Retinoids and Rexinoids in Cancer Prevention: From Laboratory to Clinic

Iván P. Uray, M.D., Ph.D.1 [Assistant professor], Ethan Dmitrovsky, M.D.2 [Provost and Executive Vice President], and Powel H. Brown, M.D., Ph.D.3 [Professor and Chairman]
1Department of Clinical Cancer Prevention, University of Texas, MD Anderson Cancer Center, Houston, Texas
2American Cancer Society Professor, University of Texas, MD Anderson Cancer Center, Houston, Texas
3Department of Clinical Cancer Prevention, University of Texas, MD Anderson Cancer Center, Houston, Texas

Abstract

Early in the age of modern medicine the consequences of vitamin A deficiency drew attention to the fundamental link between retinoid-dependent homeostatic regulation and malignant hyperproliferative diseases. The term retinoid includes a handful of endogenous and a large group of synthetic derivatives of vitamin A. These multifunctional lipid-soluble compounds directly regulate target genes of specific biological functions and critical signaling pathways to orchestrate complex functions from vision to development, metabolism and inflammation. Many of the retinoid activities on the cellular level have been well characterized and translated to the regulation of processes like differentiation and cell death, which play critical roles in the outcome of malignant transformation of tissues. In fact, retinoid-based differentiation therapy of acute promyelocytic leukemia was one of the first successful examples of molecularly targeted treatment strategies. The selectivity, high receptor binding affinity and the ability of retinoids to directly modulate gene expression programs present a distinct pharmacological opportunity for cancer treatment and prevention. However, to fully exploit their potential, the adverse effects of retinoids must be averted. In this review we provide an overview of the biology of retinoid (activated by...
nuclear retinoic acid receptors, RARs) and rexinoid (engaged by nuclear retinoid X receptors, RXRs) action concluded from a long line of preclinical studies, in relation to normal and transformed states of cells. We will also discuss the past and current uses of retinoids in the treatment of malignancies, the potential of rexinoids in the cancer prevention setting, both as single agents and in combinations.

Introduction and historic background

The term ‘retinoid’ refers to all natural and synthetic compounds that have structural or biological activities similar to retinol or vitamin A. Their versatile biological activities include pattern formation during embryogenesis, vision, energy homeostasis, metabolism, immune function and inflammation. The classical mechanism of retinoid action is a nuclear hormone receptor-mediated activation of the transcriptional machinery acting on select target genes. Counterintuitively, retinoid receptors exert extranuclear and non-transcriptional effects as well, for instance by inducing rapid and transient activation of kinase cascades. The sum of the transcriptional programs and non-genomic effects amount to a broad spectrum of biological events regulated by retinoids. While the exact molecular mechanism regulating complex processes may be elusive, the propensity to coordinately target multiple pathways and regulatory mechanisms may account for their vast therapeutic potential.

Early rodent experiments using a retinoid deficient diet showed dysplastic alterations of various epithelial tissues, and an inverse correlation has been established between serum retinoid levels and extent of dedifferentiation or metaplasias. Aberrant retinoid signaling mechanisms have been identified as causative factors of certain cancers, suggesting that retinoid pathways may be suitable targets to treat certain forms of malignant diseases. Therefore, the ability of retinoids to exert anticancer activity against epithelial tumors has been in the forefront of interest since the 1950s [1, 2], with investigations later extending to a variety of tissues [3]. At the same time it was proposed that retinoids might also be effective as a neoplastic prophylactic intervention [4, 5]. One of the earliest clinical observations in this area established that treatment with 13-cis-retinoic acid (13-cis-RA, isotretinoin) would delay the development of second primary head and neck squamous cell carcinomas, a major cause of mortality in patients after successful treatment of the primary tumor [6]. 13-cis-RA has also been reported to cause clinical resolution of upper aerodigestive tract premalignant lesions [7] [8]. Further on a host of clinical trials testing the cancer preventive potential of retinoids in various tissues were conducted to determine the best indications and modalities of retinoid use. These will be summarized in more detail in this review.

1. Basic molecular biology of retinoids

Retinol, the precursor of retinoic acid (RA), is generally acquired as provitamin A in the form of carotenoids, synthesized in leafy and yellow vegetables. Preformed vitamin A and all-trans retinyl esters are found in liver, kidney and butter fat. Retinyl esters are hydrolyzed in the intestinal lumen by retinyl ester hydrolases (REHs) to retinol. Other derivatives dissolve in dietary lipids and are absorbed in the upper intestinal tract, although a direct absorption pathway from bile also exists. The intestinal transcription factor ISX regulates
critical steps of β-carotenoid uptake and retinol production [9]. Carotenoids are then processed to retinaldehyde and converted to retinol. Retinol can be re-esterified with palmitate or acetate by the lecithin-retinol acyltransferase (LRAT) enzyme in mucosal cells and secreted in chylomicrons into the lymphatic system and the circulation [10]. The liver captures retinoids from chylomicron remnants, where they undergo further conversion to retinol and other bioactive forms. A minor fraction is distributed to peripheral tissues bound to retinol binding proteins (RBPs) or albumin, but 90% of the stored vitamin A remains in the liver [11]. At the target tissues the retinaldehyde dehydrogenase enzymes (RALDHs) catalyze the rate-limiting step to local epithelial RA production (Figure 1) [12]. Through the activation of retinoid signaling RALDH isoform 1 was recently shown to regulate cellular respiration and adaptive thermogenesis in adipose tissue [13].

The lipophilic retinol can pass through the lipid bilayers of membranes, but the majority of retinoids are taken up by target cells via the RBP4 receptor Stra6 [14]. Once reaching the target tissues, retinol requires several enzymatic steps and proteins facilitating its transport to exert its full range of biological activities (Figure 2). In fact, with respect to retinoid-modulated transcription, cellular sensitivity to retinoic acid is primarily attributed to the subnanomolar affinity of its intracellular binding proteins (CRABP II and FABP5), delivering the ligand directly to its nuclear receptors. Retinol is reversibly transformed into isomers such as 9-cis-retinoic acid (9-cis-RA), 13-cis-RA or all-trans-retinoic acid (aTRA), resulting in slightly different receptor binding properties and hence biological activities. In the eye retinol is transformed into 11-cis retinaldehyde (11cRAL) and is responsible for phototransduction through binding to the G-protein opsin. Other derivatives and chemically distinct synthetic compounds activating the same signaling pathways are also termed ‘retinoids’, with some exhibiting greater activity than the most common aTRA. It is important to note, that the key steps responsible for setting physiologic retinol concentrations are frequently altered in tumors and the changes associated with carcinogenesis generally result in diminished retinoid signaling [15].

For the purpose of storage, upon entering the target tissues, retinal is esterified to a fatty acid, providing the means of concentrating retinol within the cells [11]. The degradation of retinoids in the body is also highly regulated and is catalyzed by cytochrome P-450 dependent enzymes in a hydroxylation and a subsequent oxidation step. Oxidized metabolites of RA, primarily 4-oxo-RA, undergo conjugation with glucuronic acid and are secreted with the bile.

In 1931 the Noble Prize in chemistry was awarded to Paul Karrer for determining the structure of retinol, which he later successfully synthesized, and the compound soon became commercially available. 9-cis-RA was the first compound shown to interact with RXRs [16] and these ligand-bound RXR proteins were found to bind other nuclear hormone receptors [17]. While RXR-binding compounds sharing some structural similarity with classic retinoids are commonly referred to as ‘rexinoids’, chemically distinct molecules, like the long-chain omega-3 fatty acid docosahexaenoic acid (DHA), were identified as endogenous ligands of RXR and other nuclear receptors (i.e. PPARs) [18, 19].
The list of endogenous and natural retinoids grew by the addition of synthetic derivatives (Figure 3). First generation retinoids were nonaromatic molecules and included αtRA (Tretinone), 13-cis-RA (Isotretinoin) and 9-cis-RA (Alitretinoin). Second generation compounds, such as etretinate and acitretin, were based on a monoaromatic structure and the third generation agents, such as adapalene, tazarotene and bexarotene, are polyaromatic. The number of synthetic retinoids developed to date is in the thousands.

Receptor-mediated retinoid signaling

The diversity of the functional effectors of vitamin A signaling is a function of the active metabolites, their receptors and dimerization partners, potential co-regulators and response element polymorphisms. The biological activity of natural retinoids is primarily mediated by selective ligand-activated transcription factors of the nuclear hormone receptor family [20]. The receptors that bind naturally occurring classical retinoids, RARs have three isoforms, α (NR1B1), β (NR1B2) and γ (NR1B3), as well as several splice variants arising from alternative promoters. Another group of retinoid receptors, RXRs, whose ligands were unknown at the time of their discovery, is also comprised of three isoforms. RXR-RAR heterodimers act as ligand-dependent transcriptional regulators by binding to specific DNA-response elements found in the promoter regions of target genes.

Phylogenically and structurally related, RARs and RXRs are both characterized by similar, highly conserved modular domain structures. These contain C-terminal ligand binding domains (LBDs) and central DNA-binding domains (DBDs) that include two zinc-finger modules and two α-helices, as well as variable N-terminal regions. The N-terminal domain that contains naturally disordered protein structures and whose role therefore has initially been elusive, was implicated in a role of providing the flexibility needed for critical posttranslational modification events by kinases and ubiquitin-ligases [21]. Nevertheless, the functions of RARs are not limited to the regulation of cognate target genes. The assembly of co-regulatory protein complexes is directed by the C-terminal ligand-binding domain of RARs. In addition, RARs can act as co-repressors for other gene pathways.

RARs generally dimerize with an RXR as a partner to be activated by a ligand. This is an unequal relationship, where RAR agonists can autonomously activate transcription, while a full response to rexinoids requires binding of an RAR agonist. This is commonly referred to as a ‘non-permissive’ nuclear receptor interaction. In contrast, RXR ligands are able to act on their own through an RXR homodimer, or a variety of partners (PPARs, LXR, THR, FXR, etc.). The latter partnering allows RXRs to activate transcription in the absence of a rexinoid. Therefore these are called “permissive” heterodimers (Figure 4). Similar to most type II nuclear receptors, retinoid receptors are retained in the nucleus regardless of their ligand binding status. Bound to regulatory elements of their target genes as RXR/RAR heterodimers, in the absence of ligands, they interact with the co-repressors NCoR, its genetic paralog SMRT, Sin3 or others. These transcriptional repressor complexes, in turn, recruit histone deacetylases that lead to the repression of target gene transcription [22].

Binding of an agonist triggers the repositioning of the H-12 C-terminal helix which results in the dissociation of inhibitory co-regulators and recruitment of cofactor complexes such as CBP/p300, SRCs or CARM1. Co-activators share a consensus α-helical LXXLL motif that
fits into the hydrophobic cleft of the receptor LBD that modify local chromatin structure and activate the basal transcription machinery.

While in normal tissues retinoid target genes are readily activated by an agonist, in tumors epigenetic events often interfere with normal retinoid response. Critical elements of the regulatory regions are methylated, which prevents the synthesis of gene specific messenger RNA. A prime example is RARβ, in itself a retinoid-regulated gene, and a key regulator of antineoplastic pathways induced by retinoids. The silencing of RARβ during epithelial carcinogenesis is a prominent reason for retinoid resistance and limited efficacy of retinoid action [23].

The majority of retinoids interact with the ligand binding domains of some or all of the RARs, and some RAR-selective retinoids will bind RXRs, but with a very low affinity. The significance of RXRs is more pronounced in their essential role for the efficient binding to their genomic response elements of the subfamily 1 members of the nuclear hormone receptor superfamily. The latter are generally considered potential RXR partners (Figure 4). When forming dimers with RAR, RXRs are not able to respond to RXR-selective ligands, unless RAR is liganded. This phenomenon is known as RXR subordination. Yet, RXRs are not silent partners in RXR-RAR heterodimers, as simultaneous ligand binding of both receptors results in synergistic transcriptional activation [24]. In contrast, some other receptors (i.e. PPARs, LXRs, FXR) allow dimer activation by an RXR agonist, often replicating the phenotypic response to their own ligands. Rexinoids may modulate gene expression through biochemically detectable dimers of two RXRs; however activation of a target gene as a result of RXR homodimer activation is difficult to show. Rexinoids exert anti-proliferative, proapoptotic and differentiating biological effects on epithelial cells in vitro, and have also been shown to inhibit cancer cell migration, invasiveness and angiogenesis [25]. Naturally occurring ligands of RXRs include 9-cis-RA, docosahexaenoic acid and phytanic acid, and the list extends over a line of synthetic agonists with improved side-effect profiles or heterodimer-selective properties.

Retinoid receptor partners

The transcriptional outcome upon ligand activation is generally specific for the partner receptor and results in the modulation of a transcriptional program commensurate with well-defined biologic responses. For example, vitamin D receptor activation induces genes responsible for maintaining calcium homeostasis and bone formation, LXR agonists activate cholesterol transport mechanisms to protect cells from cholesterol overload, and FXR regulates the enterohepatic circulation of bile acids. Recent in vitro data indicate that retinoid signaling could also be mediated by other nuclear hormone receptors, such as COUP-TF II (NR2F2) [26], RORβ (NR1F2) or TR2 [27], although the relevance of these interactions in vivo remains to be shown.

Molecular mechanisms that modulate retinoid activity. The make-up of a nuclear receptor dimer not only determines which genes it can regulate but also determines which of the many co-regulatory molecules it may bind. The large number of possible complexes formed by dimers and co-regulators lends a level of plasticity almost unparalleled by other therapeutic targets. Furthermore, isotype-selective agonists may dictate differential
responses by isotype-restricted co-repressor recruitment [28]. An additional mechanism to modulate retinoid-dependent cell signaling pathways or diminish retinoid signaling has been described in various cancer cells. Altered localization of RXRalpha was identified as a mechanism that provides the means for rapid changes in hepatoma cell response to LPS, as well as a survival strategy for breast cancer cells, which undergo apoptosis upon nucleoplasmic overexpression of RXR [29, 30]. In hepatocellular carcinoma elevated ERK activity phosphorylates RXRalpha on serine 260 and threonine 82, impairing its ubiquitination and inhibiting transcription of its target genes by a dominant-negative mechanism [31]. Phosphorylation events on RAR or co-repressors have also been reported to restore transcriptional competence to RXR and promote differentiation in leukemia cells. This raises the possibility of exploiting mechanisms that modulate heterodimer non-permissivity as a therapeutic option [32].

The magnitude and duration of the hormone response is regulated by the ubiquitin-dependent degradation of RARs and RXRs in the proteasome. In addition, retinoid receptors integrate a series of signaling pathways by means of phosphorylation events which cooperate with retinoids for the control of target gene expression. The highly conserved ligand binding domain (LBD) contains several phosphorylation sites used by the kinases PKA and MSK1, while the N-terminal domain contains a proline-rich motif that serves as substrate for CDKs and MAPKs. The complexity in the transcriptional responses produced by these multiple levels of regulation presents a unique therapeutic opportunity. Although the induced molecular changes overlap, RXR selective agonists differ in their anti-tumor effects from retinoids both in the preclinical and clinical settings.

Extra-nuclear retinoid signaling

In the classical sense, RA is a prototype of hormones that activate nuclear receptor transcription factors that directly regulate gene expression. However, various studies from the past decade demonstrated that several kinase cascades may be activated just minutes after addition of retinol. As these events are transient, the possibility of a transcription-dependent phenomenon can be ruled out. Numerous studies suggested that retinol potentially exerts non-genomic activities through different types of interactions with signaling kinases (Figure 5) [33]. For example, retinol can induce cytokine-dependent activation of JAK2 and subsequently the STAT5 transcription factor, while being exchanged from extracellular RBP to intracellular CRBP-I through Stra6 [34], creating a close link between retinoid homeostasis and immune modulation. Stable association was shown between the regulatory p85 subunit of PI3K and membrane-localized RARalpha in neuroblastoma cells independent of the presence of RA, shifting to an RAR association with the p110 catalytic subunit upon RA liganding [35]. PI3K activation then results in sequential phosphorylation of downstream MAPKs and ribosomal S6 kinases, and is critical for RA-dependent differentiation. Retinol may also induce differentiation in a receptor-independent manner in bronchial epithelial cells by CREB-dependent transcriptional regulation. This mechanism is mediated by protein kinase C through the activation of Erk1/2 and the p90 S6 kinase and is not dependent on retinoid receptors [36]. Extraneural RARα localized to lipid rafts was shown to trigger the phosphorylation of Rac1, p38 MAPKs and MSK1 through activation of Gaq upon ligand binding (Figure 5) [37]. Activation of MSK1 phosphorylates
RARs and ultimately triggers their recruitment to response elements of select target genes, such as \textit{Cyp26A1} and \textit{RARbeta2} [38]. Nevertheless, RA-induced p38 activation has also been associated with negative regulation of cell differentiation and growth inhibition [39]. In neurons, RA was shown to play a role in neuritogenic differentiation through direct interaction with cytoplasmic c-Src [40]. Cytosolic translocation of RXR has been reported in hepatocytes, where it was implicated in the suppression of the inflammatory response to LPS administration [29]. Another intriguing novel function of RAR was proposed by Chen \textit{et al.} in a study that localized RARalpha to the dendrites of neurons in association with mRNA granules and revealed its involvement in the regulation of translation [41]. However, many of these new mechanisms were identified \textit{in vitro} and their relevance to human health and pharmacology is not sufficiently understood yet.

\section*{2. Medical use of retinoids and rexinoids}

Insufficient levels of vitamin A cause defects in vision, including night blindness, abnormal formation of keratin in mucosal membranes and altered bone remodeling. Today, the classic form of vitamin A deficiency due to malnutrition is rare. However, since it is an essential nutrient, total vitamin A deprivation can ultimately result in death.

Retinoids have been used successfully for the treatment of skin disorders, in particular acne, since the late 1940’s. In oncology, retinoids were first applied therapeutically and later as preventive agents. However, with increasing understanding of their molecular action new therapeutic indications were proposed. These include premalignant conditions, chronic obstructive pulmonary disease and more recently Alzheimer’s and Parkinson’s disease. This section will briefly summarize the current and proposed uses of retinoids and mechanistic insight for their clinical utility, for oncologic and non-cancer related applications.

\subsection*{2.1. Retinoids in Dermatology}

Commercially retinoids have made the greatest impact in the cosmetics arena, and they are frequently used in creams and ointments to alleviate skin aging. Oral RA is efficacious in keratinizing disorders, but is considered too toxic; therefore, the pharmaceutical industry undertook the synthesis of retinoid derivatives to generate safer alternatives. Minor structural changes, such as forming \textit{cis}-isomers, resulted in a new class of oral retinoids with strikingly different pharmacological properties. This was a milestone in dermatologic drug discovery. For instance, the isomer 13-\textit{cis}-retinoic acid demonstrated impressive efficacy in acne and could cure severe acne conglobata [42]. In addition to systemic administration, several retinoids are also available for topical use (Table 1).

The major skin diseases benefiting from retinoids include acne, psoriasis, disorders of keratinization, as well as precancerous lesions and non-melanoma skin cancer. For the treatment of acne vulgaris retinoids represented a breakthrough in the 1980s. Isotretinoin, the \textit{cis} isomer of RA, normalizes epidermal differentiation, depresses sebum secretion and reduces inflammation, making long-lasting remission possible. Psoriasis treatment often involves immunosuppressive agents such as cyclosporine, tacrolimus and methotrexate and biologic agents targeting T-cells or tumor necrosis factor-\textit{\alpha}. Therefore, retinoids play an important role in cases where immunosuppression is not an acceptable side-effect, i.e. in
children, patients at high risk of cancer or HIV carriers. Furthermore, the use of retinoids allows a dose reduction of phototherapy with UVB or PUVA, when used in combination. In plaque psoriasis acitretin and etretinate monotherapy may result in substantial improvement in 50% of the cases. In erythrodermic and pustular psoriasis these retinoids represent first-line therapy. Complete clearance requires the combination of retinoids with topical steroids, vitamin D derivatives or phototherapy. Three retinoids are currently approved for systemic therapy, isotretinoin (as Accutane, since 1982) for severe recalcitrant nodular acne, etretinate (Tegison, 1986) for severe recalcitrant psoriasis and acitretin (Soriatane, 1996) for severe psoriasis. Tretinoin tocoferil, the alpha-tocopherol ester of atRA, has been successfully used to treat lichen and macular amyloidosis and skin ulcers [43] (see Table 1).

The prevention of cutaneous malignant diseases was among the first chemopreventive applications of retinoids. Premalignant skin lesions, including actinic keratosis and HPV-induced tumors are frequently treated with retinoids [44]. Patients at high-risk for skin cancer because of genetic disposition (xeroderma pigmentosum), organ transplantation or history of multiple tumors, may be treated with etretinate or acitretin for 6 months [45].

Chronic obstructive pulmonary disease (COPD) and emphysema

Endogeneous retinoids play a critical role in the pre- and postnatal development of the lungs. Indeed, the spatial and temporal distribution of retinaldehyde dehydrogenases, enzymes responsible for local RA production define the regions and periods of embryonal lung development [12]. Low retinol levels have been associated with bronchopulmonary dysplasia, a chronic lung condition arising from premature birth. Lung hypoplasia has also been associated with impaired cellular retinol uptake observed in clinical cases of Stra6 mutation [14]. Nevertheless, the importance of retinoid signaling extends to adult life and healthy pulmonary function. An inverse relationship between serum retinol levels and lung function was established in epidemiological studies conducted in smokers with COPD. Therefore, it is an intriguing notion that retinoids might trigger alveolar regeneration in the adult lung after tissue damage has occurred. In spite of the expectations, the Feasibility of Retinoids for the Treatment of Emphysema (FORTE) study using atRA or 13-cis-RA in a 6-month trial with a 3-month crossover period failed to detect significant improvements in CT densitometry score, gas transfer or quality of life [46]. Preclinical models of dexamethasone-impaired alveologenesis and airspace enlargement were used to identify the retinoid receptor subtypes critical for mediating improvement in lung function. 13-cis-RA, retinol, or RXR agonists did not, but 4-oxo RA and RARγ selective agents were able to induce regeneration [47]. Thus, the safety and efficacy of palovarotene (R667), an oral γ-selective retinoid agonist were tested in a randomized, double-blind, placebo-controlled study administering drug for 1 year to 262 patients with emphysema or severe a(1)-antitrypsin deficiency (Table 1) [48]. While none of the differences reached statistical significance, most functional lung parameters changed favorably in the retinoid-treated group versus the placebo group, and pavarotene was generally well tolerated.

Neurologic diseases

There is a growing body of literature that suggests that pharmacological targeting of certain nuclear receptors, particularly RXRs, LXRss and PPARs, is beneficial in neurodegenerative
diseases [49, 50]. Genetic studies revealed that markers close to four of six retinoid receptor genes and genes encoding three of the four known retinol-binding proteins had linkage to Alzheimer’s disease (AD). More importantly, Cramer and coworkers showed that oral administration of bexarotene in a mouse model of AD resulted in the clearance of soluble β-amyloid (Abeta) in an apoE-dependent manner, and this was associated with a reversal of cognitive, social, and olfactory deficits [51]. Some subsequent attempts to independently reproduce the original report yielded controversial results, possibly due to the use of different formulations of bexarotene. However, in a similar study PPARgamma and RXRalpha agonists additively enhanced the microglial uptake of Abeta and improved spatial memory [50]. A phase 1b and a phase 2 study are underway to examine the effect of bexarotene on Abeta production and clearance.

In 2013 Parkinson’s disease was added to the list of conditions that could potentially benefit from rexinoids. Screening for small molecules that interact with the orphan nuclear receptor Nurr1 complexes, McFarland et al. showed that bexarotene can activate Nurr1, thereby promoting growth and survival of dopaminergic neurons and preventing motor deficit [52]. While Nurr1 has no known natural agonists, by forming heterodimers with RXR, rexinoids may indirectly modulate Nurr1 action [53]. Interestingly, these effects were observed when administering markedly lower than the typical clinical doses of bexarotene.

Successful clinical use of retinoids as cancer treatment

Retinoids were shown to promote differentiation and cell death of cancer cells in a number of experimental systems [54, 55]. Some of the most successful therapeutic uses of retinoids are due to their differentiation-inducing effects. The most relevant therapeutic trials and applications of retinoids are summarized in Table 2.

Acute promyelocytic leukemia (APL): The best characterized example of retinoid receptor malfunction in human disease is linked to acute promyelocyte leukemia (APL), in which reciprocal chromosomal t(15,17) translocation between the genes of RARα and the promyelocyte leukemia protein (PML) lead to the alteration of signaling through both proteins. The resulting PML/RXRα fusion protein causes transcriptional repression and is the single causative factor in the etiology of APL. Preclinical investigations revealed that atRA induces terminal differentiation in the leukemic cells by promoting the degradation of the fusion protein through the action of the UBE1L ubiquitin-activating enzyme [56]. Recent studies identified the ubiquitin-specific protease UBP43, an antagonist of UBE1L, as an antineoplastic target whose inhibition destabilizes the t(15;17) PML/RARα fusion protein and induces apoptosis of APL cells [57]. The causative role of a single molecular defect paved the way for differentiation-based therapy and led to successful clinical application of atRA and 13-cis-RA for the treatment of APL (Table 2) [58]. Thus, the addition of atRA to the standard, anthracycline-based therapy increases the odds of long-term survival to 80%, compared to the chemotherapy alone which is curative in only 40% of the cases [58]. The 12 year follow-up of the 379 APL patients enrolled in the First North American Intergroup Study has shown 80% complete responses (CR) in the patients randomized to atRA-treatment for one year after chemotherapy, versus observation [59]. Notably, the differentiating effect of atRA is synergistically enhanced by arsenic trioxide, a compound

Semin Oncol. Author manuscript.
targeting the PML component of the oncoprotein [60], which achieves remission in the rare cases of relapse after atRA and anthracycline therapy [61]. A recent phase III trial carried out in low-intermediate risk APL patients demonstrated better two-year event-free (97% vs. 86%) and overall survival rates with the combination of atRA with arsenic trioxide than with chemotherapy [62].

The use of retinoids in APL patients fundamentally changed the course of the disease for most patients, and it is bound to transform our approach to cancer treatment in more than one way. First, from a disease with a generally poor prognosis APL was transformed into the most prognostically favorable subtype of acute myeloid leukemia. In addition, the identification of this molecular defect led to the development of one of the first targeted therapies and provided the rationale for personalized medicine. Moreover, the possibility of achieving optimal efficacy without the use of chemotherapeutic drugs marks a novel path in curative therapy that emphasizes improved standard of care.

Kaposi’s sarcoma: 9-cis-RA (alitretinoin) is successfully used in the treatment of refractory cutaneous Kaposi’s sarcoma. Topical treatment with alitretinoin in a randomized, vehicle-controlled phase III trial was associated with a 30% higher response rate with mild to moderate adverse events over 12 weeks (Table 2) [63]. In AIDS-related Kaposi’s sarcoma cases with increased IL-6 levels durable objective response to alitretinoin was reported with improved rates and times to progression [64].

Squamous cell skin cancer: Following positive responses in the initial phase I/II studies with 13-cis-RA administered in combination with interferon-α2a, two out of three phase II/III trials also demonstrated increased progression-free survival in advanced skin, cervical and renal cancers [65]. A phase III randomized trial did not confirm the results, as no prevention of tumor recurrence or second primary tumors were detected, possibly due to a lack of appropriate statistical power [66]. Nonrandomized trials of 13-cis-RA in combination with interferon-α2a and chemotherapy for the treatment of advanced head and neck cancers showed promising results, and are awaiting confirmation by randomized studies [67].

Cutaneous T-cell lymphoma (CTCL): Natural and synthetic analogs of RA have been used for years both as monotherapy and in combinations for the treatment of CTCL [45]. The RXR-selective retinoid bexarotene was found to be active against all stages of the disease. Bexarotene showed a 45–54% response rate in a small phase 2 trial [68] and a 60% response rate in a retrospective study of long-term CTCL patients, earning FDA approval for the treatment of CTCL refractory to at least one previous therapy [68, 69].

Neuroblastoma: More than a decade ago it was suggested that retinoids may be beneficial in the treatment of neuroblastoma [70]. The greatest challenge in the treatment of neuroblastomas is its high recurrence rate. Recently a randomized phase III study established that intermittent dosing of 13-cis-RA significantly improved survival (Table 2) [71]. A phase I trial of fenretinide delivered in an oral powderized lipid complex (LXS) was reported to have anti-tumor activity in patients with refractory neuroblastoma, reaching higher plasma levels yet reduced toxicity as compared to conventional pills [72].
Breast cancer: In the only single agent clinical trial with atRA, this agent failed to achieve the primary response endpoint in patients with metastatic breast cancer [73]. Thus, subsequent studies investigated retinoid efficacy in combination with tamoxifen or interferons [74]. Isotretinoin, alitretinoin and retinyl palmitate were also tested as therapies in late-stage post-menopausal breast cancer patients (Table 2). No potentiation in the effect of tamoxifen or a difference in survival was detected [75], although a clinical response was seen in 55% of the patients treated with retinyl palmitate [76]. Clinical benefit with bexarotene was documented in 20% of patients with hormone-refractory metastatic breast cancers, with lower toxicity than seen with retinoids [77].

Lung cancer: Preclinical findings of anti-proliferative and pro-apoptotic activity in squamous cell cancers inspired a randomized phase II trial in advanced non-small cell lung cancer (NSCLC). The addition of atRA to chemotherapy yielded a benefit of increased response rates and progression-free survival [78]. Furthermore, a phase I/II first-line metastatic study of bexarotene combined with vinorelbine and cisplatin demonstrated a marked extension in median survival [79]. Unfortunately, these results were not confirmed in subsequent phase III trials of bexarotene plus cisplatin and vinorelbine, as progression-free or overall survival of NSCLC patients receiving combined treatment including bexarotene was indistinguishable from the placebo group [80] (Table 2). The Biomarker-integrated Approaches of Targeted Therapy for Lung Cancer Elimination (BATTLE) trial marked a paradigm shift in the design of clinical studies by achieving personalized therapy through adaptive randomization of patients [81]. With one of the four treatment arms incorporating bexarotene in combination with the tyrosine kinase inhibitor erlotinib, the BATTLE trial also revealed further detail on the applicability of bexarotene in lung cancer. Erlotinib plus bexarotene produced a 50% overall 8-week disease control rate (DCR) in pretreated lung cancer patients, and were particularly effective in the groups positive for EGFR mutations and RXRα/cyclinD1 protein expression.

Related clinical results were obtained and reported in a phase II trial conducted in chemotherapy-refractory KRAS mutation-positive NSCLCs [82]. But in addition to showing major clinical responses induced by the combination of bexarotene and erlotinib in advanced NSCLC, these studies defined cyclin D1 as a predictive biomarker, which enables oncologists to make personalized therapy decisions [83]. Cyclin D1, frequently overexpressed in lung cancer, plays a significant role in premalignant lung carcinogenesis, and is therefore a relevant target. Retinoid receptor selective agonists in human bronchial epithelial cells induced cyclin D1 degradation through RARbeta and RXR-dependent ubiquitination [84]. It has been proposed that dual targeting of cyclin D1 will result in increased efficacy, and overcome limitations of retinoid treatment in patients carrying polymorphisms in the cyclin D1 gene that make cyclin D1 resistant to degradation.

Challenges in the Medical Use of Retinoids

Pharmacodynamic considerations: Retinoid bioavailability is a crucial factor for the prediction of retinoid effectiveness and toxicity, particularly in light of the multiple enzymatic steps involved in both the creation and the degradation of active metabolites. Retinoid pharmacokinetics is further complicated by the differential lipid solubility of these
agents. For example, etretinate is 50 times more lipophilic than acitretin and is released slowly from adipose tissues, where it is stored [85]. Thus, etretinate levels are detectable in serum for 2–3 years, while acitretin, isotretinoin and its metabolites reach normal levels two weeks after discontinuation of treatment. *In vivo*, pharmacodynamic mechanisms exert marked pharmacokinetic effects on locally available, intratumoral drug levels and have been shown to be a major determinant of the biological response to treatment [83].

Retinoid toxicity: Systemic retinoid toxicity in adults is similar to hypervitaminosis A, manifested in skin dryness, conjunctivitis and hair loss. The cutaneous and metabolic side-effects of retinoid treatment are dose-dependent and reversible. A minor fraction of APL patients receiving atRA (14–16%) develop retinoic acid syndrome (RAS), encompassing dyspnea, fever, pulmonary hemorrhage and respiratory failure. While these potentially lethal complications can be successfully treated by high-dose steroids, identifying patients who will develop RAS is critical. High initial and increasing white blood cell counts and CD13 expression on leukemic cells indicate predisposition to RAS [86].

Yet, in general, retinoids belong to the group of often well-tolerated pharmacologic agents. Many patients have been treated with retinoids, particularly etretinate or isotretinoin, continuously for as many as 15 years without developing signs of chronic toxicity [87]. However, because retinoids play an important role in the differentiation of embryonic tissue and organ formation, exposure of the fetus to therapeutic doses of retinoids is associated with teratogenic side effects. Thus, systemic use of these agents in patients of child-bearing age requires contraception for the duration of sustained retinoid levels in the body.

In contrast to retinoids, RXR-selective ligands have reduced teratogenicity and cutaneous toxicity. The most frequent adverse effects associated with rexinoid use are hyperlipidemia including triglycerides and cholesterol, the suppression of thyroid function and osteoporosis. Hyperlipidemia is treated with dose adjustment and lipid lowering drugs [88]. Individuals requiring life-long treatment should be subject to close monitoring. In comparison, long-term treatment with rexinoids is associated with a lower level of adverse effects than retinoids.

Retinoid resistance: Malignant transformation of epithelial cells may profoundly change retinol metabolism and contribute to the development of retinoid resistance [15]. Cellular retinoid uptake is regulated by LRAT, the enzyme that esterifies retinol to retinyl esters, and the RBP receptor Stra6. LRAT expression is suppressed in many human tissues undergoing malignant transformation, including breast, prostate, skin, kidney or bladder, resulting in low intracellular retinyl ester levels [89]. Stra6 mutations are associated with developmental errors [90]. Breast and prostate cancers also express aberrantly low levels of ALDH1a2, the enzyme forming RA from retinaldehyde [91]. ALDH1a2 has therefore been proposed as a tumor suppressor [92]. Mechanisms of retinoid clearance may also be affected in cancer cells, mainly through the over-expression of CYP26A1, the enzyme that oxidizes RA to more polar metabolites [93].
3. The use of retinoids for cancer prevention

The original concept of cancer prevention using specific compounds traces back to the early 20th century when Wolbach first reported on his rat study with “tissue changes following deprivation of fat-soluble A vitamin” and the reverse changes that follow, when the rats are restored to an adequate vitamin A diet [94]. Epidemiological data indicate that vitamin A deficiency is associated with higher susceptibility to chemical carcinogens [95, 96]. Few preclinical studies are designed to determine which stage of carcinogenesis is most effectively inhibited by retinoids [97]; yet this question needs to be elucidated. On the molecular level, the potential of retinoids to prevent cancers is based on the notion that specific early molecular alterations required for cancer progression, but not essential in later stages of tumorigenicity, may be effectively targeted by pharmacologic interventions. Accordingly, in experimental models retinoids appear more successful in blocking pre-neoplastic transformation or early phase neoplasia than reversing cancer. Although vitamin A derivatives have proved to be curative or useful as adjuvants in select overt cancers in humans, clinically applied retinoids are most effective in the treatment of precancerous lesions, such as leukoplakias, cervical dysplasia, and actinic keratosis [98] [44, 99].

Decreased proliferation is considered one of the best biomarkers of a cancer preventive effect. Many transcriptional target genes of retinoids help explain this correlation, as several inhibitors of cell cycle progression are direct targets of retinoids. The upregulation of RARβ2 by atRA and acyclic retinoids is a key factor in the inhibitory effect of RA on cell proliferation [100], as it induces the expression of p21^{CIP1} and p27^{Kip1}, and inhibits the proteasome-dependent proteolysis of p27^{Kip1}. Furthermore, RA stimulates the ubiquitin-mediated degradation of cyclin D1, thereby suppressing cyclin-dependent kinase (CDK) activities, interfering with retinoblastoma (Rb) phosphorylation and cyclin E expression which ultimately leads to the transition of cells into S-phase [101, 102]. Retinoids exhibit an ability to move cells towards more differentiated states [103]. However, in many cases these changes do not account for the net suppression of tumor formation in various tissues treated with retinoids. Retinoids and especially rexinoids have a major impact on cellular metabolism, harnessing the opportunity to differentially affect transformed versus normal epithelial cells [104–106]. Retinoids effectively modulate inflammatory pathways critical for carcinogenesis, which thus may offer viable targets for chemoprevention [107–109]. Furthermore, increasing evidence points to the reprogramming of stromal cells, fibroblasts, adipocytes, and immune cells by retinoids as potentially important factors in modulating tumorigenesis in a number of tissues [110, 111]. Some of the new approaches to retinoid-induced preventive activity may target the stromal environment or be based on immunomodulatory effects.

Preclinical investigations on the cancer preventive potential of retinoids. Although little epidemiologic data exist regarding the potential of vitamin A or carotenoids to reduce breast cancer risk, a wealth of in vitro studies have indicated which cellular pathways result in anti-proliferative and pro-differentiation mechanisms in the breast, as well as in other organs [112] [113].

Semin Oncol. Author manuscript.
The ability of retinoids to prevent cancer has been demonstrated in a number of animal models. Retinyl acetate and the synthetic retinoid N-(4-hydroxyphenyl) retinamide (4-HPR) have been used to prevent mammary carcinogenesis in rats exposed to chemical carcinogens [114]. The naturally occurring 9-\textit{cis}-RA was also found to suppress mammary tumors alone or in combination with low-dose tamoxifen [115, 116]. To avert the toxicity associated with 9-\textit{cis}-RA, synthetic RXR-selective analogues such as bexarotene (Targretin, LGD1069) and LGD100268 were designed and tested. Both bexarotene and LGD100268 have proved superior to 9-\textit{cis}-RA in preventing estrogen receptor (ER)-negative breast cancer in transgenic mice [117], either as single agents, or in combination with anti-estrogens [118, 119]. Potent chemopreventive efficacy of bexarotene was also demonstrated in combination with COX-2 inhibitors [120]. Interestingly, not only celecoxib, but bexarotene as well was found to reduce aromatase activity in the breast. Estrogen is a major driver in many breast cancers and stimulates cell proliferation, while RA has growth inhibitory effects in most cells. Hua et al. showed that RAR and estrogen receptor (ER)-\(\alpha\) regulate their target genes in an antagonistic manner, with ER-\(\alpha\) upregulating and RAR inhibiting proliferation and survival. This genomic antagonism between estrogen and retinoid signaling was demonstrated in a comprehensive study of genomic nuclear receptor binding and gene expression, which revealed a 39% overlap in genomic regions potentially binding both ER-\(\alpha\) and RARs [121]. Understanding the crosstalk mechanisms between estrogen and retinoid signaling may open new opportunities for cancer preventive interventions.

Intestinal polyp formation in mice mutated in the adenomatous polyposis coli (APC) gene, Apc (Min/+) mice, was suppressed by dietary administration of bexarotene by up to 60% in male and 37% in female mice [122]. Intestinal tumors arising in spite of bexarotene dosing showed decreased proliferation markers and inflammatory cytokines. Chemoprevention studies in C57BL/6J-Apc(Min/+) mice demonstrated that suppression of tumor growth and prolonged survival could also be achieved by short-term and intermittent treatment by retinyl acetate and TRAIL (TNF-related apoptosis inducing ligand), due to apoptosis induced specifically in intestinal polyps [123].

Retinoids were effective in A/J mouse models of lung carcinogenesis induced by K-ras or p53 dominant negative mutations, in monotherapy or in combination with triterpenoids [124, 125]. In both cases cancer preventive activities were associated with reduced cell proliferation and decreased expression of tumor growth-related biomarkers, i.e. cyclins D1 and E. Although preclinical data have suggested a potential role for retinoids against prostate cancer formation, these outcomes in animals have not translated into clinical efficacy [92] [126].

The successes and failures of the available retinoids have sparked further research to develop better anticancer agents with improved efficacy and side-effect profiles. Acyclic retinoids were found to be effective specifically for the prevention of hepatocellular carcinomas [127]. Long-term administration of acyclic retinoids significantly inhibited hepatic adenomas through inhibition of Ras and phosphorylation of ERK, and increased expression of RAR\(\beta\) and p21 [128]. The synthetic rexinoid analog, 9-\textit{cis} UAB30 has been tested as a breast cancer prevention agent. It exhibits similar pharmacokinetic parameters to 9-\textit{cis}-RA, but lacks the lipid inducing propensity of other RXR agonists [129].
Clinical investigations on the cancer preventive potential of retinoids: One of the first reports on molecular-targeted chemoprevention research demonstrated that an adjuvant high dose of isotretinoin (13-cis-RA) prevented second primary tumors in patients with curatively treated head and neck cancer [6]. Preclinical and epidemiologic data soon inspired clinical testing of the cancer preventive effects of retinoids in various target tissues.

Several retinoids have shown benefit in the prevention of skin cancers (Table 3). A sustained cancer preventive effect was demonstrated in patients with basal cell nevus syndrome treated with tazarotene, a topical retinoid, even 5 months after topical treatment was stopped; in addition, preexisting microscopic basal cell carcinomas were inhibited [168]. Furthermore, isotretinoin was shown to reverse suppression of RARβ in premalignant oral lesions [24]. Clinical efficacy in recurring and retinoid-resistant leukoplakia was achieved at a low dose of fenretinide [98, 130].

Clinical trials using isotretinoin to prevent recurrence or second primary head and neck squamous cell carcinomas (HNSCC) have yielded mixed results. In the initial phase II study isotretinoin treatment was associated with a significant reduction in second primary head and neck cancers or recurrence [6]. However, in a phase III study using a larger cohort (enrollment 1190) no significant delay in incidence of second primary cancers or recurrence with isotretinoin treatment was confirmed [131, 132]. In order to facilitate prediction of favorable responses to isotretinoin as a cancer preventive agent, genetic polymorphisms in critical cancer signaling pathways were interrogated. Inclusion of several of these genetic loci improved the discriminatory ability of the risk/response prediction model to almost 80% as compared to approximately 66% for a model based solely on clinical and epidemiologic characteristics, suggesting the use of genetic markers as a promising route to identify the best responders to isotretinoin treatment [133].

Fenretinide (N-(4-hydroxyphenyl)retinamide, 4-HPR) was proposed for the treatment and chemoprevention of retinoblastoma based on preclinical studies, since it was shown to induce cell death in neuroectodermal tumors through oxidative stress and tumor cell ceramide levels [70]. Fenretinide also inhibited tumor growth in a xenograft model of Y79 neuroblastoma cells by inhibiting angiogenesis, making it potentially useful as an agent for early clinical intervention [134]. Clinical trials evaluating the combination of retinoids with ceramide modulators or anti-disialoganglioside antibodies were proposed for the treatment of high-risk neuroblastoma [135].

Epidemiologic data on vitamin A and β-carotene provided the primary rationale for the largest lung cancer prevention trials, because preclinical in vivo data supporting these agents were limited. A window-of-opportunity presurgical trial in non-small cell lung cancer demonstrated that critical biomarkers, including cyclin D1, Ki67 and phosphorylated EGFR were favorably modulated by bexarotene [83]. Treatment of former smokers for 3 months with 9-cis-RA led to a significant increase in RAR-β expression in the bronchial epithelium as compared with placebo [136]. However, in spite of promising prior biomarker data, the clinical trials of RAR agonists for lung cancer prevention were largely unsuccessful. Overall, beta-carotene proved ineffective in both the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) and the Carotene and Retinol Efficacy Trial (CARET).
However, in former smokers beta-carotene slightly decreased lung cancer incidence (RR ~0.8), while increasing the chance of developing tumors in active smokers. In contrast to RAR agonists, bexarotene showed marked disease stabilization in the follow-up of the initial phase I trial in heavily pre-treated patients with advanced lung cancer [113]. A phase III study comparing the effectiveness of chemotherapy with or without bexarotene in the treatment of NSCLC found that the development of high-grade hypertriglyceridemia correlated with improved survival [137]. However, in unstratified patient populations, the addition of bexarotene to first-line treatment of NSCLC failed to show a benefit over standard chemotherapy [80]. These and many preclinical observations suggest a possible functional correlation between lipogenic activity and tumorigenesis, which remains to be assessed. Several groups have put forward the idea of inhalation as a more effective means of retinoid delivery with potentially reduced side effects. A pilot study showed that inhaled mid-dose 13-cis-RA upregulated the expression of all RARs and reduced carcinogen-induced tumor multiplicity by 67–88% [138]. In a small cell lung cancer (SCLC) model of lung-specific Rb1/p53 knock-out mice the combination of bexarotene with budesonide was shown to suppress tumor incidence and load [139]. Administration of aerosolized bexarotene in a rodent model not only inhibited lung tumorigenesis, but did so without elevating serum cholesterol or triglyceride levels [140].

Several lines of preclinical evidence suggested that retinoids and rexinoids have strong potential to inhibit breast cancer formation in both ER-positive and ER-negative mouse models [117, 118]. Repeated serum measurements of carotenoids and tocopherols over a period of six years identified an inverse correlation with breast cancer risk in postmenopausal women [141]. Due to the minimal efficacy of first generation retinoids documented in the treatment trials, and because fenretinide selectively accumulates in mammary tissue, chemoprevention studies for breast cancer focused on fenretinide [142]. The first large randomized studies showed the ability of fenretinide to reduce the incidence of second breast cancers in premenopausal women (Table 3) [143]. Strikingly, the protective effect continued to be manifest for up to 10 years after cessation of the treatment. In addition to breast cancer, fenretinide also reduced the incidence of ovarian cancers in BRCA1 and 2 mutation carriers [144]. Bexarotene was tested in women at high risk of breast cancer in a multicenter biomarker trial for breast chemoprevention. While overall significant changes in proliferative and apoptotic markers could not be shown, cyclin D1 was suppressed by bexarotene in mammary biopsy tissues from pre-menopausal subjects [145].

Acyclic retinoids (ACRs) are a unique class of retinoids developed specifically for the purpose of chemoprevention, and successfully tested in hepatocellular carcinoma (HCC) patients for their ability to prevent second primary tumors. A double-blind, placebo-controlled clinical trial conducted in Japan using peretinoin following chemotherapy demonstrated significantly reduced recurrence in HCC patients [146]. Administration of ACR over one year improved recurrence-free survival, as well as overall survival after a follow-up of over 3 years [147]. Based on the results of a phase I pharmacokinetic study 300–600 mg/day were considered safe and used in a subsequent phase II/III randomized, double-blind, placebo-controlled study of peretinoin in patients with hepatitis C-related HCC, to determine benefits in recurrence-free survival (RFS) as a primary outcome [148]. Although the primary comparison with placebo was not significant (p=0.434), improved
survival was assumed in patients with stable liver function and treated with the higher dose peretinoin [149]. The hazard ratios for RFS in the high dose vs. placebo group were markedly low (0.27) two years after randomization.

Strategies to minimize retinoid toxicity

Beneath the wealth of pharmacological benefits, toxicity represents the main limitation to the chronic use of retinoids. Therefore, it is imperative to work out viable strategies to minimize toxicity without compromising therapeutic effectiveness. One successful approach includes administering high, intermittent doses of a retinoid, which may be more effective than continuous low-dose therapy, as exemplified by 13-cis-RA to improve event-free survival of neuroblastoma patients [150]. Muindi et al. determined in pharmacokinetic measurements of the FORTE study that intermittent therapy with high-dose atRA would result in the greatest atRA exposure [151]. Other efforts to minimize retinoid-related adverse effects encompass modifications to the basic retinoid structure. For example, the alpha-tocopheryl ester of atRA, tretinoin tocoferil, is 150 times less toxic than the parent compound and lacks teratogenicity [152]. A synthetic analogue of 9-cis-retinoic acid, 9cUAB30, primarily binds RXR, yet lacks the hypertriglyceridemic effect of most rexinoids [153]. The first pharmacokinetic studies aim to determine the optimal dose and side-effects of this drug [154]. However, new drug development based on structure-function relationship is expensive and very time-consuming.

Alternatively, the use of combinations harbors great potential with respect to both increasing efficacy, as well as limiting toxicity. Combinations synergistic for the cancer preventive effect or its surrogate are expected to retain efficacy even at low doses of the agents, where drug-specific side-effects are reduced. Synergistic interactions may result from affecting the same or related pathways, or may involve unrelated pathways.

A unique mechanism of cooperation (or synergy) was shown between vitamin K2 and both acyclic retinoids or 9-cis-RA, offering a perspective for a potential chemopreventive combination. It was proposed that vitamin K2 prevents the phosphorylation and accumulation of inactive RXRα by inhibiting Ras and extracellular signal-regulated kinase activation, allowing retinoids to exert their cancer preventive effect in hepatic cells [155]. ACRs themselves may be able to restore impaired receptor function through inhibition of RXR phosphorylation. Another approach is to examine potential enhancing interactions among the multitude of partnering nuclear hormone receptors. This way anti-proliferative and anti-tumor cooperation was demonstrated between RXRs and PPARs in premalignant mammary epithelial cells, as well as in vivo [156, 157].

Targeting the same pathways by two agents may accentuate an overlapping spectrum of adverse effects. Therefore, current preclinical studies take an unbiased approach to identify synergistic combinations in vitro in phenotypic compound screens of premalignant precursor cells or more recently using computational methods. Such combinations might consist of a component that exhibits proven cancer preventive characteristics and a second agent selected from a pool of compounds based on its ability to enhance the effect of the primary chemopreventive agent. Candidate combinations are subsequently tested in mechanistic studies and animal models, with a goal of being translated into clinical settings. The
inclusion of agents that are already FDA-approved and clinically tested, albeit with a
different scope of indications, will require “drug repurposing”, but might be the fastest, and
most efficient ways to arrive at clinically testable, low-toxicity alternatives for cancer
prevention [158]. One novel prospect for a breast cancer preventive combination includes
the rexinoid bexarotene and a non-selective beta-adrenergic inhibitor, carvedilol. Identified
in high-throughput compound screens of premalignant breast epithelial cells for
combinations synergistically anti-proliferative over a wide dose-range, low doses of these
two agents are being tested in transgenic mouse models of breast cancer to establish their
preventive capacity (I.U. unpublished observation). Beyond the immediate clinical
applicability of the two FDA-approved agents, this and similar investigations will likely
reveal potentially exploitable novel interactions of adrenergic signaling pathways and
rexinoid-dependent anti-cancer activity.

Summary - The future of retinoids in the prevention of cancer

The medical use of retinoids extends over more than half a century and marks some of the
successes in pharmacology. Topical treatments are valuable in conditions associated with
differentiation defects and the application of Tazarotene was decisive for the curative
outcome of APL therapy. However, apart from leukemias, skin cancers and neuroblastoma,
among other examples, currently retinoids play a more limited role in cancer treatment and
prevention than would be expected based on their favorable pharmacologic properties.

Retinoids and rexinoids are ligands recognized by specific receptors which directly interact
with the genome and regulate concerted programs of gene expression. These programs elicit
coordinated physiologic changes that can antagonize malignant transformation, promote
differentiation, cause apoptosis, insulin sensitivity, oxidative metabolism, and immune
modulation, or suppress inflammation. The large number of possible complexes of nuclear
receptor dimers and co-regulators formed in response to ligand binding confers tissue-
selective modulation of cell function that collectively exert antineoplastic effects.

Although both retinoids and rexinoids possess a spectrum of pleiotropic effects, it is unlikely
that retinoid monotherapy will be a preventive strategy for most cancers. However, as
multifunctional agents, retinoids are especially well-suited to combination therapies [159].
From a long line of studies it appears that to best exploit the potential of retinoid
pharmacology optimal combinations with other agents will have to be identified and the
issues of resistance and toxicity addressed systematically in preclinical models and relevant
clinical trials. There is a need to identify validated biomarkers in order to predict retinoid
response in the target tissue as clinical data demonstrate that retinoid action is often
dependent on specific cellular contexts and epigenetic modifications. Such biomarkers may
be derived from preclinical studies or from patient material from window-of-opportunity
trials. To take advantage of the full potential of retinoids such biomarkers will have to be
used to better define clinically-responsive populations.

Useful knowledge can be gained from retrospective studies asking pharmacogenomic
questions, by linking specific genetic loci or single nucleotide polymorphisms to therapeutic
efficacy [133]. Ample preclinical and ex vivo data are available about the downstream
transcriptional responses of target organs that should allow the monitoring of the target-
specific activity after retinoid treatment. These changes in the expression of retinoid target genes would also be important for bioavailability assessment.

From the prevention aspect of clinical use, rexinoids seem to outweigh retinoid agonists in their activities. While exhibiting modest activity against existing tumors (with the exception of CTCL), rexinoids are far more effective preventive agents than are retinoids in preclinical models. Furthermore, long-term treatment with rexinoids is associated with significantly fewer adverse effects than retinoids. Therefore, rexinoids should be clinically tested for their ability to suppress tumor formation in organ sites where preclinical and biomarker studies have demonstrated efficacy. Future hypothesis-driven clinical trials are needed to take full advantage in the clinic of the promise of retinoid and rexinoid pharmacology.

Acknowledgements

This work was supported in part by the National Institutes of Health (NIH) and National Cancer Institute (NCI) grants R01-CA087546 (E.D.), R01-CA190722 (E.D.), R01-CA062275 (E.D.), R01-078480 (P.H.B.), R03 CA180550 (I.P.U.), the University of Texas MD Anderson CCSG grant P30 CA16672, the Norman Brinker Award for Research Excellence (P.H.B.), the John Charles Cain Distinguished Chair Award (P.H.B.), the Duncan Family Institute Seed Funding Research Program (I.P.U.), and a UT-STARS award (E.D.). E.D. is an American Cancer Society Professor supported by a generous gift from the F.M. Kirby Foundation.

References

Semin Oncol. Author manuscript.

Uray et al. Page 26

Vitamin A, derived from β-carotene, or as a provitamin from animal sources, is processed to retinol and either stored as retinyl esters or distributed to the peripheral tissues via retinol binding proteins. Target tissues create and use various isomers for specific signaling purposes.

Figure 1. Pathways of retinoid metabolism and distribution throughout the body

Vitamin A, derived from β-carotene, or as a provitamin from animal sources, is processed to retinol and either stored as retinyl esters or distributed to the peripheral tissues via retinol binding proteins. Target tissues create and use various isomers for specific signaling purposes.
To be active, vitamin A requires multiple enzymatic steps and transport. Cellular retinol (ADH4) and retinaldehyde (RALDH) dehydrogenases oxidize retinol to retinaldehyde and further to all-trans-retinoic acid (atRA). High affinity binding to CRABP II delivers the ligands to activate transcription through their nuclear receptors. Following activation, atRA is degraded by the CYP26A1 system, while RAR is degraded in the proteasome or inactivated by phosphorylation.

Figure 2. Molecular mechanisms of retinoid and rexinoid action in the target cell
To be active, vitamin A requires multiple enzymatic steps and transport. Cellular retinol (ADH4) and retinaldehyde (RALDH) dehydrogenases oxidize retinol to retinaldehyde and further to all-trans-retinoic acid (atRA). High affinity binding to CRABP II delivers the ligands to activate transcription through their nuclear receptors. Following activation, atRA is degraded by the CYP26A1 system, while RAR is degraded in the proteasome or inactivated by phosphorylation.
Figure 3. Synthetic retinoids and rexinoids tested or used for cancer prevention
The structure of synthetic retinoids used in preclinical and clinical cancer prevention studies are shown.
Figure 4. Nuclear Hormone Receptor Partners of RXR with or without known ligands

RXR partners with RAR to form the dimeric retinoid receptor, and also with many other partners that bind ligands (Vitamin D receptor, PPAR receptor, thyroid hormone receptor (TR), and other partners shown on the left side of this figure). RXR also binds partners that have no known ligand designated “orphan receptors” (such as COUP-TF I and II, NGF1B, and nurr 1 and others shown on the right side of the figure).
Figure 5. Extranuclear and non-transcriptional effects of retinoic acid (RA)
Pathways involving extranuclear biological activity of RA may result in various outcomes.
1. Cytokine-dependent retinol uptake via Stra6 Involves STAT5 activation and immune regulation. 2. Differentiation through CREB-dependent induction of retinoid target genes was reported to be triggered by receptor-independent activation of protein kinase C (PKC), the Erk1/2 MAPK (ERK) and the p90S6 kinase (RSK) by RA, or the interaction of membrane-associated PI3K and RAR-alpha. Lipid raft-bound RAR-alpha activating Gαq upon agonist stimulation leads to phosphorylation and nuclear translocation of p38MAPKs, activating MSK1 and inducing differentiation. 3. Activation of p38 by RA may also inhibit cell differentiation via downstream MAPKAPK2 activation, 4. Neuronal differentiation through the direct interaction of cytosolic RAR-gamma with Src.

Semin Oncol. Author manuscript.
Table 1

Retinoids Tested for Therapy of Benign Conditions

<table>
<thead>
<tr>
<th>Test Indications</th>
<th>Name (trade name)</th>
<th>Target Receptor</th>
<th>Phase</th>
<th>Subjects</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acne</td>
<td>Isotretinoin (13-cis-RA, Accutane)</td>
<td>RAR-gamma,_RXR (metabolites)</td>
<td>II</td>
<td>180</td>
<td>[160]</td>
</tr>
<tr>
<td></td>
<td>Tazarotene (AGN190168, Tazorac)</td>
<td>RAR-beta, RAR-gamma</td>
<td>IV, III</td>
<td>744</td>
<td>[161][162]</td>
</tr>
<tr>
<td></td>
<td>Tretinoin, gel</td>
<td>RAR-alpha, RAR-gamma</td>
<td>III</td>
<td>1537</td>
<td>[163]</td>
</tr>
<tr>
<td></td>
<td>Adapalene, gel</td>
<td>RAR-alpha, RAR-gamma</td>
<td>III</td>
<td>900</td>
<td>[164]</td>
</tr>
<tr>
<td></td>
<td>Tretinoin (all-trans retinoic acid, Avita)</td>
<td>RAR-alpha, RAR-gamma</td>
<td>II</td>
<td>300 non-smoking</td>
<td>[151]</td>
</tr>
<tr>
<td>COPD, emphysema</td>
<td>Isotretinoin (13-cis-RA, Accutane)</td>
<td>RAR-gamma, RXR (metabolites)</td>
<td>II</td>
<td>148</td>
<td>[46][151]</td>
</tr>
<tr>
<td></td>
<td>Palovarotene (R-667), (REPAIR trial)</td>
<td>RAR-gamma</td>
<td>II</td>
<td>262</td>
<td>[48]</td>
</tr>
<tr>
<td>Cosmetic use, anti-aging</td>
<td>Motretinide (MDI 403)</td>
<td>RAR-alpha</td>
<td>II</td>
<td>-</td>
<td>[165]</td>
</tr>
<tr>
<td>Lichen, macular amyloidosis</td>
<td>Tretinoin tocoferil (Tocoretinate)</td>
<td>RAR-alpha</td>
<td>I</td>
<td>10</td>
<td>[43]</td>
</tr>
<tr>
<td>Photodamage</td>
<td>MDI-301</td>
<td>RAR-alpha, ex vivo</td>
<td>-</td>
<td>-</td>
<td>[166][167]</td>
</tr>
<tr>
<td>Psoriasis</td>
<td>Tazarotene (AGN190168, Tazorac)</td>
<td>RAR-beta, RAR-gamma</td>
<td>IV, III</td>
<td>744</td>
<td>[162]</td>
</tr>
<tr>
<td>Skin ulcers</td>
<td>Tretinoin tocoferil (Tocoretinate)</td>
<td>RAR-alpha</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test Indications</td>
<td>Name (trade name)</td>
<td>Target Receptor</td>
<td>Phase</td>
<td>Subjects</td>
<td>Ref</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
<td>---------------------------------</td>
<td>-------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>APL</td>
<td>Tretinoin (all-trans retinoic acid, Avita)</td>
<td>RAR-alpha, RAR-gamma</td>
<td>II, III</td>
<td>156</td>
<td>[62], [58]</td>
</tr>
<tr>
<td>Basal cell skin cancer</td>
<td>Tazarotene (AGN190168, Tazorac)</td>
<td>RAR-beta, RAR-gamma</td>
<td>II</td>
<td>36</td>
<td>[168]</td>
</tr>
<tr>
<td>CTCL</td>
<td>Tazarotene (AGN190168, Tazorac)</td>
<td>RAR-beta, RAR-gamma</td>
<td>II</td>
<td>36</td>
<td>[168]</td>
</tr>
<tr>
<td></td>
<td>Bexarotene (LGD1069, Targretin)</td>
<td>RAR-alpha</td>
<td>II</td>
<td>66</td>
<td>[169]</td>
</tr>
<tr>
<td>Hepatocellular carcinoma</td>
<td>TAC-101</td>
<td>RAR-alpha</td>
<td>I/II</td>
<td>29</td>
<td>[170], [171]</td>
</tr>
<tr>
<td></td>
<td>Peretinoin (NIK-333; acyclic retinoid)</td>
<td>RARs</td>
<td>II/III</td>
<td>392</td>
<td>[149], [172], [173]</td>
</tr>
<tr>
<td>High-grade glioma</td>
<td>Isotretinoin (13-cis-RA, Accutane)</td>
<td>RAR-gamma, RXR</td>
<td>II</td>
<td>23</td>
<td>[174], [175]</td>
</tr>
<tr>
<td>Kaposi's sarcoma</td>
<td>Alitretinoin (9-cis-RA, Pancretin)</td>
<td>RAR-alpha, RAR-beta, RAR-gamma, RXR-alpha, RXR-gamma</td>
<td>II, III</td>
<td>66</td>
<td>[64], [63]</td>
</tr>
<tr>
<td>Metastatic breast cancer</td>
<td>Tretinoin (all-trans retinoic acid, Avita)</td>
<td>RAR-alpha, RAR-gamma</td>
<td>I/II</td>
<td>26</td>
<td>[176]</td>
</tr>
<tr>
<td></td>
<td>Tretinoin (+/− tamoxifen +/− alpha-INF2)</td>
<td>RAR-alpha, RAR-gamma, ER-alpha</td>
<td>II</td>
<td>55</td>
<td>[74]</td>
</tr>
<tr>
<td></td>
<td>Retinyl palmitate (plus beta-IFN and tamoxifen)</td>
<td>RARs</td>
<td>II</td>
<td>65</td>
<td>[76]</td>
</tr>
<tr>
<td></td>
<td>Isotretinoin (13-cis-RA, Accutane)</td>
<td>RAR-gamma, RXR (metabolites)</td>
<td>II</td>
<td>99</td>
<td>[75]</td>
</tr>
<tr>
<td></td>
<td>Bexarotene (LGD1069, Targretin)</td>
<td>RXR-alpha</td>
<td>II</td>
<td>145</td>
<td>[77]</td>
</tr>
<tr>
<td></td>
<td>All-trans retinoic acid</td>
<td></td>
<td>II</td>
<td>17</td>
<td>[73]</td>
</tr>
<tr>
<td>Metastatic renal carcinoma</td>
<td>Isotretinoin (13-cis-RA, Accutane) (in combination with IFN-alpha-2a)</td>
<td>RAR-gamma, RXR</td>
<td>III</td>
<td>341</td>
<td>[65]</td>
</tr>
<tr>
<td>Myelomonocytic leukemia</td>
<td>Fenretinide (4-HPR)</td>
<td>RAR-alpha, RAR-gamma, RXR-alpha</td>
<td>II</td>
<td>15</td>
<td>[177]</td>
</tr>
<tr>
<td></td>
<td>Tretinoin tocopheril (Tocoretinate)</td>
<td>RAR-alpha, PML/RAR</td>
<td></td>
<td></td>
<td>[152]</td>
</tr>
<tr>
<td>Neuroblastoma</td>
<td>Isotretinoin (13-cis-RA, Accutane)</td>
<td>RAR-gamma, RXR (metabolites)</td>
<td>II</td>
<td>379</td>
<td>[71]</td>
</tr>
<tr>
<td></td>
<td>4-HPR oral powdered lipid complex</td>
<td>RAR-alpha, RAR-gamma, RXR-alpha</td>
<td>II</td>
<td>107</td>
<td>[72]</td>
</tr>
<tr>
<td>NSCLC</td>
<td>Tretinoin (all-trans retinoic acid, Avita)</td>
<td>RAR-alpha, RAR-gamma</td>
<td>II</td>
<td>107</td>
<td>[78]</td>
</tr>
<tr>
<td></td>
<td>Bexarotene (LGD1069, Targretin)</td>
<td>RXR-alpha</td>
<td>III</td>
<td>623</td>
<td>[80]</td>
</tr>
<tr>
<td>NSCLC (K-Ras mutation)</td>
<td>Bexarotene (LGD1069, Targretin)</td>
<td>RXR-alpha</td>
<td>II</td>
<td>40</td>
<td>[82], [113]</td>
</tr>
<tr>
<td></td>
<td>Tretinoin (all-trans retinoic acid, Avita)</td>
<td>RAR-alpha, RAR-gamma</td>
<td>I/II</td>
<td>17</td>
<td>[126]</td>
</tr>
<tr>
<td>Prostate cancer</td>
<td>Isotretinoin (13-cis-RA, Accutane) (in combination with alpha-IFN2a)</td>
<td>RAR-gamma, RXR</td>
<td>I, II</td>
<td>70</td>
<td>[178], [179]</td>
</tr>
<tr>
<td>Squamous cell carcinoma</td>
<td>Etretinate</td>
<td>RARs</td>
<td>II</td>
<td>316</td>
<td>[180]</td>
</tr>
</tbody>
</table>
Completed randomized retinoid chemoprevention trials

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Phase</th>
<th>Subjects</th>
<th>Risk group</th>
<th>Endpoint</th>
<th>Outcome</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etretinate</td>
<td>2</td>
<td>316</td>
<td>Squamous cell carcinoma</td>
<td>Second primary in head and neck area</td>
<td>No significant difference in overall survival (OS)</td>
<td>[180]</td>
</tr>
<tr>
<td>Fenretinide</td>
<td>3</td>
<td>1739</td>
<td>Breast cancer</td>
<td>Second primary breast cancer at 14.6 years</td>
<td>Risk reduction in premenopausal women (HR=0.62)</td>
<td>[144]</td>
</tr>
<tr>
<td>Fenretinide (200 mg/day)</td>
<td>3</td>
<td>153</td>
<td>Oral leukoplakia</td>
<td>Recurrence of leukoplakia</td>
<td>Prevention of recurrence and new leukoplakias</td>
<td>[98]</td>
</tr>
<tr>
<td>Fenretinide (200 mg/day)</td>
<td>2</td>
<td>35</td>
<td>Retinoid-resistant Oral leukoplakia</td>
<td>1. Clinical response of oral intraepithelial neoplasia (IEN) 2. Toxicity, biomarkers</td>
<td>34% partial response; Increase in apoptosis</td>
<td>[130]</td>
</tr>
<tr>
<td>Fenretinide plus Tamoxifen</td>
<td>3</td>
<td>1432</td>
<td>Breast cancer</td>
<td>Contralateral breast cancer; toxicity</td>
<td>Prevention of contralateral disease in premenopausal women</td>
<td>[181]</td>
</tr>
<tr>
<td>Isotretinoin</td>
<td>2</td>
<td>75</td>
<td>Lung cancer, high risk Prior cancer</td>
<td>Histologic progression by bronchial biopsy</td>
<td>Non-significant change in histology; Reduced risk of treatment failure; Fewer second primary tumors</td>
<td>[6]</td>
</tr>
<tr>
<td>Isotretinoin (100-50 mg/m2/day)</td>
<td>2</td>
<td>103</td>
<td>Head and neck squamous cell carcinoma (HNSCC)</td>
<td>Prevention of second primary tumors</td>
<td>No difference in recurrence of original tumors</td>
<td>[183]</td>
</tr>
<tr>
<td>Isotretinoin (2 mg/kg/day)</td>
<td>2</td>
<td>44</td>
<td>Oral leukoplakia</td>
<td>Recurrence</td>
<td>Delay in recurrence</td>
<td>[8]</td>
</tr>
<tr>
<td>Isotretinoin (0.5 mg/kg/day) or beta-carotene</td>
<td>3</td>
<td>70</td>
<td>Oral leukoplakia</td>
<td>Invasive carcinoma, toxicity</td>
<td>92% response rate; Low-dose isotretnoin more active than beta-carotene</td>
<td>[7]</td>
</tr>
<tr>
<td>Isotretinoin (low-dose: 30 mg/day)</td>
<td>3</td>
<td>1190</td>
<td>HNSCC</td>
<td>1. Rate of 2nd primary tumors 2. Smoking-associated cancers</td>
<td>No reduction in 2nd primary tumors</td>
<td>[131]</td>
</tr>
<tr>
<td>9cUAB30</td>
<td>1</td>
<td>14</td>
<td>Breast, high risk</td>
<td>Pharmacokinetics</td>
<td>Favorable toxicity</td>
<td>[154]</td>
</tr>
<tr>
<td>Retinyl palmitate with or without beta-carotene versus 13-cis-RA</td>
<td>3</td>
<td>162</td>
<td>Oral premalignant lesions (OPL)</td>
<td>OPL at 3 months</td>
<td>No benefit over 13-cis-RA</td>
<td>[184]</td>
</tr>
<tr>
<td>Peretinoin (Acyclic retinoid)</td>
<td>2</td>
<td>89</td>
<td>Hepatocellular carcinoma (HCC)</td>
<td>Incidence of recurrent or new hepatoma</td>
<td>Significant reduction</td>
<td>[185]</td>
</tr>
<tr>
<td>Peretinoin (Polyprenoic acid)</td>
<td>2/3</td>
<td>401</td>
<td>Hepatitis C related HCC</td>
<td>Incidence of recurrent or new hepatoma</td>
<td>Improved survival with stable liver function</td>
<td>[147]</td>
</tr>
<tr>
<td>Tazarotene</td>
<td>3</td>
<td>34</td>
<td>Basal cell carcinoma (BCC) high-risk patients</td>
<td>Incidence of BCC at 3 years; efficacy for chemotherapy</td>
<td>Response in 6% of patients</td>
<td>[168]</td>
</tr>
<tr>
<td>Tretinoin (0.1% topical)</td>
<td>3</td>
<td>1131</td>
<td>Keratinocyte carcinoma (KC)</td>
<td>Time to development of new BCC or invasive squamous cell carcinoma (SCC)</td>
<td>No reduction in the risk of KC</td>
<td>[44]</td>
</tr>
</tbody>
</table>