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Abstract. The pathophysiology of hemorheological and microcirculatory disturbances in septic process -mostly during the10

early hours- still not clarified in all the details, yet. In anesthetized pigs living E. coli (ATCC 25922 strain) was administered11

intravenously with an increasing concentration and the animals were observed for 8 hours. Before the intervention and in every12

2 hours arterial (cannulated femoral artery) and venous (cannulated external jugular vein) blood samples were collected for13

hemorheological laboratory tests: blood and plasma viscosity, ESR, leukocyte anti-sedimentation rate, erythrocyte deformability14

(together with osmoscan parameters) and erythrocyte aggregation (using light-transmission and laser back-scattering methods)15

Control animals were stable over the 8-hour anesthesia, while septic animals died by the 6th hours in a fulminant sepsis. Over16

the experimental period, the tendency of impairment in erythrocyte deformability (together with osmotic gradient ektacytometry17

parameters) and the controversial decreasing of erythrocyte aggregation values (declining all aggregation index values, elongating18

t1/2) were well detected in this porcine model during the early hours (4–6) of fulminant sepsis. The in vitro effect of these bacteria19

on erythrocytes’ micro-rheological parameter was similar: decreasing red blood cell deformability and lowering aggregation.20

Further studies are needed to clarify the early micro-rheological changes of bacteremia and the developing sepsis.21

Keywords: Red blood cell deformability, red blood cell aggregation, E. coli, sepsis, animal model22

1. Introduction22

Sepsis still means a serious challenge in the clinical practice. It is estimated that 13 million people23

become septic each year, the mortality of severe sepsis is about 30–50% and of the septic shock it is over24

50% [23, 40, 47]. The pathophysiology of the septic process (colonization – infection – bacteremia and25

with systemic inflammatory response syndrome turning towards sepsis – severe sepsis – septic shock and26

multiorgan failure) is very complex and not completely clarified, yet. The sepsis pathophysiology includes27

numerous links to the rheology of blood since sepsis is considered to be a disorder of the microcirculation28

[24, 42, 45].29
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The disturbed microcirculation in sepsis can be resulted by numerous factors including blood and30

plasma viscosity alterations, disturbed micro-vascular blood flow and vascular resistance, decreased red31

blood cell deformability, increased red blood cell aggregation among others [4, 16, 24, 42]. It is known32

that fibrinogen concentration and plasma viscosity increases, and red blood cell deformability impairs and33

their aggregation is enhanced significantly both in experimental sepsis and in clinical manifestations [4,34

7, 8, 34, 38]. Furthermore, filterability of neutrophils also significantly decreases, while their aggregation35

markedly increases in severe sepsis and septic shock [11, 48, 47].36

However, the magnitude of changes and the dynamics of micro-rheological alterations as well as37

the ‘mystified border’ between reversibility and irreversibility are still unclear. Numerous experimental38

models are known using various animal species and different methods to induce the sepsis [17, 18, 37].39

Besides the limitations of the experimental model and sometimes the difficult comparability, these in vivo40

studies are highly important to reveal and understand the pathomechanism. Intravenously administered41

live bacteria method is one of the ways, by which an increasing magnitude of bacteremia can be produced,42

being comparable with some clinical situation [3, 12, 18, 37, 44]. However, the complete hemorheological43

characteristics of the very early hours of induced bacteremia and of the response reaction is not known44

completely.45

In our study we aimed to investigate whether E. coli bacteremia of increasing concentration results in46

sepsis and whether micro-rheological parameters do alter during the early hours of the septic process in47

a porcine model.48

2. Materials and methods49

2.1. Experimental animals and protocol50

The experiments were carried in accordance with the European Community guidelines and State51

Regulations with the approval of the University of Debrecen Committee of Animal Welfare (reg. Nr.:52

21/2013. DEMAB). Nine juvenile female Hungahib pigs (bodyweight: 17.8 ± 2 kg) were subjected into53

Control (n = 4) or Septic Group (n = 5). Under general anesthesia (15 mg/kg ketamin, i.m.+1 mg/kg xylazin54

i.m.) tracheostomy was performed for assisted ventilation, and the left external jugular vein and femoral55

artery have been cannulated for sampling and hemodynamic measurements. The animals did not receive56

anticoagulant.57

In Sepsis group Escherichia coli suspension (2.5 × 105/ml; strain: ATCC 25922, Department of Medi-58

cal Microbiology, University of Debrecen) was intravenously administrated in a continuously increasing59

manner as the followings: 2 ml in the first 30 min, then 4 ml in 30 min and afterwards 16 ml/h for 2 hours (so60

a total of 9.5 × 106 E. coli within 3 hours) (Fig. 1). In the Control Group the anesthesia was maintained61

for 8 hours, infusion was administered as a similar volume of isotonic saline solution and no other62

intervention was made. At the end of the experimental period the animals have been over-anaesthetized.63

At the beginning of the procedure (prior to E. coli administration) blood samples were collected in64

parallel from the cannulated external jugular vein and the femoral artery (base samples) directly into tubes65

containing K3-EDTA (1.5 mg/ml) for all the laboratory tests, except for sedimentation measurements of66

venous blood, where 0.109 M sodium-citrate was used as anticoagulant. Further arterial and venous blood67

samples were collected at 2, 4, 6 and 8 hours after the time point when the infusion started. At the same68

times, body temperature (central venous, T [◦C], mean arterial pressure (MAP [mmHg]), heart rate (HR69

[1/min]) and oxygen saturation (Sat [%]) were recorded.
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Fig. 1. Protocol of the intravenous administration of living E. coli suspension (2.5 x 105/ml). Dashed lined plot shows the
step-wisely increased volume of the suspension [ml], the continuous black line represents the sum amount of the administered
E. coli bacteria (x105) during the first 3 hours of the experiment.

2.2. In vitro study (effect of the presence of living bacteria on blood rheology)70

Venous blood samples taken from two animals at the beginning of the experiment (base or normal blood71

sample) were divided into two sub-samples. Those were mixed with suspension of E. coli bacteria at half72

and total dose that was presented in vivo (according to the totally given amount of bacteria described73

above and the circulating blood volume, as 60 ml/kg).74

Within 15–20 minutes after the mixing and after 2 hours of incubation at room temperature micro-75

rheological tests (red blood cell deformability, osmotic gradient ektacytometry, red blood cell aggregation)76

were performed.77

2.3. Laboratory measurements78

2.3.1. Hematological parameters79

A Sysmex F-800 semi-automated microcell counter (TOA Medical Electronics Co., Japan) was used to80

determine hematological parameters. In this paper white blood cell count (WBC [x103/�l]), red blood cell81

count (RBC [x106/�l]), hematocrit (Hct [%]), mean corpuscular volume (MCV [fl]), mean corpuscular82

hemoglobin content (MCH [pg]), and platelet count (Plt [x103/�l]) are shown for comparisons.83

2.3.2. Erythrocyte sedimentation rate and leukocyte anti-sedimentation rate84

The tube containing the sodium-citrate-anticoagulated venous blood samples were taken in vertical85

positions and left for gravity sedimentation. After 1 hour the regular erythrocyte sedimentation rate (ESR86

[mm/h]) was registered.87

To determine the leukocyte antisedimentation rate (LAR [%]) the upper and the lower part of the
sedimentation blood column were gently separated and the white blood cell count was measured in both
subsamples. The LAR was calculated using the Bogar’s formula [9]:

LAR = 100 × (WBCupper − WBClower)/(WBCupper + WBClower).
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This parameter can provide information about the distribution of light and heavy polymorphonuclear88

leukocytes [9].89

2.3.3. Blood and plasma viscosity90

Viscosity measurements were carried out at 37◦C using Hevimet-40 capillary viscosimeter (Hemorex91

Ltd., Hungary) within 1 hour after sampling. Plasma was prepared by centrifuging at 800 g for 1092

minutes. Whole blood viscosity values (WBV [mPas]) at 90 s−1 shear are used for the compar-93

isons, and according to the Matrai formula, correction for 40% hematocrit has been also performed:94

WBV40%/PV = (WBVHct/PV)40%/Hct, where WBV40%: corrected for 40% Hct; WBVHct: whole blood vis-95

cosity measured at the native Hct; PV: plasma viscosity; Hct: actual hematocrit value [%] of the sample96

[26].97

2.3.4. Red blood cell deformability98

Red blood cell deformability was determined by a LoRRca MaxSis Osmoscan device (Mechatronics99

BV, The Netherlands). Blood sample of 5 �l was taken into 1 ml of isotonic polyvinyl-pyrrolidone solution100

(360 kDa PVP in normal phosphate buffered saline; viscosity = 27 mPas, osmolality = 290–300 mOsm/kg;101

pH 7.3) and mixed gently. Based upon the laser diffraction pattern changes the elongation index (EI)102

values were determined in the function of shear stress (SS) in a range of 0.3–30 Pa. The EI is equal103

to (L-W) / (L + W), where L is the length and W is the width of the diffractogram [19]. EI increases104

with red blood cell deformability. The measurements were carried out at 37 ◦C. Comparing EI-SS curves105

Lineweaver-Burk analysis was performed, calculating the maximal elongation index (EImax) and the shear106

stress values at half EImax (SS1/2 [Pa]): 1/EI = SS1/2 / EImax x 1/SS+1/EImax. Furthermore, EImax / SS1/2107

ratio was also calculated [6].108

For the osmotic gradient ektacytometry (osmoscan) test [15] 250 �l of blood was gently mixed in 5 ml109

PVP solution. At constant shear stress of 30 Pa the elongation index values were continuously determined110

while the osmolality was changing (rising gradually from 0 to 500 mOsmol/kg). Among the device-given111

parameters we analyzed the minimal elongation index values measured at low-osmotic environment112

(minimal EI), the maximal elongation index values (maximal EI), the belonging osmolality vales (minO113

and maxO as ‘optimal’ osmolality), and the area under the individual elongation index-osmolality curves114

(AUC). Additionally, we calculated further parameters describing the phase between minEI and maxEI115

in the function of osmolality: �EI, as the difference between maximal and minimal EI values; �O, as116

the difference between osmolality values at maximal and minimal EI; and �EI / �O [31].117

2.3.5. Red blood cell aggregation118

Based on light-transmittance method, a Myrenne MA-1 erythrocyte aggregometer (Myrenne GmbH,119

Germany) was used for determining aggregation index values: M (at shear rate of 0 s−1) and M1 (at120

shear rate of 3 s−1) 5 or 10 seconds after disaggregation. The indices (M 5 s, M1 5 s, M 10 s, M1 10 s)121

increase with enhanced red blood cell aggregation [19]. The LoRRca device was also used to measure122

red blood cell aggregation parameters by syllectometry determining the following parameters: amplitude123

(Amp [au]), aggregation index (AI [%]) and the aggregation half-time (t1/2 [s]) [19].124

2.4. Statistical analyses125

Data are presented as means ± standard deviation (S.D.). According to the normality of data distri-126

bution, for inter-group (Control vs. Sepsis) comparison Student t-test or Mann-Whitney RS test, for127
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intra-group comparison (vs. base values) one-way ANOVA tests (Dunn’s or Bonferroni’s method) were128

used. A p value less than 0.05 was considered as statistically significant.129

3. Results130

3.1. Hemodynamical changes and mortality rate131

In the Septic group, as expected, all animals developed fulminant sepsis and died within by 3-7 hours (2132

animals in 3–4 hours, and 3 in 6–7 hour). In the septic animals the heart rate rose and mean arterial pressure133

dropped, their ratio increased significantly compared both the base values (at the 6th hour: p < 0.001) and134

the Control group (p = 0.004). The control animals showed stable condition over the 8-hour anesthesia135

(Table 1).136

3.2. Hematological parameters137

Table 2 summarizes selected hematological parameters. Total leukocyte count showed a continuously138

decreasing tendency in the Sepsis group, both in arterial and venous samples. By the 4th and 6th hours139

the values were significantly lower than the base values and that of the Control group (p < 0.001). The140

Control values were constant showing only an elevation by the end of the experimental period. The141

monocyte-granulocyte% showed slight increasing in both groups, but without significant differences.142

Red blood cell count was almost constant in both groups, however, by the 6th hour it was increased143

together with the hematocrit in the septic animals. Intergroup difference reached a significant level at the144

4th and 6th hours, both in arterial and venous blood. MCV values were slightly higher in Septic group145

compared to the Control.146

Platelet count dominantly decreased in septic animals, reaching the significance level by the 6th hours147

compared both the base and control values (p < 0.001).148

3.3. Erythrocyte sedimentation rate and leukocyte anti-sedimentation rate149

Erythrocyte sedimentation rate (ESR) remained constant in the control animals during the entire exper-150

imental period. In septic animals the ESR values increased stepwise till the 4th hours, and then decreased151

(Table 3).152

Table 1

Body temperature (Temp), heart rate (HR) / mean arterial pressure (MAP) ratio and oxygen saturation values of the Control
and the Sepsis groups during the experimental period

Variable Group Base 2 h 4 h 6 h 8 h

Temp [◦C] Control 36.73 ± 0.47 37.43 ± 0.41 37.83 ± 0.7 38.76 ± 1.35 39 ± 1.47
Sepsis 37 ± 1.21 37.85 ± 0.97 38.2 ± 0.42 38.5 ± 0.28 –

HR / MAP [1/mmHg.min] Control 0.86 ± 0.21 1.09 ± 0.34 0.98 ± 0.17 0.98 ± 0.21 1 ± 0.2
Sepsis 0.82 ± 0.18 1.48 ± 1.24 1.31 ± 0.24 ∗ 3.09 ± 0.82 ∗# –

Saturation [%] Control 97 ± 1.8 96.7 ± 0.9 94 ± 2.7 95.2 ± 1.5 95 ± 1.4
Sepsis 94.2 ± 3.1 91 ± 4.35 93.6 ± 6.1 90 ± 15.5 –

means ± S.D., ∗p < 0.05 vs. base, #p < 0.05 vs. Control; at 4 h and at 6 h n = 3 in Sepsis Group (used test: Bonferroni’s method
of one-way ANOVA on rank test, Mann-Whitney rank sum test).
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Table 2

Changes of selected hematological parameters in arterial and venous blood samples of the Control and the Sepsis groups

Variable Group Sample Base 2 h 4 h 6 h 8 h

WBC [x103/�l] Control A 15.3 ± 2.39 16.61 ± 0.79 17.63 ± 2.05 17.97 ± 0.61 20.45 ± 2.64
V 15.21 ± 1.97 17.36 ± 1.17 16.95 ± 2.69 16.16 ± 2.68 17.45 ± 7.05

Sepsis A 14.88 ± 3.21 13.94 ± 4.98 8.88 ± 3.77 ∗# 7.05 ± 3.58 ∗# –
V 14.53 ± 2.64 14.49 ± 5.08 8.85 ± 4.09 ∗# 7.88 ± 3.64 ∗# –

Mo+Gr% [%] Control A 43.25 ± 9.54 41.88 ± 8.84 53.2 ± 10.39 60.21 ± 13.39 68.25 ± 12.3
V 46.47 ± 10.7 41.42 ± 10.02 52.7 ± 11.26 58.35 ± 10.16 67.31 ± 8.22

Sepsis A 48.81 ± 6.77 46.14 ± 11.27 45.73 ± 16.42 59.14 ± 20.49 –
V 45.85 ± 7.03 45.49 ± 11.7 47.15 ± 20.2 53.15 ± 18.42 –

RBC [x106/�l] Control A 6.21 ± 0.51 6.48 ± 0.47 5.97 ± 0.85 5.99 ± 0.84 6.21 ± 0.71
V 6.27 ± 0.43 6.45 ± 0.31 5.85 ± 0.83 5.53 ± 1.14 5.78 ± 0.53

Sepsis A 6.65 ± 0.44 6.17 ± 0.32 6.7 ± 0.7 6.98 ± 0.89 –
V 6.44 ± 0.64 6.49 ± 0.33 6.85 ± 0.8 6.63 ± 0.93 –

MCV [fl] Control A 59.83 ± 4.54 62.76 ± 6.3 60.17 ± 2.82 58.71 ± 1.23 60.5 ± 3.41
V 57.65 ± 2.8 60.3 ± 3.88 58.26 ± 1.47 60.42 ± 5.72 60.11 ± 1.62

Sepsis A 61.99 ± 2.62 65.23 ± 7.88 65.93 ± 4.4 64.26 ± 3.05 –
V 63.88 ± 4.58 64.81 ± 6.44 63.63 ± 2.07 64.86 ± 3.26 –

MCH [pg] Control A 15.21 ± 0.87 14.76 ± 0.11 15.42 ± 0.89 15.48 ± 1.4 14.58 ± 0.99
V 14.91 ± 0.24 15.12 ± 0.39 15.07 ± 0.31 15.03 ± 1.21 15.37 ± 0.33

Sepsis A 15.66 ± 0.64 16.08 ± 0.83 17.08 ± 0.85 16.43 ± 1.76 –
V 16.35 ± 1.39 16 ± 0.86 16.73 ± 1.3 16.81 ± 0.92 –

Plt [x103/�l] Control A 608.5 ± 40.2 612.1 ± 127.4 565 ± 152.1 630.6 ± 105.8 555 ± 131.1
V 562.1 ± 119.3 562.3 ± 145.1 517.6 ± 114.8 578 ± 83.7 477.6 ± 88.7

Sepsis A 470.5 ± 55.1 401.75 ± 125.4 382.3 ± 126.2 221.5 ± 32.5 ∗# –
V 421.6 ± 88.9 384.6 ± 111.6 346.1 ± 108 204.5 ± 42.09 ∗# –

means ± S.D., ∗p < 0.05 vs. base, #p < 0.05 vs. Control. A = arterial blood sample, V = venous blood sample at 4 h and at 6 h n = 3
in Sepsis Group (used test: Bonferroni’s method of one-way ANOVA on rank test, Mann-Whitney rank sum test).

Leukocyte anti-sedimentation rate showed a declining tendency in the septic animals: almost every 2153

hours it decreased by 15–20%. The values differed significantly from the Control group (at 2 h: p = 0.031,154

at 4 h: p = 0.05, at 6 h: p = 0.049) (Table 3).155

3.4. Blood and plasma viscosity156

Whole blood viscosity moderately decreased over the experimental period in the control animals,157

thanking to the blood samplings and infusion. However, plasma viscosity did not changed importantly.158

The WBV values corrected for 40% hematocrit were almost constant. In the Sepsis group the whole blood159

viscosity showed an elevation by the 4th hours while plasma viscosity continuously decreased (Table 3).160

3.5. Red blood cell deformability161

Red blood cell deformability of the Sepsis group showed worsening; in every 2 hours the SS1/2 increased162

and the EImax/SS1/2 ratio decreased both in arterial and venous blood. However, the differences did not163

reach a statistically significant level. There was no obvious arterio-venous difference (Fig. 2, A-F).164
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Table 3

Changes of whole blood viscosity (WBV), plasma viscosity (PV), corrected WBV at 40% hematocrit (WBV40%), erythrocyte
sedimentation rate (ESR) and leukocyte anti-sedimentation rate (LAR) of the Control and the Sepsis groups.

Variable Group Base 2 h 4 h 6 h 8 h

WBV [mPas] at shear rate of 90 s−1 Control 2.87 ± 0.6 2.74 ± 0.62 2.31 ± 0.89 2.46 ± 0.39 2.28 ± 0.34
Sepsis 3.03 ± 0.51 2.66 ± 0.65 3.02 ± 0.71 2.77 ± 0.91 –

PV [mPas] Control 0.98 ± 0.09 0.98 ± 0.03 1 ± 0.11 1 ± 0.21 0.9 ± 0.12
Sepsis 1.03 ± 0.15 0.95 ± 0.02 0.94.±0.02 0.91 ± 0.03 –

WBV40% [mPas] Control 3.41 ± 1.29 2.98 ± 0.85 2.58 ± 0.81 3.19 ± 1.09 2.57 ± 0.31
Sepsis 2.95 ± 0.46 2.57 ± 0.65 2.72 ± 0.38 2.54 ± 0.59 –

Htc / WBV [%/mPas] Control 12.96 ± 3.4 14.8 ± 4.08 15.66 ± 3.38 13.77 ± 3.25 12.81 ± 5.13
Sepsis 13.8 ± 2.5 16.47 ± 4.01 14.73 ± 2.43 16.25 ± 4.26 –

ESR [mm/h] Control 3.5 ± 1 3.5 ± 1 3 ± 1.15 3.75 ± 1.25 3.75 ± 1.25
Sepsis 3.75 ± 0.5 4.25 ± 0.5 4.66 ± 1.15 3.66 ± 0.57 –

LAR [%] Control 21.98 ± 14.33 27.09 ± 7.33 21.11 ± 6.01 22.02 ± 6.74 19.41 ± 7.62
Sepsis 17.68 ± 4.9 12.95 ± 8.12# 10.48 ± 4.59# 6.91 ± 6.52# –

means ± S.D., ∗p < 0.05 vs. base, #p < 0.05 vs. Control; at 4 h and at 6 h n = 3 in Sepsis Group (used test: Bonferroni’s method
of one-way ANOVA on rank test, Mann-Whitney rank sum test).

Table 4

Changes of selected osmotic gradient ektacytometry (osmoscan) parameters in arterial and venous blood samples of the
Control and the Sepsis groups.

Variable Group Sample Base 2 h 4 h 6 h 8 h

minEI Control A 0.111 ± 0.007 0.115 ± 0.011 0.111 ± 0.009 0.118 ± 0.011 0.126 ± 0.017
V 0.120 ± 0.011 0.117 ± 0.017 0.121 ± 0.009 0.127 ± 0.008 0.122 ± 0.021

Sepsis A 0.105 ± 0.014 0.116 ± 0.023 0.130 ± 0.03 0.141 ± 0.016 ∗ –
V 0.115 ± 0.024 0.104 ± 0.019 0.131 ± 0.009 0.121 ± 0.02 –

maxEI Control A 0.502 ± 0.01 0.499 ± 0.01 0.491 ± 0.007 0.493 ± 0.004 0.490 ± 0.004
V 0.501 ± 0.011 0.500 ± 0.009 0.488 ± 0.01 0.487 ± 0.011 0.484 ± 0.01

Sepsis A 0.491 ± 0.012 0.487 ± 0.009 0.491 ± 0.011 0.491 ± 0.016 –
V 0.490 ± 0.01 0.488 ± 0.011 0.493 ± 0.013 0.490 ± 0.014 –

minO [mOsm/kg] Control A 187.7 ± 5.8 188.5 ± 8.5 192.5 ± 7.6 191.2 ± 3.6 190.5 ± 3.8
V 189.7 ± 5.9 191.7 ± 6.8 191.5 ± 4.1 192.7 ± 7 192.2 ± 4.5

Sepsis A 194 ± 7.3 200.6 ± 10.4 195.3 ± 3.5 191 ± 3.6 –
V 199.4 ± 10.7 198.2 ± 10.6 197.3 ± 0.5 181 ± 23.5 –

maxO [mOsm/kg] Control A 379.2 ± 13.8 380 ± 12.7 380 ± 8.7 369.5 ± 11.2 382.2 ± 22.7
V 377.7 ± 13.4 388 ± 13.2 383 ± 17 390.7 ± 14.4 391 ± 21.1

Sepsis A 379 ± 20.9 390.4 ± 28.1 392.6 ± 8.3 394.6 ± 14.3# –
V 387.8 ± 15.9 391.2 ± 20.4 398.3 ± 12.8 386.3 ± 9.45 –

AUC Control A 117.7 ± 5.4 112.9 ± 5.1 109.3 ± 6.7 107.5 ± 8.9 109.9 ± 9.2
V 112 ± 5.3 110.9 ± 5.4 108.3 ± 9.7 105.9 ± 5.9 104.3 ± 7.5

Sepsis A 115.3 ± 4.3 106.7 ± 15.3 108.1 ± 7.4 107 ± 11.5 –
V 105 ± 12.5 104.9 ± 10.6 108 ± 2.6 107.7 ± 11.4 –

means ± S.D., ∗p < 0.05 vs. base, #p < 0.05 vs. Control. A = arterial blood sample, V = venous blood sample at 4 h and at 6 h n = 3
in Sepsis Group (used test: Bonferroni’s method of one-way ANOVA on rank test, Mann-Whitney rank sum test).
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Fig. 2. EImax (A,B), SS1/2 [Pa] (C,D), EImax/SS1/2 [1/Pa] (E,F) values in arterial and venous blood of Control and Sepsis Groups.
means ± S.D., ∗p < 0.05 vs. base, #p < 0.05 vs. Control (at 4 h and at 6 h n = 3 in Sepsis Group; used test: Bonferroni’s method
of one-way ANOVA on rank test, Mann-Whitney rank sum test).

Investigating the osmoscan parameters, the minEI values continuously increased mostly in the arterial165

blood of the septic animals (at 6 h: p = 0.017 vs. base). The belonging osmolality values showed a166

decreasing tendency both in arterial and venous blood. The maximal EI lowered, the belonging osmolarity167

slightly increased in the septic animals (at 6 h: p = 0.047 vs. Control). The AUC showed larger differences:168



U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

N. Nemeth et al. / Early hemorheological changes in a porcine model 9

Fig. 3. �EI (A,B), �O (C,D) and �EI/�O (E,F) values in arterial and venous blood of Control and Sepsis Groups. means ± S.D.,
∗p < 0.05 vs. base, #p < 0.05 vs. Control (at 4 h and at 6 h n = 3 in Sepsis Group; used test: Bonferroni’s method of one-way ANOVA
on rank test, Mann-Whitney rank sum test).
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it decreased by the 2nd hour and showed further lowering in the septic animals (Table 4). �EI values169

gradually decreased mostly in the arterial blood of the septic animals, while �O increased stepwise till170

the 6th hour. Their ratio (�EI/�O) showed more expressed alteration: it gradually decreased mostly in171

the arterial blood (Fig. 3, A-F).172

3.6. Red blood cell aggregation173

In Sepsis group the red blood cell aggregation index (AI%) remained almost unchanged till the end174

of the 4th hour, then declined (at 6 h: p < 0.001 vs. base and p = 0.003 vs. Control in the arterial blood;175

p = 0.011 vs. base and p = 0.002 vs. Control in the venous blood). This alteration was more prominent in176

the venous blood. The amplitude values showed marked arterio-venous differences in both the Control177

and Sepsis group. The declination, which was more expressed in venous blood samples, reached the178

significance level form the 2nd hour (at 2 h: p = 0.001 vs. base, at 4 h: p < 0.001 vs. base in the venous179

blood; at 6 h: p = 0.02 vs. base and p = 0.043 vs. Control in the arterial, and p < 0.001 vs. base and p = 0.029180

vs. Control in venous blood). The t1/2 was elongated and rose by the 6th hours in septic animals (p < 0.001181

vs. base and p = 0.003 vs. Control in the venous, p = 0.02 vs. base and p = 0.002 vs. Control in the venous182

blood samples) (Table 5).183

Parameters tested by the Myrenne aggregometer showed again a decreasing tendency in the Septic184

group at the 4th and 6th hour. The difference was significant by the 6th hours in case of the ‘5 sec185

M’ (arterial blood: p < 0.001 vs. base and Control; venous blood: p = 0.001 vs. base and p = 0.002 vs.186

Control; arterio-venous difference: p = 0.003), ‘5 sec M1’ (arterial blood: p = 0.027 vs. base; venous blood:187

p < 0.001 vs. base and p = 0.023 vs. Control), ‘10 sec M’ (arterial blood: p = 0.022 vs. base, p = 0.028 vs.188

Control; venous blood: p < 0.001 vs. base and Control) as well as in ‘10 sec M1’ (only in venous blood:189

p = 0.027 vs. base; arterio-venous difference: p = 0.053) index values (Fig. 4, A-H).190

Table 5

Changes of red blood cell aggregation parameters (aggregation index, AI; amplitude, Amp and aggregation half time, t1/2) in
arterial and venous blood samples of the Control and the Sepsis groups during the experimental period

Variable Group Sample Base 2 h 4 h 6 h 8 h

AI [%] Control A 67.39 ± 7.75 66.96 ± 3.48 64.65 ± 3.17 64.18 ± 5.4 61.09 ± 7.33
V 67.28 ± 6.54 68.35 ± 2.93 61.36 ± 4.79 67.57 ± 2 34 66.77 ± 4.39

Sepsis A 63.64 ± 3.39 61.35 ± 6.24 62.21 ± 6.39 55.31 ± 2.85∗# –
V 63.69 ± 2.78 62.75 ± 5.23 63.48 ± 5.12 51.43 ± 8.8∗# –

Amp Control A 19.16 ± 1.67 20.61 ± 2.05 18.83 ± 3.43 20.52 ± 3.22 18.73 ± 2.63
V 15.37 ± 0.67+ 15.4 ± 1.78+ 12.81 ± 2.84+ 12.96 ± 3.71+ 12.16 ± 2.45+

Sepsis A 20.85 ± 1.08 19.63 ± 2.84 19.96 ± 3.78 16.39 ± 5.31∗# –
V 17.76 ± 2.39+ 13.08 ± 3.03+∗ 10.93 ± 2.74+∗ 8.82 ± 1.44+∗# –

t1/2 [s] Control A 1.88 ± 0.81 1.8 ± 0.33 2 ± 0.35 2.11 ± 0.59 2.51 ± 0.93
V 1.85 ± 0.67 1.68 ± 0.27 2.37 ± 0.57 1.75 ± 0.28 1.83 ± 0.43

Sepsis A 2.17 ± 0.35 2.49 ± 0.8 2.28 ± 0.64 3.19 ± 0.44∗# –
V 2.16 ± 0.3 2.29 ± 0.61 2.23 ± 0.51 3.85 ± 1.48∗# –

means ± S.D., ∗p < 0.05 vs. base, #p < 0.05 vs. Control;+p<0.05 vs. A. A = arterial blood sample, V = venous blood sample at
4 h and at 6 h n = 3 in Sepsis Group (used test: Bonferroni’s method of one-way ANOVA on rank test, Mann-Whitney rank sum
test).
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Table 6

Changes of selected micro-rheological parameters in normal venous blood samples (n = 2), and subsamples mixed with half or
total dose of living E. coli bacteria just after the mixing and over 2 hours of incubation. Results of the supplementary in vitro

study part

Variable Base With half dose With total dose With half dose With total dose
values of bacteria of bacteria of bacteria after of bacteria after

after mixing after mixing 2-hour incubation 2-hour incubation

EI at 3 Pa 0.362 ± 0.003 0.350 ± 0.012 0.352 ± 0.001 0.342 ± 0.011 0.349 ± 0.001
EImax 0.509 ± 0.004 0.517 ± 0.004 0.510 ± 0.009 0.490 ± 0.008 0.485 ± 0.015
SS1/2 [Pa] 1.38 ± 0.06 1.64 ± 0.17 1.55 ± 0.17 1.41 ± 0.16 1.37 ± 0.07
EImax / SS1/2 [Pa−1] 0.36 ± 0.01 0.31 ± 0.03 0.33 ± 0.04 0.35 ± 0.04 0.35 ± 0.02
minEI 0.112 ± 0.005 0.106 ± 0.014 0.096 ± 0.001 0.128 ± 0.001 0.103 ± 0.015
maxEI 0.498 ± 0.001 0.496 ± 0.003 0.486 ± 0.014 0.494 ± 0.005 0.482 ± 0.005
minO 192.5 ± 2.1 185.5 ± 2.1 185.5 ± 2 192.5 ± 0.7 189 ± 2.8
maxO 379.5 ± 14.8 361 ± 2.8 356.5 ± 7.7 371.5 ± 10.6 352.5 ± 4.9
AUC 115.9 ± 5.3 121.6 ± 3.8 113.2 ± 10.9 111.7 ± 9.5 109.7 ± 10.1
�EI 0.386 ± 0.015 0.390 ± 0.017 0.389 ± 0.023 0.365 ± 0.005 0.379 ± 0.02
�O 187 ± 16.9 175.5 ± 0.7 171 ± 5.65 179 ± 11.3 163.5 ± 7.7
�EI / �O ∗100 0.207 ± 0.027 0.222 ± 0.011 0.227 ± 0.006 0.204 ± 0.015 0.232 ± 0.023
AI% 59.31 ± 3.46 55.8 ± 2.9 46.12 ± 7.74 59.46 ± 8.45 47.77 ± 4.56
Amp 21.01 ± 0.29 15.87 ± 3.66 10.04 ± 6.87 15.8 ± 10.99 9.5 ± 7.28
t1/2 [sec] 2.7 ± 0.44 3.17 ± 0.4 4.76 ± 1.54 2.69 ± 1.07 4.5 ± 0.83
5 sec M 3.06 ± 0.69 2.48 ± 0.65 1.4 ± 1.02 3.7 ± 0.97 1.68 ± 1.28
5 sec M1 6.17 ± 1.38 3.65 ± 1.14 2.7 ± 0.3 2.65 ± 0.78 1.82 ± 1.47
10 sec M 6.78 ± 1.72 7.68 ± 0.75 3.76 ± 1.88 10.5 ± 2.21 5.36 ± 4.68
10 sec M1 14.46 ± 7.63 11.38 ± 2.07 5.78 ± 1.87 10.63 ± 0.79 5.28 ± 4.59

means ± S.D.9.

3.7. Results of the in vitro study191

Half dose of bacteria resulted in 5–6% decrease of red blood cell count, while it was about 13–15%192

when using the total dose. The values were slightly increased after the 2-hour incubation. The red blood193

cell distribution width (RDW-CV%) did not change just after mixing, while after the incubation period194

it increased by 4–5% and 9–10% when half or total dose of bacteria was used. The change of MCV did195

not exceed 2–4%.196

Table 6 summarizes the red blood cell deformability (normal and osmotic gradient ektacytometry) and197

aggregation results. At half dose of the bacteria the aggregation parameters slightly decreased. At total198

dose of the E. coli, all the aggregation parameters were deteriorated: the index values (AI% and all the199

Myrenne index values) markedly decreased, which declination became more expressed after 2 hours of200

incubation. At the same time, red blood cell deformability impaired moderately.201

4. Discussion202

There are numerous animal models of sepsis using various methods to induce bacteremia, or using203

endotoxins among others [17, 18, 37, 43]. Our current model was based upon recent papers using living E.204

coli colony and administered intravenously in an increasing concentration within a relatively short period205
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Fig. 4. Aggregation index 5 s M (A,B), 5 s M1 (C,D), 10 s M (E,F) and 10 s M1 (G,H) values in arterial and venous blood of
Control and Sepsis Groups. means ± S.D., ∗p < 0.05 vs. base, #p < 0.05 vs. Control (at 4 h and at 6 h n = 3 in Sepsis Group; used
test: Bonferroni’s method of one-way ANOVA on rank test, Mann-Whitney rank sum test).



U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

N. Nemeth et al. / Early hemorheological changes in a porcine model 13

[3, 12, 44]. We concentrated on the early effects of the developing fulminant sepsis. By our knowledge206

there is no other paper dealing with the early hemorheological changes during i.v. administered E. coli207

induced sepsis in the pig.208

Chvojka et al. used a peritonitis-induced septic porcine model [14]. The measurements were completed209

12, 18 and 22 hours after induction of the peritonitis. The hemodynamic parameters reached significant210

difference (decrease of MAP, increased of MPAP and CO, decrease in SVR, increase of CVP and PAOP)211

by 12 hours together with decrease in pH and rise in IL-6, TNF-� level and so reflecting the hyperdynamic212

circulation, the inflammatory response with oxidative and metabolic stress [14]. This was a peritonitis-213

induced model with a relatively quick development of the sepsis. In our model we used intravenous214

administration of living bacteria resulting in a rapid, fulminant sepsis. Wester et al. [46] used inactivated215

N. meningitidis for inducing sepsis in pigs. When skin and tongue microcirculation was investigated216

200 minutes after sepsis induction, the clinical sings of the sepsis have been obviously developed. This217

period matches well with our experimental phase: the time period of 2–4 hours after starting the i.v.218

administration of the living bacteria.219

Numerous papers reported important results on microcirculatory and rheological disturbances in sepsis220

[1, 2, 8, 13, 14, 16, 21, 25, 28, 30, 34, 40, 42, 45]. Most of them concluded significant worsening of221

the micro-rheological parameters: impaired red blood cell deformability and enhanced red blood cell222

aggregation is a common finding [e.g., 8, 28, 34, 42, 45].223

Red blood cell deformability can be altered by numerous factors in septic process, including 2,3 diphos-224

phoglycerate (by increased internal viscosity), nitric oxide (bound by hemoglobin, modulating membrane225

properties), increased intracellular concentration (by decreased activity of Ca2+ - ATPase pump), sialic226

acid (signal recognition for capturing by the reticulo-endothelial system, modifying cell shape and increas-227

ing aggregation), white blood cells (producing reactive oxygen species, increase aggregation with red228

blood cells), reactive oxygen species themselves (lipid peroxidation, sulfhydril-crosslinking in proteins,229

methemoglobin formation) [4, 34].230

Baskurt and Mat [5] in a rat model of experimental sepsis clearly demonstrated that the temperature231

of the measurement (in the laboratory device) has a great importance in detecting the changes of micro-232

rheological parameters, such as red blood cell aggregation and deformability. While decreased elongation233

index of septic group has not been detected at 20 ◦C, 25 ◦C or even at 30 ◦C, the significant decrease of red234

blood cell deformability were found at 37 ◦C. Also red blood cell aggregation index values were obviously235

higher at body temperature [5]. Jagger et al. found significant alteration at 25 ◦C [20]. Piagnerelli et al.236

found a loss of biconcavity (the red blood cell shape was determined by flow cytometry) in septic patients237

compared to healthy volunteer. The difference was not depending on the temperature of sample [36].238

Reggiori et al. investigated red blood cell deformability and aggregation values in intensive care unit239

patients, reporting early alterations of both micro-rheological parameters in septic patients. The elongation240

index decreased almost at all shear stresses. Aggregation index values increased and t1/2 shortened than241

that of the non-septic patients [39].242

Piagnerelli et al. [35] analyzed red blood cell membrane proteins in healthy volunteers, non-septic243

intensive care unit patients and septic patients (severe sepsis or septic shock). They found that red blood244

cell membrane skeletal protein content was modified in critical ill patients without additional changes in245

sepsis [35]. Other cell components have also great importance. Also Piagnerelli et al. [33] investigated246

erythrocyte shape and sialic acid content of the cell membrane in septic patients (blood samples were247

collected during the first 24 hours of the sepsis). They found by flow cytometry analyses membrane248

sialic acid content significantly lowered in septic patients, the glycophorine A content was higher than249

in the healthy volunteers. They found that spherical index significantly decreased in sepsis. Erythrocyte250
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of septic patients had a decreased capacity of sphericity in hypoosmolar conditions. It has been shown251

that red blood cells’ membrane sialic acid content significantly decreases in sepsis related to increased252

neuraminidase activity [33].253

Moutzouri et al. reported the evidence about decreased red blood cell deformability as a prognostic254

marker in sepsis, and also being useful for monitoring the severity of sepsis in the clinical practice [28].255

The patients who developed nosocomial sepsis were entered into the study within 24 hours of the diagno-256

sis; consequently the early hours of the septic procedures have not been investigated from the beginning.257

The impairment of erythrocyte deformability was obvious and expressed a gradual deterioration in sep-258

sis, severe sepsis, ARDS, and septic shock, in this sequence. Red blood cell rigidity showed positive259

correlation with the projected mortality and the simplified acute physiology score (SAPS) II [28].260

Leukocytes play a determining role in the pathophysiology of sepsis, having impact on the microcircu-261

lation, too [11, 32, 40, 47, 48]. Their margination is strongly influenced by the rheology: by the magnitude262

of the axial migration of the red blood cells. The erythrocyte aggregation is known to enhance it [29].263

Kirschenbaun et al. demonstrated not only impaired red blood cell deformability and enhanced aggre-264

gation but also an increased platelet-neutrophil interaction with decreased leukocyte deformability [22].265

Yodice et al. reported increased leuko-aggregation and decreased neutrophil deformability in patients266

with severe sepsis and septic shock [48].267

Micro-rheological abnormabilities are characteristic not solely for sepsis and septic shock. Sordia et268

al. in a rat model of traumatic shock also found significant increased of erythrocyte aggregability and269

decreased deformability [41].270

In our study we found a continuously decreasing red blood cell deformability of Sepsis Group during the271

experimental period. The changing in osmoscan parameters also occurred. The phase of the osmoscan272

curve that is related to the cell deformability and membrane stability (the curve part between min EI273

and maxEI together with the belonging osmolality values) showed the mostly expressed alterations.274

The difference between these points clearly showed a gradually worsening tendency. It might reflect275

not only the decreasing red cell deformability but the susceptibility of the cells to damage by altered276

micro-environmental osmotic conditions.277

Interestingly, in our study we observed decreasing values of the aggregation-related parameters and it278

seemed that the aggregation process becomes slower and lower in its magnitude within 6th hour after279

starting the intravenous administration of the living bacteria. However, red blood cell deformability280

impaired. The systemic inflammatory response reaction was obvious, therefore the presence of sepsis281

occurred and mortal septic shock has been developed quickly. It is interesting to deal with the data of282

decreased aggregation of the erythrocytes in this experiment. It is obscure why the aggregation parameters283

showed an opposite behavior than in other studies. Speculating on this controversial finding it is important284

to note that our investigations were performed in parallel with the developing septic shock in a very early285

period of a fulminant sepsis. Furthermore the direct effect of the existing bacteremia (with an increasing286

concentration) might also have an effect on the aggregation. Therefore, we tested the effect in vitro in287

two normal blood sample that has been mixed with suspension of E. coli bacteria approximately in the288

same concentration as it was presented in vivo (according to the totally given amount of bacteria and289

the circulating blood volume). It was found that the impairment of red blood cell deformability and the290

decrease of aggregation also occurred in vitro and changed further after the 2-hour incubation period. It291

is important to note that this E. coli strain has hemolysin causing �-hemolysis. In the in vivo part of the292

study we did not observe any decrease in red blood cell count or changes in MCV (Table 2). In the in293

vitro study both the red blood cell count and the MCV decreased after mixing the blood with the bacteria294

suspension.295
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It is well-known that E. coli hemolysin jeopardizes the red blood cell membrane by creating pores with296

ring-shaped heptamer complexes, thus causing irreversible osmotic swelling. The presence of complement297

is also important. Furthermore, another way of red cell damage is linked to the endotoxin effect. Pöschl et298

al. concluded that endotoxin binding may directly affect the mechanical properties of the erythrocytes. The299

elongation index - shear stress curves were very similar to each other -and being significantly worsened300

compared to healthy control- in septic blood and blood samples in vitro incubated with endotoxin (LPS,301

E. coli O111:B4) [38]. The deterioration of red blood cell deformation (decrease of the elongation index)302

was associated with an increasing �-hydroxymyristic acid (HMA) concentration in cell membrane. The303

LPS in washed red blood cells resulted in much lower changes compared to the protocol when whole304

blood was mixed with LPS. They also suggested that endotoxin might have a maximum effect on red305

blood cell deformability: as of 25 �g LPS (corresponding to 0.66 �g/ml HMA) bound to red blood cell306

membrane [38].307

Since the late 1990s, the role of nitric oxide (NO) has been widely investigated. The increase of NO in308

septic shock -but with an initial deficit- is known to contribute to the early microvascular deterioration.309

Morel et al. [27] used a rat CLP (caecal ligation and puncture) model of sepsis, and found an increased310

NO concentration in the first 3 hours of the septic shock (peaked at 2 hours). In parallel, microcirculatory311

flow (tested by laser Doppler flowmetry) gradually decreased over the experiment till 3 hours after the312

septic shock onset. According to their results, NO deficit does not occur to cause adverse changes in the313

microcirculation during the very early phase of the septic process [27].314

It is also known that NO has an effect on red blood cells improving their deformability and aggregation315

[4, 7, 10] The effect of NO in the very early hours of the septic process might have an influence on the316

micro-rheological parameters during septic process. Speculating with this issue, we cannot exclude the317

NO effect on the red blood cell aggregation when interpret the results: why we found sustained erythrocyte318

aggregation during the first 2–6 hours of the sepsis. However, this issue should be further investigated319

with other strains of bacteria, too.320

5. Conclusion321

Due to the complexity of the findings and also in respect of the case number of this study, we cannot322

state that these micro-rheological changes are characteristic. However, the tendency of impairment in red323

blood cell deformability (together with osmotic gradient ektacytometry parameters) and the controversial324

decreasing of red blood cell aggregation values (declining all aggregation index values and amplitude,325

elongating t1/2) were well detected in this porcine model during the early hours (4–6) of fulminant326

sepsis that was induced by i.v. administration of living E. coli. The in vitro effect of these bacteria327

on erythrocytes’ micro-rheological parameter was similar: decreasing red blood cell deformability and328

lowering aggregation. Further studies are needed for clarifying the early micro-rheological changes of329

bacteremia and the developing sepsis.330
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