tr>
<tr>
<td>Normalizált</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOF értékek visszatéréskor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medián</td>
<td>0,98</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
</tr>
<tr>
<td>(min-max)</td>
<td>(0,90 - 1,01)</td>
<td>(0,90 - 1,03)</td>
<td>(0,91 - 1,03)</td>
<td>(0,92 - 1,07)</td>
</tr>
<tr>
<td>95% CI</td>
<td>0,96 - 0,99</td>
<td>0,97 - 1,00</td>
<td>0,97 - 1,00</td>
<td>0,98 - 1,01</td>
</tr>
<tr>
<td>N</td>
<td>19</td>
<td>20</td>
<td>20</td>
<td>16</td>
</tr>
</tbody>
</table>

p >0.085 a négy csoport között; N = esetszám; CI = konfidencia intervallum.
8. Táblázat. Nem normalizált TOFR 1,0 értékre való visszatérési idők alakulása.

<table>
<thead>
<tr>
<th>Visszatérési idő</th>
<th>Sugammadex 0,5 mg/kg</th>
<th>Sugammadex 1 mg/kg</th>
<th>Sugammadex 2 mg/kg</th>
<th>Neostigmin</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOFR 1,0 értékre (perc)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Átlag ± SD</td>
<td>*4,1 ± 1,9</td>
<td>2,1 ± 0,8</td>
<td>*1,8 ± 0,9</td>
<td>***8,5 ± 3,5</td>
</tr>
<tr>
<td>95% CI</td>
<td>3,2 - 5,0</td>
<td>1,7 - 2,5</td>
<td>1,4 - 2,3</td>
<td>6,7 - 10,4</td>
</tr>
<tr>
<td>Medián</td>
<td>3,5</td>
<td>1,9</td>
<td>1,7</td>
<td>8,7</td>
</tr>
<tr>
<td>(min-max)</td>
<td>(1,7 - 8,0)</td>
<td>(1,2 - 4,5)</td>
<td>(0,8 - 4,7)</td>
<td>(2,7 - 15,0)</td>
</tr>
<tr>
<td>N</td>
<td>19</td>
<td>20</td>
<td>20</td>
<td>16</td>
</tr>
</tbody>
</table>

TOFR = train-of-four arány; N = esetszám; CI = konfidencia intervallum

*p <0.001 0,5 mg/kg sugammadex vs. 1,0, 2,0 mg/kg sugammadex és 0,5 mg/kg neostigmin;
**p <0.001 neostigmin vs. 0,5, 1,0, and 2,0 mg/kg sugammadex;
#p = 0.581 az 1.0 vs. 2.0 mg/kg sugammadex csoportok között.

7. ábra. A felfüggesztőszer beadásától a TOFR 1,0 értékre való visszatérési idők (átlag, percben). A hibavonalak a 95%-os konfidencia intervallumot jelölik. A különböző betűk szignifikáns különbséget jeleznek az egyes csoportok között. (Tukey HSD teszt, p < 0.001).

<table>
<thead>
<tr>
<th>Csoportok</th>
<th>Gyors visszatérés (átlagosan ≤2 perc, maximum 5 perc)</th>
<th>Lassú visszatérés (átlagosan ≤5 perc, maximum 10 perc)</th>
<th>>5 perc átlagos visszatérési idő</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sugammadex 0,5 mg/kg</td>
<td>3*#</td>
<td>16#</td>
<td>0</td>
<td>19</td>
</tr>
<tr>
<td>Sugammadex 1 mg/kg</td>
<td>19*#</td>
<td>1#</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>Sugammadex 2 mg/kg</td>
<td>20*#</td>
<td>0#</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>Neostigmin</td>
<td>0#</td>
<td>6</td>
<td>10</td>
<td>16</td>
</tr>
</tbody>
</table>

* p = 0.022 a gyors visszatérés tekintetében a sugammadex csoportok összesített adathalmaz vs. a neostigmin csoport között (relatív kockázat (RR): 24,08; 95% CI: 1,56 - 3,46);
p <0.0001 gyors vs. lassabb visszatérés a sugammadex csoportok között (összesített adathalmaz; odds ratio (esélyhányados): 6,1; 95% CI: 2,75 - 13,5).
N = esetszám;
4.2. Pipecuronium által kiváltott mérsékelt neuromuszkuláris blokk felfüggesztése sugammadex alkalmazásával, sevoflurane anesztézia mellett

A vizsgálatba összesen 50 beteg került bevonásra. Egy beteget az 1 mg/kg sugammadex csoportból és egy beteget a placebo csoportból minor protokollsértés miatt utólag kizártunk a vizsgálatból. Egy betegnél, a 4 mg/kg sugammadex csoportban, technikai hiba történt, ezért az ő adatai sem kerültek elemzésre. Végül összesen 47 beteg adatait értékeltük.

Az öt terápiás csoport között nem volt különbség a demográfiai adatokat illetően (életkor, testtömeg index, magasság, testtömeg) (p >0,1). Bár az 1 mg/kg sugammadex terápiában részesült betegek közül 8 nő és 1 férfi volt, ez mégsem jelentett szignifikáns különbséget a többi csoporthoz képest (p=0,1). Nem volt különbség az ASA státuszt illetően, a kiindulási (kontroll) TOF arányokban és kiinduláskor a TOF ingerlést követő első izom-összehúzódás erejében sem (T1 %) (p >0,1). (10. Táblázat) Nem volt különbség a csoportok betegei között a visszatérési időket befolyásolni képes egyéb tényezők tekintetében sem (beadásra került teljes pipecuronium dózis, sevoflurane koncentráció kiinduláskor és felfüggesztéskor (p >0,3).

Az elsődleges végpontként az antagonizálástól a normalizált TOFR 0,9 érték visszatéréséhez szükséges időintervallumot elemezttük. (12. Táblázat) Minden betegnél, akinél sugammadex került alkalmazásra – beleértve a legalacsonyabb (1 mg/kg) dózist is – 5 percen belül visszatért a normalizált TOF arány 0,9 értékre (95% alsó konfidencia-intervallum a legalacsonyabb sugammadex dózisra 70,1%, minden dózisra együtt 90,8%). A sugammadex felfüggesztésben részesült betegek 79%-a a normalizált TOFR 0,9 értéket 2 percen belül érte el, az antagonizálás követően (95% alsó konfidencia-intervallum a legalacsonyabb sugammadex dózisra 26,7%, minden dózisra együtt 63,7%).

Észlelhető volt egy nem túl jelentős, de statisztikailag szignifikáns különbség a sugammadex terápiában részesült csoportok között (p=0,044), mivel a normalizált TOFR 0,9 értékre való visszatérés szignifikánsan rövidebb volt 3 mg/kg sugammadex dózis alkalmazása után, mint 1 mg/kg sugammadex adását követően (p=0,0497). (12. Táblázat, 8. ábra)

A placebo csoportban egy beteg esetében sem tért vissza a normalizált TOFR 0,9 érték, a blokk TOFR 0,2 ± 0,08 értéken stabilizálódott (átlag ± SD). Ezért e csoport összes betege (N=9) 0,05 mg/kg neostigmint és 0,015 mg atropin kapott „mentő gyógyszerelésként”, az
antagonizálást követő 32,1 ± 9,9 perc (átlag±SD), (min-max: 19,5-45,8; 95% CI: 24,4-39,6) múlva. A neostigmin alkalmazása után a normalizált TOFR 0,9 érték visszatéréséhez 11,6 ± 5,5 (átlag ± SD), (min-max: 2,8-20,3; 95% CI: 7,3-15,9) percre volt szükség. Mivel vizsgálatunk azzal a céllal történt, hogy a különböző sugammadex dózisok alkalmazása után tapasztalható visszatétesi időket összehasonlítuk a placebo beadását követő visszatétesi időkkel, a neostigminnél kezelt betegek (visszatétesi időkre vonatkozó) eredményeit kivettük a végső értékelésből.

Másodlagos végpontként az antagonizálástól a maximális T1 eléréséig eltelt időintervallumokat vizsgáltuk. Minden sugammadex terápiában részesült csoport esetében a maximális T1 eléréséhez szignifikánsan több időre volt szükség, mint a normalizált TOFR 0,9 értékre való visszatétesehez (0,0003< p <0,018). (12. Táblázat, 9. ábra) A négy sugammadex csoport között a maximális T1 eléréséhez szükséges időintervallumokban nem volt különbség (p=0,327). (12. Táblázat, 8. ábra)

A vizsgálat alternatív végpontja a nem normalizált TOFR 1,0 értékire való visszatéteshez szükséges időintervallumok vizsgálata volt. A visszatétesi idők a négy sugammadex csoportban nem különböztek szignifikánsan a normalizált TOFR 0,9 értékere való visszatétesi időktől (p=0,24). (12. Táblázat, 8. ábra)

A posztoperatív végpont elemzésekor kijelenthetjük, hogy a műtét utáni első 60 percben egyik csoportban sem fordult elő PRNB (TOFR <0,9). Az öt terápiás csoportban az átlag TOFR ≥1,0 volt. (13.Táblázat) Korai nem kívánatos esemény, szövődmény nem volt észlelhető.

<table>
<thead>
<tr>
<th></th>
<th>Sugammadex 1 mg/kg</th>
<th>Sugammadex 2 mg/kg</th>
<th>Sugammadex 3 mg/kg</th>
<th>Sugammadex 4 mg/kg</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nem (férfi/nő)*</td>
<td>1/8</td>
<td>6/4</td>
<td>7/3</td>
<td>4/5</td>
<td>4/5</td>
</tr>
<tr>
<td>Kor (év) *</td>
<td>49,6 ± 11,29</td>
<td>52,3 ± 11,45</td>
<td>52,4 ± 9,29</td>
<td>52,3 ± 13,50</td>
<td>46,9 ± 15,07</td>
</tr>
<tr>
<td>Átlag ± SD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI (kg/m²) *</td>
<td>22,2 ± 2,28</td>
<td>23,5 ± 1,90</td>
<td>22,7 ± 2,45</td>
<td>22,3 ± 2,35</td>
<td>23,5 ± 1,61</td>
</tr>
<tr>
<td>Átlag ± SD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95% CI</td>
<td>20,7 - 23,8</td>
<td>22,3 - 24,7</td>
<td>21,2 - 24,2</td>
<td>20,8 - 23,9</td>
<td>22,5 - 24,6</td>
</tr>
<tr>
<td>Magasság (m) *</td>
<td>1,64 ± 0,07</td>
<td>1,73 ± 0,07</td>
<td>1,71 ± 0,07</td>
<td>1,67 ± 0,08</td>
<td>1,69 ± 0,16</td>
</tr>
<tr>
<td>Átlag ± SD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testtömeg (kg) *</td>
<td>58,7 ± 8,67</td>
<td>72,0 ± 10,30</td>
<td>66,3 ± 9,19</td>
<td>63,6 ± 10,16</td>
<td>68,4 ± 14,34</td>
</tr>
<tr>
<td>Átlag ± SD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kontroll TOFR*</td>
<td>1,06 ± 0,05</td>
<td>1,09 ± 0,07</td>
<td>1,08 ± 0,09</td>
<td>1,09 ± 0,06</td>
<td>1,08 ± 0,08</td>
</tr>
<tr>
<td>Átlag ± SD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kontroll T1%*</td>
<td>96,4 ± 9,72</td>
<td>94,6 ± 6,74</td>
<td>98,1 ± 7,19</td>
<td>96,0 ± 7,60</td>
<td>99,4 ± 9,80</td>
</tr>
<tr>
<td>Átlag ± SD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASA*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>II</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>III</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

*p ≥0,1 az öt csoport között; ASA = American Society of Anesthesiologists; BMI = testtömeg index; N = esetszám; CI = konfidencia intervallum.

<table>
<thead>
<tr>
<th></th>
<th>Sugammadex 1 mg/kg</th>
<th>Sugammadex 2 mg/kg</th>
<th>Sugammadex 3 mg/kg</th>
<th>Sugammadex 4 mg/kg</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teljes pipecuronium dózis (mg/kg)</td>
<td>0,07 ± 0,01</td>
<td>0,07 ± 0,01</td>
<td>0,07 ± 0,01</td>
<td>0,07 ± 0,01</td>
<td>0,06 ± 0,01</td>
</tr>
<tr>
<td>Átlag ± SD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kontroll sevoflurane koncentráció</td>
<td>1,16 ± 0,31</td>
<td>1,05 ± 0,29</td>
<td>0,99 ± 0,17</td>
<td>1,22 ± 0,39</td>
<td>1,11 ± 0,27</td>
</tr>
<tr>
<td>Átlag ± SD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sevoflurane koncentráció antagonizáláskor (%)</td>
<td>1,27 ± 0,41</td>
<td>1,25 ± 0,52</td>
<td>1,12 ± 0,25</td>
<td>1,37 ± 0,33</td>
<td>1,37 ± 0,27</td>
</tr>
<tr>
<td>Átlag ± SD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utolsó pipecuronium dózis beadásától a TOFC 2 megjelenéséig eltelt idő (perc)</td>
<td>92,5 ± 31,7</td>
<td>111 ± 49,9</td>
<td>120,9 ± 45,5</td>
<td>91,9 ± 30,7</td>
<td>113,2 ± 57</td>
</tr>
<tr>
<td>Átlag ± SD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

* p >0.3 az öt vizsgálati csoport között. N = esetszám.
<table>
<thead>
<tr>
<th>Sugammadex 1 mg/kg</th>
<th>Sugammadex 2 mg/kg</th>
<th>Sugammadex 3 mg/kg</th>
<th>Sugammadex 4 mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elsődleges végpont: az antagonizálástól a normalizált TOFR 0,9 érték visszatéréséhez szükséges idő (perc)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Átlag ± SD</td>
<td>2,33 ± 0,95 **</td>
<td>1,73 ± 0,59 **</td>
<td>1,5 ± 0,33 ** *</td>
</tr>
<tr>
<td>95% CI</td>
<td>1,71 - 2,95</td>
<td>1,36 - 2,09</td>
<td>1,29 - 1,71</td>
</tr>
<tr>
<td>Medián</td>
<td>2,0</td>
<td>1,63</td>
<td>1,50</td>
</tr>
<tr>
<td>(min-max)</td>
<td>(1,25 - 4,25)</td>
<td>(1,00 - 2,50)</td>
<td>(1,0 - 2,0)</td>
</tr>
</tbody>
</table>

| **Másodlagos végpont: az antagonizálástól a maximális T1 eléréséig eltelt idő (perc)** |
Átlag ± SD	8,06 ± 2,81 **	8,07 ± 5,58 **	5,72 ± 2,41 **	4,97 ± 3,24 *
95% CI	7,57 - 8,53	6,97 - 9,18	5,22 - 6,23	2,63 - 5,64
Medián	7,5	6,63	5,0	4,25
(min-max)	(4,0 - 12,25)	(3,5 - 18,25)	(2,25 - 9,5)	(1,25 - 10,5)

| **Alternatív végpont: a nem normalizált TOFR 1,0 értékre való visszatéréshez szükséges idő (perc)** |
Átlag ± SD	2,41 ± 0,88	2,25 ± 1,7	1,50 ± 0,44	1,66 ± 0,5
95% CI	2,25 - 2,57	1,91 - 2,58	1,4 - 1,59	1,55 - 1,78
Medián	2,0	1,75	1,5	1,5
(min-max)	(1,5 - 3,5)	(1,0 - 6,75)	(1,0 - 2,0)	(1,25 - 2,75)

| **Visszatért maximális T1 (%)** |
Átlag ± SD	0,96 ± 0,14	0,96 ± 0,13	0,94 ± 0,14	1,02 ± 0,16
95% CI	0,9 - 1,0	0,9 - 1,0	0,9 - 1,0	1,0 - 1,1
Medián	1,01	0,99	0,98	1,05
(min-max)	(0,77 - 1,13)	(0,76 - 1,11)	(0,76 - 1,15)	(0,75 - 1,23)
N	9	10	10	9

* Szignifikáns különbség a normalizált TOFR 0,9 értékre való visszatérés és a maximális T1 visszatérés ideje között, az egyes csoportokon belül. (** p <0,001, * p <0,05)

Szignifikáns különbség a jelölt csoportok között. (p=0,0497)

N = esetszám; CI = konfidencia intervallum.
8. ábra. A felfüggesztőszer beadásától a normalizált TOFR 0,9 értékre (A), a nem normalizált TOFR 1,0 értékre (B) való visszatérési idők, és a maximális T1 eléréséhez szükséges idők (C), másodpercben kifejezve, a négy sugammadex terápiás csoportban. Átlag ± standard error (S.E.) A különböző betűk szignifikáns különbséget jeleznek az egyes csoportok között. (Tukey HSD, p < 0.05).
9. Ábra. Sugammadex alkalmazása után a T1 visszatérés elmarad a TOFR visszatéréshez képest. T1 kék függőleges oszloppal, TOFR piros ponttal jelölve. A felső folyamatos kék vonal a bőrhőmérsékletet mutatja. (Forrás: saját vizsgálati anyag.)

<table>
<thead>
<tr>
<th></th>
<th>Sugammadex 1 mg/kg</th>
<th>Sugammadex 2 mg/kg</th>
<th>Sugammadex 3 mg/kg</th>
<th>Sugammadex 4 mg/kg</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>0. perc</td>
<td>Átlag ± SD</td>
<td>1.10 ± 0.07</td>
<td>1.03 ± 0.09</td>
<td>1.1 ± 0.16</td>
<td>1.08 ± 0.10</td>
</tr>
<tr>
<td></td>
<td>95% CI</td>
<td>1.06 - 1.15</td>
<td>0.98 - 1.09</td>
<td>1.01 - 1.21</td>
<td>1.01 - 1.15</td>
</tr>
<tr>
<td></td>
<td>Medián</td>
<td>1.1</td>
<td>1.02</td>
<td>1.04</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>(min-max)</td>
<td>(0.97 - 1.23)</td>
<td>(0.9 - 1.21)</td>
<td>(1.0 - 1.41)</td>
<td>(0.91 - 1.21)</td>
</tr>
<tr>
<td>20. perc</td>
<td>Átlag ± SD</td>
<td>1.07 ± 0.09</td>
<td>1.02 ± 0.09</td>
<td>1.08 ± 0.10</td>
<td>1.06 ± 0.09</td>
</tr>
<tr>
<td></td>
<td>95% CI</td>
<td>1.01 - 1.13</td>
<td>0.96 - 1.07</td>
<td>1.01 - 1.15</td>
<td>1.0 - 1.13</td>
</tr>
<tr>
<td></td>
<td>Medián</td>
<td>1.08</td>
<td>1.02</td>
<td>1.03</td>
<td>1.06</td>
</tr>
<tr>
<td></td>
<td>(min-max)</td>
<td>(0.9 - 1.2)</td>
<td>(0.92 - 1.2)</td>
<td>(0.98 - 1.3)</td>
<td>(0.93 - 1.2)</td>
</tr>
<tr>
<td>40. perc</td>
<td>Átlag ± SD</td>
<td>1.06 ± 0.01</td>
<td>1.03 ± 0.08</td>
<td>1.08 ± 0.13</td>
<td>1.04 ± 0.11</td>
</tr>
<tr>
<td></td>
<td>95% CI</td>
<td>1.0 - 1.13</td>
<td>0.99 - 1.08</td>
<td>1.01 - 1.16</td>
<td>0.97 - 1.12</td>
</tr>
<tr>
<td></td>
<td>Medián</td>
<td>1.05</td>
<td>1.01</td>
<td>1.07</td>
<td>1.02</td>
</tr>
<tr>
<td></td>
<td>(min-max)</td>
<td>(0.9 - 1.2)</td>
<td>(0.94 - 1.2)</td>
<td>(0.92 - 1.38)</td>
<td>(0.94 - 1.18)</td>
</tr>
<tr>
<td>60. perc</td>
<td>Átlag ± SD</td>
<td>1.08 ± 0.09</td>
<td>1.02 ± 0.07</td>
<td>1.08 ± 0.09</td>
<td>1.07 ± 0.04</td>
</tr>
<tr>
<td></td>
<td>95% CI</td>
<td>1.02 - 1.14</td>
<td>0.98 - 1.06</td>
<td>1.03 - 1.15</td>
<td>1.05 - 1.11</td>
</tr>
<tr>
<td></td>
<td>Medián</td>
<td>1.07</td>
<td>1.02</td>
<td>1.07</td>
<td>1.06</td>
</tr>
<tr>
<td></td>
<td>(min-max)</td>
<td>(0.92 - 1.3)</td>
<td>(0.91 - 1.1)</td>
<td>(0.99 - 1.24)</td>
<td>(1.03 - 1.14)</td>
</tr>
<tr>
<td>N</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

TOF ratio <0.9 nem volt észlelhető. N = esetszám; CI = konfidencia intervallum.
5. Megbeszéléz

Az aneszteziológiai témájú publikációk között egyre nagyobb teret kapnak a posztooperatív reziduális izomrelaxációval foglalkozó tanulmányok. A posztooperatív reziduális neuromuszkuláris blokk kizárására korábban elfogadhatónak tartották a TOF arány 0,7 értékre való visszatérését a műtétek végén. Az utóbbi két évtizedben azonban bebizonyosodott, hogy a felületes, TOFR 0,7 és 0,9 közötti értékkel jelzett izomrelaxáció is súlyos szövődmények forrása lehet. A szövődmények egy része a közvetlen posztooperatív szakban jelentkezhet (deszaturáció, légzási elégtelenség (5), gyengeségérzés, látásvonulások (87)), amelyek ekkor, ha gondosan észlelik a beteget, könnyen elháríthatóak. Igen gyakori azonban, hogy a PRNB következményeivel csak napokkal később találkoznak (pneumonia, atelektázia (6,9,93)). Ilyenkor a szövődmény forrása már nem is igazán egyértelmű, sokszor nem is gyanítják a háttérben a reziduális izomrelaxáció korábbi fennállását. Mivel a PRNB következményei sokszor igen súlyosak, sőt akár halálosak is lehetnek, fontos lenne megőrizni az aneszteziológusok berögzült rossz szokásait, a korábban megtanult, elavult elméleteket.

Napjainkban, a szakmai közvéleményben egyfajta paradigmaváltás idejét éljük. E paradigmaváltás három alapvető eleme közül az első kettő a műtét közbeni és a posztooperatív neuromuszkuláris monitorozás indokoltságának hangsúlyozása, valamint a reverzálás szükségessége a posztooperatív reziduális neuromuszkuláris blokk megelőzésére. E két elemben a szakmai társaságok egyre hangsúlyosabb konszenzust alakítottak ki, és az American Society of Anesthesiologists jelenleg formálódó iránymutatásában javaslatot készül ki. A rutinban végzett periooperatív neuromuszkuláris monitorozás szükségességével kapcsolatban. A paradigmaváltás második eleme, a reverzálás szükségessége vonatkozásában a közelmúltban elterjedt új reverzáló szer, a sugammadex alakítja át némileg a szakmai közvéleményt. A szer jelenleg már széles körben elérhető, de magas beszerzési ára miatt a használata széles körben korlátozott. Ugyanakkor a dózis-meghatározó tanulmányok tanúsága szerint bizonyos esetekben (felületesebb neuromuszkuláris blokkban) az alacsonyabb dózis is biztonságos reverzálási körülményeket teremt – alacsonyabb költségvonal mellett. A harmadik elem jelenleg még csak a szakma néhány képviselője részéről fogalmazódik meg: eszerint az a jelenleg uralkodó elv, hogy – akár a hátrányosabb mellékhatás profil árán is – a közepes hatástartamú izomrelaxánsok alkalmazását kell preferálni a mindennapi gyakorlatban, az utóbbi időben megkérdőjeleződő látszik. Az új reverzáló szernek, a sugammadexnek, a hosszabb hatású pipecuroniummal kapcsolatos
hatékonysága indokolttá teheti, hogy e kevesebb mellékhatással bíró izomrelaxánszt szélesebb körben alkalmazza a szakma. E paradigmaváltáshoz, és ezáltal az anesztezia biztonságosabbá tételehez igyekezünk klinikai vizsgálataink eredményeivel hozzájárulni.

5.1. Paradigmaváltás első eleme: monitorozás szükséges

A paradigmaváltás első eleme a neuromuszkuláris monitorozás szükségességének hangsúlyozása, a műtétek alatt és a posztooperatív szakban egyaránt. Bár az első perifériás idegstimulátor, amely az izomrelaxáció megítélésére szolgált, már 1958-ban bemutatták (54), a 70-es éveket megelőzően nem volt olyan stimulálási mód, amely igazán alkalmas lett volna az izomrelaxáció fokának pontos megítélésére. Az egyszeri ingerlés ismétlésekor a kontrollhoz való visszatérés nem jelezte megbízhatóan az izomrelaxáció megszűnését, a tetanizálás pedig – fájdalmassága miatt – éber betegen nem volt alkalmazható. Magyarországon Tassonyi és munkatársai különböző frekvenciájú tetanizáló ingerléshi mintázatok alkalmazásával a hetvenes évek elején olyan monitorot fejlesztettek ki, amely alkalmas volt az izomrelaxáció fokának objektív megítélésére, műtétek alatt. (58) Az igazi áttörést azonban az hozta meg, hogy Ali és munkatársai 1971-re kifejlesztettek a train-of-four (TOF) stimulálási mintázatot (57), amely egy objektív indexnek mutatkozott, ugyanis nem igényelt kontrollt ahhoz, hogy az izomrelaxáció foka pontosan megítélhető legyen. Előnye volt továbbá, hogy éber betegek is jól tolerálták. (170)

Az első kvantitatív monitorozási forma a mechanomiográfia volt, amelynek alkalmazása azonban igen nehézkes, ezért a klinikumban nem terjedt el. Ezt követte az elektromiográfia megjelenése, amely módszer már könnyebben kivitelezhető, de az elérhető eszközök drágák, törékenyek, és a sebészetben gyakran alkalmazott elektromos kész zavarja az izomválaszok megítélését. Ezért azok az aneszteziológusok, akik az izomrelaxáció fokát monitorozni akarták, általában kvalitatív monitor, azaz egyszerű idegstimulátor alkalmaztak. Áttörést a monitorozásban a 90-es évek közepén megjelenő akceleromiográfia hozott. Az akceleromiográf ára elérhető volt, használata egyszerű, alkalmas a műtétek alatt, mindennapos monitorozásra. (116)

Bár a kvalitatív neuromuszkuláris monitorok alkalmazásakor egyértelműen nem igazolódott annak pozitív hatása a posztoperatív maradék izomrelaxáció előfordulású gyakoriságának csökkenésére, (98) a kvantitatív monitorok használata – több vizsgálat által is bizonyítottan – csökkentette a PRNB előfordulását. (109, 110, 111, 113) Több prospektív és retrospektív vizsgálat igazolta, hogy a műtét utáni maradék izomrelaxáció elősegíti a posztoperatív

5.2. Paradigmaváltás második eleme: reverzálás szükséges

5.2.1. Reverzálás neostigminnél

Mint azt az irodalmi összefoglalóban kifejtettem, az izomrelaxánsok antagonizálásának hagyományos „módszere” az acetilkolin mennyiségének növelése, amely a relaxáns molekulák lezorítását eredményez az acetilkolin receptorokról, így a beteg izomereje visszatér. Az izomrelaxáns molekulák azonban nem tünnék el a neuromuszkuláris junkcióból, ezért az acetilkolin mennyiségének csökkenése az izomrelaxáció újbóli visszatérését eredményezheti. Ezen az elven működő reverzáló gyógyszerünk a neostigmin, amely az acetilkolin-észtéráz enzim gátlásával az acetilkolin mennyiségének növekedését okozza. Alkalmazásakor azonban számos melléhatás jelentkezhet, köszönhetően az acetilkolin muszkarin típusú receptorokon kifejtett agonista hatásának. (116) Ezek a melléhatások igen súlyosak is lehetnek, ezért sok aneszteziológus igyekszik kerülni a neostigmin adását, vagy csak türelmek dózisban alkalmazza azt. Európában az aneszteziológusok 82%-a, az Amerikai Egyesült Államokban 65,8%-a nem ad rutinszerűen neostigmin az izomrelaxációval járó műtétek végén, egy 2010-ben publikált felmérés szerint. (171) A neostigmin alkalmazása melléhatásain túl egyéb korlátokkal is bír. Túl mély neuromuszkuláris blokkot nem képes felfüggeszteni (117-119), illetve felszínes izomrelaxációban, vagy az izomrelaxáció
megszűnte után alkalmazva a neostigmint, önmaga is neuromuszkuláris blokkot idéz elő (100, 124). Ezért is lehetséges az, hogy e felfüggesztőszer monitorozás nélküli használata után, nem csökkent a posztoperatív reziduális blokk előfordulása (88, 108). Ez a magyarázat arra is, hogy egy nagy esetszámú, retrospektív tanulmány során az igazolódott, hogy az izomrelaxáció monitorozásának mellőzésekor alkalmazva a neostigmint, az emelte a posztoperatív légzési elégtelenség kialakulásának kockázatát (9).

5.2.2. Új antagonista: sugammadex

Korábbi dóziskereső vizsgálatok megállapították a sugammadex hatékony dózisait a teljes (TOFC0, PTC 0) (139), mély (TOFC 0, PTC 1-2) (147, 148) és mérsékelt (TOFC 2) (133, 149), rocuroniumnal létrehozott neuromuszkuláris blokk felfüggesztésére. Amely dózisok 16 mg/kg, 4 mg/kg és 2 mg/kg, sorrendben. Schaller és munkatársai 2010-ben igazolták, hogy a felületes rocuronium blokk (TOFR >0,5) antagonizálására elegendő 0,22 mg/kg sugammadex alkalmazása. Az egyszerűbb számolás miatt ilyen szintű blokknál a szerzők 0,25 mg/kg dózis alkalmazását javasolják. (126) Azonban, a műtétek végén gyakran áll fenn, e mélységektől eltérő, úgynevezett reziduális blokk, amikor a TOF ingerlésre megjelenik mind a négy izomválasz (TOFC 4), és az akceleromiográfi még vagy nem jelez ki mérhető TOF arányt, vagy nagyon alacsony hányados észlehető csak. A reziduális rocuronium blokk antagonizálására az ideális sugammadex dözist ez idáig nem határozták meg, ilyen irányú vizsgálat nem történt. A gyártó – vizsgálatok hiányában – a TOFC 2 szintű, és annál felületesebb rocuronium blokád felfüggesztésére 2 mg/kg sugammadex dózis alkalmazását javasolja. (134)

5.2.2.1. A reziduális rocuronium blokád felfüggesztése sugammadex alkalmazásával.

Első vizsgálatunkban reziduális (TOFC 4) rocuronium blokk antagonizálására 0,5 – 1 – 2 mg/kg dózisú sugammadex hatékonságát vizsgáltuk. Placebo kontrollt nem alkalmaztunk, tekintettel arra, hogy a sugammadex hatékonsága a rocuronium blokád felfüggesztésére már bizonyított. Placebo helyett a neostigmin hatékonságának vizsgálatát határoztuk el, így lehetőség nyílt a két különböző antagonistálási módszer összehasonlítására a reziduális rocuronium blokk felfüggesztésénél, ezáltal a klinikai alkalmazás szempontjából további releváns információkat kaphattunk. A neostigmint teljes dózisban alkalmaztuk (0,05 mg/kg). Az anesztézia fenntartása sevoflurane alkalmazásával történt.

A felfüggesztőszer beadását követően az akceleromiográf által kijelzett TOFR 1,0 érték megjelenéséhez szükséges időintervallumot vizsgáltuk. Elsődleges vizsgálati végpontként a gyors visszatérést (átlagosan ≤2 perc, de maximum 5 perc), másodlagos végpontként a lassabb visszatérést (átlagosan ≤5 perc, de maximum 10 perc) biztosító sugammadex dózisok meghatározását jelöltük ki. Ezeket az időintervallumokat, a korábbi dóziskereső vizsgálatokban meghatározott időintervallumoknak megfelelően állítottuk fel, hogy eredményeink könnyebben összehasonlíthatóak legyenek az előző tanulmányokéval. (126, 133, 149)
A korábbi dózis kereső tanulmányok a nem normalizált TOFR 0,9 értékre való visszatérés idejét vizsgálták. Akceleromiográfia alkalmazása során megfigyelhető azonban, hogy a kiindulási érték igen gyakran meghaladja a TOFR 1,0 értékét. Ez a jelenség az izom-összehúzódási erő számításának indirekt módból adódhat. Mindezek miatt néhány év felmerült a vizsgálókban, hogy a visszatérséskor elvárható TOFR 0,9 érték akceleromiográfával is elegendő-e. Sajnos az elvégzett tanulmányok igazolták azt az eredeti feltételezést, hogy az akceleromiográf alámér a mechanomiográf felmérhető értékekenk. Akceleromiográfia során a kijelzett TOFR 0,9 érték mechanomiográfál mérve átlag 0,83 értéknél bizonyult. (63) Létezik azonban két módszer, amely az akceleromiográfia pontosságát a mechanomiográfáéhoz hasonlóvá teszi: a normalizálás, azaz a kiindulási értékhöz való viszonyítás, illetve az előzetes kalibráció után TOFR 1,0 értékre való visszatérés a 0,9 érték helyett. (63) Vizsgálatunkban ezért határoztuk meg végpontként a kijelzett TOFR 1,0 értékre való visszatérsést. Az eredmények elemzésekor azonban a normalizálást is elvégeztük.

A felfüggesztőszer beadása TOFC 4 szintű blokknál történt, és nem volt feltétele az antagonizálásnak, hogy az akceleromiográf hányadost jelezzzen ki, elegendő volt a négy izomrángás észlelése az aneszteziológus által. Törekedtünk arra, hogy a felfüggesztés a negyedik izomválasz megjelenése után következzen, vagy rövid idővel az után történjen, tehát minél alacsonyabb TOF arányt. Az akceleromiográf abban az esetben, amikor az első izom-összehúzódás nagysága 20% alatt marad, nem jelez ki hányados értéket, csak a TOF számot írja ki (TOFC 4). Több esetben ekkor került sor a felfüggesztésre, ilyenkor az antagonizáláskor fennálló TOF arányt 0 értéknél vettük. (7. Táblázat) Vizsgálatunkban a TOFR 1,0 érték eléréséhez szükséges idők nem különböztek egymástól szignifikánsan az 1 illetve 2 mg/kg dózisú sugammadex-szel történt antagonizálást követően. 1 mg/kg sugammadex alkalmazása után 2,1±0,8 perc (átlag±SD) alatt nem normalizált TOFR 1,0 értékre visszatért. A legrövidebb visszatérségi idő 1,2 perc volt, míg a leghosszabb 4,5 perc. (8. Táblázat) Az ebben a csoportban lévő 20 beteg közül 19 esetében teljesültek a gyors visszatérségi krítériumai. (9. Táblázat) Suy és munkatársai TOFC 2 szintű rocuronium blokkot 1 mg/kg dózisú sugammadex alkalmazásával antagonizálva 2,3±0,6 (átlag±SD) perc alatt észlelték a TOFR 0,9 értékre való visszatérsését. (149) Egy másik vizsgálatban hasonló szintű rocuronium blokk (TOFC 2) felfüggesztésére az 1,0 mg/kg dózisú sugammadex 3,3 (1,4–4.9) perc (medián és min-max) alatt volt képes. (133) Mindkét vizsgálatban a TOFR 0,9 érték elérését tekintették a neuromuszkuláris blokk megszűnésének, és a méréseket
akceleromiográfiával végezték. Az általunk mért időeredmények megfelelnek ezen eredményeknek, tekintve hogy felületesebb blokk antagonistizálását végeztük, de végpontként nem a TOFR 0,9, hanem a TOFR 1,0 érték elérést határoztuk meg.

0,5 mg/kg sugammadex dózis alkalmazásakor a visszatéréshez 4,1±1,9 (átlag±SD) percre volt szükség (min-max: 1,7-8,0). (8. Táblázat) Az e csoportban lévő betegek 84%-nál a lassabb visszatérés, míg 16%-nál a gyors visszatérés kritériumai teljesültek. (9. Táblázat) Megjegyzendő, hogy a lassabb visszatérés, tehát az izomrelaxáció 10 percen belüli megszűnése, klinikailag még teljesen elfogadható időintervallumot takar. Sorgenfrey vizsgálatában, TOFC 2 szintű blokk függesztésére alkalmazott 0,5 mg/kg dózisú sugammadex 4,3 (1.3–8.5) (medián és min-max) percre alatt eredményezte a TOFR 0,9 értékre való visszatérését (131). Ugyanilyen szintű blokk megszüntetéséhez 3.7±1.0 (átlag±SD) percre volt szükség 0,5 mg/kg dózisú sugammadex beadása után Suy és munkatársai vizsgálatának esetében. (149) E két vizsgálat, mint az korábban is említésre került, végpontként az akceleromiográffal mért TOFR 0,9 érték visszatérését határozza meg, míg esetünkben a TOFR 0,1 értékre való visszatéréséhez szükséges időintervallumokat vizsgáltuk.

Vizsgálatunkban a neostigmin alkalmazása után mért visszatérési idők jóval hosszabbnak bizonyultak, a sugammadex adása után mért értékeknél. Még a legalacsonyabb (0,5 mg/kg) dózisú sugammadex is körülbelül fele annyi idő alatt szüntette meg a reziduális rocuronium blokkot, mint a neostigmin. A neostigmin csoport betegeinél a gyors visszatérés kritériumai nem teljesültek egy esetben sem, és csupán a betegek 37,5%-nál volt tapasztalható a lassabb, tíz percen belüli visszatérés. (9. Táblázat) A csoport többi betegénél még ennél is elhúzódóbb időintervallumokat regisztráltunk. Ráadásul e csoport betegei közül négy esetében nem tért vissza a felfüggesztőszer beadását követő 15 percn belül a TOFR 1,0 értékre, így ök úgy nevezett „mentő gyógyszerrelésben” részesültek, azaz 2 mg/kg sugammadexet kaptak. Ha megvártuk volna ezeknél a betegeknél is a tejes visszatérést, összességében még elhúzódóbb idő-eredményeket tapasztalhattunk volna ebben a csoportban.

Korábban Kirkegaard és munkatársai vizsgálatában 0,07 mg/kg neostigmin alkalmazásával a TOFC 4 szintű blokk függesztéséhez középértéken 16,5 percre volt szükség. Volt olyan beteg, akinél a visszatéréshez 143,3 perc kellett. A betegek hét százalékánál a neostigmin beadása után 30 percel a mérhető TOFR nem érte el a 0,9 értéket. A vizsgálatot propofol anesztézia mellett végezték. (118) A vizsgálatunkban alkalmazott sevoflurane anesztézia a neostigmin hatásának kialakulását tovább késleltethette. Több tanulmány bizonyítja ugyanis, hogy míg a sevoflurane a sugammadex hatását nem befolyásolja, addig a neostigmin alkalmazását követő
visszatérési időket igen megnyújtja. (122, 140) Kim és munkatársai TOFC 4 szintű neuromuszkuláris blokk függesztésekor alkalmazva a neostigmin, propofol anesztézia mellett 4.7 (1.3-7.2) perc, míg sevoflurane anesztézia mellett 9.7 (5.1-26.4) perc visszatérési időket tapasztaltak. (TOFR 0,9 értékre való visszatérési időket vizsgálták.) (121)

TOFC 4 szintű – azaz reziduális neuromuszkuláris blokk igen gyakran fordul elő a műtétek végén. Az ilyen szintű neuromuszkuláris blokk kvalitatív monitorozás alkalmazása mellett is könnyen felismerhető (a négy izomválasz érzékelhető tapintással vagy vizuálisan), így az, az előre meghatározott sugammadex dózisokkal egyszerűen, percekben belül, felfüggeszthető. Különösen fontos ez az antagonizálási lehetőség annak ismeretében, hogy a neuromuszkuláris monitor alkalmazza továbbá a neuromuszkuláris blokk azonosítását, amely kvalitatívan és kvantitatívan is könnyen felismerhető. (171)

Az ilyen szintű neuromuszkuláris blokk felfüggesztésekor alkalmazva a neostigmin, propofol anesztézia mellett 4.7 (1.3-7.2) perc, míg sevoflurane anesztézia mellett 9.7 (5.1-26.4) perc visszatérési időket tapasztaltak. (TOFR 0,9 értékre való visszatérési időket vizsgálták.) (121)

Amennyiben izomrelaxánsként rocuroniumot alkalmaznak, akkor saját vizsgálatunk alapján a TOF ingerlést követő négy izomválasz megjelenésekor 1 mg/kg sugammadexet adva, elegendő 5 perc várakozás, és a beteg extubálható. A biztonságot adó várakozási idő 0,5 mg/kg sugammadex használata után 10 perc. TOFR 0,4 érték felett, kvalitatív monitorok alkalmazása mellett, a fáradást az aneszteziológók már nem képesek érzékelni (62), ezért igen fontos a megfelelő időtartam kiválasztása. Ennél alacsonyabb dózisok beadásakor már ismerni kell a TOF hányados számszerű értékét is ahhoz, hogy az antagonizálás teljességét ellenőrizni lehessen, tehát kvantitatív monitorozás szükséges.

Amennyiben egyáltalán nem alkalmaznak neuromuszkuláris monitorot, akkor is bizonyos klinikai jelek utalhatnak a neuromuszkuláris blokk reziduális voltára (fej megemelése és megtartása, láb megemelése). E klinikai tesztek teljesítése azonban nem zárja ki a posztoperatív reziduális neuromuszkuláris blokk fennállását, azaz nem jelenti a TOF arány 0,9 értékre való visszatérését. Ilyenkor 1 mg/kg dózisú sugammadexet alkalmazva biztonsággal felfüggeszthető az izomrelaxáció, a beteg percekben belül extubálható, és megelőzhetőek a PRNB okozta szövődmények.

A reziduális rocuronium blokád neostigminnél történő antagonizálásakor igen elhúzódó visszatérési időkre is lehet számítani, főleg inhalációs anesztetikumok alkalmazásakor. Ezt vizsgálatunk is bizonyította. Ezért neostigmin alkalmazása, kvantitatív monitorozás hiányában, ilyen szintű neuromuszkuláris blokk felfüggesztésére nem javasolt.

Fontos megjegyezni, hogy vizsgálatunk eredményei kizárólag rocuronium által létrehozott neuromuszkuláris blokk antagonizálására vonatkoznak. Más szteroid típusú izomrelaxánsok
által kiváltott blokádnál a felfüggesztéshez szükséges időintervallumok eltérhetnek az általunk tapasztaltaktól.

5.3. Paradigmaváltás harmadik eleme: hosszú hatású izomrelaxánsok újbóli alkalmazása

A korábban vázolt paradigmaváltás harmadik elemét, azaz a hosszú hatású izomrelaxánsok revideálását két tény hivta életre. Az 1990-es évek végén prospektív, multi-centrikus vizsgálattal igazolták, hogy hosszú hatású izomrelaxáns (pancuronium) alkalmazása után szignifikánsan nagyobb arányban fordul elő súlyos (TOFR <0,7) posztoperatív reziduális neuromuszkuláris blokk, ami szignifikánsan emelte a posztoperatív pneumonia kialakulásának valószínűségét. (93) E közlemény hatására világszerte erősen visszaszorult a hosszú hatású izomrelaxánsok alkalmazása. (96) Bár azt várják, hogy ennek hatására csökken a reziduális paralízis gyakorisága, meglepő módon, a közepes hatású izomrelaxánsok szinte kizárólagos használata ellenére, több tanulmány is igazolta a PRNB továbbra is magas (körülbelül 30 %-os) előfordulási arányát. (8, 97) E jelenség hátterében az állhat, hogy az izomrelaxánsok hatástartama kiszámtathatlan, azt több tényező is befolyásolja, és már egy dózis alkalmazása után is tovább tart, mint ahogy azt az aneszteziológusok gondolják. (102, 103) Grosse-Sundrup és munkatársai tanulmányukban azt igazolták, hogy a közepes hatású izomrelaxánsok használata független rizikófaktora a műtét utáni súlyos légzési komplikációk kialakulásának. E rizikó-emelkedés hátterében pedig a szerzők a PRNB szerepét látták igazolódní. (9)

A második tény, hogy a PRNB előfordulásának valószínűsége növekszik az izomrelaxáns ismételt adagolásával, vagy infúzióban történő alkalmazásakor (116), tehát a hosszabb sebészeti beavatkozások után. Ezért az elhúzódó műtéteknél megfontolandó újra a hosszú hatású izomrelaxánsok alkalmazása, amely megfelelő mélységű neuromuszkuláris blokkot biztosít a sebészeti beavatkozás végéig. Ennek tükrében pedig felmerül a kérdés, miért válasszunk egyáltalán közepes hatású izomrelaxáns hosszú műtétekhez. Az ismételt adagolással eltűnik a gyógyszer rövidebb hatástartamának előnye, eltűnik a PRNB kialakulási kockázatának csökkenése, és előtérbe kerülhetnek a gyógyszer kiválasztásának egyéb, nem kevésbé fontos szempontjai, mint a mellékhatások, vagolítikus hatás, anafilaxiás reakciók kiváltásának gyakorisága. Különösen egyértelmű lenne a választás, amennyiben létezne olyan hosszú hatású izomrelaxáns, amelynek mellékhatásprofilja kedvezőbb, és hatása percek belül, megbízhatóan antagonizálható.
A közepes hatású izomrelaxánsok közül a rocuronium világszerte egyre népszerűbb. Köszönhető ez rövid hatásbeállási idejének, de legfőképpen sugammadex-szel való, pár perc alatti felfüggesztethtetőségének. Sajnos azonban a gyógyszer szélesebb körü alkalmazásával egyre növekszik a vele szemben megjelenő anafilaxiás reakciók gyakorisága. Több közlemény is beszámol erről az ijesztő tényről. Ausztráliában tíz év eredményeit összesítve az igazolódott, hogy az izomrelaxánsokkal szemben anafilaxiás reakciók 56%-ért a rocuronium volt felelős. (44) Ezt a tényt erősíti meg egy idei tanulmány, amelyben a rocuronium anafilaxia előfordulását találták a leggyakoribbnak az izomrelaxánsokkal szemben fellépő anafilaxiás reakciók közül, gyakoribbnak, még a szukcinilkolin-anafilaxiánál is. Előfordulási gyakoriságát 1/2500 esetnek állapították meg. (45) Meglehet, ha nem lenne a rocuroniumnak a két korábban említett előnyös tulajdonsága, illetve, ha létezne olyan, kevésbé allergizáló, esetleg más előnyös tulajdonsággal is bíró izomrelaxáns, amelyet a sugammadex a rocuroniumhoz hasonló gyorsasággal, megbizhatóan antagonizálna, akkor a rocuronium alkalmazása erősen visszaszorulna.

5.3.1. Pipecuronium által kiváltott mérsékelt neuromuszkuláris blokk felfüggesztése sugammadex alkalmazásával, sevoflurane anestezia mellett

A sugammadex kifejlesztésekor elvégzett in vitro vizsgálatok eredményeinek tanulmányozásakor felfedezhető, hogy annak pipecuroniumhoz való affinitása mintegy tízszer erősebb, mint a rocuroniumhoz való affinitása. * In vivo vizsgálatok, amelyek a sugammadex hatékonyságát vizsgálták volna a pipecuroniummal létrehozott neuromuszkuláris blokk antagonizálására, azonban még nem történtek.

Második tanulmányunkat azzal a céllal végeztük, hogy meghatározzuk a mérsékelt (TOFC 2) szintű pipecuronium blokád felfüggesztésére alkalmas sugammadex dózist.

Azért döntöttünk a mérsékelt szintű (TOFC 2) pipecuronium blokk antagonizálása mellett, mert a rocuronium blokád megszüntetéséhez szükséges sugammadex dózist meghatározó tanulmányok nagy része ilyen szintű neuromuszkuláris blokk felfüggesztését vizsgálta. (133, 149) A 2 mg/kg sugammadex dózis hatékonyságát azért vizsgáltuk, mert ez az ajánlott dózis hasonló szintű rocuroniummal és vecuroniummal létrehozott neuromuszkuláris blokk felfüggesztésére. A pipecuronium mintegy hat-hétszer potensebb izomrelaxáns, mint a rocuronium (52, 168), ezért ugyanolyan szintű neuromuszkuláris blokk kiváltásához kevesebb izomrelaxáns molekula szükséges a pipecuronium, mint a rocuronium esetében. Mivel a

sugammadex-izomrelaxáns 1-1 arányú molekuláris interakció, ezért elméletben a hasonló szintű neuromuszkuláris blokk felfüggesztéséhez, pipecuronium blokkád esetében kevesebb sugammadex molekulára van szükség, mint rocuronium blokk antagonizálásakor. Az 1 mg/kg sugammadex, mint legalacsonyabb dózis vizsgálata mellett erre a tényre alapozva döntöttünk. Tekintettel arra, hogy a sugammadex hatékonyságát a pipecuronium blokk megszüntetésére in vivo még nem vizsgálták, magasabb sugammadex dózisok tesztelését (3 mg/kg és 4 mg/kg), és placebo csoport felállítását is elhatároztuk. A placebo csoportra azért volt szükség, hogy összehasonlíthassuk a kapott eredményeket a blokk spontán megszűnésének idejével. Feltételeztek, hogy placebo – illetve alacsonyabb dózisú sugammadex – alkalmazása után a blokk megszűnésének ideje elhúzódhat, ezért „mentő gyógyszerelésként” neostigmin alkalmazását is lehetővé tettük. A neostigmin beadására akkor kerülhetett sor, ha a felfüggesztősz eredménye után 45 perccel a TOF hányados nem érte el 1,0 értéket, illetve hamarabb, ha a visszatérő TOF arány stabilizálódott, és további emelkedést nem mutatott. Ez az időintervallum azért lett meghatározva, mert a vizsgálat műtőben történt, ahol az előre meghatározott műtéti programot késleltetni nem lehetett.

Tanulmányunkkal igazoltuk, hogy a sugammadex hatékonyan antagonizálja a pipecuroniummal létrehozott mérsékelt (TOFC 2) szintű neuromuszkuláris blokkot. A vizsgálat elsődleges hatékonysági végpontja, a normalizált TOFR 0,9 értékre való visszatérés, a legalacsonyabb dózisú sugammadex (1 mg/kg) alkalmazását követően, a betegeknél 2,3±0,95 (átlag±SD) perc alatt teljesült. (12. Táblázat) A sugammadex antagonizálásban részesült betegek 79%-nál 2 perc alatt, a fennmaradó 21%-nál pedig 5 percen belül tért vissza a TOF arány a normalizált 0,9 értékre. A klinikai alkalmazás szempontjából még az őt percen belüli visszatérés is teljesen megfelelő. És bár a magasabb dózisok alkalmazása után tapasztalt visszatérési idők kissé rövidebbek voltak, az alacsonyabb (1 illetve 2 mg/kg) dózisú sugammadex használatkor is minden betegnél őt percnél belül megtörtént a blokk megszűnése. Ezért kijelenthetjük, hogy a TOFC 2 szintű pipecuronium blokk megszüntetésére a sugammadex 1 vagy 2 mg/kg dózisban való alkalmazása megfelelő. A pipecuronium hosszú hatástartama ellenére, felfüggesztést követően az izomrelaxáció nem tért vissza egy esetben sem.

A placebo csoport minden betegénél „mentő gyógyszerelésre” került sor, nagyjából fél órával a fiziológiás sóoldat beadását követően. A neuromuszkuláris blokk ekkor reziduális szintűnek felelt meg, a TOFR átlagban 0,2 értékű volt. A neostigmin alkalmazása után 11,6±5,5 (átlag±SD) (min-max: 2,8-20,3) perccel tért vissza a normalizált TOF arány 0,9 értékre.
Vizsgálatunk megerősíti azt az előző tanulmányunkban már tapasztalt tényt, miszerint a reziduális neuromuszkuláris blokk neostigminnél való antagonizálása sokszor 15 percnél is hosszabb időt vesz igénybe, különösen, ha inhalációs anesztetikummal történik a narkózis fenntartása.

A vizsgálat elsődleges végpontja a felfüggesztőszer beadása után a normalizált TOFR 0,9 eléréséhez szükséges időintervallum megállapítása volt. Mint azt korábban említettem, napjainkban - acceleromiográfiás vizsgálat esetén - a normalizált TOFR 0,9, vagy a nem normalizált 1,0 értékre való visszatérés az elfogadott, a maradék izomrelaxáns hatás kizárása szempontjából. (55) Vizsgálatunkban nem tapaszottunk szignifikáns eltérést a normalizált TOFR 0,9 és a nem normalizált TOFR 1,0 értékre való visszatérési idők között. A normalizáció elvégzése sokszor nehézkes műtéti körülmények között, ezért a monitor által kijelzett TOFR 1,0 értékre való visszatérés ilyenkor alkalmasabb lehet a neuromuszkuláris blokk kizárására. Ennek megbízhatóságát saját vizsgálatunk is megerősítette.

A pipecuronium blokád felfüggesztését sevoflurane adása mellett végeztük. Több vizsgálat, közöttünk az ezt megelőző tanulmányunk is azt bizonyította, hogy a sugammadex hatására a sevoflurane alkalmazása nincs jelentősebb befolyással (121, 122, 140), ezért propofol anesz tézia mellett a visszatérési idők csökkenése nem várható.

5.3.1.1. Monitorozásra vonatkozó új ismeretek

Tanulmányunkban a monitorozásra vonatkozó új, eredeti megfigyeléseket tettünk. TOF ingerlést követően az első izom-összehúzódás erejét a T1 érték jellemzi. Klasszikusan, a neuromuszkuláris blokk spontán megszűnésekor illetve a neostigmin beadását követően, a T1 visszatérés megelőzi a TOF arány visszatérését. (166) (3. ábra) Nemrégiben észlelték azonban, hogy sugammadex alkalmazását követően, ez a sorrend megfordul. (167) Vizsgálatunk másodlagos végpontja ezért, a felfüggesztőszer beadásának kezdetétől a legmagasabb, végső T1 eléréséhez szükséges idő megmérése volt. Ez az időintervallum 5-8 perccel hosszabb, mint a normalizált TOFR 0,9 érték visszatérési ideje. (12. Táblázat) (9. ábra) Ez a jelenség tehát nem a pipecuroniumra specifikus, hanem a sugammadexre. (167) A jelenség hátttere még nem teljesen tisztázott. A lehetséges magyarázat a következő: Míg a fáradás jelensége a preszinaptikus receptorok gátlásával kapcsolatos, addig a T1 magassága a posztszinaptikus receptorok antagonizáló fokát jellemzi. In vitro vizsgálatok igazolták, hogy a nem depolarizáló izomrelaxánsok sokkal nagyobb affinitással kötődnek a posztjunkcionális (α1, β1δγ) acetilkolin receptorokhoz, mint a prejunkcionális...
(α3β2) receptorokhoz. (38) A sugammadex magas koncentrációban történő alkalmazásakor csak igen kevés molekula marad a szinaptikus résben, amely molekulák így inkább a posztjunkcionális receptorokhoz kötődnek. Ezért – bár fáradás már nem észlelhető – a T1 érték ilyenkor még alacsonyabb marad. (167) Teljesnek akkor mondhatjuk a neuromuszkuláris blokk megszűnését, ha a mind a T1, mind a TOFR a kiindulási értékre visszatért. A jelenség klinikai jelentősége egyelőre nem tisztázott, mert a TOFR 1,0 érték megjelenését néhány perccel követi a T1 kiindulási értékre való visszatérése is. Vizsgálatunkban mi nem tapasztaltunk posztooperatív reziduális kurarizációt, elképzelhető azonban, hogy speciális körülmények között a T1 visszatérés „megcsúsztásának” klinikai jelentősége is lehet. Magnézium, vagy aminoglikozid antibiotikumok műtét utáni alkalmazásakor, illetve olyan neuromuszkuláris betegségekben, mint a myasthenia gravis, a T1 elmaradás elméletben jelentősebb ideig is eltarthat, amely a PRNB következményeit vonhatja maga után. (167) Ezért, bár a T1 monitorozás még „gyerekcipőben jár”, a későbbiekben lehetséges, hogy jelentősége értelemszerűen növekszik. A vizsgálatunkban mi nem tapasztaltunk posztooperatív reziduális kurarizációt, elképzelhető azonban, hogy speciális körülmények között a T1 visszatérés „megcsúsztásának” klinikai jelentősége is lehet. Magnézium, vagy aminoglikozid antibiotikumok műtét utáni alkalmazásakor, illetve olyan neuromuszkuláris betegségekben, mint a myasthenia gravis, a T1 elmaradás elméletben jelentősebb ideig is eltarthat, amely a PRNB következményeit vonhatja maga után. (167) Ezért, bár a T1 monitorozás még „gyerekcipőben jár”, a későbbiekben lehetséges, hogy jelentősége értelemszerűen növekszik.

5.4. Vizsgálataink eredményeinek összegzése

Mindkét vizsgálatunkkal igyekeztünk hozzájárulni az anesztézia biztonságosabbá tételéhez, és támogatni a fentebb vázolt paradigmaváltás elemeit. A sugammadex hatékonyságát vizsgáltuk új, csökkentett dózisban a reziduális rocuronium blokád antagonizálásánál. Illetve vizsgáltuk a felfüggesztőszer hatékonyságát egy teljesen új indikációban, a hosszú hatású pipecuroniummal létrehozott neuromuszkuláris blokk megszüntetésére. Első vizsgálatunkkal igazoltuk, hogy a reziduális (TOFC 4) rocuronium blokád hatékonyan antagonizálható 1 mg/kg sugammadex alkalmazásával, ezért ekkor nem szükséges magasabb dózis beadása, ami a költséghatékonyság és a betegbiztonság szempontjából is fontos. Második vizsgálatunkkal igazoltuk, hogy a sugammadex alkalmas a pipecuroniummal létrehozott neuromuszkuláris blokk felfüggesztésére, úgy, hogy a relaxáns hosszú hatástartama ellenére sem volt észlelhető az izomrelaxáció visszatérése. Bizonyítottuk, hogy a sugammadex, 1 mg/kg dózisban, hatékonyan antagonizálja a mérsékelt (TOFC 2) szintű pipecuroniummal létrehozott neuromuszkuláris blokkot. Továbbá mindkét vizsgálatunk igazolta a neostigmin hatásbeállási idejének elhúzódását a reziduális izomrelaxáció felfüggesztésekor, amennyiben sevoflurane alkalmazásával történik a narkózis fenntartása. Igazoltuk továbbá, hogy a műtétek végén, a PRNB kizárására egyaránt elfogadható a TOFR 1,0 értékre, vagy a normálizált 0,9 értékre.
való visszatérése. Leírtuk azt a tényt, hogy sugammadex-szel történő antagonizáláskor a T1 visszatérése elmarad a TOF arány visszatérése mögőtt, bár ennek klinikai jelentősége még nem ismert.
6. Összefoglalás
A posztooperatív reziduális neuromuszkuláris blokk (PRNB) súlyos szövődmények forrása lehet, ezért igen fontos annak felismerése és felfüggesztése a műtétek végén. Vizsgálatainkban két különböző izomrelaxáns (rocuronium és pipecuronium) által létrehozott neuromuszkuláris blokk esetében vizsgáltuk a sugammadex hatékonyságát. Megállapításaink, eredményeink az alábbiak voltak:

1. Először vizsgáltuk a TOFC 4 szintű rocuronium blokk reverzálását különböző dózisú sugammadex alkalmazásával, és írtuk le a reziduális rocuronium blokk felfüggesztését kis dózisú sugammadex-szel.
2. A TOFC 4 szintű rocuronium blokád 1,0 illetve 2,0 mg/kg dózisú sugammadex-szel történt antagonizálását követően, a nem normalizált TOFR 1,0 érték eléréséhez szükséges idők nem különböztek egymástól szignifikánsan.
3. Igazoltuk, hogy a reziduális rocuronium blokk 1 mg/kg dózisú sugammadex alkalmazásával is megbízhatóan, 5 percen belül antagonizálható.
4. A 0,5 mg/kg dózisú sugammadex használata után a biztonságos reverzálási idő TOFC 4 rocuronium blokkban 10 perc. A neostigminnel való felfüggesztés sevoflurane anesztézia mellett igen elhúzódó visszatérést eredményez.
5. A nemzetközi irodalomban először tanulmányoztuk a pipecuronium által kiváltott mérsékelt neuromuszkuláris blokk felfüggesztésének lehetőségét sugammadex alkalmazásával, sevoflurane anesztézia mellett.
6. Elsőként megállapítottuk, hogy 1 mg vagy 2 mg/kg sugammadex adekvátan megszünteti a mérsékelt pipecuronium blokkot.
7. Bizonyítottuk, hogy a pipecuronium sugammadex felfüggesztése után nem jön létre posztooperatív neuromuszkuláris blokk a hosszú hatástartam ellenére sem.
8. Megállapítottuk, hogy 1.0 TOFR azonos a normalizált 0.9 TOFR értékké, a biztonságos reverzálás szempontjából.
9. Leírtuk, hogy a klasszikus visszatéréstől különbözik a sugammadex hatására kialakuló visszatérés, mert a T1 később tér vissza, mint a TOFR.

Vizsgálataink gyakorlati jelentősége abban van, hogy lehetővé teszi kisebb sugammadex dózisok alkalmazását, ami alacsonyabb költséget jelenthet. A pipecuronium antagonizálhatósága sugammadex-szel lehetővé teszi ennek a relaxánsnak a széles körű alkalmazását. Eredményeink a monitorozás szempontjából is új elemeket tartalmaznak.
7. Summary

Postoperative residual neuromuscular block (PRNB) may lead to severe complications, therefore it is important to recognize and antagonize it at the end of the surgery. In our study, we analyzed the efficacy of sugammadex in different states of neuromuscular blockade performed by two different muscle relaxants (rocuronium and pipecuronium). Our findings were as follows:

1. We were the first to antagonize TOFC 4 rocuronium block with different doses of sugammadex, collect and analyses data regarding it. Our team was the first to prove, that TOFC 4 residual rocuronium block can be reversed with low dose sugammadex.

2. We found that there was no significant difference in the times needed to reach non-normalized TOFR 1.0 after antagonizing TOFC 4 rocuronium blockade with 1.0 or 2.0 mg/kg sugammadex.

3. We proved that TOFC 4 residual rocuronium block can be safely antagonized with 1 mg/kg sugammadex in 5 minutes.

4. The safe time for reversal in TOFC 4 rocuronium block is 10 minutes, after using 0.5 mg/kg sugammadex. Antagonizing with neostigmin after sevoflurane anaesthesia results in very slow recovery.

5. We were the first to study the possibility of reversing moderate pipecuronium blockade with sugammadex, following sevoflurane anaesthesia.

6. Our study group was the first to prove that pipecuronium blockade can be adequately reversed with 1 or 2 mg/kg sugammadex.

7. We proved that reversing pipecuronium blockade with sugammadex does not lead to postoperative neuromuscular blockade, although pipecuronium has a long duration of action.

8. We also found that TOFR 1.0 is identical with normalized TOFR 0.9 regarding the safety of reversal.

9. Finally, we proved that the reversal with sugammadex is different from the classical reversal, as T1 returns later than TOFR.

As for the practical significance of our research, now it seems possible to use lower doses of sugammadex, resulting lower hospital costs. The chance of reversing pipecuronium blockade with sugammadex makes the wider usage of this muscle relaxant possible. Our results also include new ways of monitoring.
8. Irodalomjegyzék

8.1. Az értekezésben hivatkozott közlemények

108. Hayes AH, Mirakhur RK, Breslin DS, Reid JE, McCourt KC. Postoperative residual block after intermediate-acting neuromuscular blocking drugs. Anaesthesia 2001; 56:312-8

139. de Boer HD, Driessen JJ, Marcus MA, Kerkkamp H, Heeringa M, Klimek M. Reversal of rocuronium-induced (1.2 mg/kg) profound neuromuscular block by sugammadex: a multicenter, dose-finding and safety study. Anesthesiology. 2007;107:239–244.

8.2. Saját közlemények

Jelöl: Pongrácz Adrienn
Neptun kód: NWUZ56
Doktori Iskola: Időgép- és Oktatási Zentrum
MTMT azonosító: 10037108

A PhD értekezés alapjául szolgáló közlemények

 DOI: http://dx.doi.org/10.1213/ANE.0000000000000766
 IF:3.472 (2014)

 DOI: http://dx.doi.org/10.1097/ALN.0b013e318297ce95
 IF:6.168

DOI: http://dx.doi.org/10.1556/APHysiol.98.2011.4.11

IF: 0.821

A közlő folyóiratok összesített impakt faktora: 10,461
A közlő folyóiratok összesített impakt faktora (az értekezés alapjául szolgáló közleményekre): 9,64

A DEENK a Jelölt által az IDEa Tudostérbe feltöltött adatok bibliográfiai és tudománymetriai ellenőrzését a tudományos adatbázisok és a Journal Citation Reports Impact Factor lista alapján elvégezte.

Debrecen, 2015.09.29.
9. Tárgyszavak

Posztooperatív reziduális neuromuszkuláris blokk, nem depolarizáló izomrelaxáns, sugammadex, pipecuronium, rocuronium, akceleromiográfia, antagonizálás, sevoflurane

Keywords: postoperative residual neuromuscular block, non-depolarizing neuromuscular blocking agent, sugammadex, pipecuronium, rocuronium, acceleromyography, antagonism, sevoflurane
10. Köszönethangszerű köszöntés

Hálás köszöntettel tartozom témavezetőmnek, Prof. Dr. Fülesdi Bélának bizalmáért, támogatásáért és munkámhoz nyújtott segítségéért.

Szeretnék köszönetet mondani Prof. Dr. Tassonyi Edömérnek, aki végig segítette munkámat. Tapasztalata, ötletei és tudományos munkája alapvetően hozzájárultak a közlemények megszületéséhez.

Nagyon köszönöm Dr. Nemes Rékának, Dr. Asztalos Lászlónak és Dr. Szatmári Szilárdnak a vizsgálatokban nyújtott nélkülözhetetlen segítségüket, és barátként a támogatásukat.

Köszönöm aneszteziológus kollégáimnak a vizsgálatok elvégzésében nyújtott önzetlen segítséget.

Köszönetemet fejezem ki a Sebészeti Intézet dolgozóinak, hogy lehetővé tették számunkra a tanulmányhoz szükséges vizsgálatok végrehajtását.

Külön szeretnék köszönetet mondani az aneszteziológus asszisztenseknek, akik segítsége nélkül a munka elvégzhetetlen lett volna.

Köszönöm Dr. Lengyel Szabolcsnak a statisztikai elemzésekhez nyújtott segítségét.

Végül, de nem utolsó sorban szeretném megköszönni családomnak és barátaimnak a türelmüket, a támogatásukat, és a sok biztatást, amit kaptam tőlük.