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Abstract 

The significance of persulfide species in hydrogen sulfide biology is increasingly recognized. 

However, the molecular mechanisms of their formation remain largely elusive. The obvious 

pathway of the reduction of biologically abundant disulfide moieties by sulfide was challenged 

on both thermodynamic and kinetic grounds. Using DTNB (5,5'-dithiobis-(2-nitrobenzoic acid), 

also known as Ellman’s reagent) as a model disulfide we conducted a comprehensive kinetic 

study for its reaction with sulfide. The bimolecular reaction is relatively fast with a second-order 

rate constant of 889 ± 12 M
-1

s
-1

 at pH = 7.4. pH dependence of the rate law revealed that the 

reaction proceeds via the bisulfide anion species with an initial nucleophilic thiol-disulfide 

exchange reaction to give 5-thio-2-nitrobenzoic acid (TNB) and TNB-persulfide with a pH 

independent second-order rate constant of 1090 ± 12 M
-1

s
-1

. However, kinetic studies and 

stoichiometric analyses in a wide range of reactant ratios together with kinetic simulations 

revealed that it is a multistep process that proceeds via kinetically driven, practically irreversible 

reactions along the disulfide  persulfide  inorganic polysulfides axis. The kinetic model 

postulated here, which is fully consistent with the experimental data, suggests that the TNB-

persulfide is further reduced by sulfide with a second-order rate constant in the range of 5 × 10
3
 – 

5 × 10
4
 M

-1
s

-1
 at pH 7.4 and eventually yields inorganic polysulfides and TNB. The reactions of 

cystine and GSSG with sulfide were found to be significantly slower and to occur via more 

complicated reaction schemes. 
1
H NMR studies suggest that these reactions also generate Cys-

persulfide and inorganic polysulfide species, but in contrast with DTNB, in consecutive 

equilibrium processes that are sensitive to changes in the reactant and product ratios. 

Collectively, our results demonstrate that the reaction of disulfides with sulfide is a highly 

system specific process from both thermodynamic and kinetic aspects, which together with the 
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considerable steady-state concentrations of the reactants in biological systems signifies 

physiological relevance. 
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Highlights 

 Mechanistic study was conducted for the reduction of model disulfides by sulfide 

 Kinetic properties and product speciation were found to be highly system specific 

 The initial bimolecular reaction is a thiol-disulfide exchange via HS
–
 

 Persulfides are further reduced by sulfide in faster reactions compared to disulfides 

 Multistep reactions proceed along the disulfide persulfide inorganic polysulfides axis 
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1. Introduction 

The seminal discovery by Abe and Kimura, that endogenously produced hydrogen sulfide
1
 acts 

as a neuromodulator [1], resulted in a paradigm shift and directed the focus of sulfide biology 

from toxicological studies [2] to essential biological functions in the last decade [3,4,5]. The 

blossom of this new field of research was demonstrated by the great number of excellent studies 

reporting a diverse array of sulfide-mediated biological processes at the 3
rd

 international 

conference on sulfide biology [6]. 

The conference also highlighted that the ever increasing number of intriguing new 

discoveries and related controversies (that is a usual side effect of popular, rapidly developing 

research areas) now entails more and more mechanistic chemical studies in order to elucidate and 

reconcile the molecular mechanisms of sulfide’s biological actions. One of the key areas of 

interest is the formation of persulfides on peptide and protein cysteine (Cys) residues and their 

potential role in sulfide signaling [7,8]. Persulfide species were proposed to be highly abundant 

in cellular systems with a plethora of likely biological functions that include i) serving as 

important intermediates in sulfide trafficking and/or buffering [9,10,11] ii) enhancing [12,13,14] 

or inhibiting [15,16,17,18] key enzymatic functions as well as iii) protecting against oxidative 

stress and mediating redox signaling events [7,9,19].  

Importantly, from the chemical perspective, persulfides are oxidative posttranslational 

modifications of Cys residues [20]. Hence, their formation could occur either via the reaction of 

reduced Cys residues by oxidized sulfide species such as polysulfides [17] or via the reaction of 

oxidized Cys derivatives with reduced sulfide [10]. The reduction of biological disulfide species 

by sulfide was proposed to be a potential source of persulfides [21,22,23,24]. Notwithstanding, 

based on kinetic or thermodynamic considerations, the prevalence of this pathway in biological 
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systems is often questioned [25,26,27,28,29]. However, to our knowledge a comprehensive 

mechanistic study of the title reaction has thus far not been performed. Therefore, the aim of this 

contribution is to provide a deeper chemical insight into the kinetics, mechanisms and 

thermodynamic nature of disulfide reduction reactions by sulfide in order to assess the biological 

feasibility of these reactions. Our results highlight that persulfide formation via sulfide-mediated 

disulfide reduction is a highly system specific process both from the kinetic and thermodynamic 

points of view. We demonstrate that depending on the chemical properties of the corresponding 

disulfide moiety i) the rate of sulfide-mediated disulfide reduction varies on a large scale and ii) 

thermodynamically it represents a multistep equilibrium process, where the distribution of the 

oxidizing equivalent (coming from the disulfide) at physiological pH can lie anywhere along the 

disulfide  persulfide  inorganic polysulfides axis. 
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2. Materials and Methods 

2.1. Reagents. All chemicals were analytical reagent grade or better and purchased from Sigma-

Aldrich, St Louis unless indicated otherwise. The reagent solutions were prepared by using 

deionized and ultrafiltered water obtained from a Milli-Q system, Millipore (resistivity ≥ 18 MΩ 

cm), except for the NMR measurements, which were carried out in D2O (99,9 % atom D). Buffer 

solutions were made using solid Na2HPO4×2H2O, KH2PO4, Na2B4O7×10H2O and NaOH for the 

kinetic or spectrophotometric studies or K3PO4 and D2SO4 (Alfa Aesar, 96 %, in D2O, Karlsruhe, 

Germany) for the NMR experiments.  

Sulfide stock solutions were prepared fresh daily in water using Na2S×9H2O (ACS 

reagent, ≥ 98 %). Na2S×9H2O crystals were stored under argon (4.0, Messer, Krefeld, Germany) 

and were thoroughly washed before dissolving them in ultrapure water. The basic stock solutions 

were kept on ice in the dark in sealed plastic centrifuge tubes to avoid oxidation and H2S 

volatilization. The concentration of sulfide was determined by two different UV-VIS 

spectrophotometric methods as described previously [10]. Working solutions were prepared from 

stock solutions immediately before the measurements by dilution with the adequate buffer. 

 

2.2. pH measurements. pH measurements were performed by a Metrohm 785 DMP Titrino with 

a double-junction combined pH glass electrode (Metrohm 6.255.100), calibrated using potassium 

hydrogen phthalate (pH 4.008) and sodium tetraborate (pH 9.177) standard solutions.  

 

2.3. UV/VIS spectrophotometry. Electronic spectra were measured with a Perkin Elmer 

Lambda 2S UV/VIS double-beam spectrophotometer using quartz cells with calibrated 1 cm path 

lengths.  
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2.4. Spectral changes in the UV region upon the reaction of sulfide with DTNB. Equal 

volumes of freshly prepared sulfide and DTNB stock solutions were mixed under rigorous 

vortexing condition in 100 mM phosphate buffer at pH = 7.40 and I = 1 M (set with NaCl) to 

give the final concentrations of [sulfide]tot = 50 µM and [DTNB] = varied in the range of 5 – 25 

µM. UV-spectra were recorded within 6 minutes after mixing. 

 

2.5. Kinetic studies. Kinetic measurements were made with an Applied Photophysics DX-17 

MV sequential stopped-flow apparatus using a 150 W Xe arc lamp. The reactions were followed 

by the decay of DTNB (at λ = 320 nm) and the formation of TNB (at λ = 412 nm). All kinetic 

traces were collected at 1 M ionic strength (defined by the buffer at the given pH and NaCl). The 

temperature was maintained at 25 °C in the observation cell with a Julabo F12 thermostat during 

the kinetic runs.  

2.5.1. Sulfide and DTNB concentration dependencies. Kinetic runs were performed under 

pseudo-first-order conditions using a ≥ 10 fold excess of either sulfide or DTNB in 100 mM 

phosphate buffer at pH 7.40. Concentrations: DTNB excess: [DTNB] = 10 – 600 µM, [sulfide]tot 

= 0.25 – 60 µM; sulfide excess: [DTNB] = 1 – 30 µM, [sulfide]tot = 10 – 500. At least 3 kinetic 

runs were made and averaged at each concentration to establish the corresponding kinetic traces. 

The experiments were repeated in 14 and 11 sets of independent experiments for excess DTNB 

and excess sulfide using freshly prepared solutions, respectively. Error bars in the corresponding 

figures represent the standard deviations of independent experiments. 

2.5.2. pH dependence. The pH was maintained by 100 mM phosphate (at 8.20 > pH > 

6.20) or borate (at 9.97 > pH > 9.21) buffers and the ionic strength was adjusted to 1 M (NaCl). 
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Kinetic runs were performed under pseudo-first-order conditions using a ≥ 10 fold excess of 

sulfide or DTNB. When sulfide was used in excess, measurements were performed in 4 sets of 

independent experiments with DTNB concentrations in the range of 1 – 25 µM and sulfide 

concentrations in the range of 50 – 500 µM. At an excess of DTNB the data were collected in 9 

sets of independent experiments with [DTNB] = 50 – 500 µM and [sulfide] = 1 – 5 µM. 

2.5.3. Kinetics of L-cystine and oxidized glutathione (GSSG) with sulfide. Kinetic traces 

were collected under pseudo-first-order conditions using a ≥ 10 fold excess of sulfide (in the 

range of 15 - 35 mM) at constant 1.5 mM disulfide concentrations and pH = 7.4 in 100 mM 

phosphate buffer at 25°C and I = 1 M (NaCl). The kinetics at an excess of disulfide could not be 

investigated due to limitations in the solubility of the disulfide and small absorbance changes. 

Kinetic traces were collected at λ = 300 nm. 

 

2.6. NMR experiments. 
1
H-NMR spectra in the sulfide - L-cystine system were recorded by a 

Bruker AM 360 MHz (8.5 T) NMR spectrometer (Oxford, United Kingdom). The chemical 

shifts are reported in ppm, using DSS (4,4-dimethyl-4-silapentane-1-sulfonic acid) as an external 

standard with δ = 0.00 ppm. In order to reach chemical equilibria, reaction mixtures were 

incubated for 12 min before the spectra were recorded. Concentrations: [L-cystine] = 3.0 mM, 

[sulfide]tot = 0 - 40 mM at pD = 7.40 or 8.00 (pD = pH* + 0.4, where pH* is the uncorrected pH 

meter reading) in 225 mM deuterated phosphate buffer (made by dissolving K3PO4 in D2O and 

setting the pD using D2SO4). Polysulfides in sulfide stock solutions were generated by mixing 

101 mM OCl
–
 with 404 mM sulfide in deuterated phosphate buffer at pD = 8.00 [19]. The 

remaining sulfide concentrations were estimated based on the assumption that 1 mol HOCl 
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consumes 2 mols of sulfide to give 1 mol of polysulfide, which is a slight underestimate in light 

of the appropriate polysulfide distribution under the applied conditions (reaction 4). 

 

2.7. Simulation and data analysis. Exponential fitting of the experimental kinetic traces were 

achieved by Micromath Scientist (2.01, Micromath Research, Saint Louis, Missouri, USA) or 

Applied Photophysics Pro-Data Viewer (4.2.0, Applied Photophysics Ltd, Leatherhead, Surrey, 

UK) softwares and the concentration and pH dependencies of the pseudo-first-order rate 

constants were fitted with Microsoft Excel 2010 and Micromath Scientist (2.01, Micromath 

Research, Saint Louis, Missouri, USA) softwares, respectively. NMR spectra were analyzed with 

MestReNova (8.1.2-11880, 2013, Mestrelab Research, Santiago de Compostela, Spain) software 

package.  

Kinetic simulations were carried out with Micromath Scientist (2.01, Micromath 

Research, Saint Louis, Missouri, USA) software using the error controlled Runge-Kutta method. 

The model and parameter sets are described in detail in the Supporting Information document. 

All data were illustrated using Microsoft Excel 2010. 
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3. Results 

3.1. Products and stoichiometry of the reaction of DTNB with sulfide 

In order to investigate the disulfide-bond reducing potential of sulfide we first used DTNB as a 

model compound. DTNB is a water soluble aromatic disulfide, which is often used in 

biochemistry as a reagent (Ellman’s reagent) for quantitative measurement of total reduced 

thiol/sulfhydryl groups [30]. The assay is based on a thiol-disulfide exchange reaction [31], 

where a nucleophilic attack of the Cys thiol on the DTNB disulfide bond results in a mixed Cys-

TNB disulfide and release 1 molar equivalent of the highly absorbing TNB (ε412 = 14100 M
-1

cm
-

1
 [32] (reaction 1), which is quantified by spectrophotometry. 

 

(1) 

 

Sulfide, as the smallest thiol, also reduces DTNB to give the characteristic band of TNB at 412 

nm (Figure 1). 

 

Nashef, AS et. al. suggested that this reaction can be utilized for sulfide quantitation in aqueous 

media [33]. However, in contrast to Cys thiols they found that sulfide produced two molar 

equivalents of TNB at a slight excess of DTNB over sulfide. Furthermore, they reported that the 

oxidizing equivalents from the DTNB disulfide were transferred on to sulfide to eventually yield 

stoichiometric amounts of elemental sulfur, which was detected and quantified using an organic 

extraction protocol. However, we observed no sulfur precipitation upon the sulfide-mediated 

reduction of DTNB in our reaction mixtures and therefore propose that the sulfane sulfur 

containing products are most likely inorganic polysulfides. 
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 In this study we revisited the stoichiometry of the reaction of sulfide with DTNB in a 

wider concentration range and at different DTNB : sulfide ratios. When sulfide was used in 

excess over DTNB, 2 TNB molecules were produced per DTNB (Table 1A).  

 

 

In contrast, one sulfide liberated only one TNB at a high excess of DTNB (Table 1B). However, 

at < 100 fold excess of DTNB over sulfide, more than 1 sulfide equivalent of TNB production 

was observed and a decrease in the DTNB : sulfide ratio resulted a gradual increase in the 

amount of released TNB per sulfide molecule (Table 1B), suggesting that TNB is produced in a 

multistep process. In agreement with these observations we propose that in the first reaction step, 

a simple thiol-disulfide exchange reaction gives 1 mol equivalent of TNB and 1 TNB-persulfide 

species. TNB-persulfide is then reduced by sulfide to give another TNB and the polysulfide 

precursor HSSH. Subsequently, HSSH either reacts with another TNB-persulfide or 

disproportionates to eventually yield polysulfides, the composition and distribution of which 

depend on the applied conditions. 

 

RSSR  +  H2S    RSSH  +  RSH   (2) 

RSSH  +  H2S    RSH  +  HSSH   (3) 

nHSSH    HS(n+1)H  +  (n-1)H2S (n = 1 - 8) (4) 

and/or 

RSSH  +  HSnH    RSH  +  HS(n+1)H  (5) 

 

B 

A 
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Even at a slight excess of sulfide, all the DTNB is consumed to produce 2 mol equivalents of 

TNB (Table 1A), indicating that the equilibrium constants of reactions 2 - 5 are large. Hence, the 

equilibria of these reactions are expected to be largely shifted to the right under the conditions of 

our kinetic experiments (see next section), making them practically irreversible. Therefore, based 

on this model, the observed different stoichiometric ratios in Table 1 are due to the kinetically 

driven partitioning of sulfide in reactions 2 - 5 at the applied concentrations. 

 

 

 

 

3.2. Kinetics of the reaction of DTNB with sulfide 

To establish the rate law and to get a deeper insight into the mechanism, we undertook a 

comprehensive kinetic study on the reaction of DTNB with sulfide under different concentration 

conditions.  

 

3.2.1. Excess of DTNB over sulfide 

Initially the kinetic runs were performed under pseudo-first-order conditions using an excess of 

DTNB over sulfide. Figure 2A shows that at a 100 fold excess of DTNB (i.e. when 1 sulfide 

liberates 1 TNB; see Table 1B), the observed kinetic traces fit well to a single exponential 

equation indicating first order dependence of the rate law on sulfide. 
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Under these conditions both the observed stoichiometry and kinetic data is consistent with the 

bimolecular reaction of DTNB with sulfide (reaction 2), suggesting that 100 fold excess of 

DTNB is necessary for reaction 2 to dominate over reaction 3.  

We also found that at lower DTNB concentrations, where more than 1 TNB molecule is 

liberated per sulfide (indicating a multistep process), the kinetic traces retained their exponential 

character (Figure S1). In addition, the calculated pseudo-first-order rate constants (kobs) at 320 

nm and at 412 nm (representing the decay of DTNB and the formation of TNB) agree within the 

experimental error at all concentrations (for a representative case see Figure S1). The kobs vs 

DTNB plot was found to be linear with the fitted line passing through the origin, showing that 

the reaction is first order for DTNB. At first sight these are controversial because the noted 

change in stoichiometry should also be associated with a marked change in the kinetic pattern. 

As it will be shown later, the lack of such complication is most likely due to a unique set of 

kinetic parameters which yields a simple kinetic behavior. It is concluded that the rate 

determining step in the model is reaction 2 which is followed by a much faster release of the 

second TNB. In other words, sulfide reacts much faster with RSSH than with RSSR (DTNB). In 

addition, the non-detectable intercept in Figure 2B suggests that the equilibrium in reaction 2 is 

practically irreversible. At pH = 7.4, the apparent second-order rate constant of k2
app

 = 881 ± 15 

M
-1

s
-1

 for reaction 2 can thus be obtained from the slope of the line on Figure 2B.  

 

3.2.2. Excess of sulfide over DTNB 

Despite the fact that under these conditions 2 mol equivalents of TNB were generated per DTNB 

molecule in a multistep process (see Table 1B), the observed kinetic traces fit well to a single 

exponential equation at all concentrations (Figure 2C). In addition, regardless of the 1:2 
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stoichiometry, the obtained pseudo-first-order rate constants for the consumption of DTNB or 

the production of TNB exhibit a linear dependence on the sulfide concentration with an intercept 

at the origin (Figure 2D). Furthermore, k2
app

 = 893 ± 19 M
-1

s
-1 

that was obtained from the linear 

fit was similar to the one obtained at excess of DTNB over sulfide (where the calculated k2
app

 

was 881 ± 15 M
-1

s
-1

). These observations are consistent with the proposed kinetic model, where 

the rate constant for reaction 3 is more than 10 times larger than the rate constant for reaction 2 

and the subsequent reaction steps are much faster than reactions 2 and 3 under any of the applied 

conditions. 

It has to be noted that a slow reaction was also observed in our reaction systems albeit 

with much smaller absorbance changes. This reaction was more prominent at excess sulfide, and 

its contribution to the total absorbance changes decreased with the increase in the DTNB 

concentration at excess DTNB and was not observed at a 100 fold excess of DTNB over sulfide 

(i.e. at 1:1 stoichiometric ratios). We hypothesize that this reaction could represent 

disproportionation of slower reacting polysulfides (to liberate sulfide and TNB eventually), 

which only start operating when TNB-persulfide is consumed. Consistent with this the rate of 

this reaction was independent of the sulfide concentration, but a more detailed investigation of 

this minor reaction is outside the scope of the present study. The stoichiometric ratios in Table 1 

include the absorbance changes of this step. 

 

 

 

3.2.3. Kinetic simulations 
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The kinetic traces were modelled using the proposed mechanism (reactions 2 - 5, see 

detailed description of the model in SI) and the average of the measured value for k2 = 889 M
-1

s
-

1
. The simulated kinetic traces gave similar pseudo-first-order rate constant values as the 

experimental ones (see Figure 3A for the two extreme scenarios). These results are also 

consistent with the noted differences in the stoichiometry and the fact that the exponential 

character is maintained regardless of the contributions of reactions 3 – 5 to the generation of 

TNB. Furthermore, consistent with the experimental data, the calculated kobs values from the 

simulated kinetic traces exhibited a linear dependence on the actual reactant concentration that 

was used in excess with an intercept at the origin and slopes of 874 M
-1

s
-1

 and 853 M
-1

s
-1

 at 

excess of DTNB and sulfide, respectively (Figures 3 B&C). The results are in agreement with 

the experimentally obtained apparent second-order rate constants from the linear fits on Figures 

2B and 2D (881 M
-1

s
-1

 and 893 M
-1

s
-1

, respectively). Thus, kinetic modelling corroborates that 

our simple mechanism adequately describes the experimental data that was collected in a wide 

concentration range. Furthermore, the simulations also provided an approximate range for the 

apparent second-order rate constant of reaction 3 at pH = 7.4 of k3 = 5 × 10
3
 – 5 × 10

4
 M

-1
s

-1
, 

because if k3 were outside of this range, than the simulated lines would substantially deviate from 

the experimental data (see dashed lines on Figures 3 B&C).  

 

 

 

3.2.4. pH dependence 

In the 6 > pH > 10 pH region the rate of the reaction was found to increase with the pH and 

plateau at pH > 9 (Figure 4). 
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The apparent (pH dependent) second-order rate constants (that were calculated by dividing the 

observed pseudo-first-order rate constants by the concentrations of the corresponding reagent in 

excess) exhibit similar pH dependencies in the two series of experiments where either sulfide or 

DTNB was used in excess over the other, suggesting no change in the rate determining step 

throughout the investigated pH range. The pH dependence at pH < 6 could not be studied 

because we observed immediate sulfur precipitation making the system unsuitable for stopped-

flow analysis. This is consistent with the disproportionation of polysulfides to give sulfur and 

H2S, which is an acid catalyzed process according to the following equation: 

HS(n+1)
–
  +  H

+
    n/8S8  +  H2S (n = 1 - 8) (6) 

Taking into account that 

i) the two ionizable functional groups on DTNB are carboxylic acids groups, which 

only start to deprotonate at very low pH values (pKa ~ 1.6) [34],  

ii) the acid dissociation constant of HS
–
 ≥ 13 and 

iii) based on a large body of literature, thiol-disulfide exchange reactions occur via a 

nucleophilic attack of the thiolate form on the disulfide moiety [31], 

the observed pH profile most likely reflects the acid dissociation of H2S to give the 

reacting HS
–
 species consistent with the following model: 

H2S  HS
–
  +  H

+
 Ka

H2S = [HS
–
][H

+
]/[H2S] = 2.45 × 10

-7
 M

-1
 at I = 1 M [35] (7) 

 

DTNB  +  HS
–
    products  (8) 

Using the pre-equilibrium assumption for reaction 7 the following rate law can be derived from 

the model:  

k8 
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d[DTNB]/dt = k8∙Ka
H2S/(Ka

H2S + H
+
)∙[sulfide]tot∙[DTNB] (9) 

The solid line in Figure 4 represents the fit of the experimental data points to equation 9, which 

gave the pH independent rate constant of k8 = 1045 ± 11 M
-1

s
-1

 when the pKa of hydrogen sulfide 

was set to pKa
H2S

 = 6.61 (at I = 1 M [33]). Equally good fits were obtained when Ka
H2S was used as 

a floating parameter with the fitted values of k8 = 1090 ± 12 M
-1

s
-1

 and pKa
H2S = 6.79. 

 

3.3. Reduction of cystine and GSSG by sulfide 

In order to extend the results discussed above to more biologically relevant systems we studied 

the reactions of sulfide with cystine and GSSG. First, we investigated the product speciation in 

the reaction of cystine with sulfide by 
1
H-NMR spectroscopy. 

 

 

The first red spectrum characterizes cystine in the absence of sulfide in Figure 5A. Due to the 

symmetric nature of the molecule the α and β protons in the two cysteine moieties are equivalent. 

The β protons are represented by the doublet of doublets (due to coupling with each other and 

with the α proton) at δ = 3.17 ppm and δ = 3.36 ppm and the chemical shift of the α proton is δ = 

4.11 ppm under the applied experimental conditions. Upon titration with sulfide, the formation of 

cysteine (β protons at 3.02 and 3.09 ppm and α proton at δ = 3.96 ppm) is accompanied by the 

appearance of a new Cys derivative with β protons at 3.15 and 3.37 ppm and α proton at δ = 4.18 

ppm. Based on our results in the DTNB system and consistent with earlier reports [24,36] we 

propose that the new Cys derivative could represent the Cys-persulfide species. Because the 

peaks are better resolved in the α proton region (Figure 5B), we made an attempt to estimate the 

A 

B 
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relative concentrations of cystine, cysteine and the new Cys derivative based on the relative 

integrals of their α protons as a function of added sulfide (Figure 6A). 

 

 

 

 

The model that was established for the DTNB system, would predict a bell shaped behavior for 

the concentration of the Cys-persulfide with increasing sulfide concentrations. Notwithstanding, 

Figure 6A shows that the relative concentrations of Cys and Cys-persulfide reached a plateau at a 

~ 1 : 3 cystine : sulfide ratio and instead of a consecutive decline, it slowly started to increase 

further at higher sulfide concentrations. We hypothesize that at higher sulfide concentrations we 

introduce enough polysulfides (as inevitable contaminants in our sulfide stock solutions) to 

perturb the equilibria of reactions 2 and 3 in the cystine-sulfide system. This would not be 

surprising in light of our previous report, where traces amounts of polysulfides in the presence of 

a large excess of sulfide was enough for efficient persulfide formation on the active site Cys 

residues of the Phosphatase and tensin homolog (PTEN) protein [17]. To corroborate this 

assumption we have repeated the NMR titration experiment in the presence (Figure 6C) and 

absence (Figure 6B) of intentionally generated polysulfides in our sulfide reagent solutions. The 

experiment was conducted at pH 8 to avoid sulfur precipitation. Indeed the relative Cys-

persulfide : Cys ratios increased in the presence of preformed polysulfides, which corroborates 

our hypothesis and the proposed model. It has to be noted that at higher sulfide concentrations 

another set of peaks appeared in the β proton region at δ = 2.90 and 3.55 ppm, suggesting the 

formation of an additional Cys derivative. This could potentially be due to an alkyl 
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hydrotrisulfide (i.e. CyS-S-SH) or a dialkyl-trisulfide (i.e. CyS-S-SCy) species [9,22,37,38]. A 

structural characterization of the “new” Cys derivatives is outside the scope of the present study, 

but consistent with the proposed structures we confirmed that all of them are readily reduced in 

the presence of DTT to give cysteine. These observations show that the chemistry of these 

systems can be considerably more complex and certainly system specific.  

 Due this complexity we only investigated the kinetic nature of the reactions of cystine 

and GSSG under one set of experimental conditions, i.e. at an excess of sulfide over the disulfide 

species, in order to get an approximate number for the relative half lifes of these reactions under 

biologically relevant conditions. The kinetic analysis is further complicated by the fact that, 

unlike to TNB and DTNB, there is not a characteristic band in the Uv-vis region that could be 

assigned to a single reagent or reaction product in the cystine or glutathione systems. The 

observed kinetic traces were recorded using stopped-flow spectroscopy at 300 nm, where 

polysulfide and persulfide species were shown to absorb [36,39]. The observed kinetic traces 

reflect the above mentioned complications and even at a 25 fold excess of sulfide they exhibit an 

induction period, which is indicative of multistep processes (Figure 7). Nevertheless, these 

experiments show that i) the reduction of cystine and GSSG is significantly slower than the 

reduction of DTNB (consistent with a previous kinetic study on the reduction of cystine with 

sulfide that was conducted under alkaline conditions [24]) and ii) the intermediate persulfide 

species are considerably less reactive compared to TNB-SSH (which is in agreement with the 

NMR data).  

 

4. Discussion 
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Accumulating evidence suggest that Cys-persulfides are abundant in cellular systems with 

peculiar biological functions [7,8,9,19]. However, the molecular mechanisms of persulfide 

formation and degradation in vivo remains largely elusive. A number of models for persulfide 

formation were proposed including the reactions of sulfide with Cys sulfenic acid [10,20,40,41], 

the reaction of polysulfides with reduced thiol species [10,17] as well as sulfide-mediated 

reduction of disulfide bonds [21,22]. The biological feasibility of this latter reaction is however 

challenged from the kinetic standpoint based on early studies [23] reporting relatively slow rates 

and also on thermodynamic grounds considering the low reduction potential of sulfide compared 

to the largely abundant glutathione system in the cytosol [27]. However, Li and Lancaster Jr. 

recently pointed out that the S
0
/HS

-
 and GSSG/GSH redox potentials -which were used in the 

latter study to argue against the thermodynamic feasibility of sulfide-mediated disulfide 

reduction in a cytosol like environment- were not comparable, because they were referenced to 

different standards [42]. 

To obtain a deeper insight into the kinetic and thermodynamic properties of the title 

reaction we studied the sulfide-mediated reduction of DTNB, cystine and GSSG as model 

disulfides. First we conducted a comprehensive mechanistic study on the reaction of DTNB with 

sulfide. The experimentally established rate law exhibits first order dependency for both sulfide 

and DTNB with an apparent second-order rate constant of 889 ± 12 M
-1

s
-1

 at pH = 7.4. The pH 

dependence of the apparent second-order rate constants revealed that the reactive sulfide species 

is the bisulfide anion, consistent with the reaction proceeding through a nucleophilic attack of 

HS
–
 on the disulfide moiety with a pH independent second-order rate constant of 1090 ± 12 M

-1
s

-

1
. At an excess of sulfide, two TNB is released per DTNB in a multistep process, where the 

oxidizing equivalents are quantitatively converted to give inorganic polysulfides. We proposed a 
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model that is consistent with the experimental data in which the reaction of DTNB with sulfide is 

followed by the reduction of the intermediate TNB-persulfide species to yield HSSH and TNB. 

HSSH than either disproportionates or reacts with the remaining TNB-persulfides to eventually 

result in the appropriate distribution of polysulfides. The kinetic data indicated that the reduction 

of the intermediate TNB-persulfide species (reaction 3) has a larger second-order rate constant 

than the reduction of DTNB by sulfide (reaction 2). However, a 100 fold excess of DTNB was 

enough to quantitatively consume sulfide for the reduction of DTNB without the concomitant 

reaction steps taking place, allowing us to provide a range for the apparent second-order rate 

constant of 5 × 10
3
 – 5 × 10

4
 M

-1
s

-1
 for reaction 3. 

The reduction of cystine and GSSG at pH = 7.4 clearly occur via more complicated 

mechanisms as indicated by the product distribution and kinetic analysis. The most important 

observations in these systems are: 1) the rate of the reactions are considerably slower than for 

DTNB 2) the Cys-persulfide derivatives are significantly more stable than TNB-persulfide 3) the 

reactions proceed via multistep equilibrium processes, where the addition of polysulfide shifts 

the equilibria towards more persulfide generation and 4) additional Cys derivatives can be 

generated in the reaction beside cysteine and Cys-persulfide.  

 

4.1. Potential physiological relevance 

The observed ~ 3 orders of magnitude difference in the reduction rates of DTNB and 

GSSG predicts that in a biological environment a similarly large variability is expected in the 

reactivity of disulfides with sulfide (just as in the case of Cys thiol-disulfide exchange reactions) 

[31]. It is expected that activated disulfides, such as Grx, Trx, PDI , Mia 40 or the Dsb family of 

proteins, will react much faster with sulfide compared to building block disulfide moieties, 

Page 22 of 30



which serve to stabilize protein secondary structures. Furthermore, our data predict that the 

relative thermodynamic stabilities of disulfides and the corresponding persulfide species (which 

apparently determines their speciation under the applied conditions) also vary on a wide scale. 

We showed that DTNB is efficiently reduced by sulfide in a practically irreversible manner even 

at stoichiometric ratios of the reactants. Moreover, thermodynamically favorable formation of 

inorganic polysulfides via sulfide-mediated rapid reduction of the intermediate TNB-persulfide 

derivative was observed. These observations suggest that activated disulfides (such as in DTNB) 

will react favorably and rapidly with sulfide and potentially generate polysulfide species, which 

are increasingly recognized important mediators in sulfide biology [43,44,45]. On energetic 

grounds the other extreme is represented by our previous study on the efficient oxidation of 

PTEN and roGFP by polysulfides [17]. In that work we demonstrated that trace amounts of 

polysulfides that are inevitably found in sulfide stock solutions are enough to completely oxidize 

the protein thiols to the corresponding persulfide derivatives. The cystine-sulfide system lies 

between these two extremes, where the oxidizing equivalents were distributed among Cys-

persulfide and inorganic polysulfide species, with potential formation of dialkyl tri(poly)sulfide 

and hydropolysulfide Cys derivatives [9,25] under certain conditions as predicted by product 

analyses. 

Collectively, our results demonstrate that the reduction of disulfide species by sulfide is 

largely system specific, predicting tight regulation from both the thermodynamic and kinetics 

perspective, which in our view signifies biological feasibility. Although, from the 

thermodynamic standpoint, we agree with the notion that in a reducing cytosolic environment the 

glutathione system will govern the distribution of reduced and oxidized thiol species [27], we 

propose that in a more oxidizing environment, like the endoplasmic reticulum, the mitochondria 
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or the mitochondrial intermembrane space, reactive disulfides could potentially be prominent 

reaction partners of sulfide. In fact, in the mitochondrial catabolic pathway of sulfide the first 

proposed reaction step is the reduction of the intramolecular Cys160-Cys356 disulfide bond of 

sulfide quinone reductase (SQR) by sulfide to give a persulfide intermediate species [46,47]. 

Furthermore, due to the fact that considerable steady-state concentrations were reported for free 

sulfide as well as persulfide species in cellular systems (including in the cytosol), the above 

described thermodynamic differences are likely to play a role in the distribution of sulfane sulfur 

among protein and peptide Cys residues. 

In conclusion, the most important take home message of this work is that the reduction of 

disulfides by sulfide occurs via multistep equilibria along the disulfide  persulfide  

inorganic polysulfides axis. We propose that the chemical nature of the disulfide moiety (which 

is orchestrated by the surrounding amino acid functional groups in proteins and peptides) [31] 

will play a major role in the kinetic feasibility of its reduction by sulfide and the thermodynamic 

stabilities of the corresponding disulfide vs persulfide vs inorganic polysulfide species will 

determine the speciation of sulfane sulfur entities in these molecules. 
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6. List of abbreviations 

DNTB: 5,5'-dithiobis-(2-nitrobenzoic acid) - Ellman’s reagent 

TNB: 5-thio-2-nitrobenzoic acid 

Cys: cysteine 

GSSG: oxidized glutathione 

DSS: 4,4-dimethyl-4-silapentane-1-sulfonic acid 

PTEN: phosphatase and tensin homologe 

DTT: dithiothreitol 

Grx: glutaredoxin 

Trx: thioredoxin 

PDI: protein disulfide-isomerase 

Mia 40: Mitochondrial intermembrane space import and assembly protein 40Dsb family: 

disulfide bond protein family 

roGFP: redox sensitive green fluorescent protein 

 

7. Footnotes 

1
 Sulfide will be used here after as a generic term to include all the different protonation isomers 

of hydrogen sulfide. Distinction between the different protonated forms is made only when it is 

required by the clarity of discussion. 
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Figure 1. Spectral titration of sulfide with DTNB. Mixing 50 µM sulfide with (5.0, 10.0, 15.0, 

20.0, 25.0 µM) DTNB in 100 mM phosphate buffer at pH 7.40, 25 °C and I = 1 M results in a 

concentration dependent increase of TNB’s characteristic absorbance band at 412 nm. 

 

Figure 2. Concentration dependence of the pseudo-first-order rate constant for the reaction 

of sulfide with DTNB. Representative stopped-flow kinetic trace for the reaction of (A) 500 µM 

DTNB with 5 µM HS
–
 or (B) 100 µM sulfide with 1 µM DTNB in 100 mM phosphate buffer at 

pH 7.40, 25 °C and I = 1 M. Experimental kinetic traces were recorded at 412 nm ((A) blue dots, 

(B) red rhombs), where the solid black lines represent the corresponding single exponential fits. 

The pseudo-first-order rate constants exhibit linear dependences on the (C) DTNB and (D) 
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sulfide concentrations at an excess of DTNB and sulfide, respectively. Linear fits are represented 

by solid lines with the obtained equations of C) y = 0.881 x - 0.0008 and D) y = 0.893 x - 0.0088. 

Figure 3. Kinetic simulations of the reaction of sulfide with DTNB. Simulations were carried 

out using the proposed model (see reactions 2 - 5 and Supporting Information). A) 

Representative simulated kinetic traces for the reaction of 500 µM DTNB with 5 µM sulfide 

(blue triangles) or 500 µM sulfide with 5 µM DTNB (red squares) with solid black lines 

representing the corresponding single exponential fits of the calculated data. The experimental 

and simulated pseudo-first-order rate constants agree within the experimental error. At excess 

DTNB: measured kobs = 0.43  0.01 s
–1

 and calculated kobs = 0.45 s
–1

; at excess sulfide measured 

kobs = 0.46  0.02 s
–1

 and calculated kobs = 0.44 s
–1

. DTNB (B) and sulfide (C) concentration 

dependences of the pseudo-first-order rate constant for the reaction of sulfide with DTNB. Blue 

dots and red rhombs are identical to the experimental values presented in Figure 2B and D. Solid 

black lines show the dependence of the simulated pseudo-first-order rate constant on the 

concentration of the actual reagent in excess, where in the model the rate constant of reaction (3) 

was set to be 10 times larger than that of reaction (2) (i.e. r = 10 in Model 1 where r = k3/k2; see 

reactions 2 - 5 and Supporting Information). The equations of the simulated solid lines are (B) y 

= 0.874 x + 0.0038 and (C) y = 0.853 x - 0.0016. The dashed lines were calculated with r = 100 

in panel (B) and r = 3 in panel (C), giving the corresponding equations of (B) y = 0.940 x + 

0.0235 and (C) y = 0.740 x - 0.0016, which exhibit considerable deviation from the observed 

data.  

 

Figure 4. pH dependence of the apparent, reactant concentration independent, second-

order rate constant. Data were collected at excess DTNB (blue dots) or sulfide (red rhombs) in 

100 mM phosphate buffer at 25 °C, I = 1 M. The kinetic traces were recorded at λ = 412 nm and 

the solid line represents the corresponding fit of the experimental data to equation 9 using Ka
H2S 

as a fixed (dashed line) or as a floating (solid line) parameter (see main text for details and for 

fitted and fixed values).  

 

Figure 5. 
1
H-NMR titration of L-cystine with sulfide. 3 mM cystine was equilibrated with the 

indicated amounts of sulfide at pD = 7.40 in 225 mM deuterated phosphate buffer at 25 °C. 

 

 

Figure 6. Speciation of cystine derivatives as a function of sulfide concentration. Relative 

distribution of cystine (blue rhombs), cysteine (green triangles) and Cys-persulfide (red dots) -

after the reactions of 3 mM cystine with the indicated amounts of sulfide in 225 mM deuterated 

phosphate buffer reached equilibrium at pD = 7.40 (A) or 8.0 (B&C)- were determined based on 

the relative integrals of their alpha protons (see Figure 5B). On Figure 6C sulfide reactant 

solutions contained 50% (relative to [sulfide]tot) of sulfane sulfure in the form of inorganic 

polysulfides (see Methods for experimental details). Error bars represent standard deviations of 3 

independent experiments. 
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Figure 7. Representative kinetic traces (A, C) and half lives (B, D) in the cystine/GSSG-

sulfide systems. 1.5 mM of cystine (A, B) or GSSG (C, D) were reacted with 15, 20, 25, 30, 35 

mM of sulfide at pH = 7.4 in 100 mM phosphate buffer at 25 
o
C and I = 1 M. Kinetic traces were 

recorded at 300 nm.  

Table 1. Stoichiometry of the DTNB - sulfide reaction at various reactant concentrations 

using either sulfide (A) or DTNB (B) in excess at pH = 7.4 in 100 mM phosphate buffer at 

25°C and I = 1 M (NaCl). 

 

Page 30 of 30




