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Abstract: Glycogen phosphorylase (GP) is a target for the treatment of hyperglycaemia in the 

context of type 2 diabetes. This enzyme is responsible for the depolymerization of glycogen 

into glucose thereby affecting the levels of glucose in the blood stream. Twelve new D-

glucopyranosylidene-spiro-isoxazolines have been prepared from O-peracylated exo-D-

glucals by regio- and stereoselective 1,3-dipolar cycloaddition of nitrile oxides generated in 

situ by treatment of the corresponding oximes with bleach. This mild and direct procedure 

appeared to be applicable to a broad range of substrates. The corresponding O-unprotected 
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spiro-isoxazolines were evaluated as glycogen phosphorylase (GP) inhibitors and exhibited 

IC50 values ranging from 1 to 800 µM. Selected inhibitors were further evaluated in vitro 

using rat and human hepatocytes and exhibited significant inhibitory properties in the primary 

cell culture. Interestingly, when tested with human hepatocytes, the tetra-O-acetylated spiro-

isoxazoline bearing a 2-naphthyl residue showed a much lower IC50 value (2.5 µM), 

compared to that of the O-unprotected analog (19.95 µM). The most promising compounds 

were investigated in Zucker fa/fa rat model in acute and sub-chronic assays and decreased 

hepatic glucose production, which is known to be elevated in type 2 diabetes. This indicates 

that glucose-based spiro-isoxazolines can be considered as anti-hyperglycemic agents in the 

context of type 2 diabetes. 

Keywords: carbohydrates; spiro-isoxazolines; glycogen phosphorylase inhibitors; hepatocytes; 

Zucker rats; hepatic glucose production; type 2 diabetes. 

Introduction 

Type 2 diabetes (T2DM) or non-insulin-dependent diabetes mellitus (NIDDM) is 

characterized by two defects: relative insulin deficiency and liver and peripheral insulin 

resistance. T2DM, which accounts for 90 to 95% of the diabetic cases, is a multi-factorial 

disease of largely unknown etiology involving both genetic and environmental factors and it 

is closely associated to the metabolic syndrome. The worldwide prevalence of obesity and 

diabetes has increased substantially in recent decades, also among young adults and children. 

The rising incidence of these pathologies has grown to alarming levels in developing 

countries. It is expected that the coming decades these countries will face severe health 

service burdens as chronic hyperglycaemia is associated with long-term damage, dysfunction 

and failure of various organs such as eyes, kidneys, nerves, heart and blood vessels. To 

minimize such health-threatening complications, patients with T2DM must control their 



 

glycaemia by intensive lifestyle intervention as a primary treatment, with adequate diet and 

exercise, along with pharmacological therapies.1-2 

Biguanides and -glycosidase inhibitors have therapeutic value as they limit, 

respectively, hepatic glucose output, and intestinal absorption of carbohydrates. Sulfonylureas 

and incretin mimetic drugs act by directly or indirectly increasing insulin release from the -

cells in the pancreas, while thiazolidinediones (TZD) activate peroxisome proliferator-

activated receptors (PPARs). Metformin is a biguanide now believed to be the most widely 

prescribed antidiabetic drug. As pharmacological treatments are inadequate for 30-40% of 

T2DM patients, combination therapy is frequently applied. With increasing severity of 

diabetes, insulin administration is prescribed and many patients progress to insulin therapy 

with time. In spite of substantial progress in the management of diabetic pathologies, the 

limitations or adverse effects of current treatments are incentive for improving diabetes 

management. Glycogen phosphorylase (GP) inhibition is one of the pharmacological 

approaches currently investigated.3 

 GP isozymes4 have been identified and characterized in a large number of organisms 

(bacteria, fungi, yeast, plants, insects, animals) and in mammalian tissues. GP is expressed 

mainly in the muscles, liver and brain where it permits the breakdown by phosphorolysis of 

glycogen to glucose-1-phosphate. GPa and GPb represent, respectively, the phosphorylated 

(active) and unphosphorylated (less active) isoforms.5 This enzyme has been thoroughly 

studied by kinetic investigations and X-ray diffraction analysis of enzyme-ligand complexes. 

These studies provided evidence on the binding site and binding mode of ligands to the 

enzyme. The accumulated information forms a rational basis for the kinetic data, but more 

significantly, provides a detailed view of the GP structural features with identification of 

several binding sites such as the active site, the inhibitor site, the allosteric and the new 

allosteric sites, the glycogen storage site, the phosphorylation site and an understanding of 



 

their roles at molecular level.6 As glycogenolysis is a key component to hepatic glucose 

production, generally observed excessive in T2DM, a large variety of synthetic molecules has 

been investigated as GP inhibitors, as a possible pharmacological control of glycaemia. The 

studied inhibitors mainly target the allosteric7 and new allosteric site,8 and the active site 

which accommodates glucose and glucose-based and related analogues,9-14 as can be seen also 

from general reviews.3, 15-20 NMR spectroscopy has been shown recently through the 

fragment-based approach to offer additional techniques for probing, in solution, the binding 

pockets of GP, and investigating cooperativity between the various binding sites.21 

Even though a large set of data has been reported from in vitro enzymatic experiments, 

much need to be clarified through pharmacological studies to get a better understanding of the 

in vivo specific response of a drug under evaluation. Its effects, which depend on 

pharmacokinetic and pharmacodynamic properties, are unpredictable and sometimes difficult 

to rationalize. For example, the inhibitory effects of indole-site effectors has been reported to 

be modulated by endogenous small-molecular-weight effectors of GPa activity, although at 

higher concentrations, indole-site GP inhibitors almost completely inhibit phosphorylase 

activity and retain a glucose concentration dependence.22-23 A series of benzamide derivatives, 

presumed to bind at the new allosteric site of GP (dimer interface) as suggested by molecular 

docking simulation, was found to simultaneously inhibit GP and activate glucokinase.24 GP 

inhibitors can not only interfere with glycogenesis, as mentioned, but also with 

gluconeogenesis, and the in vivo effects of AMP and indole site inhibitors have been 

reviewed.18, 25-26 Recently, the effect of D-glucopyranosylidene-spiro-thiohydantoin (Figure 1, 

A) on glycogen metabolism in liver tissues of streptozotocin-induced and obese diabetic rats 

has been investigated. This showed the coordinated regulation of glycogen phosphorylase and 

synthase by 50 μM A in liver extracts of Wistar rats, resulting in the activation of synthase by 

a shortening of the latency compared to control animals. Compound A was also effective in 



 

lowering blood glucose levels and restoring hepatic glycogen content in streptozotocin-

induced diabetic rats. Furthermore, intravenous administration of A to Zucker Diabetic Fatty 

(ZDF) rats significantly decreased hepatic GPa levels, and the activation of synthase was 

initiated without any delay.27 

 GP inhibition is a therapeutic approach to limit the pathogenic consequences of chronic 

hyperglycaemia in T2DM but also possibly tumor growth,28-29 or cerebral ischemia.30 

Nevertheless, little is known about the potential of glucose-based molecules that bind at the 

catalytic site at cellular level, and only a few have been studied in detail in hepatocytes.27, 31-32 

This is why on the basis of our preliminary studies,33-34 the synthesis of additional glucose-

based spiro-isoxazolines followed by kinetic investigations were performed. The more potent 

molecules (Ki in the low µM range) were selected for cellular assays with primary cultures of 

rat or human hepatocytes. The most promising molecules identified from these in vitro 

cellular assays were further investigated in an animal model (i.e. Zucker hyperinsulinemic rat). 

The glucopyranose-based analogue B of hydantocidin (Figure 1) prepared by Fleet’s group 

was found to be a potent inhibitor of glycogen phosphorylase.35 This was an incentive for 

investigating chemical synthesis, kinetic measurements and crystallographic analysis of 

enzyme-ligand complexes. The kinetic and crystallographic data obtained showed that spiro-

compounds A,36 B,35 C,35 and D
37 are competitive inhibitors and are bound at the enzyme 

catalytic site through a network of stabilizing interactions. By exploiting stereoselective 1,3-

dipolar cycloadditions, we have also synthesized glucopyranose-based spiro-isoxazolines33-34 

(e.g. E) and spiro-oxathiazoles38-40 (e.g. F) which were found among the best inhibitors of GP 

targeting the catalytic site.39 Glucopyranosylidene-spiro-iminothiazolidinone derivatives G 

were reported recently as good GP inhibitors,41 while spiro-oxazolidinones H proved 

practically inactive against the enzyme.42 

The present report discloses further synthetic and kinetic, as well as in vitro and in 



 

vivo pharmacological evaluation of new representatives of type E compounds to determine 

the properties of such glucose-based GP inhibitors as potential anti-hyperglycemic agents in 

the context of type 2 diabetes. 

 

Figure 1: Various types of spiro-anomeric carbohydrate derivatives: structures, bioactivities, 

or inhibitory properties against rabbit muscle glycogen phosphorylase b (RMGPb) 

 

Results and Discussion  

Synthesis of GP inhibitors 

Based on our previous results showing that the 2-naphthyl substituted spiro-isoxazoline E 

(Figure 1) was a potent inhibitor of GP,33-34 a new series of spiro-isoxazolines was obtained 

by cycloaddition of nitrile oxide intermediates to the peracetylated exo-glucal 3A
34, 43-44 and 

perbenzoylated exo-glucal 3B
43-44 (Scheme 1). As precursors of nitrile oxides, the required 

oximes 1a-i,l-s were prepared in high yield upon heating commercially available aldehydes 

with hydroxylamine hydrochloride under basic conditions (Method A). The 6-

(triisopropylsilyloxy)-2-naphthaldehyde oxime 1j was prepared in a three step sequence from 



 

6-bromonaphthalen-2-ol that was subjected successively to O-silylation, low temperature 

treatment with n-BuLi to achieve bromine-lithium exchange then formylation with DMF,45 

and conversion to oxime 1j. 

 Initially, and according to our previous results,
33-34

 oximes 1b-e,h were reacted with N-

chlorosuccinimide (NCS) to afford the corresponding aryl -chloroaldoximes 2b-e,h (Method 

B). They underwent hydrochloric acid elimination in the presence of NEt3 to produce reactive 

nitrile oxides capable of 1,3-dipolar cycloaddition to 3A-B (Method C). This procedure led to 

the desired spiro-isoxazolines 4b-e,h in high yields (Table 1). Generation of nitrile oxides 

from oximes was also attempted using chloramine-T
46

 (to yield the -chloroaldoxime 

intermediate) or hypervalent iodine
47

 (to afford the nitrile oxide in situ) but none of these 

conditions was satisfactory. We adapted and applied simpler conditions, with slow addition of 

a sodium hypochlorite solution
48

 to THF solutions of 3A-B and a selected oxime, for in situ 

generation of nitrile oxides (Method D).49-50
 This one-pot procedure was advantageous both in 

terms of simplicity and efficiency, as seen when comparing the yields recorded for the 

synthesis of 4h by Methods C and D (Table 1). While two or more equivalents of the oximes 

1a,f-j,l-n were used (Method C), the cycloaddition was performed with only 1.1 equivalent of 

oximes 1o-s (Method D). These conditions were found efficient in all cases tested, as 

formation of nitrile oxide-derived byproducts was limited therefore simplifying 

purifications.
51

 Moreover, chlorination of electron-rich aromatic systems (e.g. 3,5-dimethoxy-

phenyl, 6-methoxy-naphthalen-2-yl, benzofuran, quinoline derivatives) could be avoided 

using Method D, while this side-reaction occurred for the aryl -chloroaldoximes synthesis 

with NCS (Method B). For all spiro-products, only one diastereoisomer was observed, the 

dipole approaching the exo-glucal dipolarophile from the -side in the cycloaddition 

transition state.
52-53

 The spiro-isoxazoline 4k with a 6-hydroxy-2-naphthyl substituent was 

prepared from the precursor 4j upon desilylation with TBAF. Zemplén deacetylation of the 



 

spiro-isoxazolines 4b-i,k-s led to the corresponding O-unprotected products 5 in high yield, 

but under these conditions 4a was transformed into a ring-opened isoxazole 5a’ (see 

supporting information) which could not lead to the desired spiro-isoxazoline framework. 

This may be due to the electron withdrawing properties of the p-trifluoromethylphenyl residue, 

which made the methylene protons of the isoxazoline ring more acidic and susceptible to 

basic attack, so that aromatization took place, resulting in opening of the glucose ring. In 

previous related studies, similar 1,2-eliminations34, 54 or aromatization with ring opening39 

were observed. 

 

Scheme 1: Synthesis of spiro-isoxazolines by nitrile oxides cycloaddition to exo-glucals33, 38 

 

 

 

 



 

Table 1: Synthesis of O-peracylated and O-unprotected D-glucopyranosylidene-spiro-

isoxazolines 4 and 5  

Ar = Compounds Cycloaddition Yield 

% (conditions)
a
 

Compounds Deacylation 

Yield (%)
b
 

Ph-p-CF3 4a 93 (D) 5a n.a.
c 

Ph-p-NO2 4b 94 (C) 5b 99
d
 

Ph 4c 99 (C)
 

5c 97
d
 

Ph-p-Me 4d 95 (C)
 

5d 93
d
 

Ph-p-OMe 4e 83 (C)
 

5e 98
d
 

Ph-p-SMe 4f 96 (D) 5f 100
e 

Ph-3,5-di-OMe 4g 94 (D) 5g 100
e
 

2-Naphthyl 4h 94 (C), 99 (D) 5h 78
d
, 100

e
 

2-Naphthyl-6-OMe 4i 99 (D) 5i 100
e
 

2-Naphthyl-6-OTIPS 4j 93 (D)   

2-Naphthyl-6-OH 4k
f
 99 5k 100

e
 

9-Phenanthrenyl 4l 96 (D) 5l 100
e
 

1,3-Benzodioxol-5-yl 4m 95 (D) 5m 100
e
 

2,3-Dihydrobenzo-1,4-
dioxin-6-yl 

4n 89 (D) 5n 100
e
 

2-Benzo[b]furanyl 4o 60 (D) 5o 90
e
 

2-Benzo[b]thienyl 4p 54 (D) 5p 85
e
 

2-Benzothiazolyl 4q 62 (D) 5q 68
d
 

2-Indolyl 4r 64 (D) 5r 58
d
 

3-Indolyl 4s 60 (D) 5s 55
d
 

a
 Method C:

33
 exo-glucal (0.3 mmol), -chloroaldoxime (3 to 5 eq.), CH2Cl2 (5 mL), overnight addition of NEt3 

(7.5 eq dissolved in 5 mL CH2Cl2) with a syringe pump while stirring at rt / Method D: exo-glucal (0.3 mmol), 
aldoxime (2 eq.) in THF (10 mL), overnight addition of NaOClaq 9°Chl (5 mL) with a syringe pump while 
stirring at rt. 
b
 Deacetylation by the Zemplén conditions (MeONa, MeOH). 

c
 n.a. = not applicable – Heteroaromatisation led to a ring-opened product. 

d
 Purification by column chromatography. 

e
 Concentration to dryness. 

f
 Prepared from 4j upon treatment with TBAF. 

 

 



 

Enzyme inhibition 

The newly synthesized compounds 5f,g,i-n were assayed as inhibitors of rabbit muscle 

glycogen phosphorylase b (RMGPb) and the obtained IC50 values together with the Ki data of 

the previous series 5b-e,h are presented in Table 2. Depending on the mono- or polycyclic 

nature as well as the substitution pattern of the aromatic groups (Ar) the strength of inhibition 

varied ranging from 1 to 800 µM. The best inhibitors in both series displayed a 2-naphthyl 

moiety (5h and 5k). Changing the 6-OH substituent of the naphthyl group in 5k to a methoxy 

(5i) resulted in a weaker inhibitory potency suggesting that the 6-OH probably participates in 

a favourable H-bond. Increasing the size of the aromatic moiety by the annelation of a further 

ring as in 5l (phenanthrenyl) or changing its nature to partly aromatic (5m,n) made 

significantly less efficient inhibitors showing that the planar aromatic substituent of proper 

size and orientation is very important for the binding. This is further corroborated by the 

benzolog heterocycles 5o-s, which were also less efficient than the 2-naphthyl derivatives. 

The position of apolar substituents on a phenyl ring proved also decisive since a mono-

substitution in the 4-position strengthened (compare 5d-f to 5c) while a 3,5-disubstitution (5g) 

weakened the inhibition. The case of the 4-nitrophenyl group (5b) was discussed earlier.33 

Table 2: RMGPb inhibition of glucose-based spiro-isoxazolines 5b-i,k-s 

Ar = Compounds Inhibition 

[µM] 

IC50 Ki 

Ph-4-NO2 5b
  

92.5
33

 

Ph 5c
  19.6

33
 

Ph-4-Me 5d  7.9
33

 

Ph-4-OMe 5e  6.6
33

 

Ph-4-SMe 5f 5.6 ± 0.7   

Ph-3,5-di-OMe 5g 324.7 ± 24.1  

2-Naphthyl 5h  0.63
33

 

2-Naphthyl-6-OMe 5i 27.7 ± 1.7  

2-Naphthyl-6-OH 5k 1.54 ± 0.08  

9-Phenanthrenyl 5l 80.5 ± 6.6  

1,3-Benzodioxol-5-yl 5m 81.3 ± 5.4  

2,3-Dihydrobenzo-1,4-dioxin-6-yl 5n 13.3 ± 0.3  

2-Benzo[b]furanyl 5o 25.0 ± 2.3  



 

2-Benzo[b]thienyl 5p 10.0 ± 0.8  

2-Benzothiazolyl 5q 6.1 ± 0.5   

2-Indolyl 5r 280.0 ± 5.5  

3-Indolyl 5s 800.0 ± 11.5  

 

In vitro pharmacological evaluations 

Following the results of the kinetic studies, and in view of evaluating further their inhibitory 

properties, seven O-unprotected sugar-derived spiro-isoxazolines (5f-h, k-n spanning over the 

whole inhibition range observed) and the acetylated analogue 4h have been selected for in 

vitro evaluation with rat and human hepatocytes in primary cultures. Hepatocytes in primary 

culture were isolated in situ from rat liver for rat hepatocytes or from surgical liver pieces for 

human hepatocytes (see Table S1). 1,4-Dideoxy-1,4-imino-D-arabinitol (DAB), known as a 

highly potent in vitro GP inhibitor55 (Ki = 400 nM), was selected as the reference compound 

based on its validated in vivo activity in a GP-dependent glycaemia study.55-58 A screening in 

primary rat hepatocytes for glucose release after glucagon stimulation was performed. 

Compounds have also been evaluated in human hepatocytes by measuring both glucose 

release and intracellular glycogen to evaluate species specificity. 

Among the seven unprotected compounds (5f-h, k-n), five (5f, 5g, 5l, 5m, 5n) 

displayed half-maximal inhibitory concentration (IC50) superior to 100 M both in rat and 

human hepatocytes both for glucose release (Table 3) and for intracellular glycogen content 

(Table 4, human hepatocytes only). Due to their poor properties, these compounds were not 

evaluated further. Compounds 5h and 5k, which displayed IC50 values in the micromolar 

range appeared as two interesting candidates with highly similar inhibitory potencies 

measured both in rat and human models. In human hepatocyte cultures, IC50 calculated for 

glucose release (product of GP-mediated glycogen depolymerization) or intracellular 

glycogen content (substrate of GP-mediated glycogen depolymerization) are similar (13 to 22 



 

µM, Tables 3&4), proving that compounds 5h and 5k targeted glycogenolysis via GP 

inhibition in the cellular model. 

Acetate protecting groups are usually cleaved by ubiquitous esterases and the higher 

lipophilicity of the molecule would facilitate cell permeation.59-62 The acetylated compound 

4h was also evaluated as a prodrug of the O-unprotected derivative 5h. To our delight, lower 

IC50 values were consistently recorded for compound 4h in comparison to the O-unprotected 

derivative 5h. This observation pointed to better species specificity for the acetylated 

compound 4h than for compound 5h. This lack of species difference was established for two 

indole site inhibitors against recombinant rat and human liver GPa63 and also for another 

indole site inhibitor studied in rat and human liver cells.64 

 

Table 3: In vitro IC50 for the acetylated spiro-isoxazoline 4h and unprotected analogues 5f-

h,k-n based on glucose release after glucagon stimulation in rat and human hepatocytes in 

primary cultures 

Ar =  Compound Glucose release 

IC50 (M)
a
 

Rats Humans 

O-Acetylated derivative   

2-Naphthyl 4h 13.58 ± 0.44 2.50 ± 2.68 

O-Unprotected derivatives   

Ph-4-SMe 5f >100 >100 
Ph-3,5-di-OMe 5g >100 >100 

2-Naphthyl 5h 36.00 ± 12.93 19.95 ± 4.90 

2-Naphthyl-6-OH 5k 30.07 ± 2.78 22.16 ± 3.74 

9-Phenanthrenyl 5l >100 >100 

1,3-Benzodioxol-5-yl 5m >100 >100 

2,3-Dihydrobenzo-1,4-dioxin-6-yl 5n >100 >100 
 

a IC50 values are average triplicate measurements for three (4h and 5h) to five (5k) human hepatocyte cultures 
(see supporting information) and average for three to five measurements in rat hepatocytes cultures. 



 

Table 4: In vitro IC50 for the acetylated spiro-isoxazoline 4h and unprotected analogues 5f-

h,k-n based on intracellular glycogen content after glucagon stimulation of human 

hepatocytes in primary cultures 

Ar =  Compound Intracellular glycogen 

IC50 (M)
a
 

Humans 

O-Acetylated derivative  

2-Naphthyl 4h 2.38 ± 2.64 

O-Unprotected derivatives  

Ph-4-SMe 5f >100 
Ph-3,5-di-OMe 5g >100 

2-Naphthyl 5h 14.18 ± 8.16 

2-Naphthyl-6-OH 5k 13.78 ± 12.74 

9-Phenanthrenyl 5l >100 

1,3-Benzodioxol-5-yl 5m >100 

2,3-Dihydrobenzo-1,4-dioxin-6-yl 5n >100 

 
a IC50 values are average triplicate measurements for three (4h and 5h) to five (5k) human hepatocyte cultures 
(see supporting information) 

 

The analysis of the concentration-response curves for glucose release (Figure 2) and 

intracellular glycogen content (Figure 3) allowed for a comparison against DAB. Both O-

unprotected derivatives 5h and 5k necessitated slightly higher concentrations in comparison 

to DAB to obtain 50% inhibition. Nevertheless, such concentrations were still in agreement 

with potential pharmacological applications. However, the acetylated compound 4h 

performed similarly to DAB in such in vitro assays.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Glucose release from rat and human hepatocytes after glucagon stimulation in vitro 

measured in the presence of compounds 4h, 5h, and 5k versus DAB as the reference 

compound. Compounds with IC50 > 100 M are not presented. 
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Figure 3: Intracellular glycogen content in human hepatocytes after glucagon stimulation in 

vitro measured in the presence of compounds 4h, 5h, and 5k versus DAB as the reference 

compound. Compounds with IC50 > 100 M are not presented. 

 

In vivo pharmacological evaluations 

The glucose-lowering effect was evaluated in vivo with the glucagon challenge test in the 

Zucker fa/fa rat model for the two best compounds 5h and 5k identified above (Tables 3&4). 

This rat model, characterized by hyperphagia and insulin resistance with hyperinsulinemia, 

was chosen because the hepatic glycogen content is high. 

In this test, glucagon (200 g/kg, in a single subcutaneous “SC” administration) was 

used as hyperglycemic agent. The pharmacological effect of compounds 5h and 5k was 
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evaluated while the acetylated compound 4h could not be tested in vivo because of poor water 

solubility. Each compound was given orally in a single administration. Compound 5k showed 

no dose-dependent effect (data not shown). The results of the unprotected compound 5h are 

presented in Figure 4.  

The kinetics of liver glucose output (Figure 4A) and the corresponding areas under the 

curves (AUC) for 45 min (Figure 4B) revealed a dose-dependent decrease in liver glucose 

production in the range of 7.5 to 30 mg/kg, reaching a plateau of approximately 30% 

reduction at 30 mg/kg (Figure 4B, ** p<0.01 for 30 mg/kg and *** p<0.001 for 60 mg/kg). 

This effect on liver glucose output may be relevant for therapeutic applications since the rate 

of endogenous glucose production is elevated in type 2 diabetes.65 

  



 

 

 

 

 

 

 

 

 

 

 

Figure 4: Hepatic glucose production of the unprotected compound 5h obtained in Zucker 

fa/fa rats in acute in vivo glucagon challenge. (A) Kinetics of glucose output for 45 minutes 

after acute glucagon administration in mmol/L. (B) Area Under the Curves corresponding to 

glucose release for 45 minutes after acute glucagon administration. 
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A subchronic oral administration was performed for compound 5h. The dose chosen 

was the first significantly effective dose in the acute in vivo glucagon challenge test, namely 

30 mg/kg. A glucagon challenge test was performed after 4 days of treatment. A reduction of 

hepatic glucose production of approximately 19% (* p<0.05) was observed (Figure 5A-B), 

which is accompanied by a reduced insulin output (Figure 5C). Furthermore, in spite of the 

subchronic treatment, hepatic glucose production was not further reduced, indicating that the 

activity of glycogen phosphorylase was preserved. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

-20 0 20 40 60 

G
ly

c
a

e
m

ia
 (

m
m

o
l.
L

-1
) 

Time (min) 

Delta Tx-T0 for controls 

Delta Tx-T0 for treated 

rats at 30mg/kg 

A 

0 

100 

200 

300 

400 

500 

600 

Controls Treated 

G
ly

c
a

e
m

ia
 (

A
U

C
) 

* 

B 

0 

5 

10 

15 

20 

25 

30 

35 

40 

-20 0 20 40 60 80 

In
s

u
li
n

e
m

ia
 (

n
g

.m
L

-1
) 

Time (min) 

Delta Tx-T0 for controls 

Delta Tx-T0 for treated 

rats at 30 mg/kg 

C 



 

Figure 5: Plasma glucose and insulin concentrations of the unprotected compound 5h 

obtained in Zucker fa/fa  rats subjected to in vivo glucagon challenge after subchronic 

administrations. (A) Kinetics of glucose output for 45 minutes after acute glucagon 

administration in mmol/L. (B) Area Under the Curves corresponding to glucose release for 45 

minutes after acute glucagon administration. (C) Insulin concentrations for 45 minutes after 

acute glucagon administration in ng/mL. Plasma glucose and insulin concentrations were 

expressed as variations (delta), meaning that the basal value of glycaemia or insulinemia was 

subtracted for each individual value and for each rat. 

After 6 days of treatment at 30 mg/kg of compound 5h, an oral glucose tolerance test 

(OGTT, 3 g/kg) was performed (Figure 6). The results are expressed in delta, it means that the 

basal value of glycaemia or insulinemia is subtracted for each individual value and for each 

rat. The areas under the curve (AUCs) for 60 min were established. There is a significant 

decrease in insulinemia (***p<0.001) in the 5h treated group comparatively to controls, 

whereas glycaemia was not different between the two groups, which may be indicative of an 

improved insulin sensitivity in this hyperinsulinemic insulin-resistant rat model. 

 

 



 

 

Figure 6: AUC 60 min for delta glycaemia and delta insulinemia measured in Zucker fa/fa 

rats in an oral glucose tolerance test (OGTT) after 6 days of treatment with compound 5h. 

Plasma glucose and insulin concentrations were expressed as variations (delta), meaning that 

the basal value of glycaemia or insulinemia was subtracted for each individual value and for 

each rat. 

In the present study, we have characterized in vitro and in vivo pharmacological 

effects of glucose-based spiro-isoxazolines as novel potent glycogen phosphorylase inhibitors. 

Spiro-isoxazolines such as acetylated compound 4h, and the O-unprotected analogues 5h and 

5k, reduced glucagon-stimulated glucose output by inhibiting glycogenolysis in rat and 

human hepatocytes (Table 3, Figure 2). 

The potencies of the different compounds for inhibition of glucose output are rather 

similar between rat and human cells, indicating the absence of species specificity (Table 3). 

Freeman et al.63 have established that there was no species difference in the potencies of 

GPi688 and GPi819, two indole site inhibitors, against recombinant rat and human liver 

phosphorylase a. Moreover, this lack of species specificity for liver glycogen phosphorylase is 

consistent with data reported for the indole site inhibitor CP-91149 in rat and human liver 



 

cells.64 Compound 5h was active in vivo in the Zucker fa/fa rat model of insulin resistance, 

dose-dependently decreasing hepatic glucose output to a maximal 30% inhibition (Figure 4). 

This effect may be relevant for therapeutic application since the rate of endogenous glucose 

production is elevated in type 2 diabetes.65 Indeed, hepatic glucose production tends to 

normalize towards the values usually obtained in Wistar normal rat 

The moderate level of inhibition of glycogen phosphorylase contrasts with the 

complete suppression of glucagon-induced glucose output observed in the presence of DAB.58 

The fact that compound 5h does not completely suppress glycogen phosphorylase activity 

may be of interest in limiting potential unwanted effects. In particular, the lack of tissue-

specificity of GP inhibitors between liver and muscle glycogen phosphorylase isoforms could 

lead to impairment of exercise-mediated metabolism of muscle glycogen. Maintaining a 

certain level of activity may limit this risk, although the selection of a liver-specific inhibitor 

would be preferred for long-term therapy.66 

Hepatic glucose production was not further reduced after repeated administrations of 

GP inhibitors, indicating that, although at a lower level, the activity of GP was preserved and 

might limit the risk of hypoglycaemia (Figure 5). After the short-term repeated administration 

of 5h in the insulin-resistant rat model, the results of the oral glucose tolerance test (OGTT) 

suggested that insulin sensitivity might be improved in treated animals (Figure 6).  

Glucopyranosylidene-spiro-thiohydanthoin (TH) was reported as a potent GP inhibitor 

in vivo using diabetic rat models (streptozotocin rat and Zucker Diabetic Fatty rat).27, 31 TH 

was efficient at low dose (50 µM) and induced lower plasma glucose levels and restored 

hepatic glycogen content. In addition, TH was also shown to restore whole body insulin 

sensitivity in streptozotocin-treated rats.67 In a parallel study from the same group, N-(3,5-

dimethyl-benzoyl)-N’-(-D-glucopyranosyl)urea was evaluated in vivo and improved glucose 



 

tolerance in diabetic mice models resulting from higher hepatic glucose uptake.32 Each of 

these studies used glucose-based GP inhibitors targeting the catalytic site of the enzyme as 

proven by X-ray crystallographic studies. Taken together, these results and the present study 

described herein suggest that targeting the catalytic site of glycogen phosphorylase with 

glucose-based spiro-isoxazolines may be a promising strategy to control the dysfunctional 

glycemic regulation characterizing type 2 diabetes. Further research efforts are encouraged to 

validate this approach and evaluate its benefice-to-risk balance. 

Conclusion 

Type 2 diabetes is a major public health problem and design of glycogen phosphorylase 

inhibitors appears as a promising target for a better control of hyperglycaemia. 

Glucopyranosylidene-spiro-isoxazolines have been recently identified as potent GP inhibitors. 

Their preparation from the corresponding methylene exo-glycals and nitrile oxides was 

limited by the availability of the -chlorooximes as precursours of these dipoles. The present 

synthetic strategy utilizes the readily available oximes and their oxidation is realized in situ 

with bleach, thus giving access to additional glucopyranosylidene-spiro-isoxazolines 

previously not attainable. This mild and direct procedure appeared to be applicable to a broad 

range of substrates. The GP inhibitors exhibited IC50 values in the micromolar range and a 

selection were further evaluated in vitro using rat and human hepatocytes and the most 

promising compounds were investigated in Zucker fa/fa rat model in acute and sub-chronic 

assays. The 2-naphthyl substituted glucopyranosylidene-spiro-isoxazoline was the best 

compound identified in this study and lowered glucose levels in blood of nearly 33% at a dose 

of 30 mg/kg, indicating that glucose-based spiro-isoxazolines can be considered as anti-

hyperglycemic agents in the context of type 2 diabetes. The present study is one of the few in 



 

vivo investigations for the glucose-based GP inhibitors and provides unprecedented data in 

animal models for such drug candidates. 
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EXPERIMENTAL SECTION 

SYNTHESES 

General procedure A1 for the synthesis of aromatic aldoximes 

To a suspension of aldehyde (30/35 mmol) in ethanol (50 mL) was added NH2OH•HCl (2 eq) 

and NaOH pellets (1.8 eq). The suspension was stirred at 80°C for 4 h and concentrated in 

vacuo. The crude product was extracted in EtOAc (200 mL). The organic layer was washed 

with 1N HCl (2×200 mL), water (4×200 mL), dried (MgSO4) and concentrated in vacuo. If 

TLC showed impurities, the solid was washed with a minimum of cold Et2O to afford the 

aldoxime as a white powder. 

General procedure A2 for the synthesis of aromatic aldoximes
68

 

An aldehyde (3.24 mmol) was dissolved in EtOH (12 mL), then a solution of NH2OH•HCl 

(360 mg, 5.18 mmol) and Na2CO3 (247 mg, 2.33 mmol) in water (3 mL) was added, and the 

mixture was boiled at reflux temp for 20 min. Saturated aqueous NaCl solution (30 mL) was 

added, and the mixture was extracted by EtOAc (2×20 mL). The combined organic layers 

were dried (MgSO4) and evaporated to give the expected aldoxime which was used without 

further purification. 

General procedure B for the synthesis of aromatic chloroximes/hydroximoyl chlorides 

To a solution of aldoxime 1b-e,h,o-s (5.0 mmol, 1 eq) in dry DMF (30 mL) was added NCS 

(1.2 eq) in portions over 2 min while HCl gas was bubbled in the solution. The mixture was 

stirred at rt for 2 h, diluted with EtOAc (150 mL), washed with water (3×100 mL), and brine 

(3×100 mL). The organic layer was dried over MgSO4 and concentrated in vacuo. If TLC of 

the crude product showed impurities, it was dissolved in a minimum volume of CH2Cl2. 

Precipitation with petroleum ether and filtration afforded hydroximoyl chlorides 2b-e,h as 

solids. 

 



 

General procedure C for the synthesis of spiro-isoxazolines 4b-e,h with -chloroximes 

2b-e,h 

A solution of Et3N (3 M in CH2Cl2) was added slowly with a syringe pump (~16 h) to a 

solution of exo-glucal 3A (1 mmol) and hydroximoyl chlorides 2b-e,h (3 to 5 eq) in dry 

CH2Cl2 (30 mL). The mixture was stirred at rt overnight and concentrated in vacuo. The crude 

product was purified by chromatography on silica gel (petroleum ether/EtOAc 7:3) to afford 

spiro-isoxazolines 4b-e,h. 

General procedure D for the synthesis of spiro-isoxazolines with oximes 2a,f-j,l-s 

From exo-glucal 3A: An aqueous solution of NaOCl (5 mL, 9°Chl prepared from a 36°Chl 

commercial solution, diluted 4 times) was added slowly with a syringe pump (~16 h) at rt to a 

solution of methylene exo-glycal 3A (100 mg, 0.29 mmol) and aldoxime (0.58 mmol, 2 eq) in 

THF (10 mL). The mixture was diluted with water (10 mL) and extracted with CH2Cl2 (3×20 

mL). The organic layer was dried over MgSO4 and concentrated in vacuo. The crude product 

was purified by silica gel chromatography (petroleum ether/EtOAc, 7:3) to afford the 

corresponding spiro-isoxazolines 4a,f-j,l-p. 

From exo-glucal 3B: An aqueous solution of NaOCl (0.2 M, 20 mL) was added slowly with a 

syringe pump (~16 h) to a solution of exo-glucal 3B (0.262 mmol) and carbaldehyde oxime 

2q-s (1.1 eq) in THF (4 mL). The reaction was diluted with EtOAc (30 mL) and the aqueous 

layer was extracted with EtOAc (2×30 mL). The collected organic layer was washed with 

brine (20 mL), dried (MgSO4), filtered and evaporated under reduced pressure. The residue 

was purified by flash chromatography (petroleum ether/EtOAc, 3:2) to afford the desired 

spiro-isoxazolines 4q-s. 

General procedure E for the Zemplén deacetylation 

Commercially available powdered MeONa (0.4 eq) was added to a suspension of acylated 

spiro-isoxazoline (~0.2 mmol) in dry MeOH (5 mL). If the acylated substrate was not soluble 



 

in MeOH, CH2Cl2 was added in order to reach reasonable solubility. After stirring at rt until 

TLC showed completion of the reaction (15 to 20 h), the mixture was neutralized with 

Amberlite IR 120 resin, filtered and concentrated in vacuo to afford the corresponding O-

unprotected spiro-isoxazoline. 

Kinetic evaluation of compounds
69-70

 

Evaluation of the inhibitory potency of compounds on RMGPb (isolated from rabbit skeletal 

muscle as described previously71 using 2-mercaptoethanol) was performed in vitro in the 

direction of glycogen synthesis at 30°C in the presence of 2 mM glucose-1-phosphate, 1 mM 

AMP. Different inhibitor concentrations varying from 5 μM to 1 mM were tested and the 

phosphate release was evaluated according to reported methods.. 

 

PHARMACOLOGICAL EVALUATIONS 

Rat and human hepatocytes isolation 

Male Wistar rats (160-220 g) were anaesthetized with sodium pentobarbital administered 

intraperitoneally. Hepatocytes were isolated from rats fed ad lib using a two-step perfusion 

technique.72 Cell viability, assessed by Trypan Blue exclusion, was consistently greater than 

75%. Cells were seeded on collagen-coated 12-well plates in basal medium (William’s E 

containing 11.1 mM glucose, 100 U/mL penicillin, 100 g/mL streptomycin) supplemented 

with 6% FCS at a density of 830000 cells/well. After 4 h initial plating, the latter was replaced 

with a basal medium supplemented with 100 nM dexamethasone (in order to remove dead 

cells) and cells were cultured for 24 h. 

Human hepatocytes were isolated from pieces of liver resection after surgery for medical 

purpose. Use of this human material was approved by our local and national ethics committee 

and legal instances (MESR DC-2008-531). List and information on livers used in this study 

are shown in supplementary data (Table S1). Process for human hepatocyte isolation has been 



 

previously described73-74 and adapted from the two-step perfusion method described for rat 

hepatocyte isolation.72 Hepatocytes were seeded at 1.106 hepatocytes/well on collagen type I 

12 wells plate (BectonDickinson, Pont De Claix, France) in platting medium consisting in 

short term culture medium73-74 supplemented with 2% heat inactivate fetal bovine serum 

(Lonza, Levallois Perret, France). After overnight attachment, platting medium and 

unattached cells were eliminated and medium changed to glycogen loading medium. 

Pharmacological tests in vitro: 

1) Rat hepatocyte primary culture  

Hepatocytes were loaded in glycogen by incubation 20 h in loading medium: William's E 

containing 11.1 mM glucose, 100 U/mL penicillin, 100 g/mL streptomycin supplemented 

with 100 nM dexamethasone, 13.9 mM glucose and 100 nM insulin. After loading period, 

cells were washed three times with PBS and incubated 3 h in buffer56 [117.6 mM NaCl / 5.4 

mM KCl / 0.82 mM MgSO4 / 1.5 mM KH2PO4 / 20.0 mM Hepes / 9.0 mM NaHCO3 / 0.1% 

(w/v) BSA / 2.25 mM CaCl2 (pH 7.4)] without or with GP inhibitor at different concentrations 

in the presence of 100 nM glucagon (stimulating conditions). After 3 h incubation, 

supernatants were collected and frozen at -20°C until glucose quantification. 

2) Human hepatocyte primary culture  

Hepatocytes were loaded in glycogen by incubation 20 h in loading medium: Ham’s 

F12/William’s E medium (1:1) supplemented with bovin serum albumin 15 µg/mL, 66.5 µM 

ethanolamine, 5 mg/L transferrin, 7.2 µM linoleic acid, 100 nM insulin, 0.1 µM 

dexamethasone, 4.5 g/L glucose, 0.4 mM sodium pyruvate, 50 mg/L ascorbic acid, 100 U/mL 

penicillin, 100 g/mL streptomycin (all products from Sigma-Aldrich, St Quentin Fallavier, 

France). After loading period, cells were washed three times with PBS and incubated 3 h in 

DMEM without glucose (Sigma) in the presence of 100 nM glucagon (Novo Nordisk, 

Puteaux, France) with or without GP inhibitor at different concentrations. After 3 h incubation, 



 

supernatants were collected and frozen at -20°C until glucose quantification and plates were 

washed three times with PBS, dried and frozen at -20°C before intracellular glycogen content 

measurement. 

Glucose and glycogen quantifications 

Glucose release in nmol/well was measured by using a glucose oxidase kit (Megazyme, 

Wicklow, Ireland). Results were presented in percentage from glucagon stimulation values. 

Glucose release quantification was performed in 96 wells plate. 10 µL of supernatant was 

incubated with 150 µL of glucose oxidase solution, 20 min at 40°C. Absorbance at 492 nm 

was measured and glucose concentration in sample was calculated using a linear regression 

from standard curve. 

Glycogen content was determined as previously described75 with minor modification and 

measured as glucose released in nmol/well. Glycogen was hydrolyzed to glucose by 

amyloglucosidase (exo--1.4-glucosidase) digestion. Amyloglucosidase was diluted at 0.75 

UI/mL in 0.02 N sodium acetate buffer pH 4.8. 1 mL/well was added and incubated 2h at 

40°C under agitation. After 2 h, glucose released from glycogen hydrolysis was quantified 

using the same protocol as described above. 

Inhibitory Concentration 50% (IC50) calculation 

Glucose in supernatant and intracellular glycogen content were expressed in percentage of 

glucagon stimulation values for IC50 calculation. IC50 were determined using GraphPad 

Prism5 (GraphPad Software, La Jolla, CA, USA). Values are means of three independent 

experiments. The compounds displaying no effect up to 1 mM in vitro displayed IC50 values 

above 100 M and were not considered for pharmacological studies in vivo. 

 



 

Glucagon challenge in vivo 

Acute test: Experiments were performed in male 10-13 week-old Zucker fa/fa rats (Harlan 

Laboratories, Gannat, France) housed in groups of 3 on a 12h/12h light-dark schedule cycle. 

They were allowed free access to both standard food and fresh water. Institutional guidelines 

for animal care and use were followed. 

After 5 days of stabilization, in each experiment, 6 male Zucker fa/fa  rats were used. Three 

rats received a dose of tested compound and three others received the vehicle by oral 

administration. Twenty minutes later, the glucagon challenge was realized by intra-scapular 

subcutaneous injection of glucagon (200 g/kg). Blood samples were collected from the tail 

vein before and after glucagon administration at 0, 10, 20, 45 min. After centrifugation at 4°C, 

plasma glucose samples were measured immediately by the glucose oxidase method.76 

Finally, either vehicle (4-5 mL/kg, per os) or GP inhibitors (7.5-90 mg/kg, per os) were orally 

administrated 65 minutes prior to the final blood glucose measurement to assess their ability 

to reduce the glucagon induced hyperglycaemia.77 

Subchronic tests: After 5 days of stabilization, 6 male Zucker fa/fa rats were treated; three of 

them received a dose of GP inhibitor and three others received the vehicle by oral 

administration during 4 days. After the fourth administration, animals were submitted to a 

glucagon challenge test as previously described. Animals were then treated 2 additional days. 

They were then submitted to an oral glucose tolerance test (OGTT, glucose at 3 g/kg). Before 

the OGTT, animals were deprived of food overnight. Blood samples were collected from the 

tail vein before and after glucose administration at different times. After centrifugation at 4°C, 

plasma glucose levels were measured by the glucose oxidase method76 and plasma insulin 

concentrations using a radio-immunological method.78
 



 

Data analysis 

All data were expressed as means ± SEM. Multiple group comparisons were performed by 

analysis of variance (ANOVA) followed by Fisher’s protected Least Significant Difference 

test at * p<0.05, ** p<0.01 or *** p<0.001 using the Stat Graphics software. 

For in vivo experiments, glycaemia and insulinemia time curves were expressed in mmol/L 

and ng/mL respectively. Plasma glucose and insulin concentrations were expressed as 

variations (delta), meaning that the basal value of glycaemia or insulinemia was subtracted for 

each individual value and for each rat. The areas under the curve (AUC) for 60 min were 

established. 
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